1 //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "MCTargetDesc/X86BaseInfo.h"
11 #include "MCTargetDesc/X86FixupKinds.h"
12 #include "llvm/ADT/StringSwitch.h"
13 #include "llvm/MC/MCAsmBackend.h"
14 #include "llvm/MC/MCELFObjectWriter.h"
15 #include "llvm/MC/MCExpr.h"
16 #include "llvm/MC/MCFixupKindInfo.h"
17 #include "llvm/MC/MCMachObjectWriter.h"
18 #include "llvm/MC/MCObjectWriter.h"
19 #include "llvm/MC/MCSectionCOFF.h"
20 #include "llvm/MC/MCSectionELF.h"
21 #include "llvm/MC/MCSectionMachO.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/ELF.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MachO.h"
26 #include "llvm/Support/TargetRegistry.h"
27 #include "llvm/Support/raw_ostream.h"
28 using namespace llvm;
29
30 // Option to allow disabling arithmetic relaxation to workaround PR9807, which
31 // is useful when running bitwise comparison experiments on Darwin. We should be
32 // able to remove this once PR9807 is resolved.
33 static cl::opt<bool>
34 MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
35 cl::desc("Disable relaxation of arithmetic instruction for X86"));
36
getFixupKindLog2Size(unsigned Kind)37 static unsigned getFixupKindLog2Size(unsigned Kind) {
38 switch (Kind) {
39 default:
40 llvm_unreachable("invalid fixup kind!");
41 case FK_PCRel_1:
42 case FK_SecRel_1:
43 case FK_Data_1:
44 return 0;
45 case FK_PCRel_2:
46 case FK_SecRel_2:
47 case FK_Data_2:
48 return 1;
49 case FK_PCRel_4:
50 case X86::reloc_riprel_4byte:
51 case X86::reloc_riprel_4byte_movq_load:
52 case X86::reloc_signed_4byte:
53 case X86::reloc_global_offset_table:
54 case FK_SecRel_4:
55 case FK_Data_4:
56 return 2;
57 case FK_PCRel_8:
58 case FK_SecRel_8:
59 case FK_Data_8:
60 case X86::reloc_global_offset_table8:
61 return 3;
62 }
63 }
64
65 namespace {
66
67 class X86ELFObjectWriter : public MCELFObjectTargetWriter {
68 public:
X86ELFObjectWriter(bool is64Bit,uint8_t OSABI,uint16_t EMachine,bool HasRelocationAddend,bool foobar)69 X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
70 bool HasRelocationAddend, bool foobar)
71 : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
72 };
73
74 class X86AsmBackend : public MCAsmBackend {
75 const StringRef CPU;
76 bool HasNopl;
77 const uint64_t MaxNopLength;
78 public:
X86AsmBackend(const Target & T,StringRef CPU)79 X86AsmBackend(const Target &T, StringRef CPU)
80 : MCAsmBackend(), CPU(CPU), MaxNopLength(CPU == "slm" ? 7 : 15) {
81 HasNopl = CPU != "generic" && CPU != "i386" && CPU != "i486" &&
82 CPU != "i586" && CPU != "pentium" && CPU != "pentium-mmx" &&
83 CPU != "i686" && CPU != "k6" && CPU != "k6-2" && CPU != "k6-3" &&
84 CPU != "geode" && CPU != "winchip-c6" && CPU != "winchip2" &&
85 CPU != "c3" && CPU != "c3-2";
86 }
87
getNumFixupKinds() const88 unsigned getNumFixupKinds() const override {
89 return X86::NumTargetFixupKinds;
90 }
91
getFixupKindInfo(MCFixupKind Kind) const92 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
93 const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
94 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
95 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
96 { "reloc_signed_4byte", 0, 4 * 8, 0},
97 { "reloc_global_offset_table", 0, 4 * 8, 0}
98 };
99
100 if (Kind < FirstTargetFixupKind)
101 return MCAsmBackend::getFixupKindInfo(Kind);
102
103 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
104 "Invalid kind!");
105 return Infos[Kind - FirstTargetFixupKind];
106 }
107
applyFixup(const MCFixup & Fixup,char * Data,unsigned DataSize,uint64_t Value,bool IsPCRel) const108 void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
109 uint64_t Value, bool IsPCRel) const override {
110 unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
111
112 assert(Fixup.getOffset() + Size <= DataSize &&
113 "Invalid fixup offset!");
114
115 // Check that uppper bits are either all zeros or all ones.
116 // Specifically ignore overflow/underflow as long as the leakage is
117 // limited to the lower bits. This is to remain compatible with
118 // other assemblers.
119 assert(isIntN(Size * 8 + 1, Value) &&
120 "Value does not fit in the Fixup field");
121
122 for (unsigned i = 0; i != Size; ++i)
123 Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
124 }
125
126 bool mayNeedRelaxation(const MCInst &Inst) const override;
127
128 bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
129 const MCRelaxableFragment *DF,
130 const MCAsmLayout &Layout) const override;
131
132 void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
133
134 bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
135 };
136 } // end anonymous namespace
137
getRelaxedOpcodeBranch(unsigned Op)138 static unsigned getRelaxedOpcodeBranch(unsigned Op) {
139 switch (Op) {
140 default:
141 return Op;
142
143 case X86::JAE_1: return X86::JAE_4;
144 case X86::JA_1: return X86::JA_4;
145 case X86::JBE_1: return X86::JBE_4;
146 case X86::JB_1: return X86::JB_4;
147 case X86::JE_1: return X86::JE_4;
148 case X86::JGE_1: return X86::JGE_4;
149 case X86::JG_1: return X86::JG_4;
150 case X86::JLE_1: return X86::JLE_4;
151 case X86::JL_1: return X86::JL_4;
152 case X86::JMP_1: return X86::JMP_4;
153 case X86::JNE_1: return X86::JNE_4;
154 case X86::JNO_1: return X86::JNO_4;
155 case X86::JNP_1: return X86::JNP_4;
156 case X86::JNS_1: return X86::JNS_4;
157 case X86::JO_1: return X86::JO_4;
158 case X86::JP_1: return X86::JP_4;
159 case X86::JS_1: return X86::JS_4;
160 }
161 }
162
getRelaxedOpcodeArith(unsigned Op)163 static unsigned getRelaxedOpcodeArith(unsigned Op) {
164 switch (Op) {
165 default:
166 return Op;
167
168 // IMUL
169 case X86::IMUL16rri8: return X86::IMUL16rri;
170 case X86::IMUL16rmi8: return X86::IMUL16rmi;
171 case X86::IMUL32rri8: return X86::IMUL32rri;
172 case X86::IMUL32rmi8: return X86::IMUL32rmi;
173 case X86::IMUL64rri8: return X86::IMUL64rri32;
174 case X86::IMUL64rmi8: return X86::IMUL64rmi32;
175
176 // AND
177 case X86::AND16ri8: return X86::AND16ri;
178 case X86::AND16mi8: return X86::AND16mi;
179 case X86::AND32ri8: return X86::AND32ri;
180 case X86::AND32mi8: return X86::AND32mi;
181 case X86::AND64ri8: return X86::AND64ri32;
182 case X86::AND64mi8: return X86::AND64mi32;
183
184 // OR
185 case X86::OR16ri8: return X86::OR16ri;
186 case X86::OR16mi8: return X86::OR16mi;
187 case X86::OR32ri8: return X86::OR32ri;
188 case X86::OR32mi8: return X86::OR32mi;
189 case X86::OR64ri8: return X86::OR64ri32;
190 case X86::OR64mi8: return X86::OR64mi32;
191
192 // XOR
193 case X86::XOR16ri8: return X86::XOR16ri;
194 case X86::XOR16mi8: return X86::XOR16mi;
195 case X86::XOR32ri8: return X86::XOR32ri;
196 case X86::XOR32mi8: return X86::XOR32mi;
197 case X86::XOR64ri8: return X86::XOR64ri32;
198 case X86::XOR64mi8: return X86::XOR64mi32;
199
200 // ADD
201 case X86::ADD16ri8: return X86::ADD16ri;
202 case X86::ADD16mi8: return X86::ADD16mi;
203 case X86::ADD32ri8: return X86::ADD32ri;
204 case X86::ADD32mi8: return X86::ADD32mi;
205 case X86::ADD64ri8: return X86::ADD64ri32;
206 case X86::ADD64mi8: return X86::ADD64mi32;
207
208 // SUB
209 case X86::SUB16ri8: return X86::SUB16ri;
210 case X86::SUB16mi8: return X86::SUB16mi;
211 case X86::SUB32ri8: return X86::SUB32ri;
212 case X86::SUB32mi8: return X86::SUB32mi;
213 case X86::SUB64ri8: return X86::SUB64ri32;
214 case X86::SUB64mi8: return X86::SUB64mi32;
215
216 // CMP
217 case X86::CMP16ri8: return X86::CMP16ri;
218 case X86::CMP16mi8: return X86::CMP16mi;
219 case X86::CMP32ri8: return X86::CMP32ri;
220 case X86::CMP32mi8: return X86::CMP32mi;
221 case X86::CMP64ri8: return X86::CMP64ri32;
222 case X86::CMP64mi8: return X86::CMP64mi32;
223
224 // PUSH
225 case X86::PUSH32i8: return X86::PUSHi32;
226 case X86::PUSH16i8: return X86::PUSHi16;
227 case X86::PUSH64i8: return X86::PUSH64i32;
228 case X86::PUSH64i16: return X86::PUSH64i32;
229 }
230 }
231
getRelaxedOpcode(unsigned Op)232 static unsigned getRelaxedOpcode(unsigned Op) {
233 unsigned R = getRelaxedOpcodeArith(Op);
234 if (R != Op)
235 return R;
236 return getRelaxedOpcodeBranch(Op);
237 }
238
mayNeedRelaxation(const MCInst & Inst) const239 bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
240 // Branches can always be relaxed.
241 if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
242 return true;
243
244 if (MCDisableArithRelaxation)
245 return false;
246
247 // Check if this instruction is ever relaxable.
248 if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
249 return false;
250
251
252 // Check if it has an expression and is not RIP relative.
253 bool hasExp = false;
254 bool hasRIP = false;
255 for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
256 const MCOperand &Op = Inst.getOperand(i);
257 if (Op.isExpr())
258 hasExp = true;
259
260 if (Op.isReg() && Op.getReg() == X86::RIP)
261 hasRIP = true;
262 }
263
264 // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
265 // how we do relaxations?
266 return hasExp && !hasRIP;
267 }
268
fixupNeedsRelaxation(const MCFixup & Fixup,uint64_t Value,const MCRelaxableFragment * DF,const MCAsmLayout & Layout) const269 bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
270 uint64_t Value,
271 const MCRelaxableFragment *DF,
272 const MCAsmLayout &Layout) const {
273 // Relax if the value is too big for a (signed) i8.
274 return int64_t(Value) != int64_t(int8_t(Value));
275 }
276
277 // FIXME: Can tblgen help at all here to verify there aren't other instructions
278 // we can relax?
relaxInstruction(const MCInst & Inst,MCInst & Res) const279 void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
280 // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
281 unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
282
283 if (RelaxedOp == Inst.getOpcode()) {
284 SmallString<256> Tmp;
285 raw_svector_ostream OS(Tmp);
286 Inst.dump_pretty(OS);
287 OS << "\n";
288 report_fatal_error("unexpected instruction to relax: " + OS.str());
289 }
290
291 Res = Inst;
292 Res.setOpcode(RelaxedOp);
293 }
294
295 /// \brief Write a sequence of optimal nops to the output, covering \p Count
296 /// bytes.
297 /// \return - true on success, false on failure
writeNopData(uint64_t Count,MCObjectWriter * OW) const298 bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
299 static const uint8_t Nops[10][10] = {
300 // nop
301 {0x90},
302 // xchg %ax,%ax
303 {0x66, 0x90},
304 // nopl (%[re]ax)
305 {0x0f, 0x1f, 0x00},
306 // nopl 0(%[re]ax)
307 {0x0f, 0x1f, 0x40, 0x00},
308 // nopl 0(%[re]ax,%[re]ax,1)
309 {0x0f, 0x1f, 0x44, 0x00, 0x00},
310 // nopw 0(%[re]ax,%[re]ax,1)
311 {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
312 // nopl 0L(%[re]ax)
313 {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
314 // nopl 0L(%[re]ax,%[re]ax,1)
315 {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
316 // nopw 0L(%[re]ax,%[re]ax,1)
317 {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
318 // nopw %cs:0L(%[re]ax,%[re]ax,1)
319 {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
320 };
321
322 // This CPU doesn't support long nops. If needed add more.
323 // FIXME: Can we get this from the subtarget somehow?
324 // FIXME: We could generated something better than plain 0x90.
325 if (!HasNopl) {
326 for (uint64_t i = 0; i < Count; ++i)
327 OW->Write8(0x90);
328 return true;
329 }
330
331 // 15 is the longest single nop instruction. Emit as many 15-byte nops as
332 // needed, then emit a nop of the remaining length.
333 do {
334 const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength);
335 const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
336 for (uint8_t i = 0; i < Prefixes; i++)
337 OW->Write8(0x66);
338 const uint8_t Rest = ThisNopLength - Prefixes;
339 for (uint8_t i = 0; i < Rest; i++)
340 OW->Write8(Nops[Rest - 1][i]);
341 Count -= ThisNopLength;
342 } while (Count != 0);
343
344 return true;
345 }
346
347 /* *** */
348
349 namespace {
350
351 class ELFX86AsmBackend : public X86AsmBackend {
352 public:
353 uint8_t OSABI;
ELFX86AsmBackend(const Target & T,uint8_t OSABI,StringRef CPU)354 ELFX86AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
355 : X86AsmBackend(T, CPU), OSABI(OSABI) {}
356 };
357
358 class ELFX86_32AsmBackend : public ELFX86AsmBackend {
359 public:
ELFX86_32AsmBackend(const Target & T,uint8_t OSABI,StringRef CPU)360 ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
361 : ELFX86AsmBackend(T, OSABI, CPU) {}
362
createObjectWriter(raw_pwrite_stream & OS) const363 MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
364 return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386);
365 }
366 };
367
368 class ELFX86_X32AsmBackend : public ELFX86AsmBackend {
369 public:
ELFX86_X32AsmBackend(const Target & T,uint8_t OSABI,StringRef CPU)370 ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
371 : ELFX86AsmBackend(T, OSABI, CPU) {}
372
createObjectWriter(raw_pwrite_stream & OS) const373 MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
374 return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI,
375 ELF::EM_X86_64);
376 }
377 };
378
379 class ELFX86_64AsmBackend : public ELFX86AsmBackend {
380 public:
ELFX86_64AsmBackend(const Target & T,uint8_t OSABI,StringRef CPU)381 ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
382 : ELFX86AsmBackend(T, OSABI, CPU) {}
383
createObjectWriter(raw_pwrite_stream & OS) const384 MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
385 return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64);
386 }
387 };
388
389 class WindowsX86AsmBackend : public X86AsmBackend {
390 bool Is64Bit;
391
392 public:
WindowsX86AsmBackend(const Target & T,bool is64Bit,StringRef CPU)393 WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
394 : X86AsmBackend(T, CPU)
395 , Is64Bit(is64Bit) {
396 }
397
createObjectWriter(raw_pwrite_stream & OS) const398 MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
399 return createX86WinCOFFObjectWriter(OS, Is64Bit);
400 }
401 };
402
403 namespace CU {
404
405 /// Compact unwind encoding values.
406 enum CompactUnwindEncodings {
407 /// [RE]BP based frame where [RE]BP is pused on the stack immediately after
408 /// the return address, then [RE]SP is moved to [RE]BP.
409 UNWIND_MODE_BP_FRAME = 0x01000000,
410
411 /// A frameless function with a small constant stack size.
412 UNWIND_MODE_STACK_IMMD = 0x02000000,
413
414 /// A frameless function with a large constant stack size.
415 UNWIND_MODE_STACK_IND = 0x03000000,
416
417 /// No compact unwind encoding is available.
418 UNWIND_MODE_DWARF = 0x04000000,
419
420 /// Mask for encoding the frame registers.
421 UNWIND_BP_FRAME_REGISTERS = 0x00007FFF,
422
423 /// Mask for encoding the frameless registers.
424 UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
425 };
426
427 } // end CU namespace
428
429 class DarwinX86AsmBackend : public X86AsmBackend {
430 const MCRegisterInfo &MRI;
431
432 /// \brief Number of registers that can be saved in a compact unwind encoding.
433 enum { CU_NUM_SAVED_REGS = 6 };
434
435 mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
436 bool Is64Bit;
437
438 unsigned OffsetSize; ///< Offset of a "push" instruction.
439 unsigned MoveInstrSize; ///< Size of a "move" instruction.
440 unsigned StackDivide; ///< Amount to adjust stack size by.
441 protected:
442 /// \brief Size of a "push" instruction for the given register.
PushInstrSize(unsigned Reg) const443 unsigned PushInstrSize(unsigned Reg) const {
444 switch (Reg) {
445 case X86::EBX:
446 case X86::ECX:
447 case X86::EDX:
448 case X86::EDI:
449 case X86::ESI:
450 case X86::EBP:
451 case X86::RBX:
452 case X86::RBP:
453 return 1;
454 case X86::R12:
455 case X86::R13:
456 case X86::R14:
457 case X86::R15:
458 return 2;
459 }
460 return 1;
461 }
462
463 /// \brief Implementation of algorithm to generate the compact unwind encoding
464 /// for the CFI instructions.
465 uint32_t
generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const466 generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
467 if (Instrs.empty()) return 0;
468
469 // Reset the saved registers.
470 unsigned SavedRegIdx = 0;
471 memset(SavedRegs, 0, sizeof(SavedRegs));
472
473 bool HasFP = false;
474
475 // Encode that we are using EBP/RBP as the frame pointer.
476 uint32_t CompactUnwindEncoding = 0;
477
478 unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
479 unsigned InstrOffset = 0;
480 unsigned StackAdjust = 0;
481 unsigned StackSize = 0;
482 unsigned PrevStackSize = 0;
483 unsigned NumDefCFAOffsets = 0;
484
485 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
486 const MCCFIInstruction &Inst = Instrs[i];
487
488 switch (Inst.getOperation()) {
489 default:
490 // Any other CFI directives indicate a frame that we aren't prepared
491 // to represent via compact unwind, so just bail out.
492 return 0;
493 case MCCFIInstruction::OpDefCfaRegister: {
494 // Defines a frame pointer. E.g.
495 //
496 // movq %rsp, %rbp
497 // L0:
498 // .cfi_def_cfa_register %rbp
499 //
500 HasFP = true;
501 assert(MRI.getLLVMRegNum(Inst.getRegister(), true) ==
502 (Is64Bit ? X86::RBP : X86::EBP) && "Invalid frame pointer!");
503
504 // Reset the counts.
505 memset(SavedRegs, 0, sizeof(SavedRegs));
506 StackAdjust = 0;
507 SavedRegIdx = 0;
508 InstrOffset += MoveInstrSize;
509 break;
510 }
511 case MCCFIInstruction::OpDefCfaOffset: {
512 // Defines a new offset for the CFA. E.g.
513 //
514 // With frame:
515 //
516 // pushq %rbp
517 // L0:
518 // .cfi_def_cfa_offset 16
519 //
520 // Without frame:
521 //
522 // subq $72, %rsp
523 // L0:
524 // .cfi_def_cfa_offset 80
525 //
526 PrevStackSize = StackSize;
527 StackSize = std::abs(Inst.getOffset()) / StackDivide;
528 ++NumDefCFAOffsets;
529 break;
530 }
531 case MCCFIInstruction::OpOffset: {
532 // Defines a "push" of a callee-saved register. E.g.
533 //
534 // pushq %r15
535 // pushq %r14
536 // pushq %rbx
537 // L0:
538 // subq $120, %rsp
539 // L1:
540 // .cfi_offset %rbx, -40
541 // .cfi_offset %r14, -32
542 // .cfi_offset %r15, -24
543 //
544 if (SavedRegIdx == CU_NUM_SAVED_REGS)
545 // If there are too many saved registers, we cannot use a compact
546 // unwind encoding.
547 return CU::UNWIND_MODE_DWARF;
548
549 unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
550 SavedRegs[SavedRegIdx++] = Reg;
551 StackAdjust += OffsetSize;
552 InstrOffset += PushInstrSize(Reg);
553 break;
554 }
555 }
556 }
557
558 StackAdjust /= StackDivide;
559
560 if (HasFP) {
561 if ((StackAdjust & 0xFF) != StackAdjust)
562 // Offset was too big for a compact unwind encoding.
563 return CU::UNWIND_MODE_DWARF;
564
565 // Get the encoding of the saved registers when we have a frame pointer.
566 uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
567 if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
568
569 CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
570 CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
571 CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
572 } else {
573 // If the amount of the stack allocation is the size of a register, then
574 // we "push" the RAX/EAX register onto the stack instead of adjusting the
575 // stack pointer with a SUB instruction. We don't support the push of the
576 // RAX/EAX register with compact unwind. So we check for that situation
577 // here.
578 if ((NumDefCFAOffsets == SavedRegIdx + 1 &&
579 StackSize - PrevStackSize == 1) ||
580 (Instrs.size() == 1 && NumDefCFAOffsets == 1 && StackSize == 2))
581 return CU::UNWIND_MODE_DWARF;
582
583 SubtractInstrIdx += InstrOffset;
584 ++StackAdjust;
585
586 if ((StackSize & 0xFF) == StackSize) {
587 // Frameless stack with a small stack size.
588 CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
589
590 // Encode the stack size.
591 CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
592 } else {
593 if ((StackAdjust & 0x7) != StackAdjust)
594 // The extra stack adjustments are too big for us to handle.
595 return CU::UNWIND_MODE_DWARF;
596
597 // Frameless stack with an offset too large for us to encode compactly.
598 CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
599
600 // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
601 // instruction.
602 CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
603
604 // Encode any extra stack stack adjustments (done via push
605 // instructions).
606 CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
607 }
608
609 // Encode the number of registers saved. (Reverse the list first.)
610 std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
611 CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
612
613 // Get the encoding of the saved registers when we don't have a frame
614 // pointer.
615 uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
616 if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
617
618 // Encode the register encoding.
619 CompactUnwindEncoding |=
620 RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
621 }
622
623 return CompactUnwindEncoding;
624 }
625
626 private:
627 /// \brief Get the compact unwind number for a given register. The number
628 /// corresponds to the enum lists in compact_unwind_encoding.h.
getCompactUnwindRegNum(unsigned Reg) const629 int getCompactUnwindRegNum(unsigned Reg) const {
630 static const uint16_t CU32BitRegs[7] = {
631 X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
632 };
633 static const uint16_t CU64BitRegs[] = {
634 X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
635 };
636 const uint16_t *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
637 for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
638 if (*CURegs == Reg)
639 return Idx;
640
641 return -1;
642 }
643
644 /// \brief Return the registers encoded for a compact encoding with a frame
645 /// pointer.
encodeCompactUnwindRegistersWithFrame() const646 uint32_t encodeCompactUnwindRegistersWithFrame() const {
647 // Encode the registers in the order they were saved --- 3-bits per
648 // register. The list of saved registers is assumed to be in reverse
649 // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
650 uint32_t RegEnc = 0;
651 for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
652 unsigned Reg = SavedRegs[i];
653 if (Reg == 0) break;
654
655 int CURegNum = getCompactUnwindRegNum(Reg);
656 if (CURegNum == -1) return ~0U;
657
658 // Encode the 3-bit register number in order, skipping over 3-bits for
659 // each register.
660 RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
661 }
662
663 assert((RegEnc & 0x3FFFF) == RegEnc &&
664 "Invalid compact register encoding!");
665 return RegEnc;
666 }
667
668 /// \brief Create the permutation encoding used with frameless stacks. It is
669 /// passed the number of registers to be saved and an array of the registers
670 /// saved.
encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const671 uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
672 // The saved registers are numbered from 1 to 6. In order to encode the
673 // order in which they were saved, we re-number them according to their
674 // place in the register order. The re-numbering is relative to the last
675 // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
676 // that order:
677 //
678 // Orig Re-Num
679 // ---- ------
680 // 6 6
681 // 2 2
682 // 4 3
683 // 5 3
684 //
685 for (unsigned i = 0; i < RegCount; ++i) {
686 int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
687 if (CUReg == -1) return ~0U;
688 SavedRegs[i] = CUReg;
689 }
690
691 // Reverse the list.
692 std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
693
694 uint32_t RenumRegs[CU_NUM_SAVED_REGS];
695 for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
696 unsigned Countless = 0;
697 for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
698 if (SavedRegs[j] < SavedRegs[i])
699 ++Countless;
700
701 RenumRegs[i] = SavedRegs[i] - Countless - 1;
702 }
703
704 // Take the renumbered values and encode them into a 10-bit number.
705 uint32_t permutationEncoding = 0;
706 switch (RegCount) {
707 case 6:
708 permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
709 + 6 * RenumRegs[2] + 2 * RenumRegs[3]
710 + RenumRegs[4];
711 break;
712 case 5:
713 permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
714 + 6 * RenumRegs[3] + 2 * RenumRegs[4]
715 + RenumRegs[5];
716 break;
717 case 4:
718 permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3]
719 + 3 * RenumRegs[4] + RenumRegs[5];
720 break;
721 case 3:
722 permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4]
723 + RenumRegs[5];
724 break;
725 case 2:
726 permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5];
727 break;
728 case 1:
729 permutationEncoding |= RenumRegs[5];
730 break;
731 }
732
733 assert((permutationEncoding & 0x3FF) == permutationEncoding &&
734 "Invalid compact register encoding!");
735 return permutationEncoding;
736 }
737
738 public:
DarwinX86AsmBackend(const Target & T,const MCRegisterInfo & MRI,StringRef CPU,bool Is64Bit)739 DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU,
740 bool Is64Bit)
741 : X86AsmBackend(T, CPU), MRI(MRI), Is64Bit(Is64Bit) {
742 memset(SavedRegs, 0, sizeof(SavedRegs));
743 OffsetSize = Is64Bit ? 8 : 4;
744 MoveInstrSize = Is64Bit ? 3 : 2;
745 StackDivide = Is64Bit ? 8 : 4;
746 }
747 };
748
749 class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
750 public:
DarwinX86_32AsmBackend(const Target & T,const MCRegisterInfo & MRI,StringRef CPU)751 DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
752 StringRef CPU)
753 : DarwinX86AsmBackend(T, MRI, CPU, false) {}
754
createObjectWriter(raw_pwrite_stream & OS) const755 MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
756 return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
757 MachO::CPU_TYPE_I386,
758 MachO::CPU_SUBTYPE_I386_ALL);
759 }
760
761 /// \brief Generate the compact unwind encoding for the CFI instructions.
generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const762 uint32_t generateCompactUnwindEncoding(
763 ArrayRef<MCCFIInstruction> Instrs) const override {
764 return generateCompactUnwindEncodingImpl(Instrs);
765 }
766 };
767
768 class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
769 const MachO::CPUSubTypeX86 Subtype;
770 public:
DarwinX86_64AsmBackend(const Target & T,const MCRegisterInfo & MRI,StringRef CPU,MachO::CPUSubTypeX86 st)771 DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
772 StringRef CPU, MachO::CPUSubTypeX86 st)
773 : DarwinX86AsmBackend(T, MRI, CPU, true), Subtype(st) {}
774
createObjectWriter(raw_pwrite_stream & OS) const775 MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
776 return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
777 MachO::CPU_TYPE_X86_64, Subtype);
778 }
779
780 /// \brief Generate the compact unwind encoding for the CFI instructions.
generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const781 uint32_t generateCompactUnwindEncoding(
782 ArrayRef<MCCFIInstruction> Instrs) const override {
783 return generateCompactUnwindEncodingImpl(Instrs);
784 }
785 };
786
787 } // end anonymous namespace
788
createX86_32AsmBackend(const Target & T,const MCRegisterInfo & MRI,StringRef TT,StringRef CPU)789 MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
790 const MCRegisterInfo &MRI,
791 StringRef TT,
792 StringRef CPU) {
793 Triple TheTriple(TT);
794
795 if (TheTriple.isOSBinFormatMachO())
796 return new DarwinX86_32AsmBackend(T, MRI, CPU);
797
798 if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
799 return new WindowsX86AsmBackend(T, false, CPU);
800
801 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
802 return new ELFX86_32AsmBackend(T, OSABI, CPU);
803 }
804
createX86_64AsmBackend(const Target & T,const MCRegisterInfo & MRI,StringRef TT,StringRef CPU)805 MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
806 const MCRegisterInfo &MRI,
807 StringRef TT,
808 StringRef CPU) {
809 Triple TheTriple(TT);
810
811 if (TheTriple.isOSBinFormatMachO()) {
812 MachO::CPUSubTypeX86 CS =
813 StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
814 .Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
815 .Default(MachO::CPU_SUBTYPE_X86_64_ALL);
816 return new DarwinX86_64AsmBackend(T, MRI, CPU, CS);
817 }
818
819 if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
820 return new WindowsX86AsmBackend(T, true, CPU);
821
822 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
823
824 if (TheTriple.getEnvironment() == Triple::GNUX32)
825 return new ELFX86_X32AsmBackend(T, OSABI, CPU);
826 return new ELFX86_64AsmBackend(T, OSABI, CPU);
827 }
828