• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkDashPathPriv.h"
9 #include "SkPathMeasure.h"
10 
is_even(int x)11 static inline int is_even(int x) {
12     return (~x) << 31;
13 }
14 
find_first_interval(const SkScalar intervals[],SkScalar phase,int32_t * index,int count)15 static SkScalar find_first_interval(const SkScalar intervals[], SkScalar phase,
16                                     int32_t* index, int count) {
17     for (int i = 0; i < count; ++i) {
18         if (phase > intervals[i]) {
19             phase -= intervals[i];
20         } else {
21             *index = i;
22             return intervals[i] - phase;
23         }
24     }
25     // If we get here, phase "appears" to be larger than our length. This
26     // shouldn't happen with perfect precision, but we can accumulate errors
27     // during the initial length computation (rounding can make our sum be too
28     // big or too small. In that event, we just have to eat the error here.
29     *index = 0;
30     return intervals[0];
31 }
32 
CalcDashParameters(SkScalar phase,const SkScalar intervals[],int32_t count,SkScalar * initialDashLength,int32_t * initialDashIndex,SkScalar * intervalLength,SkScalar * adjustedPhase)33 void SkDashPath::CalcDashParameters(SkScalar phase, const SkScalar intervals[], int32_t count,
34                                     SkScalar* initialDashLength, int32_t* initialDashIndex,
35                                     SkScalar* intervalLength, SkScalar* adjustedPhase) {
36     SkScalar len = 0;
37     for (int i = 0; i < count; i++) {
38         len += intervals[i];
39     }
40     *intervalLength = len;
41 
42     // watch out for values that might make us go out of bounds
43     if ((len > 0) && SkScalarIsFinite(phase) && SkScalarIsFinite(len)) {
44 
45         // Adjust phase to be between 0 and len, "flipping" phase if negative.
46         // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
47         if (adjustedPhase) {
48             if (phase < 0) {
49                 phase = -phase;
50                 if (phase > len) {
51                     phase = SkScalarMod(phase, len);
52                 }
53                 phase = len - phase;
54 
55                 // Due to finite precision, it's possible that phase == len,
56                 // even after the subtract (if len >>> phase), so fix that here.
57                 // This fixes http://crbug.com/124652 .
58                 SkASSERT(phase <= len);
59                 if (phase == len) {
60                     phase = 0;
61                 }
62             } else if (phase >= len) {
63                 phase = SkScalarMod(phase, len);
64             }
65             *adjustedPhase = phase;
66         }
67         SkASSERT(phase >= 0 && phase < len);
68 
69         *initialDashLength = find_first_interval(intervals, phase,
70                                                 initialDashIndex, count);
71 
72         SkASSERT(*initialDashLength >= 0);
73         SkASSERT(*initialDashIndex >= 0 && *initialDashIndex < count);
74     } else {
75         *initialDashLength = -1;    // signal bad dash intervals
76     }
77 }
78 
outset_for_stroke(SkRect * rect,const SkStrokeRec & rec)79 static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
80     SkScalar radius = SkScalarHalf(rec.getWidth());
81     if (0 == radius) {
82         radius = SK_Scalar1;    // hairlines
83     }
84     if (SkPaint::kMiter_Join == rec.getJoin()) {
85         radius = SkScalarMul(radius, rec.getMiter());
86     }
87     rect->outset(radius, radius);
88 }
89 
90 // Only handles lines for now. If returns true, dstPath is the new (smaller)
91 // path. If returns false, then dstPath parameter is ignored.
cull_path(const SkPath & srcPath,const SkStrokeRec & rec,const SkRect * cullRect,SkScalar intervalLength,SkPath * dstPath)92 static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
93                       const SkRect* cullRect, SkScalar intervalLength,
94                       SkPath* dstPath) {
95     if (NULL == cullRect) {
96         return false;
97     }
98 
99     SkPoint pts[2];
100     if (!srcPath.isLine(pts)) {
101         return false;
102     }
103 
104     SkRect bounds = *cullRect;
105     outset_for_stroke(&bounds, rec);
106 
107     SkScalar dx = pts[1].x() - pts[0].x();
108     SkScalar dy = pts[1].y() - pts[0].y();
109 
110     // just do horizontal lines for now (lazy)
111     if (dy) {
112         return false;
113     }
114 
115     SkScalar minX = pts[0].fX;
116     SkScalar maxX = pts[1].fX;
117 
118     if (dx < 0) {
119         SkTSwap(minX, maxX);
120     }
121 
122     SkASSERT(minX <= maxX);
123     if (maxX < bounds.fLeft || minX > bounds.fRight) {
124         return false;
125     }
126 
127     // Now we actually perform the chop, removing the excess to the left and
128     // right of the bounds (keeping our new line "in phase" with the dash,
129     // hence the (mod intervalLength).
130 
131     if (minX < bounds.fLeft) {
132         minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX,
133                                           intervalLength);
134     }
135     if (maxX > bounds.fRight) {
136         maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight,
137                                            intervalLength);
138     }
139 
140     SkASSERT(maxX >= minX);
141     if (dx < 0) {
142         SkTSwap(minX, maxX);
143     }
144     pts[0].fX = minX;
145     pts[1].fX = maxX;
146 
147     dstPath->moveTo(pts[0]);
148     dstPath->lineTo(pts[1]);
149     return true;
150 }
151 
152 class SpecialLineRec {
153 public:
init(const SkPath & src,SkPath * dst,SkStrokeRec * rec,int intervalCount,SkScalar intervalLength)154     bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
155               int intervalCount, SkScalar intervalLength) {
156         if (rec->isHairlineStyle() || !src.isLine(fPts)) {
157             return false;
158         }
159 
160         // can relax this in the future, if we handle square and round caps
161         if (SkPaint::kButt_Cap != rec->getCap()) {
162             return false;
163         }
164 
165         SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);
166 
167         fTangent = fPts[1] - fPts[0];
168         if (fTangent.isZero()) {
169             return false;
170         }
171 
172         fPathLength = pathLength;
173         fTangent.scale(SkScalarInvert(pathLength));
174         fTangent.rotateCCW(&fNormal);
175         fNormal.scale(SkScalarHalf(rec->getWidth()));
176 
177         // now estimate how many quads will be added to the path
178         //     resulting segments = pathLen * intervalCount / intervalLen
179         //     resulting points = 4 * segments
180 
181         SkScalar ptCount = SkScalarMulDiv(pathLength,
182                                           SkIntToScalar(intervalCount),
183                                           intervalLength);
184         int n = SkScalarCeilToInt(ptCount) << 2;
185         dst->incReserve(n);
186 
187         // we will take care of the stroking
188         rec->setFillStyle();
189         return true;
190     }
191 
addSegment(SkScalar d0,SkScalar d1,SkPath * path) const192     void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
193         SkASSERT(d0 < fPathLength);
194         // clamp the segment to our length
195         if (d1 > fPathLength) {
196             d1 = fPathLength;
197         }
198 
199         SkScalar x0 = fPts[0].fX + SkScalarMul(fTangent.fX, d0);
200         SkScalar x1 = fPts[0].fX + SkScalarMul(fTangent.fX, d1);
201         SkScalar y0 = fPts[0].fY + SkScalarMul(fTangent.fY, d0);
202         SkScalar y1 = fPts[0].fY + SkScalarMul(fTangent.fY, d1);
203 
204         SkPoint pts[4];
205         pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY);   // moveTo
206         pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY);   // lineTo
207         pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY);   // lineTo
208         pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY);   // lineTo
209 
210         path->addPoly(pts, SK_ARRAY_COUNT(pts), false);
211     }
212 
213 private:
214     SkPoint fPts[2];
215     SkVector fTangent;
216     SkVector fNormal;
217     SkScalar fPathLength;
218 };
219 
220 
FilterDashPath(SkPath * dst,const SkPath & src,SkStrokeRec * rec,const SkRect * cullRect,const SkScalar aIntervals[],int32_t count,SkScalar initialDashLength,int32_t initialDashIndex,SkScalar intervalLength)221 bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
222                                 const SkRect* cullRect, const SkScalar aIntervals[],
223                                 int32_t count, SkScalar initialDashLength, int32_t initialDashIndex,
224                                 SkScalar intervalLength) {
225 
226     // we do nothing if the src wants to be filled, or if our dashlength is 0
227     if (rec->isFillStyle() || initialDashLength < 0) {
228         return false;
229     }
230 
231     const SkScalar* intervals = aIntervals;
232     SkScalar        dashCount = 0;
233     int             segCount = 0;
234 
235     SkPath cullPathStorage;
236     const SkPath* srcPtr = &src;
237     if (cull_path(src, *rec, cullRect, intervalLength, &cullPathStorage)) {
238         srcPtr = &cullPathStorage;
239     }
240 
241     SpecialLineRec lineRec;
242     bool specialLine = lineRec.init(*srcPtr, dst, rec, count >> 1, intervalLength);
243 
244     SkPathMeasure   meas(*srcPtr, false);
245 
246     do {
247         bool        skipFirstSegment = meas.isClosed();
248         bool        addedSegment = false;
249         SkScalar    length = meas.getLength();
250         int         index = initialDashIndex;
251 
252         // Since the path length / dash length ratio may be arbitrarily large, we can exert
253         // significant memory pressure while attempting to build the filtered path. To avoid this,
254         // we simply give up dashing beyond a certain threshold.
255         //
256         // The original bug report (http://crbug.com/165432) is based on a path yielding more than
257         // 90 million dash segments and crashing the memory allocator. A limit of 1 million
258         // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
259         // maximum dash memory overhead at roughly 17MB per path.
260         static const SkScalar kMaxDashCount = 1000000;
261         dashCount += length * (count >> 1) / intervalLength;
262         if (dashCount > kMaxDashCount) {
263             dst->reset();
264             return false;
265         }
266 
267         // Using double precision to avoid looping indefinitely due to single precision rounding
268         // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
269         double  distance = 0;
270         double  dlen = initialDashLength;
271 
272         while (distance < length) {
273             SkASSERT(dlen >= 0);
274             addedSegment = false;
275             if (is_even(index) && dlen > 0 && !skipFirstSegment) {
276                 addedSegment = true;
277                 ++segCount;
278 
279                 if (specialLine) {
280                     lineRec.addSegment(SkDoubleToScalar(distance),
281                                        SkDoubleToScalar(distance + dlen),
282                                        dst);
283                 } else {
284                     meas.getSegment(SkDoubleToScalar(distance),
285                                     SkDoubleToScalar(distance + dlen),
286                                     dst, true);
287                 }
288             }
289             distance += dlen;
290 
291             // clear this so we only respect it the first time around
292             skipFirstSegment = false;
293 
294             // wrap around our intervals array if necessary
295             index += 1;
296             SkASSERT(index <= count);
297             if (index == count) {
298                 index = 0;
299             }
300 
301             // fetch our next dlen
302             dlen = intervals[index];
303         }
304 
305         // extend if we ended on a segment and we need to join up with the (skipped) initial segment
306         if (meas.isClosed() && is_even(initialDashIndex) &&
307             initialDashLength > 0) {
308             meas.getSegment(0, initialDashLength, dst, !addedSegment);
309             ++segCount;
310         }
311     } while (meas.nextContour());
312 
313     if (segCount > 1) {
314         dst->setConvexity(SkPath::kConcave_Convexity);
315     }
316 
317     return true;
318 }
319 
FilterDashPath(SkPath * dst,const SkPath & src,SkStrokeRec * rec,const SkRect * cullRect,const SkPathEffect::DashInfo & info)320 bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
321                                 const SkRect* cullRect, const SkPathEffect::DashInfo& info) {
322     SkScalar initialDashLength = 0;
323     int32_t initialDashIndex = 0;
324     SkScalar intervalLength = 0;
325     CalcDashParameters(info.fPhase, info.fIntervals, info.fCount,
326                        &initialDashLength, &initialDashIndex, &intervalLength);
327     return FilterDashPath(dst, src, rec, cullRect, info.fIntervals, info.fCount, initialDashLength,
328                           initialDashIndex, intervalLength);
329 }
330