1 /*
2 * DTLS implementation written by Nagendra Modadugu
3 * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
4 */
5 /* ====================================================================
6 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
59 * All rights reserved.
60 *
61 * This package is an SSL implementation written
62 * by Eric Young (eay@cryptsoft.com).
63 * The implementation was written so as to conform with Netscapes SSL.
64 *
65 * This library is free for commercial and non-commercial use as long as
66 * the following conditions are aheared to. The following conditions
67 * apply to all code found in this distribution, be it the RC4, RSA,
68 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
69 * included with this distribution is covered by the same copyright terms
70 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
71 *
72 * Copyright remains Eric Young's, and as such any Copyright notices in
73 * the code are not to be removed.
74 * If this package is used in a product, Eric Young should be given attribution
75 * as the author of the parts of the library used.
76 * This can be in the form of a textual message at program startup or
77 * in documentation (online or textual) provided with the package.
78 *
79 * Redistribution and use in source and binary forms, with or without
80 * modification, are permitted provided that the following conditions
81 * are met:
82 * 1. Redistributions of source code must retain the copyright
83 * notice, this list of conditions and the following disclaimer.
84 * 2. Redistributions in binary form must reproduce the above copyright
85 * notice, this list of conditions and the following disclaimer in the
86 * documentation and/or other materials provided with the distribution.
87 * 3. All advertising materials mentioning features or use of this software
88 * must display the following acknowledgement:
89 * "This product includes cryptographic software written by
90 * Eric Young (eay@cryptsoft.com)"
91 * The word 'cryptographic' can be left out if the rouines from the library
92 * being used are not cryptographic related :-).
93 * 4. If you include any Windows specific code (or a derivative thereof) from
94 * the apps directory (application code) you must include an acknowledgement:
95 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
96 *
97 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
98 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
99 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
100 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
101 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
102 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
103 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
104 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
105 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
106 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
107 * SUCH DAMAGE.
108 *
109 * The licence and distribution terms for any publically available version or
110 * derivative of this code cannot be changed. i.e. this code cannot simply be
111 * copied and put under another distribution licence
112 * [including the GNU Public Licence.] */
113
114 #include <assert.h>
115 #include <limits.h>
116 #include <stdio.h>
117 #include <string.h>
118
119 #include <openssl/buf.h>
120 #include <openssl/err.h>
121 #include <openssl/evp.h>
122 #include <openssl/mem.h>
123 #include <openssl/obj.h>
124 #include <openssl/rand.h>
125 #include <openssl/x509.h>
126
127 #include "internal.h"
128
129
130 /* TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable
131 * for these values? Notably, why is kMinMTU a function of the transport
132 * protocol's overhead rather than, say, what's needed to hold a minimally-sized
133 * handshake fragment plus protocol overhead. */
134
135 /* kMinMTU is the minimum acceptable MTU value. */
136 static const unsigned int kMinMTU = 256 - 28;
137
138 /* kDefaultMTU is the default MTU value to use if neither the user nor
139 * the underlying BIO supplies one. */
140 static const unsigned int kDefaultMTU = 1500 - 28;
141
142 /* kMaxHandshakeBuffer is the maximum number of handshake messages ahead of the
143 * current one to buffer. */
144 static const unsigned int kHandshakeBufferSize = 10;
145
146 static void dtls1_fix_message_header(SSL *s, unsigned long frag_off,
147 unsigned long frag_len);
148 static unsigned char *dtls1_write_message_header(SSL *s, unsigned char *p);
149
dtls1_hm_fragment_new(unsigned long frag_len,int reassembly)150 static hm_fragment *dtls1_hm_fragment_new(unsigned long frag_len,
151 int reassembly) {
152 hm_fragment *frag = NULL;
153 uint8_t *buf = NULL;
154 uint8_t *bitmask = NULL;
155
156 frag = (hm_fragment *)OPENSSL_malloc(sizeof(hm_fragment));
157 if (frag == NULL) {
158 OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_MALLOC_FAILURE);
159 return NULL;
160 }
161
162 if (frag_len) {
163 buf = (uint8_t *)OPENSSL_malloc(frag_len);
164 if (buf == NULL) {
165 OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_MALLOC_FAILURE);
166 OPENSSL_free(frag);
167 return NULL;
168 }
169 }
170
171 /* zero length fragment gets zero frag->fragment */
172 frag->fragment = buf;
173
174 /* Initialize reassembly bitmask if necessary */
175 if (reassembly && frag_len > 0) {
176 if (frag_len + 7 < frag_len) {
177 OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_OVERFLOW);
178 return NULL;
179 }
180 size_t bitmask_len = (frag_len + 7) / 8;
181 bitmask = (uint8_t *)OPENSSL_malloc(bitmask_len);
182 if (bitmask == NULL) {
183 OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_MALLOC_FAILURE);
184 if (buf != NULL) {
185 OPENSSL_free(buf);
186 }
187 OPENSSL_free(frag);
188 return NULL;
189 }
190 memset(bitmask, 0, bitmask_len);
191 }
192
193 frag->reassembly = bitmask;
194
195 return frag;
196 }
197
dtls1_hm_fragment_free(hm_fragment * frag)198 void dtls1_hm_fragment_free(hm_fragment *frag) {
199 if (frag == NULL) {
200 return;
201 }
202 OPENSSL_free(frag->fragment);
203 OPENSSL_free(frag->reassembly);
204 OPENSSL_free(frag);
205 }
206
207 #if !defined(inline)
208 #define inline __inline
209 #endif
210
211 /* bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|,
212 * exclusive, set. */
bit_range(size_t start,size_t end)213 static inline uint8_t bit_range(size_t start, size_t end) {
214 return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1));
215 }
216
217 /* dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive,
218 * as received in |frag|. If |frag| becomes complete, it clears
219 * |frag->reassembly|. The range must be within the bounds of |frag|'s message
220 * and |frag->reassembly| must not be NULL. */
dtls1_hm_fragment_mark(hm_fragment * frag,size_t start,size_t end)221 static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start,
222 size_t end) {
223 size_t i;
224 size_t msg_len = frag->msg_header.msg_len;
225
226 if (frag->reassembly == NULL || start > end || end > msg_len) {
227 assert(0);
228 return;
229 }
230 /* A zero-length message will never have a pending reassembly. */
231 assert(msg_len > 0);
232
233 if ((start >> 3) == (end >> 3)) {
234 frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7);
235 } else {
236 frag->reassembly[start >> 3] |= bit_range(start & 7, 8);
237 for (i = (start >> 3) + 1; i < (end >> 3); i++) {
238 frag->reassembly[i] = 0xff;
239 }
240 if ((end & 7) != 0) {
241 frag->reassembly[end >> 3] |= bit_range(0, end & 7);
242 }
243 }
244
245 /* Check if the fragment is complete. */
246 for (i = 0; i < (msg_len >> 3); i++) {
247 if (frag->reassembly[i] != 0xff) {
248 return;
249 }
250 }
251 if ((msg_len & 7) != 0 &&
252 frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) {
253 return;
254 }
255
256 OPENSSL_free(frag->reassembly);
257 frag->reassembly = NULL;
258 }
259
260 /* send s->init_buf in records of type 'type' (SSL3_RT_HANDSHAKE or
261 * SSL3_RT_CHANGE_CIPHER_SPEC) */
dtls1_do_write(SSL * s,int type,enum dtls1_use_epoch_t use_epoch)262 int dtls1_do_write(SSL *s, int type, enum dtls1_use_epoch_t use_epoch) {
263 int ret;
264 int curr_mtu;
265 unsigned int len, frag_off;
266
267 /* AHA! Figure out the MTU, and stick to the right size */
268 if (s->d1->mtu < dtls1_min_mtu() &&
269 !(SSL_get_options(s) & SSL_OP_NO_QUERY_MTU)) {
270 long mtu = BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
271 if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) {
272 s->d1->mtu = (unsigned)mtu;
273 } else {
274 s->d1->mtu = kDefaultMTU;
275 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SET_MTU, s->d1->mtu, NULL);
276 }
277 }
278
279 /* should have something reasonable now */
280 assert(s->d1->mtu >= dtls1_min_mtu());
281
282 if (s->init_off == 0 && type == SSL3_RT_HANDSHAKE) {
283 assert(s->init_num ==
284 (int)s->d1->w_msg_hdr.msg_len + DTLS1_HM_HEADER_LENGTH);
285 }
286
287 /* Determine the maximum overhead of the current cipher. */
288 size_t max_overhead = SSL_AEAD_CTX_max_overhead(s->aead_write_ctx);
289
290 frag_off = 0;
291 while (s->init_num) {
292 /* Account for data in the buffering BIO; multiple records may be packed
293 * into a single packet during the handshake.
294 *
295 * TODO(davidben): This is buggy; if the MTU is larger than the buffer size,
296 * the large record will be split across two packets. Moreover, in that
297 * case, the |dtls1_write_bytes| call may not return synchronously. This
298 * will break on retry as the |s->init_off| and |s->init_num| adjustment
299 * will run a second time. */
300 curr_mtu = s->d1->mtu - BIO_wpending(SSL_get_wbio(s)) -
301 DTLS1_RT_HEADER_LENGTH - max_overhead;
302
303 if (curr_mtu <= DTLS1_HM_HEADER_LENGTH) {
304 /* Flush the buffer and continue with a fresh packet.
305 *
306 * TODO(davidben): If |BIO_flush| is not synchronous and requires multiple
307 * calls to |dtls1_do_write|, |frag_off| will be wrong. */
308 ret = BIO_flush(SSL_get_wbio(s));
309 if (ret <= 0) {
310 return ret;
311 }
312 assert(BIO_wpending(SSL_get_wbio(s)) == 0);
313 curr_mtu = s->d1->mtu - DTLS1_RT_HEADER_LENGTH - max_overhead;
314 }
315
316 /* XDTLS: this function is too long. split out the CCS part */
317 if (type == SSL3_RT_HANDSHAKE) {
318 /* If this isn't the first fragment, reserve space to prepend a new
319 * fragment header. This will override the body of a previous fragment. */
320 if (s->init_off != 0) {
321 assert(s->init_off > DTLS1_HM_HEADER_LENGTH);
322 s->init_off -= DTLS1_HM_HEADER_LENGTH;
323 s->init_num += DTLS1_HM_HEADER_LENGTH;
324 }
325
326 if (curr_mtu <= DTLS1_HM_HEADER_LENGTH) {
327 /* To make forward progress, the MTU must, at minimum, fit the handshake
328 * header and one byte of handshake body. */
329 OPENSSL_PUT_ERROR(SSL, dtls1_do_write, SSL_R_MTU_TOO_SMALL);
330 return -1;
331 }
332
333 if (s->init_num > curr_mtu) {
334 len = curr_mtu;
335 } else {
336 len = s->init_num;
337 }
338 assert(len >= DTLS1_HM_HEADER_LENGTH);
339
340 dtls1_fix_message_header(s, frag_off, len - DTLS1_HM_HEADER_LENGTH);
341 dtls1_write_message_header(
342 s, (uint8_t *)&s->init_buf->data[s->init_off]);
343 } else {
344 assert(type == SSL3_RT_CHANGE_CIPHER_SPEC);
345 /* ChangeCipherSpec cannot be fragmented. */
346 if (s->init_num > curr_mtu) {
347 OPENSSL_PUT_ERROR(SSL, dtls1_do_write, SSL_R_MTU_TOO_SMALL);
348 return -1;
349 }
350 len = s->init_num;
351 }
352
353 ret = dtls1_write_bytes(s, type, &s->init_buf->data[s->init_off], len,
354 use_epoch);
355 if (ret < 0) {
356 return -1;
357 }
358
359 /* bad if this assert fails, only part of the handshake message got sent.
360 * But why would this happen? */
361 assert(len == (unsigned int)ret);
362
363 if (ret == s->init_num) {
364 if (s->msg_callback) {
365 s->msg_callback(1, s->version, type, s->init_buf->data,
366 (size_t)(s->init_off + s->init_num), s,
367 s->msg_callback_arg);
368 }
369
370 s->init_off = 0; /* done writing this message */
371 s->init_num = 0;
372
373 return 1;
374 }
375 s->init_off += ret;
376 s->init_num -= ret;
377 frag_off += (ret -= DTLS1_HM_HEADER_LENGTH);
378 }
379
380 return 0;
381 }
382
383 /* dtls1_is_next_message_complete returns one if the next handshake message is
384 * complete and zero otherwise. */
dtls1_is_next_message_complete(SSL * s)385 static int dtls1_is_next_message_complete(SSL *s) {
386 pitem *item = pqueue_peek(s->d1->buffered_messages);
387 if (item == NULL) {
388 return 0;
389 }
390
391 hm_fragment *frag = (hm_fragment *)item->data;
392 assert(s->d1->handshake_read_seq <= frag->msg_header.seq);
393
394 return s->d1->handshake_read_seq == frag->msg_header.seq &&
395 frag->reassembly == NULL;
396 }
397
398 /* dtls1_discard_fragment_body discards a handshake fragment body of length
399 * |frag_len|. It returns one on success and zero on error.
400 *
401 * TODO(davidben): This function will go away when ssl_read_bytes is gone from
402 * the DTLS side. */
dtls1_discard_fragment_body(SSL * s,size_t frag_len)403 static int dtls1_discard_fragment_body(SSL *s, size_t frag_len) {
404 uint8_t discard[256];
405 while (frag_len > 0) {
406 size_t chunk = frag_len < sizeof(discard) ? frag_len : sizeof(discard);
407 int ret = dtls1_read_bytes(s, SSL3_RT_HANDSHAKE, discard, chunk, 0);
408 if (ret != chunk) {
409 return 0;
410 }
411 frag_len -= chunk;
412 }
413 return 1;
414 }
415
416 /* dtls1_get_buffered_message returns the buffered message corresponding to
417 * |msg_hdr|. If none exists, it creates a new one and inserts it in the
418 * queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It
419 * returns NULL on failure. The caller does not take ownership of the result. */
dtls1_get_buffered_message(SSL * s,const struct hm_header_st * msg_hdr)420 static hm_fragment *dtls1_get_buffered_message(
421 SSL *s, const struct hm_header_st *msg_hdr) {
422 uint8_t seq64be[8];
423 memset(seq64be, 0, sizeof(seq64be));
424 seq64be[6] = (uint8_t)(msg_hdr->seq >> 8);
425 seq64be[7] = (uint8_t)msg_hdr->seq;
426 pitem *item = pqueue_find(s->d1->buffered_messages, seq64be);
427
428 hm_fragment *frag;
429 if (item == NULL) {
430 /* This is the first fragment from this message. */
431 frag = dtls1_hm_fragment_new(msg_hdr->msg_len,
432 1 /* reassembly buffer needed */);
433 if (frag == NULL) {
434 return NULL;
435 }
436 memcpy(&frag->msg_header, msg_hdr, sizeof(*msg_hdr));
437 item = pitem_new(seq64be, frag);
438 if (item == NULL) {
439 dtls1_hm_fragment_free(frag);
440 return NULL;
441 }
442 item = pqueue_insert(s->d1->buffered_messages, item);
443 /* |pqueue_insert| fails iff a duplicate item is inserted, but |item| cannot
444 * be a duplicate. */
445 assert(item != NULL);
446 } else {
447 frag = item->data;
448 assert(frag->msg_header.seq == msg_hdr->seq);
449 if (frag->msg_header.type != msg_hdr->type ||
450 frag->msg_header.msg_len != msg_hdr->msg_len) {
451 /* The new fragment must be compatible with the previous fragments from
452 * this message. */
453 OPENSSL_PUT_ERROR(SSL, dtls1_get_buffered_message,
454 SSL_R_FRAGMENT_MISMATCH);
455 ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
456 return NULL;
457 }
458 }
459 return frag;
460 }
461
462 /* dtls1_max_handshake_message_len returns the maximum number of bytes
463 * permitted in a DTLS handshake message for |s|. The minimum is 16KB, but may
464 * be greater if the maximum certificate list size requires it. */
dtls1_max_handshake_message_len(const SSL * s)465 static size_t dtls1_max_handshake_message_len(const SSL *s) {
466 size_t max_len = DTLS1_HM_HEADER_LENGTH + SSL3_RT_MAX_ENCRYPTED_LENGTH;
467 if (max_len < s->max_cert_list) {
468 return s->max_cert_list;
469 }
470 return max_len;
471 }
472
473 /* dtls1_process_fragment reads a handshake fragment and processes it. It
474 * returns one if a fragment was successfully processed and 0 or -1 on error. */
dtls1_process_fragment(SSL * s)475 static int dtls1_process_fragment(SSL *s) {
476 /* Read handshake message header.
477 *
478 * TODO(davidben): ssl_read_bytes allows splitting the fragment header and
479 * body across two records. Change this interface to consume the fragment in
480 * one pass. */
481 uint8_t header[DTLS1_HM_HEADER_LENGTH];
482 int ret = dtls1_read_bytes(s, SSL3_RT_HANDSHAKE, header,
483 DTLS1_HM_HEADER_LENGTH, 0);
484 if (ret <= 0) {
485 return ret;
486 }
487 if (ret != DTLS1_HM_HEADER_LENGTH) {
488 OPENSSL_PUT_ERROR(SSL, dtls1_process_fragment, SSL_R_UNEXPECTED_MESSAGE);
489 ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
490 return -1;
491 }
492
493 /* Parse the message fragment header. */
494 struct hm_header_st msg_hdr;
495 dtls1_get_message_header(header, &msg_hdr);
496
497 const size_t frag_off = msg_hdr.frag_off;
498 const size_t frag_len = msg_hdr.frag_len;
499 const size_t msg_len = msg_hdr.msg_len;
500 if (frag_off > msg_len || frag_off + frag_len < frag_off ||
501 frag_off + frag_len > msg_len ||
502 msg_len > dtls1_max_handshake_message_len(s)) {
503 OPENSSL_PUT_ERROR(SSL, dtls1_process_fragment,
504 SSL_R_EXCESSIVE_MESSAGE_SIZE);
505 ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
506 return -1;
507 }
508
509 if (msg_hdr.seq < s->d1->handshake_read_seq ||
510 msg_hdr.seq > (unsigned)s->d1->handshake_read_seq +
511 kHandshakeBufferSize) {
512 /* Ignore fragments from the past, or ones too far in the future. */
513 if (!dtls1_discard_fragment_body(s, frag_len)) {
514 return -1;
515 }
516 return 1;
517 }
518
519 hm_fragment *frag = dtls1_get_buffered_message(s, &msg_hdr);
520 if (frag == NULL) {
521 return -1;
522 }
523 assert(frag->msg_header.msg_len == msg_len);
524
525 if (frag->reassembly == NULL) {
526 /* The message is already assembled. */
527 if (!dtls1_discard_fragment_body(s, frag_len)) {
528 return -1;
529 }
530 return 1;
531 }
532 assert(msg_len > 0);
533
534 /* Read the body of the fragment. */
535 ret = dtls1_read_bytes(s, SSL3_RT_HANDSHAKE, frag->fragment + frag_off,
536 frag_len, 0);
537 if (ret != frag_len) {
538 OPENSSL_PUT_ERROR(SSL, dtls1_process_fragment, SSL_R_UNEXPECTED_MESSAGE);
539 ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
540 return -1;
541 }
542 dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len);
543
544 return 1;
545 }
546
547 /* dtls1_get_message reads a handshake message of message type |msg_type| (any
548 * if |msg_type| == -1), maximum acceptable body length |max|. Read an entire
549 * handshake message. Handshake messages arrive in fragments. */
dtls1_get_message(SSL * s,int st1,int stn,int msg_type,long max,enum ssl_hash_message_t hash_message,int * ok)550 long dtls1_get_message(SSL *s, int st1, int stn, int msg_type, long max,
551 enum ssl_hash_message_t hash_message, int *ok) {
552 pitem *item = NULL;
553 hm_fragment *frag = NULL;
554 int al;
555
556 /* s3->tmp is used to store messages that are unexpected, caused
557 * by the absence of an optional handshake message */
558 if (s->s3->tmp.reuse_message) {
559 /* A ssl_dont_hash_message call cannot be combined with reuse_message; the
560 * ssl_dont_hash_message would have to have been applied to the previous
561 * call. */
562 assert(hash_message == ssl_hash_message);
563 s->s3->tmp.reuse_message = 0;
564 if (msg_type >= 0 && s->s3->tmp.message_type != msg_type) {
565 al = SSL_AD_UNEXPECTED_MESSAGE;
566 OPENSSL_PUT_ERROR(SSL, dtls1_get_message, SSL_R_UNEXPECTED_MESSAGE);
567 goto f_err;
568 }
569 *ok = 1;
570 s->init_msg = (uint8_t *)s->init_buf->data + DTLS1_HM_HEADER_LENGTH;
571 s->init_num = (int)s->s3->tmp.message_size;
572 return s->init_num;
573 }
574
575 /* Process fragments until one is found. */
576 while (!dtls1_is_next_message_complete(s)) {
577 int ret = dtls1_process_fragment(s);
578 if (ret <= 0) {
579 *ok = 0;
580 return ret;
581 }
582 }
583
584 /* Read out the next complete handshake message. */
585 item = pqueue_pop(s->d1->buffered_messages);
586 assert(item != NULL);
587 frag = (hm_fragment *)item->data;
588 assert(s->d1->handshake_read_seq == frag->msg_header.seq);
589 assert(frag->reassembly == NULL);
590
591 if (frag->msg_header.msg_len > (size_t)max) {
592 OPENSSL_PUT_ERROR(SSL, dtls1_get_message, SSL_R_EXCESSIVE_MESSAGE_SIZE);
593 goto err;
594 }
595
596 CBB cbb;
597 if (!BUF_MEM_grow(s->init_buf,
598 (size_t)frag->msg_header.msg_len +
599 DTLS1_HM_HEADER_LENGTH) ||
600 !CBB_init_fixed(&cbb, (uint8_t *)s->init_buf->data, s->init_buf->max)) {
601 OPENSSL_PUT_ERROR(SSL, dtls1_get_message, ERR_R_MALLOC_FAILURE);
602 goto err;
603 }
604
605 /* Reconstruct the assembled message. */
606 size_t len;
607 if (!CBB_add_u8(&cbb, frag->msg_header.type) ||
608 !CBB_add_u24(&cbb, frag->msg_header.msg_len) ||
609 !CBB_add_u16(&cbb, frag->msg_header.seq) ||
610 !CBB_add_u24(&cbb, 0 /* frag_off */) ||
611 !CBB_add_u24(&cbb, frag->msg_header.msg_len) ||
612 !CBB_add_bytes(&cbb, frag->fragment, frag->msg_header.msg_len) ||
613 !CBB_finish(&cbb, NULL, &len)) {
614 CBB_cleanup(&cbb);
615 OPENSSL_PUT_ERROR(SSL, dtls1_get_message, ERR_R_INTERNAL_ERROR);
616 goto err;
617 }
618 assert(len == (size_t)frag->msg_header.msg_len + DTLS1_HM_HEADER_LENGTH);
619
620 s->d1->handshake_read_seq++;
621
622 /* TODO(davidben): This function has a lot of implicit outputs. Simplify the
623 * |ssl_get_message| API. */
624 s->s3->tmp.message_type = frag->msg_header.type;
625 s->s3->tmp.message_size = frag->msg_header.msg_len;
626 s->init_msg = (uint8_t *)s->init_buf->data + DTLS1_HM_HEADER_LENGTH;
627 s->init_num = frag->msg_header.msg_len;
628
629 if (msg_type >= 0 && s->s3->tmp.message_type != msg_type) {
630 al = SSL_AD_UNEXPECTED_MESSAGE;
631 OPENSSL_PUT_ERROR(SSL, dtls1_get_message, SSL_R_UNEXPECTED_MESSAGE);
632 goto f_err;
633 }
634 if (hash_message == ssl_hash_message && !ssl3_hash_current_message(s)) {
635 goto err;
636 }
637 if (s->msg_callback) {
638 s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, s->init_buf->data,
639 s->init_num + DTLS1_HM_HEADER_LENGTH, s,
640 s->msg_callback_arg);
641 }
642
643 pitem_free(item);
644 dtls1_hm_fragment_free(frag);
645
646 s->state = stn;
647 *ok = 1;
648 return s->init_num;
649
650 f_err:
651 ssl3_send_alert(s, SSL3_AL_FATAL, al);
652 err:
653 pitem_free(item);
654 dtls1_hm_fragment_free(frag);
655 *ok = 0;
656 return -1;
657 }
658
659 /* for these 2 messages, we need to
660 * ssl->enc_read_ctx re-init
661 * ssl->s3->read_sequence zero
662 * ssl->s3->read_mac_secret re-init
663 * ssl->session->read_sym_enc assign
664 * ssl->session->read_compression assign
665 * ssl->session->read_hash assign */
dtls1_send_change_cipher_spec(SSL * s,int a,int b)666 int dtls1_send_change_cipher_spec(SSL *s, int a, int b) {
667 uint8_t *p;
668
669 if (s->state == a) {
670 p = (uint8_t *)s->init_buf->data;
671 *p++ = SSL3_MT_CCS;
672 s->d1->handshake_write_seq = s->d1->next_handshake_write_seq;
673 s->init_num = DTLS1_CCS_HEADER_LENGTH;
674
675 s->init_off = 0;
676
677 dtls1_set_message_header(s, SSL3_MT_CCS, 0, s->d1->handshake_write_seq, 0,
678 0);
679
680 /* buffer the message to handle re-xmits */
681 dtls1_buffer_message(s, 1);
682
683 s->state = b;
684 }
685
686 /* SSL3_ST_CW_CHANGE_B */
687 return dtls1_do_write(s, SSL3_RT_CHANGE_CIPHER_SPEC, dtls1_use_current_epoch);
688 }
689
dtls1_read_failed(SSL * s,int code)690 int dtls1_read_failed(SSL *s, int code) {
691 if (code > 0) {
692 assert(0);
693 return 1;
694 }
695
696 if (!dtls1_is_timer_expired(s)) {
697 /* not a timeout, none of our business, let higher layers handle this. In
698 * fact, it's probably an error */
699 return code;
700 }
701
702 if (!SSL_in_init(s)) {
703 /* done, no need to send a retransmit */
704 BIO_set_flags(SSL_get_rbio(s), BIO_FLAGS_READ);
705 return code;
706 }
707
708 return DTLSv1_handle_timeout(s);
709 }
710
dtls1_get_queue_priority(unsigned short seq,int is_ccs)711 int dtls1_get_queue_priority(unsigned short seq, int is_ccs) {
712 /* The index of the retransmission queue actually is the message sequence
713 * number, since the queue only contains messages of a single handshake.
714 * However, the ChangeCipherSpec has no message sequence number and so using
715 * only the sequence will result in the CCS and Finished having the same
716 * index. To prevent this, the sequence number is multiplied by 2. In case of
717 * a CCS 1 is subtracted. This does not only differ CSS and Finished, it also
718 * maintains the order of the index (important for priority queues) and fits
719 * in the unsigned short variable. */
720 return seq * 2 - is_ccs;
721 }
722
dtls1_retransmit_message(SSL * s,hm_fragment * frag)723 static int dtls1_retransmit_message(SSL *s, hm_fragment *frag) {
724 int ret;
725 /* XDTLS: for now assuming that read/writes are blocking */
726 unsigned long header_length;
727
728 /* assert(s->init_num == 0);
729 assert(s->init_off == 0); */
730
731 if (frag->msg_header.is_ccs) {
732 header_length = DTLS1_CCS_HEADER_LENGTH;
733 } else {
734 header_length = DTLS1_HM_HEADER_LENGTH;
735 }
736
737 memcpy(s->init_buf->data, frag->fragment,
738 frag->msg_header.msg_len + header_length);
739 s->init_num = frag->msg_header.msg_len + header_length;
740
741 dtls1_set_message_header(s, frag->msg_header.type,
742 frag->msg_header.msg_len, frag->msg_header.seq,
743 0, frag->msg_header.frag_len);
744
745 /* DTLS renegotiation is unsupported, so only epochs 0 (NULL cipher) and 1
746 * (negotiated cipher) exist. */
747 assert(s->d1->w_epoch == 0 || s->d1->w_epoch == 1);
748 assert(frag->msg_header.epoch <= s->d1->w_epoch);
749 enum dtls1_use_epoch_t use_epoch = dtls1_use_current_epoch;
750 if (s->d1->w_epoch == 1 && frag->msg_header.epoch == 0) {
751 use_epoch = dtls1_use_previous_epoch;
752 }
753
754 ret = dtls1_do_write(s, frag->msg_header.is_ccs ? SSL3_RT_CHANGE_CIPHER_SPEC
755 : SSL3_RT_HANDSHAKE,
756 use_epoch);
757
758 (void)BIO_flush(SSL_get_wbio(s));
759 return ret;
760 }
761
762
dtls1_retransmit_buffered_messages(SSL * s)763 int dtls1_retransmit_buffered_messages(SSL *s) {
764 pqueue sent = s->d1->sent_messages;
765 piterator iter = pqueue_iterator(sent);
766 pitem *item;
767
768 for (item = pqueue_next(&iter); item != NULL; item = pqueue_next(&iter)) {
769 hm_fragment *frag = (hm_fragment *)item->data;
770 if (dtls1_retransmit_message(s, frag) <= 0) {
771 return -1;
772 }
773 }
774
775 return 1;
776 }
777
dtls1_buffer_message(SSL * s,int is_ccs)778 int dtls1_buffer_message(SSL *s, int is_ccs) {
779 pitem *item;
780 hm_fragment *frag;
781 uint8_t seq64be[8];
782
783 /* this function is called immediately after a message has
784 * been serialized */
785 assert(s->init_off == 0);
786
787 frag = dtls1_hm_fragment_new(s->init_num, 0);
788 if (!frag) {
789 return 0;
790 }
791
792 memcpy(frag->fragment, s->init_buf->data, s->init_num);
793
794 if (is_ccs) {
795 assert(s->d1->w_msg_hdr.msg_len + DTLS1_CCS_HEADER_LENGTH ==
796 (unsigned int)s->init_num);
797 } else {
798 assert(s->d1->w_msg_hdr.msg_len + DTLS1_HM_HEADER_LENGTH ==
799 (unsigned int)s->init_num);
800 }
801
802 frag->msg_header.msg_len = s->d1->w_msg_hdr.msg_len;
803 frag->msg_header.seq = s->d1->w_msg_hdr.seq;
804 frag->msg_header.type = s->d1->w_msg_hdr.type;
805 frag->msg_header.frag_off = 0;
806 frag->msg_header.frag_len = s->d1->w_msg_hdr.msg_len;
807 frag->msg_header.is_ccs = is_ccs;
808 frag->msg_header.epoch = s->d1->w_epoch;
809
810 memset(seq64be, 0, sizeof(seq64be));
811 seq64be[6] = (uint8_t)(
812 dtls1_get_queue_priority(frag->msg_header.seq, frag->msg_header.is_ccs) >>
813 8);
814 seq64be[7] = (uint8_t)(
815 dtls1_get_queue_priority(frag->msg_header.seq, frag->msg_header.is_ccs));
816
817 item = pitem_new(seq64be, frag);
818 if (item == NULL) {
819 dtls1_hm_fragment_free(frag);
820 return 0;
821 }
822
823 pqueue_insert(s->d1->sent_messages, item);
824 return 1;
825 }
826
827 /* call this function when the buffered messages are no longer needed */
dtls1_clear_record_buffer(SSL * s)828 void dtls1_clear_record_buffer(SSL *s) {
829 pitem *item;
830
831 for (item = pqueue_pop(s->d1->sent_messages); item != NULL;
832 item = pqueue_pop(s->d1->sent_messages)) {
833 dtls1_hm_fragment_free((hm_fragment *)item->data);
834 pitem_free(item);
835 }
836 }
837
838 /* don't actually do the writing, wait till the MTU has been retrieved */
dtls1_set_message_header(SSL * s,uint8_t mt,unsigned long len,unsigned short seq_num,unsigned long frag_off,unsigned long frag_len)839 void dtls1_set_message_header(SSL *s, uint8_t mt, unsigned long len,
840 unsigned short seq_num, unsigned long frag_off,
841 unsigned long frag_len) {
842 struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;
843
844 msg_hdr->type = mt;
845 msg_hdr->msg_len = len;
846 msg_hdr->seq = seq_num;
847 msg_hdr->frag_off = frag_off;
848 msg_hdr->frag_len = frag_len;
849 }
850
dtls1_fix_message_header(SSL * s,unsigned long frag_off,unsigned long frag_len)851 static void dtls1_fix_message_header(SSL *s, unsigned long frag_off,
852 unsigned long frag_len) {
853 struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;
854
855 msg_hdr->frag_off = frag_off;
856 msg_hdr->frag_len = frag_len;
857 }
858
dtls1_write_message_header(SSL * s,uint8_t * p)859 static uint8_t *dtls1_write_message_header(SSL *s, uint8_t *p) {
860 struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;
861
862 *p++ = msg_hdr->type;
863 l2n3(msg_hdr->msg_len, p);
864
865 s2n(msg_hdr->seq, p);
866 l2n3(msg_hdr->frag_off, p);
867 l2n3(msg_hdr->frag_len, p);
868
869 return p;
870 }
871
dtls1_min_mtu(void)872 unsigned int dtls1_min_mtu(void) {
873 return kMinMTU;
874 }
875
dtls1_get_message_header(uint8_t * data,struct hm_header_st * msg_hdr)876 void dtls1_get_message_header(uint8_t *data,
877 struct hm_header_st *msg_hdr) {
878 memset(msg_hdr, 0x00, sizeof(struct hm_header_st));
879 msg_hdr->type = *(data++);
880 n2l3(data, msg_hdr->msg_len);
881
882 n2s(data, msg_hdr->seq);
883 n2l3(data, msg_hdr->frag_off);
884 n2l3(data, msg_hdr->frag_len);
885 }
886