• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * DTLS implementation written by Nagendra Modadugu
3  * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
4  */
5 /* ====================================================================
6  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgment:
22  *    "This product includes software developed by the OpenSSL Project
23  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  *    endorse or promote products derived from this software without
27  *    prior written permission. For written permission, please contact
28  *    openssl-core@openssl.org.
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  *    nor may "OpenSSL" appear in their names without prior written
32  *    permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  *    acknowledgment:
36  *    "This product includes software developed by the OpenSSL Project
37  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * (eay@cryptsoft.com).  This product includes software written by Tim
55  * Hudson (tjh@cryptsoft.com).
56  *
57  */
58 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
59  * All rights reserved.
60  *
61  * This package is an SSL implementation written
62  * by Eric Young (eay@cryptsoft.com).
63  * The implementation was written so as to conform with Netscapes SSL.
64  *
65  * This library is free for commercial and non-commercial use as long as
66  * the following conditions are aheared to.  The following conditions
67  * apply to all code found in this distribution, be it the RC4, RSA,
68  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
69  * included with this distribution is covered by the same copyright terms
70  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
71  *
72  * Copyright remains Eric Young's, and as such any Copyright notices in
73  * the code are not to be removed.
74  * If this package is used in a product, Eric Young should be given attribution
75  * as the author of the parts of the library used.
76  * This can be in the form of a textual message at program startup or
77  * in documentation (online or textual) provided with the package.
78  *
79  * Redistribution and use in source and binary forms, with or without
80  * modification, are permitted provided that the following conditions
81  * are met:
82  * 1. Redistributions of source code must retain the copyright
83  *    notice, this list of conditions and the following disclaimer.
84  * 2. Redistributions in binary form must reproduce the above copyright
85  *    notice, this list of conditions and the following disclaimer in the
86  *    documentation and/or other materials provided with the distribution.
87  * 3. All advertising materials mentioning features or use of this software
88  *    must display the following acknowledgement:
89  *    "This product includes cryptographic software written by
90  *     Eric Young (eay@cryptsoft.com)"
91  *    The word 'cryptographic' can be left out if the rouines from the library
92  *    being used are not cryptographic related :-).
93  * 4. If you include any Windows specific code (or a derivative thereof) from
94  *    the apps directory (application code) you must include an acknowledgement:
95  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
96  *
97  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
98  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
99  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
100  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
101  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
102  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
103  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
104  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
105  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
106  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
107  * SUCH DAMAGE.
108  *
109  * The licence and distribution terms for any publically available version or
110  * derivative of this code cannot be changed.  i.e. this code cannot simply be
111  * copied and put under another distribution licence
112  * [including the GNU Public Licence.] */
113 
114 #include <assert.h>
115 #include <limits.h>
116 #include <stdio.h>
117 #include <string.h>
118 
119 #include <openssl/buf.h>
120 #include <openssl/err.h>
121 #include <openssl/evp.h>
122 #include <openssl/mem.h>
123 #include <openssl/obj.h>
124 #include <openssl/rand.h>
125 #include <openssl/x509.h>
126 
127 #include "internal.h"
128 
129 
130 /* TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable
131  * for these values? Notably, why is kMinMTU a function of the transport
132  * protocol's overhead rather than, say, what's needed to hold a minimally-sized
133  * handshake fragment plus protocol overhead. */
134 
135 /* kMinMTU is the minimum acceptable MTU value. */
136 static const unsigned int kMinMTU = 256 - 28;
137 
138 /* kDefaultMTU is the default MTU value to use if neither the user nor
139  * the underlying BIO supplies one. */
140 static const unsigned int kDefaultMTU = 1500 - 28;
141 
142 /* kMaxHandshakeBuffer is the maximum number of handshake messages ahead of the
143  * current one to buffer. */
144 static const unsigned int kHandshakeBufferSize = 10;
145 
146 static void dtls1_fix_message_header(SSL *s, unsigned long frag_off,
147                                      unsigned long frag_len);
148 static unsigned char *dtls1_write_message_header(SSL *s, unsigned char *p);
149 
dtls1_hm_fragment_new(unsigned long frag_len,int reassembly)150 static hm_fragment *dtls1_hm_fragment_new(unsigned long frag_len,
151                                           int reassembly) {
152   hm_fragment *frag = NULL;
153   uint8_t *buf = NULL;
154   uint8_t *bitmask = NULL;
155 
156   frag = (hm_fragment *)OPENSSL_malloc(sizeof(hm_fragment));
157   if (frag == NULL) {
158     OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_MALLOC_FAILURE);
159     return NULL;
160   }
161 
162   if (frag_len) {
163     buf = (uint8_t *)OPENSSL_malloc(frag_len);
164     if (buf == NULL) {
165       OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_MALLOC_FAILURE);
166       OPENSSL_free(frag);
167       return NULL;
168     }
169   }
170 
171   /* zero length fragment gets zero frag->fragment */
172   frag->fragment = buf;
173 
174   /* Initialize reassembly bitmask if necessary */
175   if (reassembly && frag_len > 0) {
176     if (frag_len + 7 < frag_len) {
177       OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_OVERFLOW);
178       return NULL;
179     }
180     size_t bitmask_len = (frag_len + 7) / 8;
181     bitmask = (uint8_t *)OPENSSL_malloc(bitmask_len);
182     if (bitmask == NULL) {
183       OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_MALLOC_FAILURE);
184       if (buf != NULL) {
185         OPENSSL_free(buf);
186       }
187       OPENSSL_free(frag);
188       return NULL;
189     }
190     memset(bitmask, 0, bitmask_len);
191   }
192 
193   frag->reassembly = bitmask;
194 
195   return frag;
196 }
197 
dtls1_hm_fragment_free(hm_fragment * frag)198 void dtls1_hm_fragment_free(hm_fragment *frag) {
199   if (frag == NULL) {
200     return;
201   }
202   OPENSSL_free(frag->fragment);
203   OPENSSL_free(frag->reassembly);
204   OPENSSL_free(frag);
205 }
206 
207 #if !defined(inline)
208 #define inline __inline
209 #endif
210 
211 /* bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|,
212  * exclusive, set. */
bit_range(size_t start,size_t end)213 static inline uint8_t bit_range(size_t start, size_t end) {
214   return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1));
215 }
216 
217 /* dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive,
218  * as received in |frag|. If |frag| becomes complete, it clears
219  * |frag->reassembly|. The range must be within the bounds of |frag|'s message
220  * and |frag->reassembly| must not be NULL. */
dtls1_hm_fragment_mark(hm_fragment * frag,size_t start,size_t end)221 static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start,
222                                    size_t end) {
223   size_t i;
224   size_t msg_len = frag->msg_header.msg_len;
225 
226   if (frag->reassembly == NULL || start > end || end > msg_len) {
227     assert(0);
228     return;
229   }
230   /* A zero-length message will never have a pending reassembly. */
231   assert(msg_len > 0);
232 
233   if ((start >> 3) == (end >> 3)) {
234     frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7);
235   } else {
236     frag->reassembly[start >> 3] |= bit_range(start & 7, 8);
237     for (i = (start >> 3) + 1; i < (end >> 3); i++) {
238       frag->reassembly[i] = 0xff;
239     }
240     if ((end & 7) != 0) {
241       frag->reassembly[end >> 3] |= bit_range(0, end & 7);
242     }
243   }
244 
245   /* Check if the fragment is complete. */
246   for (i = 0; i < (msg_len >> 3); i++) {
247     if (frag->reassembly[i] != 0xff) {
248       return;
249     }
250   }
251   if ((msg_len & 7) != 0 &&
252       frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) {
253     return;
254   }
255 
256   OPENSSL_free(frag->reassembly);
257   frag->reassembly = NULL;
258 }
259 
260 /* send s->init_buf in records of type 'type' (SSL3_RT_HANDSHAKE or
261  * SSL3_RT_CHANGE_CIPHER_SPEC) */
dtls1_do_write(SSL * s,int type,enum dtls1_use_epoch_t use_epoch)262 int dtls1_do_write(SSL *s, int type, enum dtls1_use_epoch_t use_epoch) {
263   int ret;
264   int curr_mtu;
265   unsigned int len, frag_off;
266 
267   /* AHA!  Figure out the MTU, and stick to the right size */
268   if (s->d1->mtu < dtls1_min_mtu() &&
269       !(SSL_get_options(s) & SSL_OP_NO_QUERY_MTU)) {
270     long mtu = BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
271     if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) {
272       s->d1->mtu = (unsigned)mtu;
273     } else {
274       s->d1->mtu = kDefaultMTU;
275       BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SET_MTU, s->d1->mtu, NULL);
276     }
277   }
278 
279   /* should have something reasonable now */
280   assert(s->d1->mtu >= dtls1_min_mtu());
281 
282   if (s->init_off == 0 && type == SSL3_RT_HANDSHAKE) {
283     assert(s->init_num ==
284            (int)s->d1->w_msg_hdr.msg_len + DTLS1_HM_HEADER_LENGTH);
285   }
286 
287   /* Determine the maximum overhead of the current cipher. */
288   size_t max_overhead = SSL_AEAD_CTX_max_overhead(s->aead_write_ctx);
289 
290   frag_off = 0;
291   while (s->init_num) {
292     /* Account for data in the buffering BIO; multiple records may be packed
293      * into a single packet during the handshake.
294      *
295      * TODO(davidben): This is buggy; if the MTU is larger than the buffer size,
296      * the large record will be split across two packets. Moreover, in that
297      * case, the |dtls1_write_bytes| call may not return synchronously. This
298      * will break on retry as the |s->init_off| and |s->init_num| adjustment
299      * will run a second time. */
300     curr_mtu = s->d1->mtu - BIO_wpending(SSL_get_wbio(s)) -
301         DTLS1_RT_HEADER_LENGTH - max_overhead;
302 
303     if (curr_mtu <= DTLS1_HM_HEADER_LENGTH) {
304       /* Flush the buffer and continue with a fresh packet.
305        *
306        * TODO(davidben): If |BIO_flush| is not synchronous and requires multiple
307        * calls to |dtls1_do_write|, |frag_off| will be wrong. */
308       ret = BIO_flush(SSL_get_wbio(s));
309       if (ret <= 0) {
310         return ret;
311       }
312       assert(BIO_wpending(SSL_get_wbio(s)) == 0);
313       curr_mtu = s->d1->mtu - DTLS1_RT_HEADER_LENGTH - max_overhead;
314     }
315 
316     /* XDTLS: this function is too long.  split out the CCS part */
317     if (type == SSL3_RT_HANDSHAKE) {
318       /* If this isn't the first fragment, reserve space to prepend a new
319        * fragment header. This will override the body of a previous fragment. */
320       if (s->init_off != 0) {
321         assert(s->init_off > DTLS1_HM_HEADER_LENGTH);
322         s->init_off -= DTLS1_HM_HEADER_LENGTH;
323         s->init_num += DTLS1_HM_HEADER_LENGTH;
324       }
325 
326       if (curr_mtu <= DTLS1_HM_HEADER_LENGTH) {
327         /* To make forward progress, the MTU must, at minimum, fit the handshake
328          * header and one byte of handshake body. */
329         OPENSSL_PUT_ERROR(SSL, dtls1_do_write, SSL_R_MTU_TOO_SMALL);
330         return -1;
331       }
332 
333       if (s->init_num > curr_mtu) {
334         len = curr_mtu;
335       } else {
336         len = s->init_num;
337       }
338       assert(len >= DTLS1_HM_HEADER_LENGTH);
339 
340       dtls1_fix_message_header(s, frag_off, len - DTLS1_HM_HEADER_LENGTH);
341       dtls1_write_message_header(
342           s, (uint8_t *)&s->init_buf->data[s->init_off]);
343     } else {
344       assert(type == SSL3_RT_CHANGE_CIPHER_SPEC);
345       /* ChangeCipherSpec cannot be fragmented. */
346       if (s->init_num > curr_mtu) {
347         OPENSSL_PUT_ERROR(SSL, dtls1_do_write, SSL_R_MTU_TOO_SMALL);
348         return -1;
349       }
350       len = s->init_num;
351     }
352 
353     ret = dtls1_write_bytes(s, type, &s->init_buf->data[s->init_off], len,
354                             use_epoch);
355     if (ret < 0) {
356       return -1;
357     }
358 
359     /* bad if this assert fails, only part of the handshake message got sent.
360      * But why would this happen? */
361     assert(len == (unsigned int)ret);
362 
363     if (ret == s->init_num) {
364       if (s->msg_callback) {
365         s->msg_callback(1, s->version, type, s->init_buf->data,
366                         (size_t)(s->init_off + s->init_num), s,
367                         s->msg_callback_arg);
368       }
369 
370       s->init_off = 0; /* done writing this message */
371       s->init_num = 0;
372 
373       return 1;
374     }
375     s->init_off += ret;
376     s->init_num -= ret;
377     frag_off += (ret -= DTLS1_HM_HEADER_LENGTH);
378   }
379 
380   return 0;
381 }
382 
383 /* dtls1_is_next_message_complete returns one if the next handshake message is
384  * complete and zero otherwise. */
dtls1_is_next_message_complete(SSL * s)385 static int dtls1_is_next_message_complete(SSL *s) {
386   pitem *item = pqueue_peek(s->d1->buffered_messages);
387   if (item == NULL) {
388     return 0;
389   }
390 
391   hm_fragment *frag = (hm_fragment *)item->data;
392   assert(s->d1->handshake_read_seq <= frag->msg_header.seq);
393 
394   return s->d1->handshake_read_seq == frag->msg_header.seq &&
395       frag->reassembly == NULL;
396 }
397 
398 /* dtls1_discard_fragment_body discards a handshake fragment body of length
399  * |frag_len|. It returns one on success and zero on error.
400  *
401  * TODO(davidben): This function will go away when ssl_read_bytes is gone from
402  * the DTLS side. */
dtls1_discard_fragment_body(SSL * s,size_t frag_len)403 static int dtls1_discard_fragment_body(SSL *s, size_t frag_len) {
404   uint8_t discard[256];
405   while (frag_len > 0) {
406     size_t chunk = frag_len < sizeof(discard) ? frag_len : sizeof(discard);
407     int ret = dtls1_read_bytes(s, SSL3_RT_HANDSHAKE, discard, chunk, 0);
408     if (ret != chunk) {
409       return 0;
410     }
411     frag_len -= chunk;
412   }
413   return 1;
414 }
415 
416 /* dtls1_get_buffered_message returns the buffered message corresponding to
417  * |msg_hdr|. If none exists, it creates a new one and inserts it in the
418  * queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It
419  * returns NULL on failure. The caller does not take ownership of the result. */
dtls1_get_buffered_message(SSL * s,const struct hm_header_st * msg_hdr)420 static hm_fragment *dtls1_get_buffered_message(
421     SSL *s, const struct hm_header_st *msg_hdr) {
422   uint8_t seq64be[8];
423   memset(seq64be, 0, sizeof(seq64be));
424   seq64be[6] = (uint8_t)(msg_hdr->seq >> 8);
425   seq64be[7] = (uint8_t)msg_hdr->seq;
426   pitem *item = pqueue_find(s->d1->buffered_messages, seq64be);
427 
428   hm_fragment *frag;
429   if (item == NULL) {
430     /* This is the first fragment from this message. */
431     frag = dtls1_hm_fragment_new(msg_hdr->msg_len,
432                                  1 /* reassembly buffer needed */);
433     if (frag == NULL) {
434       return NULL;
435     }
436     memcpy(&frag->msg_header, msg_hdr, sizeof(*msg_hdr));
437     item = pitem_new(seq64be, frag);
438     if (item == NULL) {
439       dtls1_hm_fragment_free(frag);
440       return NULL;
441     }
442     item = pqueue_insert(s->d1->buffered_messages, item);
443     /* |pqueue_insert| fails iff a duplicate item is inserted, but |item| cannot
444      * be a duplicate. */
445     assert(item != NULL);
446   } else {
447     frag = item->data;
448     assert(frag->msg_header.seq == msg_hdr->seq);
449     if (frag->msg_header.type != msg_hdr->type ||
450         frag->msg_header.msg_len != msg_hdr->msg_len) {
451       /* The new fragment must be compatible with the previous fragments from
452        * this message. */
453       OPENSSL_PUT_ERROR(SSL, dtls1_get_buffered_message,
454                         SSL_R_FRAGMENT_MISMATCH);
455       ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
456       return NULL;
457     }
458   }
459   return frag;
460 }
461 
462 /* dtls1_max_handshake_message_len returns the maximum number of bytes
463  * permitted in a DTLS handshake message for |s|. The minimum is 16KB, but may
464  * be greater if the maximum certificate list size requires it. */
dtls1_max_handshake_message_len(const SSL * s)465 static size_t dtls1_max_handshake_message_len(const SSL *s) {
466   size_t max_len = DTLS1_HM_HEADER_LENGTH + SSL3_RT_MAX_ENCRYPTED_LENGTH;
467   if (max_len < s->max_cert_list) {
468     return s->max_cert_list;
469   }
470   return max_len;
471 }
472 
473 /* dtls1_process_fragment reads a handshake fragment and processes it. It
474  * returns one if a fragment was successfully processed and 0 or -1 on error. */
dtls1_process_fragment(SSL * s)475 static int dtls1_process_fragment(SSL *s) {
476   /* Read handshake message header.
477    *
478    * TODO(davidben): ssl_read_bytes allows splitting the fragment header and
479    * body across two records. Change this interface to consume the fragment in
480    * one pass. */
481   uint8_t header[DTLS1_HM_HEADER_LENGTH];
482   int ret = dtls1_read_bytes(s, SSL3_RT_HANDSHAKE, header,
483                              DTLS1_HM_HEADER_LENGTH, 0);
484   if (ret <= 0) {
485     return ret;
486   }
487   if (ret != DTLS1_HM_HEADER_LENGTH) {
488     OPENSSL_PUT_ERROR(SSL, dtls1_process_fragment, SSL_R_UNEXPECTED_MESSAGE);
489     ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
490     return -1;
491   }
492 
493   /* Parse the message fragment header. */
494   struct hm_header_st msg_hdr;
495   dtls1_get_message_header(header, &msg_hdr);
496 
497   const size_t frag_off = msg_hdr.frag_off;
498   const size_t frag_len = msg_hdr.frag_len;
499   const size_t msg_len = msg_hdr.msg_len;
500   if (frag_off > msg_len || frag_off + frag_len < frag_off ||
501       frag_off + frag_len > msg_len ||
502       msg_len > dtls1_max_handshake_message_len(s)) {
503     OPENSSL_PUT_ERROR(SSL, dtls1_process_fragment,
504                       SSL_R_EXCESSIVE_MESSAGE_SIZE);
505     ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
506     return -1;
507   }
508 
509   if (msg_hdr.seq < s->d1->handshake_read_seq ||
510       msg_hdr.seq > (unsigned)s->d1->handshake_read_seq +
511                     kHandshakeBufferSize) {
512     /* Ignore fragments from the past, or ones too far in the future. */
513     if (!dtls1_discard_fragment_body(s, frag_len)) {
514       return -1;
515     }
516     return 1;
517   }
518 
519   hm_fragment *frag = dtls1_get_buffered_message(s, &msg_hdr);
520   if (frag == NULL) {
521     return -1;
522   }
523   assert(frag->msg_header.msg_len == msg_len);
524 
525   if (frag->reassembly == NULL) {
526     /* The message is already assembled. */
527     if (!dtls1_discard_fragment_body(s, frag_len)) {
528       return -1;
529     }
530     return 1;
531   }
532   assert(msg_len > 0);
533 
534   /* Read the body of the fragment. */
535   ret = dtls1_read_bytes(s, SSL3_RT_HANDSHAKE, frag->fragment + frag_off,
536                          frag_len, 0);
537   if (ret != frag_len) {
538     OPENSSL_PUT_ERROR(SSL, dtls1_process_fragment, SSL_R_UNEXPECTED_MESSAGE);
539     ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
540     return -1;
541   }
542   dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len);
543 
544   return 1;
545 }
546 
547 /* dtls1_get_message reads a handshake message of message type |msg_type| (any
548  * if |msg_type| == -1), maximum acceptable body length |max|. Read an entire
549  * handshake message. Handshake messages arrive in fragments. */
dtls1_get_message(SSL * s,int st1,int stn,int msg_type,long max,enum ssl_hash_message_t hash_message,int * ok)550 long dtls1_get_message(SSL *s, int st1, int stn, int msg_type, long max,
551                        enum ssl_hash_message_t hash_message, int *ok) {
552   pitem *item = NULL;
553   hm_fragment *frag = NULL;
554   int al;
555 
556   /* s3->tmp is used to store messages that are unexpected, caused
557    * by the absence of an optional handshake message */
558   if (s->s3->tmp.reuse_message) {
559     /* A ssl_dont_hash_message call cannot be combined with reuse_message; the
560      * ssl_dont_hash_message would have to have been applied to the previous
561      * call. */
562     assert(hash_message == ssl_hash_message);
563     s->s3->tmp.reuse_message = 0;
564     if (msg_type >= 0 && s->s3->tmp.message_type != msg_type) {
565       al = SSL_AD_UNEXPECTED_MESSAGE;
566       OPENSSL_PUT_ERROR(SSL, dtls1_get_message, SSL_R_UNEXPECTED_MESSAGE);
567       goto f_err;
568     }
569     *ok = 1;
570     s->init_msg = (uint8_t *)s->init_buf->data + DTLS1_HM_HEADER_LENGTH;
571     s->init_num = (int)s->s3->tmp.message_size;
572     return s->init_num;
573   }
574 
575   /* Process fragments until one is found. */
576   while (!dtls1_is_next_message_complete(s)) {
577     int ret = dtls1_process_fragment(s);
578     if (ret <= 0) {
579       *ok = 0;
580       return ret;
581     }
582   }
583 
584   /* Read out the next complete handshake message. */
585   item = pqueue_pop(s->d1->buffered_messages);
586   assert(item != NULL);
587   frag = (hm_fragment *)item->data;
588   assert(s->d1->handshake_read_seq == frag->msg_header.seq);
589   assert(frag->reassembly == NULL);
590 
591   if (frag->msg_header.msg_len > (size_t)max) {
592     OPENSSL_PUT_ERROR(SSL, dtls1_get_message, SSL_R_EXCESSIVE_MESSAGE_SIZE);
593     goto err;
594   }
595 
596   CBB cbb;
597   if (!BUF_MEM_grow(s->init_buf,
598                     (size_t)frag->msg_header.msg_len +
599                     DTLS1_HM_HEADER_LENGTH) ||
600       !CBB_init_fixed(&cbb, (uint8_t *)s->init_buf->data, s->init_buf->max)) {
601     OPENSSL_PUT_ERROR(SSL, dtls1_get_message, ERR_R_MALLOC_FAILURE);
602     goto err;
603   }
604 
605   /* Reconstruct the assembled message. */
606   size_t len;
607   if (!CBB_add_u8(&cbb, frag->msg_header.type) ||
608       !CBB_add_u24(&cbb, frag->msg_header.msg_len) ||
609       !CBB_add_u16(&cbb, frag->msg_header.seq) ||
610       !CBB_add_u24(&cbb, 0 /* frag_off */) ||
611       !CBB_add_u24(&cbb, frag->msg_header.msg_len) ||
612       !CBB_add_bytes(&cbb, frag->fragment, frag->msg_header.msg_len) ||
613       !CBB_finish(&cbb, NULL, &len)) {
614     CBB_cleanup(&cbb);
615     OPENSSL_PUT_ERROR(SSL, dtls1_get_message, ERR_R_INTERNAL_ERROR);
616     goto err;
617   }
618   assert(len == (size_t)frag->msg_header.msg_len + DTLS1_HM_HEADER_LENGTH);
619 
620   s->d1->handshake_read_seq++;
621 
622   /* TODO(davidben): This function has a lot of implicit outputs. Simplify the
623    * |ssl_get_message| API. */
624   s->s3->tmp.message_type = frag->msg_header.type;
625   s->s3->tmp.message_size = frag->msg_header.msg_len;
626   s->init_msg = (uint8_t *)s->init_buf->data + DTLS1_HM_HEADER_LENGTH;
627   s->init_num = frag->msg_header.msg_len;
628 
629   if (msg_type >= 0 && s->s3->tmp.message_type != msg_type) {
630     al = SSL_AD_UNEXPECTED_MESSAGE;
631     OPENSSL_PUT_ERROR(SSL, dtls1_get_message, SSL_R_UNEXPECTED_MESSAGE);
632     goto f_err;
633   }
634   if (hash_message == ssl_hash_message && !ssl3_hash_current_message(s)) {
635     goto err;
636   }
637   if (s->msg_callback) {
638     s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, s->init_buf->data,
639                     s->init_num + DTLS1_HM_HEADER_LENGTH, s,
640                     s->msg_callback_arg);
641   }
642 
643   pitem_free(item);
644   dtls1_hm_fragment_free(frag);
645 
646   s->state = stn;
647   *ok = 1;
648   return s->init_num;
649 
650 f_err:
651   ssl3_send_alert(s, SSL3_AL_FATAL, al);
652 err:
653   pitem_free(item);
654   dtls1_hm_fragment_free(frag);
655   *ok = 0;
656   return -1;
657 }
658 
659 /* for these 2 messages, we need to
660  * ssl->enc_read_ctx			re-init
661  * ssl->s3->read_sequence		zero
662  * ssl->s3->read_mac_secret		re-init
663  * ssl->session->read_sym_enc		assign
664  * ssl->session->read_compression	assign
665  * ssl->session->read_hash		assign */
dtls1_send_change_cipher_spec(SSL * s,int a,int b)666 int dtls1_send_change_cipher_spec(SSL *s, int a, int b) {
667   uint8_t *p;
668 
669   if (s->state == a) {
670     p = (uint8_t *)s->init_buf->data;
671     *p++ = SSL3_MT_CCS;
672     s->d1->handshake_write_seq = s->d1->next_handshake_write_seq;
673     s->init_num = DTLS1_CCS_HEADER_LENGTH;
674 
675     s->init_off = 0;
676 
677     dtls1_set_message_header(s, SSL3_MT_CCS, 0, s->d1->handshake_write_seq, 0,
678                              0);
679 
680     /* buffer the message to handle re-xmits */
681     dtls1_buffer_message(s, 1);
682 
683     s->state = b;
684   }
685 
686   /* SSL3_ST_CW_CHANGE_B */
687   return dtls1_do_write(s, SSL3_RT_CHANGE_CIPHER_SPEC, dtls1_use_current_epoch);
688 }
689 
dtls1_read_failed(SSL * s,int code)690 int dtls1_read_failed(SSL *s, int code) {
691   if (code > 0) {
692     assert(0);
693     return 1;
694   }
695 
696   if (!dtls1_is_timer_expired(s)) {
697     /* not a timeout, none of our business, let higher layers handle this. In
698      * fact, it's probably an error */
699     return code;
700   }
701 
702   if (!SSL_in_init(s)) {
703     /* done, no need to send a retransmit */
704     BIO_set_flags(SSL_get_rbio(s), BIO_FLAGS_READ);
705     return code;
706   }
707 
708   return DTLSv1_handle_timeout(s);
709 }
710 
dtls1_get_queue_priority(unsigned short seq,int is_ccs)711 int dtls1_get_queue_priority(unsigned short seq, int is_ccs) {
712   /* The index of the retransmission queue actually is the message sequence
713    * number, since the queue only contains messages of a single handshake.
714    * However, the ChangeCipherSpec has no message sequence number and so using
715    * only the sequence will result in the CCS and Finished having the same
716    * index. To prevent this, the sequence number is multiplied by 2. In case of
717    * a CCS 1 is subtracted. This does not only differ CSS and Finished, it also
718    * maintains the order of the index (important for priority queues) and fits
719    * in the unsigned short variable. */
720   return seq * 2 - is_ccs;
721 }
722 
dtls1_retransmit_message(SSL * s,hm_fragment * frag)723 static int dtls1_retransmit_message(SSL *s, hm_fragment *frag) {
724   int ret;
725   /* XDTLS: for now assuming that read/writes are blocking */
726   unsigned long header_length;
727 
728   /* assert(s->init_num == 0);
729      assert(s->init_off == 0); */
730 
731   if (frag->msg_header.is_ccs) {
732     header_length = DTLS1_CCS_HEADER_LENGTH;
733   } else {
734     header_length = DTLS1_HM_HEADER_LENGTH;
735   }
736 
737   memcpy(s->init_buf->data, frag->fragment,
738          frag->msg_header.msg_len + header_length);
739   s->init_num = frag->msg_header.msg_len + header_length;
740 
741   dtls1_set_message_header(s, frag->msg_header.type,
742                            frag->msg_header.msg_len, frag->msg_header.seq,
743                            0, frag->msg_header.frag_len);
744 
745   /* DTLS renegotiation is unsupported, so only epochs 0 (NULL cipher) and 1
746    * (negotiated cipher) exist. */
747   assert(s->d1->w_epoch == 0 || s->d1->w_epoch == 1);
748   assert(frag->msg_header.epoch <= s->d1->w_epoch);
749   enum dtls1_use_epoch_t use_epoch = dtls1_use_current_epoch;
750   if (s->d1->w_epoch == 1 && frag->msg_header.epoch == 0) {
751     use_epoch = dtls1_use_previous_epoch;
752   }
753 
754   ret = dtls1_do_write(s, frag->msg_header.is_ccs ? SSL3_RT_CHANGE_CIPHER_SPEC
755                                                   : SSL3_RT_HANDSHAKE,
756                        use_epoch);
757 
758   (void)BIO_flush(SSL_get_wbio(s));
759   return ret;
760 }
761 
762 
dtls1_retransmit_buffered_messages(SSL * s)763 int dtls1_retransmit_buffered_messages(SSL *s) {
764   pqueue sent = s->d1->sent_messages;
765   piterator iter = pqueue_iterator(sent);
766   pitem *item;
767 
768   for (item = pqueue_next(&iter); item != NULL; item = pqueue_next(&iter)) {
769     hm_fragment *frag = (hm_fragment *)item->data;
770     if (dtls1_retransmit_message(s, frag) <= 0) {
771       return -1;
772     }
773   }
774 
775   return 1;
776 }
777 
dtls1_buffer_message(SSL * s,int is_ccs)778 int dtls1_buffer_message(SSL *s, int is_ccs) {
779   pitem *item;
780   hm_fragment *frag;
781   uint8_t seq64be[8];
782 
783   /* this function is called immediately after a message has
784    * been serialized */
785   assert(s->init_off == 0);
786 
787   frag = dtls1_hm_fragment_new(s->init_num, 0);
788   if (!frag) {
789     return 0;
790   }
791 
792   memcpy(frag->fragment, s->init_buf->data, s->init_num);
793 
794   if (is_ccs) {
795     assert(s->d1->w_msg_hdr.msg_len + DTLS1_CCS_HEADER_LENGTH ==
796            (unsigned int)s->init_num);
797   } else {
798     assert(s->d1->w_msg_hdr.msg_len + DTLS1_HM_HEADER_LENGTH ==
799            (unsigned int)s->init_num);
800   }
801 
802   frag->msg_header.msg_len = s->d1->w_msg_hdr.msg_len;
803   frag->msg_header.seq = s->d1->w_msg_hdr.seq;
804   frag->msg_header.type = s->d1->w_msg_hdr.type;
805   frag->msg_header.frag_off = 0;
806   frag->msg_header.frag_len = s->d1->w_msg_hdr.msg_len;
807   frag->msg_header.is_ccs = is_ccs;
808   frag->msg_header.epoch = s->d1->w_epoch;
809 
810   memset(seq64be, 0, sizeof(seq64be));
811   seq64be[6] = (uint8_t)(
812       dtls1_get_queue_priority(frag->msg_header.seq, frag->msg_header.is_ccs) >>
813       8);
814   seq64be[7] = (uint8_t)(
815       dtls1_get_queue_priority(frag->msg_header.seq, frag->msg_header.is_ccs));
816 
817   item = pitem_new(seq64be, frag);
818   if (item == NULL) {
819     dtls1_hm_fragment_free(frag);
820     return 0;
821   }
822 
823   pqueue_insert(s->d1->sent_messages, item);
824   return 1;
825 }
826 
827 /* call this function when the buffered messages are no longer needed */
dtls1_clear_record_buffer(SSL * s)828 void dtls1_clear_record_buffer(SSL *s) {
829   pitem *item;
830 
831   for (item = pqueue_pop(s->d1->sent_messages); item != NULL;
832        item = pqueue_pop(s->d1->sent_messages)) {
833     dtls1_hm_fragment_free((hm_fragment *)item->data);
834     pitem_free(item);
835   }
836 }
837 
838 /* don't actually do the writing, wait till the MTU has been retrieved */
dtls1_set_message_header(SSL * s,uint8_t mt,unsigned long len,unsigned short seq_num,unsigned long frag_off,unsigned long frag_len)839 void dtls1_set_message_header(SSL *s, uint8_t mt, unsigned long len,
840                               unsigned short seq_num, unsigned long frag_off,
841                               unsigned long frag_len) {
842   struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;
843 
844   msg_hdr->type = mt;
845   msg_hdr->msg_len = len;
846   msg_hdr->seq = seq_num;
847   msg_hdr->frag_off = frag_off;
848   msg_hdr->frag_len = frag_len;
849 }
850 
dtls1_fix_message_header(SSL * s,unsigned long frag_off,unsigned long frag_len)851 static void dtls1_fix_message_header(SSL *s, unsigned long frag_off,
852                                      unsigned long frag_len) {
853   struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;
854 
855   msg_hdr->frag_off = frag_off;
856   msg_hdr->frag_len = frag_len;
857 }
858 
dtls1_write_message_header(SSL * s,uint8_t * p)859 static uint8_t *dtls1_write_message_header(SSL *s, uint8_t *p) {
860   struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;
861 
862   *p++ = msg_hdr->type;
863   l2n3(msg_hdr->msg_len, p);
864 
865   s2n(msg_hdr->seq, p);
866   l2n3(msg_hdr->frag_off, p);
867   l2n3(msg_hdr->frag_len, p);
868 
869   return p;
870 }
871 
dtls1_min_mtu(void)872 unsigned int dtls1_min_mtu(void) {
873   return kMinMTU;
874 }
875 
dtls1_get_message_header(uint8_t * data,struct hm_header_st * msg_hdr)876 void dtls1_get_message_header(uint8_t *data,
877                               struct hm_header_st *msg_hdr) {
878   memset(msg_hdr, 0x00, sizeof(struct hm_header_st));
879   msg_hdr->type = *(data++);
880   n2l3(data, msg_hdr->msg_len);
881 
882   n2s(data, msg_hdr->seq);
883   n2l3(data, msg_hdr->frag_off);
884   n2l3(data, msg_hdr->frag_len);
885 }
886