• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// @file
11 /// This file contains the declarations for the subclasses of Constant,
12 /// which represent the different flavors of constant values that live in LLVM.
13 /// Note that Constants are immutable (once created they never change) and are
14 /// fully shared by structural equivalence.  This means that two structurally
15 /// equivalent constants will always have the same address.  Constant's are
16 /// created on demand as needed and never deleted: thus clients don't have to
17 /// worry about the lifetime of the objects.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #ifndef LLVM_IR_CONSTANTS_H
22 #define LLVM_IR_CONSTANTS_H
23 
24 #include "llvm/ADT/APFloat.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/OperandTraits.h"
30 
31 namespace llvm {
32 
33 class ArrayType;
34 class IntegerType;
35 class StructType;
36 class PointerType;
37 class VectorType;
38 class SequentialType;
39 
40 struct ConstantExprKeyType;
41 template <class ConstantClass> struct ConstantAggrKeyType;
42 
43 //===----------------------------------------------------------------------===//
44 /// This is the shared class of boolean and integer constants. This class
45 /// represents both boolean and integral constants.
46 /// @brief Class for constant integers.
47 class ConstantInt : public Constant {
48   void anchor() override;
49   void *operator new(size_t, unsigned) = delete;
50   ConstantInt(const ConstantInt &) = delete;
51   ConstantInt(IntegerType *Ty, const APInt& V);
52   APInt Val;
53 protected:
54   // allocate space for exactly zero operands
new(size_t s)55   void *operator new(size_t s) {
56     return User::operator new(s, 0);
57   }
58 public:
59   static ConstantInt *getTrue(LLVMContext &Context);
60   static ConstantInt *getFalse(LLVMContext &Context);
61   static Constant *getTrue(Type *Ty);
62   static Constant *getFalse(Type *Ty);
63 
64   /// If Ty is a vector type, return a Constant with a splat of the given
65   /// value. Otherwise return a ConstantInt for the given value.
66   static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);
67 
68   /// Return a ConstantInt with the specified integer value for the specified
69   /// type. If the type is wider than 64 bits, the value will be zero-extended
70   /// to fit the type, unless isSigned is true, in which case the value will
71   /// be interpreted as a 64-bit signed integer and sign-extended to fit
72   /// the type.
73   /// @brief Get a ConstantInt for a specific value.
74   static ConstantInt *get(IntegerType *Ty, uint64_t V,
75                           bool isSigned = false);
76 
77   /// Return a ConstantInt with the specified value for the specified type. The
78   /// value V will be canonicalized to a an unsigned APInt. Accessing it with
79   /// either getSExtValue() or getZExtValue() will yield a correctly sized and
80   /// signed value for the type Ty.
81   /// @brief Get a ConstantInt for a specific signed value.
82   static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
83   static Constant *getSigned(Type *Ty, int64_t V);
84 
85   /// Return a ConstantInt with the specified value and an implied Type. The
86   /// type is the integer type that corresponds to the bit width of the value.
87   static ConstantInt *get(LLVMContext &Context, const APInt &V);
88 
89   /// Return a ConstantInt constructed from the string strStart with the given
90   /// radix.
91   static ConstantInt *get(IntegerType *Ty, StringRef Str,
92                           uint8_t radix);
93 
94   /// If Ty is a vector type, return a Constant with a splat of the given
95   /// value. Otherwise return a ConstantInt for the given value.
96   static Constant *get(Type* Ty, const APInt& V);
97 
98   /// Return the constant as an APInt value reference. This allows clients to
99   /// obtain a copy of the value, with all its precision in tact.
100   /// @brief Return the constant's value.
getValue()101   inline const APInt &getValue() const {
102     return Val;
103   }
104 
105   /// getBitWidth - Return the bitwidth of this constant.
getBitWidth()106   unsigned getBitWidth() const { return Val.getBitWidth(); }
107 
108   /// Return the constant as a 64-bit unsigned integer value after it
109   /// has been zero extended as appropriate for the type of this constant. Note
110   /// that this method can assert if the value does not fit in 64 bits.
111   /// @brief Return the zero extended value.
getZExtValue()112   inline uint64_t getZExtValue() const {
113     return Val.getZExtValue();
114   }
115 
116   /// Return the constant as a 64-bit integer value after it has been sign
117   /// extended as appropriate for the type of this constant. Note that
118   /// this method can assert if the value does not fit in 64 bits.
119   /// @brief Return the sign extended value.
getSExtValue()120   inline int64_t getSExtValue() const {
121     return Val.getSExtValue();
122   }
123 
124   /// A helper method that can be used to determine if the constant contained
125   /// within is equal to a constant.  This only works for very small values,
126   /// because this is all that can be represented with all types.
127   /// @brief Determine if this constant's value is same as an unsigned char.
equalsInt(uint64_t V)128   bool equalsInt(uint64_t V) const {
129     return Val == V;
130   }
131 
132   /// getType - Specialize the getType() method to always return an IntegerType,
133   /// which reduces the amount of casting needed in parts of the compiler.
134   ///
getType()135   inline IntegerType *getType() const {
136     return cast<IntegerType>(Value::getType());
137   }
138 
139   /// This static method returns true if the type Ty is big enough to
140   /// represent the value V. This can be used to avoid having the get method
141   /// assert when V is larger than Ty can represent. Note that there are two
142   /// versions of this method, one for unsigned and one for signed integers.
143   /// Although ConstantInt canonicalizes everything to an unsigned integer,
144   /// the signed version avoids callers having to convert a signed quantity
145   /// to the appropriate unsigned type before calling the method.
146   /// @returns true if V is a valid value for type Ty
147   /// @brief Determine if the value is in range for the given type.
148   static bool isValueValidForType(Type *Ty, uint64_t V);
149   static bool isValueValidForType(Type *Ty, int64_t V);
150 
isNegative()151   bool isNegative() const { return Val.isNegative(); }
152 
153   /// This is just a convenience method to make client code smaller for a
154   /// common code. It also correctly performs the comparison without the
155   /// potential for an assertion from getZExtValue().
isZero()156   bool isZero() const {
157     return Val == 0;
158   }
159 
160   /// This is just a convenience method to make client code smaller for a
161   /// common case. It also correctly performs the comparison without the
162   /// potential for an assertion from getZExtValue().
163   /// @brief Determine if the value is one.
isOne()164   bool isOne() const {
165     return Val == 1;
166   }
167 
168   /// This function will return true iff every bit in this constant is set
169   /// to true.
170   /// @returns true iff this constant's bits are all set to true.
171   /// @brief Determine if the value is all ones.
isMinusOne()172   bool isMinusOne() const {
173     return Val.isAllOnesValue();
174   }
175 
176   /// This function will return true iff this constant represents the largest
177   /// value that may be represented by the constant's type.
178   /// @returns true iff this is the largest value that may be represented
179   /// by this type.
180   /// @brief Determine if the value is maximal.
isMaxValue(bool isSigned)181   bool isMaxValue(bool isSigned) const {
182     if (isSigned)
183       return Val.isMaxSignedValue();
184     else
185       return Val.isMaxValue();
186   }
187 
188   /// This function will return true iff this constant represents the smallest
189   /// value that may be represented by this constant's type.
190   /// @returns true if this is the smallest value that may be represented by
191   /// this type.
192   /// @brief Determine if the value is minimal.
isMinValue(bool isSigned)193   bool isMinValue(bool isSigned) const {
194     if (isSigned)
195       return Val.isMinSignedValue();
196     else
197       return Val.isMinValue();
198   }
199 
200   /// This function will return true iff this constant represents a value with
201   /// active bits bigger than 64 bits or a value greater than the given uint64_t
202   /// value.
203   /// @returns true iff this constant is greater or equal to the given number.
204   /// @brief Determine if the value is greater or equal to the given number.
uge(uint64_t Num)205   bool uge(uint64_t Num) const {
206     return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num;
207   }
208 
209   /// getLimitedValue - If the value is smaller than the specified limit,
210   /// return it, otherwise return the limit value.  This causes the value
211   /// to saturate to the limit.
212   /// @returns the min of the value of the constant and the specified value
213   /// @brief Get the constant's value with a saturation limit
214   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
215     return Val.getLimitedValue(Limit);
216   }
217 
218   /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)219   static bool classof(const Value *V) {
220     return V->getValueID() == ConstantIntVal;
221   }
222 };
223 
224 
225 //===----------------------------------------------------------------------===//
226 /// ConstantFP - Floating Point Values [float, double]
227 ///
228 class ConstantFP : public Constant {
229   APFloat Val;
230   void anchor() override;
231   void *operator new(size_t, unsigned) = delete;
232   ConstantFP(const ConstantFP &) = delete;
233   friend class LLVMContextImpl;
234 protected:
235   ConstantFP(Type *Ty, const APFloat& V);
236 protected:
237   // allocate space for exactly zero operands
new(size_t s)238   void *operator new(size_t s) {
239     return User::operator new(s, 0);
240   }
241 public:
242   /// Floating point negation must be implemented with f(x) = -0.0 - x. This
243   /// method returns the negative zero constant for floating point or vector
244   /// floating point types; for all other types, it returns the null value.
245   static Constant *getZeroValueForNegation(Type *Ty);
246 
247   /// get() - This returns a ConstantFP, or a vector containing a splat of a
248   /// ConstantFP, for the specified value in the specified type.  This should
249   /// only be used for simple constant values like 2.0/1.0 etc, that are
250   /// known-valid both as host double and as the target format.
251   static Constant *get(Type* Ty, double V);
252   static Constant *get(Type* Ty, StringRef Str);
253   static ConstantFP *get(LLVMContext &Context, const APFloat &V);
254   static Constant *getNegativeZero(Type *Ty);
255   static Constant *getInfinity(Type *Ty, bool Negative = false);
256 
257   /// isValueValidForType - return true if Ty is big enough to represent V.
258   static bool isValueValidForType(Type *Ty, const APFloat &V);
getValueAPF()259   inline const APFloat &getValueAPF() const { return Val; }
260 
261   /// isZero - Return true if the value is positive or negative zero.
isZero()262   bool isZero() const { return Val.isZero(); }
263 
264   /// isNegative - Return true if the sign bit is set.
isNegative()265   bool isNegative() const { return Val.isNegative(); }
266 
267   /// isInfinity - Return true if the value is infinity
isInfinity()268   bool isInfinity() const { return Val.isInfinity(); }
269 
270   /// isNaN - Return true if the value is a NaN.
isNaN()271   bool isNaN() const { return Val.isNaN(); }
272 
273   /// isExactlyValue - We don't rely on operator== working on double values, as
274   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
275   /// As such, this method can be used to do an exact bit-for-bit comparison of
276   /// two floating point values.  The version with a double operand is retained
277   /// because it's so convenient to write isExactlyValue(2.0), but please use
278   /// it only for simple constants.
279   bool isExactlyValue(const APFloat &V) const;
280 
isExactlyValue(double V)281   bool isExactlyValue(double V) const {
282     bool ignored;
283     APFloat FV(V);
284     FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
285     return isExactlyValue(FV);
286   }
287   /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Value * V)288   static bool classof(const Value *V) {
289     return V->getValueID() == ConstantFPVal;
290   }
291 };
292 
293 //===----------------------------------------------------------------------===//
294 /// ConstantAggregateZero - All zero aggregate value
295 ///
296 class ConstantAggregateZero : public Constant {
297   void *operator new(size_t, unsigned) = delete;
298   ConstantAggregateZero(const ConstantAggregateZero &) = delete;
299 protected:
ConstantAggregateZero(Type * ty)300   explicit ConstantAggregateZero(Type *ty)
301     : Constant(ty, ConstantAggregateZeroVal, nullptr, 0) {}
302 protected:
303   // allocate space for exactly zero operands
new(size_t s)304   void *operator new(size_t s) {
305     return User::operator new(s, 0);
306   }
307 public:
308   static ConstantAggregateZero *get(Type *Ty);
309 
310   void destroyConstant() override;
311 
312   /// getSequentialElement - If this CAZ has array or vector type, return a zero
313   /// with the right element type.
314   Constant *getSequentialElement() const;
315 
316   /// getStructElement - If this CAZ has struct type, return a zero with the
317   /// right element type for the specified element.
318   Constant *getStructElement(unsigned Elt) const;
319 
320   /// getElementValue - Return a zero of the right value for the specified GEP
321   /// index.
322   Constant *getElementValue(Constant *C) const;
323 
324   /// getElementValue - Return a zero of the right value for the specified GEP
325   /// index.
326   Constant *getElementValue(unsigned Idx) const;
327 
328   /// \brief Return the number of elements in the array, vector, or struct.
329   unsigned getNumElements() const;
330 
331   /// Methods for support type inquiry through isa, cast, and dyn_cast:
332   ///
classof(const Value * V)333   static bool classof(const Value *V) {
334     return V->getValueID() == ConstantAggregateZeroVal;
335   }
336 };
337 
338 
339 //===----------------------------------------------------------------------===//
340 /// ConstantArray - Constant Array Declarations
341 ///
342 class ConstantArray : public Constant {
343   friend struct ConstantAggrKeyType<ConstantArray>;
344   ConstantArray(const ConstantArray &) = delete;
345 protected:
346   ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
347 public:
348   // ConstantArray accessors
349   static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
350 
351 private:
352   static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
353 
354 public:
355   /// Transparently provide more efficient getOperand methods.
356   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
357 
358   /// getType - Specialize the getType() method to always return an ArrayType,
359   /// which reduces the amount of casting needed in parts of the compiler.
360   ///
361   inline ArrayType *getType() const {
362     return cast<ArrayType>(Value::getType());
363   }
364 
365   void destroyConstant() override;
366   void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
367 
368   /// Methods for support type inquiry through isa, cast, and dyn_cast:
369   static bool classof(const Value *V) {
370     return V->getValueID() == ConstantArrayVal;
371   }
372 };
373 
374 template <>
375 struct OperandTraits<ConstantArray> :
376   public VariadicOperandTraits<ConstantArray> {
377 };
378 
379 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantArray, Constant)
380 
381 //===----------------------------------------------------------------------===//
382 // ConstantStruct - Constant Struct Declarations
383 //
384 class ConstantStruct : public Constant {
385   friend struct ConstantAggrKeyType<ConstantStruct>;
386   ConstantStruct(const ConstantStruct &) = delete;
387 protected:
388   ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
389 public:
390   // ConstantStruct accessors
391   static Constant *get(StructType *T, ArrayRef<Constant*> V);
392   static Constant *get(StructType *T, ...) LLVM_END_WITH_NULL;
393 
394   /// getAnon - Return an anonymous struct that has the specified
395   /// elements.  If the struct is possibly empty, then you must specify a
396   /// context.
397   static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
398     return get(getTypeForElements(V, Packed), V);
399   }
400   static Constant *getAnon(LLVMContext &Ctx,
401                            ArrayRef<Constant*> V, bool Packed = false) {
402     return get(getTypeForElements(Ctx, V, Packed), V);
403   }
404 
405   /// getTypeForElements - Return an anonymous struct type to use for a constant
406   /// with the specified set of elements.  The list must not be empty.
407   static StructType *getTypeForElements(ArrayRef<Constant*> V,
408                                         bool Packed = false);
409   /// getTypeForElements - This version of the method allows an empty list.
410   static StructType *getTypeForElements(LLVMContext &Ctx,
411                                         ArrayRef<Constant*> V,
412                                         bool Packed = false);
413 
414   /// Transparently provide more efficient getOperand methods.
415   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
416 
417   /// getType() specialization - Reduce amount of casting...
418   ///
419   inline StructType *getType() const {
420     return cast<StructType>(Value::getType());
421   }
422 
423   void destroyConstant() override;
424   void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
425 
426   /// Methods for support type inquiry through isa, cast, and dyn_cast:
427   static bool classof(const Value *V) {
428     return V->getValueID() == ConstantStructVal;
429   }
430 };
431 
432 template <>
433 struct OperandTraits<ConstantStruct> :
434   public VariadicOperandTraits<ConstantStruct> {
435 };
436 
437 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantStruct, Constant)
438 
439 
440 //===----------------------------------------------------------------------===//
441 /// ConstantVector - Constant Vector Declarations
442 ///
443 class ConstantVector : public Constant {
444   friend struct ConstantAggrKeyType<ConstantVector>;
445   ConstantVector(const ConstantVector &) = delete;
446 protected:
447   ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
448 public:
449   // ConstantVector accessors
450   static Constant *get(ArrayRef<Constant*> V);
451 
452 private:
453   static Constant *getImpl(ArrayRef<Constant *> V);
454 
455 public:
456   /// getSplat - Return a ConstantVector with the specified constant in each
457   /// element.
458   static Constant *getSplat(unsigned NumElts, Constant *Elt);
459 
460   /// Transparently provide more efficient getOperand methods.
461   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
462 
463   /// getType - Specialize the getType() method to always return a VectorType,
464   /// which reduces the amount of casting needed in parts of the compiler.
465   ///
466   inline VectorType *getType() const {
467     return cast<VectorType>(Value::getType());
468   }
469 
470   /// getSplatValue - If this is a splat constant, meaning that all of the
471   /// elements have the same value, return that value. Otherwise return NULL.
472   Constant *getSplatValue() const;
473 
474   void destroyConstant() override;
475   void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
476 
477   /// Methods for support type inquiry through isa, cast, and dyn_cast:
478   static bool classof(const Value *V) {
479     return V->getValueID() == ConstantVectorVal;
480   }
481 };
482 
483 template <>
484 struct OperandTraits<ConstantVector> :
485   public VariadicOperandTraits<ConstantVector> {
486 };
487 
488 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantVector, Constant)
489 
490 //===----------------------------------------------------------------------===//
491 /// ConstantPointerNull - a constant pointer value that points to null
492 ///
493 class ConstantPointerNull : public Constant {
494   void *operator new(size_t, unsigned) = delete;
495   ConstantPointerNull(const ConstantPointerNull &) = delete;
496 protected:
497   explicit ConstantPointerNull(PointerType *T)
498     : Constant(T,
499                Value::ConstantPointerNullVal, nullptr, 0) {}
500 
501 protected:
502   // allocate space for exactly zero operands
503   void *operator new(size_t s) {
504     return User::operator new(s, 0);
505   }
506 public:
507   /// get() - Static factory methods - Return objects of the specified value
508   static ConstantPointerNull *get(PointerType *T);
509 
510   void destroyConstant() override;
511 
512   /// getType - Specialize the getType() method to always return an PointerType,
513   /// which reduces the amount of casting needed in parts of the compiler.
514   ///
515   inline PointerType *getType() const {
516     return cast<PointerType>(Value::getType());
517   }
518 
519   /// Methods for support type inquiry through isa, cast, and dyn_cast:
520   static bool classof(const Value *V) {
521     return V->getValueID() == ConstantPointerNullVal;
522   }
523 };
524 
525 //===----------------------------------------------------------------------===//
526 /// ConstantDataSequential - A vector or array constant whose element type is a
527 /// simple 1/2/4/8-byte integer or float/double, and whose elements are just
528 /// simple data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
529 /// operands because it stores all of the elements of the constant as densely
530 /// packed data, instead of as Value*'s.
531 ///
532 /// This is the common base class of ConstantDataArray and ConstantDataVector.
533 ///
534 class ConstantDataSequential : public Constant {
535   friend class LLVMContextImpl;
536   /// DataElements - A pointer to the bytes underlying this constant (which is
537   /// owned by the uniquing StringMap).
538   const char *DataElements;
539 
540   /// Next - This forms a link list of ConstantDataSequential nodes that have
541   /// the same value but different type.  For example, 0,0,0,1 could be a 4
542   /// element array of i8, or a 1-element array of i32.  They'll both end up in
543   /// the same StringMap bucket, linked up.
544   ConstantDataSequential *Next;
545   void *operator new(size_t, unsigned) = delete;
546   ConstantDataSequential(const ConstantDataSequential &) = delete;
547 protected:
548   explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
549     : Constant(ty, VT, nullptr, 0), DataElements(Data), Next(nullptr) {}
550   ~ConstantDataSequential() override { delete Next; }
551 
552   static Constant *getImpl(StringRef Bytes, Type *Ty);
553 
554 protected:
555   // allocate space for exactly zero operands.
556   void *operator new(size_t s) {
557     return User::operator new(s, 0);
558   }
559 public:
560 
561   /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
562   /// formed with a vector or array of the specified element type.
563   /// ConstantDataArray only works with normal float and int types that are
564   /// stored densely in memory, not with things like i42 or x86_f80.
565   static bool isElementTypeCompatible(const Type *Ty);
566 
567   /// getElementAsInteger - If this is a sequential container of integers (of
568   /// any size), return the specified element in the low bits of a uint64_t.
569   uint64_t getElementAsInteger(unsigned i) const;
570 
571   /// getElementAsAPFloat - If this is a sequential container of floating point
572   /// type, return the specified element as an APFloat.
573   APFloat getElementAsAPFloat(unsigned i) const;
574 
575   /// getElementAsFloat - If this is an sequential container of floats, return
576   /// the specified element as a float.
577   float getElementAsFloat(unsigned i) const;
578 
579   /// getElementAsDouble - If this is an sequential container of doubles, return
580   /// the specified element as a double.
581   double getElementAsDouble(unsigned i) const;
582 
583   /// getElementAsConstant - Return a Constant for a specified index's element.
584   /// Note that this has to compute a new constant to return, so it isn't as
585   /// efficient as getElementAsInteger/Float/Double.
586   Constant *getElementAsConstant(unsigned i) const;
587 
588   /// getType - Specialize the getType() method to always return a
589   /// SequentialType, which reduces the amount of casting needed in parts of the
590   /// compiler.
591   inline SequentialType *getType() const {
592     return cast<SequentialType>(Value::getType());
593   }
594 
595   /// getElementType - Return the element type of the array/vector.
596   Type *getElementType() const;
597 
598   /// getNumElements - Return the number of elements in the array or vector.
599   unsigned getNumElements() const;
600 
601   /// getElementByteSize - Return the size (in bytes) of each element in the
602   /// array/vector.  The size of the elements is known to be a multiple of one
603   /// byte.
604   uint64_t getElementByteSize() const;
605 
606 
607   /// isString - This method returns true if this is an array of i8.
608   bool isString() const;
609 
610   /// isCString - This method returns true if the array "isString", ends with a
611   /// nul byte, and does not contains any other nul bytes.
612   bool isCString() const;
613 
614   /// getAsString - If this array is isString(), then this method returns the
615   /// array as a StringRef.  Otherwise, it asserts out.
616   ///
617   StringRef getAsString() const {
618     assert(isString() && "Not a string");
619     return getRawDataValues();
620   }
621 
622   /// getAsCString - If this array is isCString(), then this method returns the
623   /// array (without the trailing null byte) as a StringRef. Otherwise, it
624   /// asserts out.
625   ///
626   StringRef getAsCString() const {
627     assert(isCString() && "Isn't a C string");
628     StringRef Str = getAsString();
629     return Str.substr(0, Str.size()-1);
630   }
631 
632   /// getRawDataValues - Return the raw, underlying, bytes of this data.  Note
633   /// that this is an extremely tricky thing to work with, as it exposes the
634   /// host endianness of the data elements.
635   StringRef getRawDataValues() const;
636 
637   void destroyConstant() override;
638 
639   /// Methods for support type inquiry through isa, cast, and dyn_cast:
640   ///
641   static bool classof(const Value *V) {
642     return V->getValueID() == ConstantDataArrayVal ||
643            V->getValueID() == ConstantDataVectorVal;
644   }
645 private:
646   const char *getElementPointer(unsigned Elt) const;
647 };
648 
649 //===----------------------------------------------------------------------===//
650 /// ConstantDataArray - An array constant whose element type is a simple
651 /// 1/2/4/8-byte integer or float/double, and whose elements are just simple
652 /// data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
653 /// operands because it stores all of the elements of the constant as densely
654 /// packed data, instead of as Value*'s.
655 class ConstantDataArray : public ConstantDataSequential {
656   void *operator new(size_t, unsigned) = delete;
657   ConstantDataArray(const ConstantDataArray &) = delete;
658   void anchor() override;
659   friend class ConstantDataSequential;
660   explicit ConstantDataArray(Type *ty, const char *Data)
661     : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
662 protected:
663   // allocate space for exactly zero operands.
664   void *operator new(size_t s) {
665     return User::operator new(s, 0);
666   }
667 public:
668 
669   /// get() constructors - Return a constant with array type with an element
670   /// count and element type matching the ArrayRef passed in.  Note that this
671   /// can return a ConstantAggregateZero object.
672   static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
673   static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
674   static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
675   static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
676   static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
677   static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
678 
679   /// getFP() constructors - Return a constant with array type with an element
680   /// count and element type of float with precision matching the number of
681   /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
682   /// double for 64bits) Note that this can return a ConstantAggregateZero
683   /// object.
684   static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
685   static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
686   static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);
687 
688   /// getString - This method constructs a CDS and initializes it with a text
689   /// string. The default behavior (AddNull==true) causes a null terminator to
690   /// be placed at the end of the array (increasing the length of the string by
691   /// one more than the StringRef would normally indicate.  Pass AddNull=false
692   /// to disable this behavior.
693   static Constant *getString(LLVMContext &Context, StringRef Initializer,
694                              bool AddNull = true);
695 
696   /// getType - Specialize the getType() method to always return an ArrayType,
697   /// which reduces the amount of casting needed in parts of the compiler.
698   ///
699   inline ArrayType *getType() const {
700     return cast<ArrayType>(Value::getType());
701   }
702 
703   /// Methods for support type inquiry through isa, cast, and dyn_cast:
704   ///
705   static bool classof(const Value *V) {
706     return V->getValueID() == ConstantDataArrayVal;
707   }
708 };
709 
710 //===----------------------------------------------------------------------===//
711 /// ConstantDataVector - A vector constant whose element type is a simple
712 /// 1/2/4/8-byte integer or float/double, and whose elements are just simple
713 /// data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
714 /// operands because it stores all of the elements of the constant as densely
715 /// packed data, instead of as Value*'s.
716 class ConstantDataVector : public ConstantDataSequential {
717   void *operator new(size_t, unsigned) = delete;
718   ConstantDataVector(const ConstantDataVector &) = delete;
719   void anchor() override;
720   friend class ConstantDataSequential;
721   explicit ConstantDataVector(Type *ty, const char *Data)
722   : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {}
723 protected:
724   // allocate space for exactly zero operands.
725   void *operator new(size_t s) {
726     return User::operator new(s, 0);
727   }
728 public:
729 
730   /// get() constructors - Return a constant with vector type with an element
731   /// count and element type matching the ArrayRef passed in.  Note that this
732   /// can return a ConstantAggregateZero object.
733   static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
734   static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
735   static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
736   static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
737   static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
738   static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
739 
740   /// getFP() constructors - Return a constant with vector type with an element
741   /// count and element type of float with the precision matching the number of
742   /// bits in the ArrayRef passed in.  (i.e. half for 16bits, float for 32bits,
743   /// double for 64bits) Note that this can return a ConstantAggregateZero
744   /// object.
745   static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
746   static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
747   static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);
748 
749   /// getSplat - Return a ConstantVector with the specified constant in each
750   /// element.  The specified constant has to be a of a compatible type (i8/i16/
751   /// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
752   static Constant *getSplat(unsigned NumElts, Constant *Elt);
753 
754   /// getSplatValue - If this is a splat constant, meaning that all of the
755   /// elements have the same value, return that value. Otherwise return NULL.
756   Constant *getSplatValue() const;
757 
758   /// getType - Specialize the getType() method to always return a VectorType,
759   /// which reduces the amount of casting needed in parts of the compiler.
760   ///
761   inline VectorType *getType() const {
762     return cast<VectorType>(Value::getType());
763   }
764 
765   /// Methods for support type inquiry through isa, cast, and dyn_cast:
766   ///
767   static bool classof(const Value *V) {
768     return V->getValueID() == ConstantDataVectorVal;
769   }
770 };
771 
772 
773 
774 /// BlockAddress - The address of a basic block.
775 ///
776 class BlockAddress : public Constant {
777   void *operator new(size_t, unsigned) = delete;
778   void *operator new(size_t s) { return User::operator new(s, 2); }
779   BlockAddress(Function *F, BasicBlock *BB);
780 public:
781   /// get - Return a BlockAddress for the specified function and basic block.
782   static BlockAddress *get(Function *F, BasicBlock *BB);
783 
784   /// get - Return a BlockAddress for the specified basic block.  The basic
785   /// block must be embedded into a function.
786   static BlockAddress *get(BasicBlock *BB);
787 
788   /// \brief Lookup an existing \c BlockAddress constant for the given
789   /// BasicBlock.
790   ///
791   /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
792   static BlockAddress *lookup(const BasicBlock *BB);
793 
794   /// Transparently provide more efficient getOperand methods.
795   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
796 
797   Function *getFunction() const { return (Function*)Op<0>().get(); }
798   BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
799 
800   void destroyConstant() override;
801   void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
802 
803   /// Methods for support type inquiry through isa, cast, and dyn_cast:
804   static inline bool classof(const Value *V) {
805     return V->getValueID() == BlockAddressVal;
806   }
807 };
808 
809 template <>
810 struct OperandTraits<BlockAddress> :
811   public FixedNumOperandTraits<BlockAddress, 2> {
812 };
813 
814 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
815 
816 
817 //===----------------------------------------------------------------------===//
818 /// ConstantExpr - a constant value that is initialized with an expression using
819 /// other constant values.
820 ///
821 /// This class uses the standard Instruction opcodes to define the various
822 /// constant expressions.  The Opcode field for the ConstantExpr class is
823 /// maintained in the Value::SubclassData field.
824 class ConstantExpr : public Constant {
825   friend struct ConstantExprKeyType;
826 
827 protected:
828   ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
829     : Constant(ty, ConstantExprVal, Ops, NumOps) {
830     // Operation type (an Instruction opcode) is stored as the SubclassData.
831     setValueSubclassData(Opcode);
832   }
833 
834 public:
835   // Static methods to construct a ConstantExpr of different kinds.  Note that
836   // these methods may return a object that is not an instance of the
837   // ConstantExpr class, because they will attempt to fold the constant
838   // expression into something simpler if possible.
839 
840   /// getAlignOf constant expr - computes the alignment of a type in a target
841   /// independent way (Note: the return type is an i64).
842   static Constant *getAlignOf(Type *Ty);
843 
844   /// getSizeOf constant expr - computes the (alloc) size of a type (in
845   /// address-units, not bits) in a target independent way (Note: the return
846   /// type is an i64).
847   ///
848   static Constant *getSizeOf(Type *Ty);
849 
850   /// getOffsetOf constant expr - computes the offset of a struct field in a
851   /// target independent way (Note: the return type is an i64).
852   ///
853   static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
854 
855   /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
856   /// which supports any aggregate type, and any Constant index.
857   ///
858   static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
859 
860   static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
861   static Constant *getFNeg(Constant *C);
862   static Constant *getNot(Constant *C);
863   static Constant *getAdd(Constant *C1, Constant *C2,
864                           bool HasNUW = false, bool HasNSW = false);
865   static Constant *getFAdd(Constant *C1, Constant *C2);
866   static Constant *getSub(Constant *C1, Constant *C2,
867                           bool HasNUW = false, bool HasNSW = false);
868   static Constant *getFSub(Constant *C1, Constant *C2);
869   static Constant *getMul(Constant *C1, Constant *C2,
870                           bool HasNUW = false, bool HasNSW = false);
871   static Constant *getFMul(Constant *C1, Constant *C2);
872   static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
873   static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
874   static Constant *getFDiv(Constant *C1, Constant *C2);
875   static Constant *getURem(Constant *C1, Constant *C2);
876   static Constant *getSRem(Constant *C1, Constant *C2);
877   static Constant *getFRem(Constant *C1, Constant *C2);
878   static Constant *getAnd(Constant *C1, Constant *C2);
879   static Constant *getOr(Constant *C1, Constant *C2);
880   static Constant *getXor(Constant *C1, Constant *C2);
881   static Constant *getShl(Constant *C1, Constant *C2,
882                           bool HasNUW = false, bool HasNSW = false);
883   static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
884   static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
885   static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
886   static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
887   static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
888   static Constant *getFPTrunc(Constant *C, Type *Ty,
889                               bool OnlyIfReduced = false);
890   static Constant *getFPExtend(Constant *C, Type *Ty,
891                                bool OnlyIfReduced = false);
892   static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
893   static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
894   static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
895   static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
896   static Constant *getPtrToInt(Constant *C, Type *Ty,
897                                bool OnlyIfReduced = false);
898   static Constant *getIntToPtr(Constant *C, Type *Ty,
899                                bool OnlyIfReduced = false);
900   static Constant *getBitCast(Constant *C, Type *Ty,
901                               bool OnlyIfReduced = false);
902   static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
903                                     bool OnlyIfReduced = false);
904 
905   static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
906   static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
907   static Constant *getNSWAdd(Constant *C1, Constant *C2) {
908     return getAdd(C1, C2, false, true);
909   }
910   static Constant *getNUWAdd(Constant *C1, Constant *C2) {
911     return getAdd(C1, C2, true, false);
912   }
913   static Constant *getNSWSub(Constant *C1, Constant *C2) {
914     return getSub(C1, C2, false, true);
915   }
916   static Constant *getNUWSub(Constant *C1, Constant *C2) {
917     return getSub(C1, C2, true, false);
918   }
919   static Constant *getNSWMul(Constant *C1, Constant *C2) {
920     return getMul(C1, C2, false, true);
921   }
922   static Constant *getNUWMul(Constant *C1, Constant *C2) {
923     return getMul(C1, C2, true, false);
924   }
925   static Constant *getNSWShl(Constant *C1, Constant *C2) {
926     return getShl(C1, C2, false, true);
927   }
928   static Constant *getNUWShl(Constant *C1, Constant *C2) {
929     return getShl(C1, C2, true, false);
930   }
931   static Constant *getExactSDiv(Constant *C1, Constant *C2) {
932     return getSDiv(C1, C2, true);
933   }
934   static Constant *getExactUDiv(Constant *C1, Constant *C2) {
935     return getUDiv(C1, C2, true);
936   }
937   static Constant *getExactAShr(Constant *C1, Constant *C2) {
938     return getAShr(C1, C2, true);
939   }
940   static Constant *getExactLShr(Constant *C1, Constant *C2) {
941     return getLShr(C1, C2, true);
942   }
943 
944   /// getBinOpIdentity - Return the identity for the given binary operation,
945   /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
946   /// returns null if the operator doesn't have an identity.
947   static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty);
948 
949   /// getBinOpAbsorber - Return the absorbing element for the given binary
950   /// operation, i.e. a constant C such that X op C = C and C op X = C for
951   /// every X.  For example, this returns zero for integer multiplication.
952   /// It returns null if the operator doesn't have an absorbing element.
953   static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
954 
955   /// Transparently provide more efficient getOperand methods.
956   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
957 
958   /// \brief Convenience function for getting a Cast operation.
959   ///
960   /// \param ops The opcode for the conversion
961   /// \param C  The constant to be converted
962   /// \param Ty The type to which the constant is converted
963   /// \param OnlyIfReduced see \a getWithOperands() docs.
964   static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
965                            bool OnlyIfReduced = false);
966 
967   // @brief Create a ZExt or BitCast cast constant expression
968   static Constant *getZExtOrBitCast(
969     Constant *C,   ///< The constant to zext or bitcast
970     Type *Ty ///< The type to zext or bitcast C to
971   );
972 
973   // @brief Create a SExt or BitCast cast constant expression
974   static Constant *getSExtOrBitCast(
975     Constant *C,   ///< The constant to sext or bitcast
976     Type *Ty ///< The type to sext or bitcast C to
977   );
978 
979   // @brief Create a Trunc or BitCast cast constant expression
980   static Constant *getTruncOrBitCast(
981     Constant *C,   ///< The constant to trunc or bitcast
982     Type *Ty ///< The type to trunc or bitcast C to
983   );
984 
985   /// @brief Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
986   /// expression.
987   static Constant *getPointerCast(
988     Constant *C,   ///< The pointer value to be casted (operand 0)
989     Type *Ty ///< The type to which cast should be made
990   );
991 
992   /// @brief Create a BitCast or AddrSpaceCast for a pointer type depending on
993   /// the address space.
994   static Constant *getPointerBitCastOrAddrSpaceCast(
995     Constant *C,   ///< The constant to addrspacecast or bitcast
996     Type *Ty ///< The type to bitcast or addrspacecast C to
997   );
998 
999   /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
1000   static Constant *getIntegerCast(
1001     Constant *C,    ///< The integer constant to be casted
1002     Type *Ty, ///< The integer type to cast to
1003     bool isSigned   ///< Whether C should be treated as signed or not
1004   );
1005 
1006   /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
1007   static Constant *getFPCast(
1008     Constant *C,    ///< The integer constant to be casted
1009     Type *Ty ///< The integer type to cast to
1010   );
1011 
1012   /// @brief Return true if this is a convert constant expression
1013   bool isCast() const;
1014 
1015   /// @brief Return true if this is a compare constant expression
1016   bool isCompare() const;
1017 
1018   /// @brief Return true if this is an insertvalue or extractvalue expression,
1019   /// and the getIndices() method may be used.
1020   bool hasIndices() const;
1021 
1022   /// @brief Return true if this is a getelementptr expression and all
1023   /// the index operands are compile-time known integers within the
1024   /// corresponding notional static array extents. Note that this is
1025   /// not equivalant to, a subset of, or a superset of the "inbounds"
1026   /// property.
1027   bool isGEPWithNoNotionalOverIndexing() const;
1028 
1029   /// Select constant expr
1030   ///
1031   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1032   static Constant *getSelect(Constant *C, Constant *V1, Constant *V2,
1033                              Type *OnlyIfReducedTy = nullptr);
1034 
1035   /// get - Return a binary or shift operator constant expression,
1036   /// folding if possible.
1037   ///
1038   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1039   static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
1040                        unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
1041 
1042   /// \brief Return an ICmp or FCmp comparison operator constant expression.
1043   ///
1044   /// \param OnlyIfReduced see \a getWithOperands() docs.
1045   static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
1046                               bool OnlyIfReduced = false);
1047 
1048   /// get* - Return some common constants without having to
1049   /// specify the full Instruction::OPCODE identifier.
1050   ///
1051   static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
1052                            bool OnlyIfReduced = false);
1053   static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
1054                            bool OnlyIfReduced = false);
1055 
1056   /// Getelementptr form.  Value* is only accepted for convenience;
1057   /// all elements must be Constant's.
1058   ///
1059   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1060   static Constant *getGetElementPtr(Type *Ty, Constant *C,
1061                                     ArrayRef<Constant *> IdxList,
1062                                     bool InBounds = false,
1063                                     Type *OnlyIfReducedTy = nullptr) {
1064     return getGetElementPtr(
1065         Ty, C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()),
1066         InBounds, OnlyIfReducedTy);
1067   }
1068   static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx,
1069                                     bool InBounds = false,
1070                                     Type *OnlyIfReducedTy = nullptr) {
1071     // This form of the function only exists to avoid ambiguous overload
1072     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1073     // ArrayRef<Value *>.
1074     return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, OnlyIfReducedTy);
1075   }
1076   static Constant *getGetElementPtr(Type *Ty, Constant *C,
1077                                     ArrayRef<Value *> IdxList,
1078                                     bool InBounds = false,
1079                                     Type *OnlyIfReducedTy = nullptr);
1080 
1081   /// Create an "inbounds" getelementptr. See the documentation for the
1082   /// "inbounds" flag in LangRef.html for details.
1083   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1084                                             ArrayRef<Constant *> IdxList) {
1085     return getGetElementPtr(Ty, C, IdxList, true);
1086   }
1087   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1088                                             Constant *Idx) {
1089     // This form of the function only exists to avoid ambiguous overload
1090     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1091     // ArrayRef<Value *>.
1092     return getGetElementPtr(Ty, C, Idx, true);
1093   }
1094   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1095                                             ArrayRef<Value *> IdxList) {
1096     return getGetElementPtr(Ty, C, IdxList, true);
1097   }
1098 
1099   static Constant *getExtractElement(Constant *Vec, Constant *Idx,
1100                                      Type *OnlyIfReducedTy = nullptr);
1101   static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
1102                                     Type *OnlyIfReducedTy = nullptr);
1103   static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask,
1104                                     Type *OnlyIfReducedTy = nullptr);
1105   static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
1106                                    Type *OnlyIfReducedTy = nullptr);
1107   static Constant *getInsertValue(Constant *Agg, Constant *Val,
1108                                   ArrayRef<unsigned> Idxs,
1109                                   Type *OnlyIfReducedTy = nullptr);
1110 
1111   /// getOpcode - Return the opcode at the root of this constant expression
1112   unsigned getOpcode() const { return getSubclassDataFromValue(); }
1113 
1114   /// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is
1115   /// not an ICMP or FCMP constant expression.
1116   unsigned getPredicate() const;
1117 
1118   /// getIndices - Assert that this is an insertvalue or exactvalue
1119   /// expression and return the list of indices.
1120   ArrayRef<unsigned> getIndices() const;
1121 
1122   /// getOpcodeName - Return a string representation for an opcode.
1123   const char *getOpcodeName() const;
1124 
1125   /// getWithOperandReplaced - Return a constant expression identical to this
1126   /// one, but with the specified operand set to the specified value.
1127   Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
1128 
1129   /// getWithOperands - This returns the current constant expression with the
1130   /// operands replaced with the specified values.  The specified array must
1131   /// have the same number of operands as our current one.
1132   Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
1133     return getWithOperands(Ops, getType());
1134   }
1135 
1136   /// \brief Get the current expression with the operands replaced.
1137   ///
1138   /// Return the current constant expression with the operands replaced with \c
1139   /// Ops and the type with \c Ty.  The new operands must have the same number
1140   /// as the current ones.
1141   ///
1142   /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
1143   /// gets constant-folded, the type changes, or the expression is otherwise
1144   /// canonicalized.  This parameter should almost always be \c false.
1145   Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1146                             bool OnlyIfReduced = false) const;
1147 
1148   /// getAsInstruction - Returns an Instruction which implements the same operation
1149   /// as this ConstantExpr. The instruction is not linked to any basic block.
1150   ///
1151   /// A better approach to this could be to have a constructor for Instruction
1152   /// which would take a ConstantExpr parameter, but that would have spread
1153   /// implementation details of ConstantExpr outside of Constants.cpp, which
1154   /// would make it harder to remove ConstantExprs altogether.
1155   Instruction *getAsInstruction();
1156 
1157   void destroyConstant() override;
1158   void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
1159 
1160   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1161   static inline bool classof(const Value *V) {
1162     return V->getValueID() == ConstantExprVal;
1163   }
1164 
1165 private:
1166   // Shadow Value::setValueSubclassData with a private forwarding method so that
1167   // subclasses cannot accidentally use it.
1168   void setValueSubclassData(unsigned short D) {
1169     Value::setValueSubclassData(D);
1170   }
1171 };
1172 
1173 template <>
1174 struct OperandTraits<ConstantExpr> :
1175   public VariadicOperandTraits<ConstantExpr, 1> {
1176 };
1177 
1178 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
1179 
1180 //===----------------------------------------------------------------------===//
1181 /// UndefValue - 'undef' values are things that do not have specified contents.
1182 /// These are used for a variety of purposes, including global variable
1183 /// initializers and operands to instructions.  'undef' values can occur with
1184 /// any first-class type.
1185 ///
1186 /// Undef values aren't exactly constants; if they have multiple uses, they
1187 /// can appear to have different bit patterns at each use. See
1188 /// LangRef.html#undefvalues for details.
1189 ///
1190 class UndefValue : public Constant {
1191   void *operator new(size_t, unsigned) = delete;
1192   UndefValue(const UndefValue &) = delete;
1193 protected:
1194   explicit UndefValue(Type *T) : Constant(T, UndefValueVal, nullptr, 0) {}
1195 protected:
1196   // allocate space for exactly zero operands
1197   void *operator new(size_t s) {
1198     return User::operator new(s, 0);
1199   }
1200 public:
1201   /// get() - Static factory methods - Return an 'undef' object of the specified
1202   /// type.
1203   ///
1204   static UndefValue *get(Type *T);
1205 
1206   /// getSequentialElement - If this Undef has array or vector type, return a
1207   /// undef with the right element type.
1208   UndefValue *getSequentialElement() const;
1209 
1210   /// getStructElement - If this undef has struct type, return a undef with the
1211   /// right element type for the specified element.
1212   UndefValue *getStructElement(unsigned Elt) const;
1213 
1214   /// getElementValue - Return an undef of the right value for the specified GEP
1215   /// index.
1216   UndefValue *getElementValue(Constant *C) const;
1217 
1218   /// getElementValue - Return an undef of the right value for the specified GEP
1219   /// index.
1220   UndefValue *getElementValue(unsigned Idx) const;
1221 
1222   /// \brief Return the number of elements in the array, vector, or struct.
1223   unsigned getNumElements() const;
1224 
1225   void destroyConstant() override;
1226 
1227   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1228   static bool classof(const Value *V) {
1229     return V->getValueID() == UndefValueVal;
1230   }
1231 };
1232 
1233 } // End llvm namespace
1234 
1235 #endif
1236