• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkPatchUtils.h"
9 
10 #include "SkColorPriv.h"
11 #include "SkGeometry.h"
12 
13 /**
14  * Evaluator to sample the values of a cubic bezier using forward differences.
15  * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
16  * adding precalculated values.
17  * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
18  * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
19  * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
20  * obtaining this value (mh) we could just add this constant step to our first sampled point
21  * to compute the next one.
22  *
23  * For the cubic case the first difference gives as a result a quadratic polynomial to which we can
24  * apply again forward differences and get linear function to which we can apply again forward
25  * differences to get a constant difference. This is why we keep an array of size 4, the 0th
26  * position keeps the sampled value while the next ones keep the quadratic, linear and constant
27  * difference values.
28  */
29 
30 class FwDCubicEvaluator {
31 
32 public:
FwDCubicEvaluator()33     FwDCubicEvaluator()
34     : fMax(0)
35     , fCurrent(0)
36     , fDivisions(0) {
37         memset(fPoints, 0, 4 * sizeof(SkPoint));
38         memset(fPoints, 0, 4 * sizeof(SkPoint));
39         memset(fPoints, 0, 4 * sizeof(SkPoint));
40     }
41 
42     /**
43      * Receives the 4 control points of the cubic bezier.
44      */
FwDCubicEvaluator(SkPoint a,SkPoint b,SkPoint c,SkPoint d)45     FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) {
46         fPoints[0] = a;
47         fPoints[1] = b;
48         fPoints[2] = c;
49         fPoints[3] = d;
50 
51         SkCubicToCoeff(fPoints, fCoefs);
52 
53         this->restart(1);
54     }
55 
FwDCubicEvaluator(const SkPoint points[4])56     explicit FwDCubicEvaluator(const SkPoint points[4])  {
57         memcpy(fPoints, points, 4 * sizeof(SkPoint));
58 
59         SkCubicToCoeff(fPoints, fCoefs);
60 
61         this->restart(1);
62     }
63 
64     /**
65      * Restarts the forward differences evaluator to the first value of t = 0.
66      */
restart(int divisions)67     void restart(int divisions)  {
68         fDivisions = divisions;
69         SkScalar h  = 1.f / fDivisions;
70         fCurrent    = 0;
71         fMax        = fDivisions + 1;
72         fFwDiff[0]  = fCoefs[3];
73         SkScalar h2 = h * h;
74         SkScalar h3 = h2 * h;
75 
76         fFwDiff[3].set(6.f * fCoefs[0].x() * h3, 6.f * fCoefs[0].y() * h3); //6ah^3
77         fFwDiff[2].set(fFwDiff[3].x() + 2.f * fCoefs[1].x() * h2, //6ah^3 + 2bh^2
78                        fFwDiff[3].y() + 2.f * fCoefs[1].y() * h2);
79         fFwDiff[1].set(fCoefs[0].x() * h3 + fCoefs[1].x() * h2 + fCoefs[2].x() * h,//ah^3 + bh^2 +ch
80                        fCoefs[0].y() * h3 + fCoefs[1].y() * h2 + fCoefs[2].y() * h);
81     }
82 
83     /**
84      * Check if the evaluator is still within the range of 0<=t<=1
85      */
done() const86     bool done() const {
87         return fCurrent > fMax;
88     }
89 
90     /**
91      * Call next to obtain the SkPoint sampled and move to the next one.
92      */
next()93     SkPoint next() {
94         SkPoint point = fFwDiff[0];
95         fFwDiff[0]    += fFwDiff[1];
96         fFwDiff[1]    += fFwDiff[2];
97         fFwDiff[2]    += fFwDiff[3];
98         fCurrent++;
99         return point;
100     }
101 
getCtrlPoints() const102     const SkPoint* getCtrlPoints() const {
103         return fPoints;
104     }
105 
106 private:
107     int fMax, fCurrent, fDivisions;
108     SkPoint fFwDiff[4], fCoefs[4], fPoints[4];
109 };
110 
111 ////////////////////////////////////////////////////////////////////////////////
112 
113 // size in pixels of each partition per axis, adjust this knob
114 static const int kPartitionSize = 10;
115 
116 /**
117  * Calculate the approximate arc length given a bezier curve's control points.
118  */
approx_arc_length(SkPoint * points,int count)119 static SkScalar approx_arc_length(SkPoint* points, int count) {
120     if (count < 2) {
121         return 0;
122     }
123     SkScalar arcLength = 0;
124     for (int i = 0; i < count - 1; i++) {
125         arcLength += SkPoint::Distance(points[i], points[i + 1]);
126     }
127     return arcLength;
128 }
129 
bilerp(SkScalar tx,SkScalar ty,SkScalar c00,SkScalar c10,SkScalar c01,SkScalar c11)130 static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01,
131                       SkScalar c11) {
132     SkScalar a = c00 * (1.f - tx) + c10 * tx;
133     SkScalar b = c01 * (1.f - tx) + c11 * tx;
134     return a * (1.f - ty) + b * ty;
135 }
136 
GetLevelOfDetail(const SkPoint cubics[12],const SkMatrix * matrix)137 SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) {
138 
139     // Approximate length of each cubic.
140     SkPoint pts[kNumPtsCubic];
141     SkPatchUtils::getTopCubic(cubics, pts);
142     matrix->mapPoints(pts, kNumPtsCubic);
143     SkScalar topLength = approx_arc_length(pts, kNumPtsCubic);
144 
145     SkPatchUtils::getBottomCubic(cubics, pts);
146     matrix->mapPoints(pts, kNumPtsCubic);
147     SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic);
148 
149     SkPatchUtils::getLeftCubic(cubics, pts);
150     matrix->mapPoints(pts, kNumPtsCubic);
151     SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic);
152 
153     SkPatchUtils::getRightCubic(cubics, pts);
154     matrix->mapPoints(pts, kNumPtsCubic);
155     SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic);
156 
157     // Level of detail per axis, based on the larger side between top and bottom or left and right
158     int lodX = static_cast<int>(SkMaxScalar(topLength, bottomLength) / kPartitionSize);
159     int lodY = static_cast<int>(SkMaxScalar(leftLength, rightLength) / kPartitionSize);
160 
161     return SkISize::Make(SkMax32(8, lodX), SkMax32(8, lodY));
162 }
163 
getTopCubic(const SkPoint cubics[12],SkPoint points[4])164 void SkPatchUtils::getTopCubic(const SkPoint cubics[12], SkPoint points[4]) {
165     points[0] = cubics[kTopP0_CubicCtrlPts];
166     points[1] = cubics[kTopP1_CubicCtrlPts];
167     points[2] = cubics[kTopP2_CubicCtrlPts];
168     points[3] = cubics[kTopP3_CubicCtrlPts];
169 }
170 
getBottomCubic(const SkPoint cubics[12],SkPoint points[4])171 void SkPatchUtils::getBottomCubic(const SkPoint cubics[12], SkPoint points[4]) {
172     points[0] = cubics[kBottomP0_CubicCtrlPts];
173     points[1] = cubics[kBottomP1_CubicCtrlPts];
174     points[2] = cubics[kBottomP2_CubicCtrlPts];
175     points[3] = cubics[kBottomP3_CubicCtrlPts];
176 }
177 
getLeftCubic(const SkPoint cubics[12],SkPoint points[4])178 void SkPatchUtils::getLeftCubic(const SkPoint cubics[12], SkPoint points[4]) {
179     points[0] = cubics[kLeftP0_CubicCtrlPts];
180     points[1] = cubics[kLeftP1_CubicCtrlPts];
181     points[2] = cubics[kLeftP2_CubicCtrlPts];
182     points[3] = cubics[kLeftP3_CubicCtrlPts];
183 }
184 
getRightCubic(const SkPoint cubics[12],SkPoint points[4])185 void SkPatchUtils::getRightCubic(const SkPoint cubics[12], SkPoint points[4]) {
186     points[0] = cubics[kRightP0_CubicCtrlPts];
187     points[1] = cubics[kRightP1_CubicCtrlPts];
188     points[2] = cubics[kRightP2_CubicCtrlPts];
189     points[3] = cubics[kRightP3_CubicCtrlPts];
190 }
191 
getVertexData(SkPatchUtils::VertexData * data,const SkPoint cubics[12],const SkColor colors[4],const SkPoint texCoords[4],int lodX,int lodY)192 bool SkPatchUtils::getVertexData(SkPatchUtils::VertexData* data, const SkPoint cubics[12],
193                    const SkColor colors[4], const SkPoint texCoords[4], int lodX, int lodY) {
194     if (lodX < 1 || lodY < 1 || NULL == cubics || NULL == data) {
195         return false;
196     }
197 
198     // check for overflow in multiplication
199     const int64_t lodX64 = (lodX + 1),
200                    lodY64 = (lodY + 1),
201                    mult64 = lodX64 * lodY64;
202     if (mult64 > SK_MaxS32) {
203         return false;
204     }
205     data->fVertexCount = SkToS32(mult64);
206 
207     // it is recommended to generate draw calls of no more than 65536 indices, so we never generate
208     // more than 60000 indices. To accomplish that we resize the LOD and vertex count
209     if (data->fVertexCount > 10000 || lodX > 200 || lodY > 200) {
210         SkScalar weightX = static_cast<SkScalar>(lodX) / (lodX + lodY);
211         SkScalar weightY = static_cast<SkScalar>(lodY) / (lodX + lodY);
212 
213         // 200 comes from the 100 * 2 which is the max value of vertices because of the limit of
214         // 60000 indices ( sqrt(60000 / 6) that comes from data->fIndexCount = lodX * lodY * 6)
215         lodX = static_cast<int>(weightX * 200);
216         lodY = static_cast<int>(weightY * 200);
217         data->fVertexCount = (lodX + 1) * (lodY + 1);
218     }
219     data->fIndexCount = lodX * lodY * 6;
220 
221     data->fPoints = SkNEW_ARRAY(SkPoint, data->fVertexCount);
222     data->fIndices = SkNEW_ARRAY(uint16_t, data->fIndexCount);
223 
224     // if colors is not null then create array for colors
225     SkPMColor colorsPM[kNumCorners];
226     if (colors) {
227         // premultiply colors to avoid color bleeding.
228         for (int i = 0; i < kNumCorners; i++) {
229             colorsPM[i] = SkPreMultiplyColor(colors[i]);
230         }
231         data->fColors = SkNEW_ARRAY(uint32_t, data->fVertexCount);
232     }
233 
234     // if texture coordinates are not null then create array for them
235     if (texCoords) {
236         data->fTexCoords = SkNEW_ARRAY(SkPoint, data->fVertexCount);
237     }
238 
239     SkPoint pts[kNumPtsCubic];
240     SkPatchUtils::getBottomCubic(cubics, pts);
241     FwDCubicEvaluator fBottom(pts);
242     SkPatchUtils::getTopCubic(cubics, pts);
243     FwDCubicEvaluator fTop(pts);
244     SkPatchUtils::getLeftCubic(cubics, pts);
245     FwDCubicEvaluator fLeft(pts);
246     SkPatchUtils::getRightCubic(cubics, pts);
247     FwDCubicEvaluator fRight(pts);
248 
249     fBottom.restart(lodX);
250     fTop.restart(lodX);
251 
252     SkScalar u = 0.0f;
253     int stride = lodY + 1;
254     for (int x = 0; x <= lodX; x++) {
255         SkPoint bottom = fBottom.next(), top = fTop.next();
256         fLeft.restart(lodY);
257         fRight.restart(lodY);
258         SkScalar v = 0.f;
259         for (int y = 0; y <= lodY; y++) {
260             int dataIndex = x * (lodY + 1) + y;
261 
262             SkPoint left = fLeft.next(), right = fRight.next();
263 
264             SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
265                                        (1.0f - v) * top.y() + v * bottom.y());
266             SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
267                                        (1.0f - u) * left.y() + u * right.y());
268             SkPoint s2 = SkPoint::Make(
269                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
270                                                      + u * fTop.getCtrlPoints()[3].x())
271                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
272                                               + u * fBottom.getCtrlPoints()[3].x()),
273                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
274                                                      + u * fTop.getCtrlPoints()[3].y())
275                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
276                                               + u * fBottom.getCtrlPoints()[3].y()));
277             data->fPoints[dataIndex] = s0 + s1 - s2;
278 
279             if (colors) {
280                 uint8_t a = uint8_t(bilerp(u, v,
281                                    SkScalar(SkColorGetA(colorsPM[kTopLeft_Corner])),
282                                    SkScalar(SkColorGetA(colorsPM[kTopRight_Corner])),
283                                    SkScalar(SkColorGetA(colorsPM[kBottomLeft_Corner])),
284                                    SkScalar(SkColorGetA(colorsPM[kBottomRight_Corner]))));
285                 uint8_t r = uint8_t(bilerp(u, v,
286                                    SkScalar(SkColorGetR(colorsPM[kTopLeft_Corner])),
287                                    SkScalar(SkColorGetR(colorsPM[kTopRight_Corner])),
288                                    SkScalar(SkColorGetR(colorsPM[kBottomLeft_Corner])),
289                                    SkScalar(SkColorGetR(colorsPM[kBottomRight_Corner]))));
290                 uint8_t g = uint8_t(bilerp(u, v,
291                                    SkScalar(SkColorGetG(colorsPM[kTopLeft_Corner])),
292                                    SkScalar(SkColorGetG(colorsPM[kTopRight_Corner])),
293                                    SkScalar(SkColorGetG(colorsPM[kBottomLeft_Corner])),
294                                    SkScalar(SkColorGetG(colorsPM[kBottomRight_Corner]))));
295                 uint8_t b = uint8_t(bilerp(u, v,
296                                    SkScalar(SkColorGetB(colorsPM[kTopLeft_Corner])),
297                                    SkScalar(SkColorGetB(colorsPM[kTopRight_Corner])),
298                                    SkScalar(SkColorGetB(colorsPM[kBottomLeft_Corner])),
299                                    SkScalar(SkColorGetB(colorsPM[kBottomRight_Corner]))));
300                 data->fColors[dataIndex] = SkPackARGB32(a,r,g,b);
301             }
302 
303             if (texCoords) {
304                 data->fTexCoords[dataIndex] = SkPoint::Make(
305                                             bilerp(u, v, texCoords[kTopLeft_Corner].x(),
306                                                    texCoords[kTopRight_Corner].x(),
307                                                    texCoords[kBottomLeft_Corner].x(),
308                                                    texCoords[kBottomRight_Corner].x()),
309                                             bilerp(u, v, texCoords[kTopLeft_Corner].y(),
310                                                    texCoords[kTopRight_Corner].y(),
311                                                    texCoords[kBottomLeft_Corner].y(),
312                                                    texCoords[kBottomRight_Corner].y()));
313 
314             }
315 
316             if(x < lodX && y < lodY) {
317                 int i = 6 * (x * lodY + y);
318                 data->fIndices[i] = x * stride + y;
319                 data->fIndices[i + 1] = x * stride + 1 + y;
320                 data->fIndices[i + 2] = (x + 1) * stride + 1 + y;
321                 data->fIndices[i + 3] = data->fIndices[i];
322                 data->fIndices[i + 4] = data->fIndices[i + 2];
323                 data->fIndices[i + 5] = (x + 1) * stride + y;
324             }
325             v = SkScalarClampMax(v + 1.f / lodY, 1);
326         }
327         u = SkScalarClampMax(u + 1.f / lodX, 1);
328     }
329     return true;
330 
331 }
332