• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the C++ related Decl classes.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/DeclTemplate.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/TypeLoc.h"
22 #include "clang/Basic/IdentifierTable.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 using namespace clang;
26 
27 //===----------------------------------------------------------------------===//
28 // Decl Allocation/Deallocation Method Implementations
29 //===----------------------------------------------------------------------===//
30 
anchor()31 void AccessSpecDecl::anchor() { }
32 
CreateDeserialized(ASTContext & C,unsigned ID)33 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
34   return new (C, ID) AccessSpecDecl(EmptyShell());
35 }
36 
getFromExternalSource(ASTContext & C) const37 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
38   ExternalASTSource *Source = C.getExternalSource();
39   assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
40   assert(Source && "getFromExternalSource with no external source");
41 
42   for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
43     I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
44         reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
45   Impl.Decls.setLazy(false);
46 }
47 
DefinitionData(CXXRecordDecl * D)48 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
49   : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
50     Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
51     Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
52     HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
53     HasMutableFields(false), HasVariantMembers(false), HasOnlyCMembers(true),
54     HasInClassInitializer(false), HasUninitializedReferenceMember(false),
55     NeedOverloadResolutionForMoveConstructor(false),
56     NeedOverloadResolutionForMoveAssignment(false),
57     NeedOverloadResolutionForDestructor(false),
58     DefaultedMoveConstructorIsDeleted(false),
59     DefaultedMoveAssignmentIsDeleted(false),
60     DefaultedDestructorIsDeleted(false),
61     HasTrivialSpecialMembers(SMF_All),
62     DeclaredNonTrivialSpecialMembers(0),
63     HasIrrelevantDestructor(true),
64     HasConstexprNonCopyMoveConstructor(false),
65     DefaultedDefaultConstructorIsConstexpr(true),
66     HasConstexprDefaultConstructor(false),
67     HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
68     UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
69     ImplicitCopyConstructorHasConstParam(true),
70     ImplicitCopyAssignmentHasConstParam(true),
71     HasDeclaredCopyConstructorWithConstParam(false),
72     HasDeclaredCopyAssignmentWithConstParam(false),
73     IsLambda(false), IsParsingBaseSpecifiers(false), NumBases(0), NumVBases(0),
74     Bases(), VBases(),
75     Definition(D), FirstFriend() {
76 }
77 
getBasesSlowCase() const78 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
79   return Bases.get(Definition->getASTContext().getExternalSource());
80 }
81 
getVBasesSlowCase() const82 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
83   return VBases.get(Definition->getASTContext().getExternalSource());
84 }
85 
CXXRecordDecl(Kind K,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl)86 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
87                              DeclContext *DC, SourceLocation StartLoc,
88                              SourceLocation IdLoc, IdentifierInfo *Id,
89                              CXXRecordDecl *PrevDecl)
90     : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
91       DefinitionData(PrevDecl ? PrevDecl->DefinitionData
92                               : DefinitionDataPtr(this)),
93       TemplateOrInstantiation() {}
94 
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl,bool DelayTypeCreation)95 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
96                                      DeclContext *DC, SourceLocation StartLoc,
97                                      SourceLocation IdLoc, IdentifierInfo *Id,
98                                      CXXRecordDecl* PrevDecl,
99                                      bool DelayTypeCreation) {
100   CXXRecordDecl *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc,
101                                                IdLoc, Id, PrevDecl);
102   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
103 
104   // FIXME: DelayTypeCreation seems like such a hack
105   if (!DelayTypeCreation)
106     C.getTypeDeclType(R, PrevDecl);
107   return R;
108 }
109 
110 CXXRecordDecl *
CreateLambda(const ASTContext & C,DeclContext * DC,TypeSourceInfo * Info,SourceLocation Loc,bool Dependent,bool IsGeneric,LambdaCaptureDefault CaptureDefault)111 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
112                             TypeSourceInfo *Info, SourceLocation Loc,
113                             bool Dependent, bool IsGeneric,
114                             LambdaCaptureDefault CaptureDefault) {
115   CXXRecordDecl *R =
116       new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
117                                 nullptr, nullptr);
118   R->IsBeingDefined = true;
119   R->DefinitionData =
120       new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric,
121                                           CaptureDefault);
122   R->MayHaveOutOfDateDef = false;
123   R->setImplicit(true);
124   C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
125   return R;
126 }
127 
128 CXXRecordDecl *
CreateDeserialized(const ASTContext & C,unsigned ID)129 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
130   CXXRecordDecl *R = new (C, ID) CXXRecordDecl(
131       CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
132       nullptr, nullptr);
133   R->MayHaveOutOfDateDef = false;
134   return R;
135 }
136 
137 void
setBases(CXXBaseSpecifier const * const * Bases,unsigned NumBases)138 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
139                         unsigned NumBases) {
140   ASTContext &C = getASTContext();
141 
142   if (!data().Bases.isOffset() && data().NumBases > 0)
143     C.Deallocate(data().getBases());
144 
145   if (NumBases) {
146     // C++ [dcl.init.aggr]p1:
147     //   An aggregate is [...] a class with [...] no base classes [...].
148     data().Aggregate = false;
149 
150     // C++ [class]p4:
151     //   A POD-struct is an aggregate class...
152     data().PlainOldData = false;
153   }
154 
155   // The set of seen virtual base types.
156   llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
157 
158   // The virtual bases of this class.
159   SmallVector<const CXXBaseSpecifier *, 8> VBases;
160 
161   data().Bases = new(C) CXXBaseSpecifier [NumBases];
162   data().NumBases = NumBases;
163   for (unsigned i = 0; i < NumBases; ++i) {
164     data().getBases()[i] = *Bases[i];
165     // Keep track of inherited vbases for this base class.
166     const CXXBaseSpecifier *Base = Bases[i];
167     QualType BaseType = Base->getType();
168     // Skip dependent types; we can't do any checking on them now.
169     if (BaseType->isDependentType())
170       continue;
171     CXXRecordDecl *BaseClassDecl
172       = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
173 
174     // A class with a non-empty base class is not empty.
175     // FIXME: Standard ref?
176     if (!BaseClassDecl->isEmpty()) {
177       if (!data().Empty) {
178         // C++0x [class]p7:
179         //   A standard-layout class is a class that:
180         //    [...]
181         //    -- either has no non-static data members in the most derived
182         //       class and at most one base class with non-static data members,
183         //       or has no base classes with non-static data members, and
184         // If this is the second non-empty base, then neither of these two
185         // clauses can be true.
186         data().IsStandardLayout = false;
187       }
188 
189       data().Empty = false;
190       data().HasNoNonEmptyBases = false;
191     }
192 
193     // C++ [class.virtual]p1:
194     //   A class that declares or inherits a virtual function is called a
195     //   polymorphic class.
196     if (BaseClassDecl->isPolymorphic())
197       data().Polymorphic = true;
198 
199     // C++0x [class]p7:
200     //   A standard-layout class is a class that: [...]
201     //    -- has no non-standard-layout base classes
202     if (!BaseClassDecl->isStandardLayout())
203       data().IsStandardLayout = false;
204 
205     // Record if this base is the first non-literal field or base.
206     if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
207       data().HasNonLiteralTypeFieldsOrBases = true;
208 
209     // Now go through all virtual bases of this base and add them.
210     for (const auto &VBase : BaseClassDecl->vbases()) {
211       // Add this base if it's not already in the list.
212       if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
213         VBases.push_back(&VBase);
214 
215         // C++11 [class.copy]p8:
216         //   The implicitly-declared copy constructor for a class X will have
217         //   the form 'X::X(const X&)' if each [...] virtual base class B of X
218         //   has a copy constructor whose first parameter is of type
219         //   'const B&' or 'const volatile B&' [...]
220         if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
221           if (!VBaseDecl->hasCopyConstructorWithConstParam())
222             data().ImplicitCopyConstructorHasConstParam = false;
223       }
224     }
225 
226     if (Base->isVirtual()) {
227       // Add this base if it's not already in the list.
228       if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
229         VBases.push_back(Base);
230 
231       // C++0x [meta.unary.prop] is_empty:
232       //    T is a class type, but not a union type, with ... no virtual base
233       //    classes
234       data().Empty = false;
235 
236       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
237       //   A [default constructor, copy/move constructor, or copy/move assignment
238       //   operator for a class X] is trivial [...] if:
239       //    -- class X has [...] no virtual base classes
240       data().HasTrivialSpecialMembers &= SMF_Destructor;
241 
242       // C++0x [class]p7:
243       //   A standard-layout class is a class that: [...]
244       //    -- has [...] no virtual base classes
245       data().IsStandardLayout = false;
246 
247       // C++11 [dcl.constexpr]p4:
248       //   In the definition of a constexpr constructor [...]
249       //    -- the class shall not have any virtual base classes
250       data().DefaultedDefaultConstructorIsConstexpr = false;
251     } else {
252       // C++ [class.ctor]p5:
253       //   A default constructor is trivial [...] if:
254       //    -- all the direct base classes of its class have trivial default
255       //       constructors.
256       if (!BaseClassDecl->hasTrivialDefaultConstructor())
257         data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
258 
259       // C++0x [class.copy]p13:
260       //   A copy/move constructor for class X is trivial if [...]
261       //    [...]
262       //    -- the constructor selected to copy/move each direct base class
263       //       subobject is trivial, and
264       if (!BaseClassDecl->hasTrivialCopyConstructor())
265         data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
266       // If the base class doesn't have a simple move constructor, we'll eagerly
267       // declare it and perform overload resolution to determine which function
268       // it actually calls. If it does have a simple move constructor, this
269       // check is correct.
270       if (!BaseClassDecl->hasTrivialMoveConstructor())
271         data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
272 
273       // C++0x [class.copy]p27:
274       //   A copy/move assignment operator for class X is trivial if [...]
275       //    [...]
276       //    -- the assignment operator selected to copy/move each direct base
277       //       class subobject is trivial, and
278       if (!BaseClassDecl->hasTrivialCopyAssignment())
279         data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
280       // If the base class doesn't have a simple move assignment, we'll eagerly
281       // declare it and perform overload resolution to determine which function
282       // it actually calls. If it does have a simple move assignment, this
283       // check is correct.
284       if (!BaseClassDecl->hasTrivialMoveAssignment())
285         data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
286 
287       // C++11 [class.ctor]p6:
288       //   If that user-written default constructor would satisfy the
289       //   requirements of a constexpr constructor, the implicitly-defined
290       //   default constructor is constexpr.
291       if (!BaseClassDecl->hasConstexprDefaultConstructor())
292         data().DefaultedDefaultConstructorIsConstexpr = false;
293     }
294 
295     // C++ [class.ctor]p3:
296     //   A destructor is trivial if all the direct base classes of its class
297     //   have trivial destructors.
298     if (!BaseClassDecl->hasTrivialDestructor())
299       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
300 
301     if (!BaseClassDecl->hasIrrelevantDestructor())
302       data().HasIrrelevantDestructor = false;
303 
304     // C++11 [class.copy]p18:
305     //   The implicitly-declared copy assignment oeprator for a class X will
306     //   have the form 'X& X::operator=(const X&)' if each direct base class B
307     //   of X has a copy assignment operator whose parameter is of type 'const
308     //   B&', 'const volatile B&', or 'B' [...]
309     if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
310       data().ImplicitCopyAssignmentHasConstParam = false;
311 
312     // C++11 [class.copy]p8:
313     //   The implicitly-declared copy constructor for a class X will have
314     //   the form 'X::X(const X&)' if each direct [...] base class B of X
315     //   has a copy constructor whose first parameter is of type
316     //   'const B&' or 'const volatile B&' [...]
317     if (!BaseClassDecl->hasCopyConstructorWithConstParam())
318       data().ImplicitCopyConstructorHasConstParam = false;
319 
320     // A class has an Objective-C object member if... or any of its bases
321     // has an Objective-C object member.
322     if (BaseClassDecl->hasObjectMember())
323       setHasObjectMember(true);
324 
325     if (BaseClassDecl->hasVolatileMember())
326       setHasVolatileMember(true);
327 
328     // Keep track of the presence of mutable fields.
329     if (BaseClassDecl->hasMutableFields())
330       data().HasMutableFields = true;
331 
332     if (BaseClassDecl->hasUninitializedReferenceMember())
333       data().HasUninitializedReferenceMember = true;
334 
335     addedClassSubobject(BaseClassDecl);
336   }
337 
338   if (VBases.empty()) {
339     data().IsParsingBaseSpecifiers = false;
340     return;
341   }
342 
343   // Create base specifier for any direct or indirect virtual bases.
344   data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
345   data().NumVBases = VBases.size();
346   for (int I = 0, E = VBases.size(); I != E; ++I) {
347     QualType Type = VBases[I]->getType();
348     if (!Type->isDependentType())
349       addedClassSubobject(Type->getAsCXXRecordDecl());
350     data().getVBases()[I] = *VBases[I];
351   }
352 
353   data().IsParsingBaseSpecifiers = false;
354 }
355 
addedClassSubobject(CXXRecordDecl * Subobj)356 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
357   // C++11 [class.copy]p11:
358   //   A defaulted copy/move constructor for a class X is defined as
359   //   deleted if X has:
360   //    -- a direct or virtual base class B that cannot be copied/moved [...]
361   //    -- a non-static data member of class type M (or array thereof)
362   //       that cannot be copied or moved [...]
363   if (!Subobj->hasSimpleMoveConstructor())
364     data().NeedOverloadResolutionForMoveConstructor = true;
365 
366   // C++11 [class.copy]p23:
367   //   A defaulted copy/move assignment operator for a class X is defined as
368   //   deleted if X has:
369   //    -- a direct or virtual base class B that cannot be copied/moved [...]
370   //    -- a non-static data member of class type M (or array thereof)
371   //        that cannot be copied or moved [...]
372   if (!Subobj->hasSimpleMoveAssignment())
373     data().NeedOverloadResolutionForMoveAssignment = true;
374 
375   // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
376   //   A defaulted [ctor or dtor] for a class X is defined as
377   //   deleted if X has:
378   //    -- any direct or virtual base class [...] has a type with a destructor
379   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
380   //    -- any non-static data member has a type with a destructor
381   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
382   if (!Subobj->hasSimpleDestructor()) {
383     data().NeedOverloadResolutionForMoveConstructor = true;
384     data().NeedOverloadResolutionForDestructor = true;
385   }
386 }
387 
388 /// Callback function for CXXRecordDecl::forallBases that acknowledges
389 /// that it saw a base class.
SawBase(const CXXRecordDecl *,void *)390 static bool SawBase(const CXXRecordDecl *, void *) {
391   return true;
392 }
393 
hasAnyDependentBases() const394 bool CXXRecordDecl::hasAnyDependentBases() const {
395   if (!isDependentContext())
396     return false;
397 
398   return !forallBases(SawBase, nullptr);
399 }
400 
isTriviallyCopyable() const401 bool CXXRecordDecl::isTriviallyCopyable() const {
402   // C++0x [class]p5:
403   //   A trivially copyable class is a class that:
404   //   -- has no non-trivial copy constructors,
405   if (hasNonTrivialCopyConstructor()) return false;
406   //   -- has no non-trivial move constructors,
407   if (hasNonTrivialMoveConstructor()) return false;
408   //   -- has no non-trivial copy assignment operators,
409   if (hasNonTrivialCopyAssignment()) return false;
410   //   -- has no non-trivial move assignment operators, and
411   if (hasNonTrivialMoveAssignment()) return false;
412   //   -- has a trivial destructor.
413   if (!hasTrivialDestructor()) return false;
414 
415   return true;
416 }
417 
markedVirtualFunctionPure()418 void CXXRecordDecl::markedVirtualFunctionPure() {
419   // C++ [class.abstract]p2:
420   //   A class is abstract if it has at least one pure virtual function.
421   data().Abstract = true;
422 }
423 
addedMember(Decl * D)424 void CXXRecordDecl::addedMember(Decl *D) {
425   if (!D->isImplicit() &&
426       !isa<FieldDecl>(D) &&
427       !isa<IndirectFieldDecl>(D) &&
428       (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
429         cast<TagDecl>(D)->getTagKind() == TTK_Interface))
430     data().HasOnlyCMembers = false;
431 
432   // Ignore friends and invalid declarations.
433   if (D->getFriendObjectKind() || D->isInvalidDecl())
434     return;
435 
436   FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
437   if (FunTmpl)
438     D = FunTmpl->getTemplatedDecl();
439 
440   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
441     if (Method->isVirtual()) {
442       // C++ [dcl.init.aggr]p1:
443       //   An aggregate is an array or a class with [...] no virtual functions.
444       data().Aggregate = false;
445 
446       // C++ [class]p4:
447       //   A POD-struct is an aggregate class...
448       data().PlainOldData = false;
449 
450       // Virtual functions make the class non-empty.
451       // FIXME: Standard ref?
452       data().Empty = false;
453 
454       // C++ [class.virtual]p1:
455       //   A class that declares or inherits a virtual function is called a
456       //   polymorphic class.
457       data().Polymorphic = true;
458 
459       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
460       //   A [default constructor, copy/move constructor, or copy/move
461       //   assignment operator for a class X] is trivial [...] if:
462       //    -- class X has no virtual functions [...]
463       data().HasTrivialSpecialMembers &= SMF_Destructor;
464 
465       // C++0x [class]p7:
466       //   A standard-layout class is a class that: [...]
467       //    -- has no virtual functions
468       data().IsStandardLayout = false;
469     }
470   }
471 
472   // Notify the listener if an implicit member was added after the definition
473   // was completed.
474   if (!isBeingDefined() && D->isImplicit())
475     if (ASTMutationListener *L = getASTMutationListener())
476       L->AddedCXXImplicitMember(data().Definition, D);
477 
478   // The kind of special member this declaration is, if any.
479   unsigned SMKind = 0;
480 
481   // Handle constructors.
482   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
483     if (!Constructor->isImplicit()) {
484       // Note that we have a user-declared constructor.
485       data().UserDeclaredConstructor = true;
486 
487       // C++ [class]p4:
488       //   A POD-struct is an aggregate class [...]
489       // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
490       // type is technically an aggregate in C++0x since it wouldn't be in 03.
491       data().PlainOldData = false;
492     }
493 
494     // Technically, "user-provided" is only defined for special member
495     // functions, but the intent of the standard is clearly that it should apply
496     // to all functions.
497     bool UserProvided = Constructor->isUserProvided();
498 
499     if (Constructor->isDefaultConstructor()) {
500       SMKind |= SMF_DefaultConstructor;
501 
502       if (UserProvided)
503         data().UserProvidedDefaultConstructor = true;
504       if (Constructor->isConstexpr())
505         data().HasConstexprDefaultConstructor = true;
506     }
507 
508     if (!FunTmpl) {
509       unsigned Quals;
510       if (Constructor->isCopyConstructor(Quals)) {
511         SMKind |= SMF_CopyConstructor;
512 
513         if (Quals & Qualifiers::Const)
514           data().HasDeclaredCopyConstructorWithConstParam = true;
515       } else if (Constructor->isMoveConstructor())
516         SMKind |= SMF_MoveConstructor;
517     }
518 
519     // Record if we see any constexpr constructors which are neither copy
520     // nor move constructors.
521     if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
522       data().HasConstexprNonCopyMoveConstructor = true;
523 
524     // C++ [dcl.init.aggr]p1:
525     //   An aggregate is an array or a class with no user-declared
526     //   constructors [...].
527     // C++11 [dcl.init.aggr]p1:
528     //   An aggregate is an array or a class with no user-provided
529     //   constructors [...].
530     if (getASTContext().getLangOpts().CPlusPlus11
531           ? UserProvided : !Constructor->isImplicit())
532       data().Aggregate = false;
533   }
534 
535   // Handle destructors.
536   if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
537     SMKind |= SMF_Destructor;
538 
539     if (DD->isUserProvided())
540       data().HasIrrelevantDestructor = false;
541     // If the destructor is explicitly defaulted and not trivial or not public
542     // or if the destructor is deleted, we clear HasIrrelevantDestructor in
543     // finishedDefaultedOrDeletedMember.
544 
545     // C++11 [class.dtor]p5:
546     //   A destructor is trivial if [...] the destructor is not virtual.
547     if (DD->isVirtual())
548       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
549   }
550 
551   // Handle member functions.
552   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
553     if (Method->isCopyAssignmentOperator()) {
554       SMKind |= SMF_CopyAssignment;
555 
556       const ReferenceType *ParamTy =
557         Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
558       if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
559         data().HasDeclaredCopyAssignmentWithConstParam = true;
560     }
561 
562     if (Method->isMoveAssignmentOperator())
563       SMKind |= SMF_MoveAssignment;
564 
565     // Keep the list of conversion functions up-to-date.
566     if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
567       // FIXME: We use the 'unsafe' accessor for the access specifier here,
568       // because Sema may not have set it yet. That's really just a misdesign
569       // in Sema. However, LLDB *will* have set the access specifier correctly,
570       // and adds declarations after the class is technically completed,
571       // so completeDefinition()'s overriding of the access specifiers doesn't
572       // work.
573       AccessSpecifier AS = Conversion->getAccessUnsafe();
574 
575       if (Conversion->getPrimaryTemplate()) {
576         // We don't record specializations.
577       } else {
578         ASTContext &Ctx = getASTContext();
579         ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
580         NamedDecl *Primary =
581             FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
582         if (Primary->getPreviousDecl())
583           Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
584                               Primary, AS);
585         else
586           Conversions.addDecl(Ctx, Primary, AS);
587       }
588     }
589 
590     if (SMKind) {
591       // If this is the first declaration of a special member, we no longer have
592       // an implicit trivial special member.
593       data().HasTrivialSpecialMembers &=
594         data().DeclaredSpecialMembers | ~SMKind;
595 
596       if (!Method->isImplicit() && !Method->isUserProvided()) {
597         // This method is user-declared but not user-provided. We can't work out
598         // whether it's trivial yet (not until we get to the end of the class).
599         // We'll handle this method in finishedDefaultedOrDeletedMember.
600       } else if (Method->isTrivial())
601         data().HasTrivialSpecialMembers |= SMKind;
602       else
603         data().DeclaredNonTrivialSpecialMembers |= SMKind;
604 
605       // Note when we have declared a declared special member, and suppress the
606       // implicit declaration of this special member.
607       data().DeclaredSpecialMembers |= SMKind;
608 
609       if (!Method->isImplicit()) {
610         data().UserDeclaredSpecialMembers |= SMKind;
611 
612         // C++03 [class]p4:
613         //   A POD-struct is an aggregate class that has [...] no user-defined
614         //   copy assignment operator and no user-defined destructor.
615         //
616         // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
617         // aggregates could not have any constructors, clear it even for an
618         // explicitly defaulted or deleted constructor.
619         // type is technically an aggregate in C++0x since it wouldn't be in 03.
620         //
621         // Also, a user-declared move assignment operator makes a class non-POD.
622         // This is an extension in C++03.
623         data().PlainOldData = false;
624       }
625     }
626 
627     return;
628   }
629 
630   // Handle non-static data members.
631   if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
632     // C++ [class.bit]p2:
633     //   A declaration for a bit-field that omits the identifier declares an
634     //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
635     //   initialized.
636     if (Field->isUnnamedBitfield())
637       return;
638 
639     // C++ [dcl.init.aggr]p1:
640     //   An aggregate is an array or a class (clause 9) with [...] no
641     //   private or protected non-static data members (clause 11).
642     //
643     // A POD must be an aggregate.
644     if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
645       data().Aggregate = false;
646       data().PlainOldData = false;
647     }
648 
649     // C++0x [class]p7:
650     //   A standard-layout class is a class that:
651     //    [...]
652     //    -- has the same access control for all non-static data members,
653     switch (D->getAccess()) {
654     case AS_private:    data().HasPrivateFields = true;   break;
655     case AS_protected:  data().HasProtectedFields = true; break;
656     case AS_public:     data().HasPublicFields = true;    break;
657     case AS_none:       llvm_unreachable("Invalid access specifier");
658     };
659     if ((data().HasPrivateFields + data().HasProtectedFields +
660          data().HasPublicFields) > 1)
661       data().IsStandardLayout = false;
662 
663     // Keep track of the presence of mutable fields.
664     if (Field->isMutable())
665       data().HasMutableFields = true;
666 
667     // C++11 [class.union]p8, DR1460:
668     //   If X is a union, a non-static data member of X that is not an anonymous
669     //   union is a variant member of X.
670     if (isUnion() && !Field->isAnonymousStructOrUnion())
671       data().HasVariantMembers = true;
672 
673     // C++0x [class]p9:
674     //   A POD struct is a class that is both a trivial class and a
675     //   standard-layout class, and has no non-static data members of type
676     //   non-POD struct, non-POD union (or array of such types).
677     //
678     // Automatic Reference Counting: the presence of a member of Objective-C pointer type
679     // that does not explicitly have no lifetime makes the class a non-POD.
680     ASTContext &Context = getASTContext();
681     QualType T = Context.getBaseElementType(Field->getType());
682     if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
683       if (!Context.getLangOpts().ObjCAutoRefCount) {
684         setHasObjectMember(true);
685       } else if (T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
686         // Objective-C Automatic Reference Counting:
687         //   If a class has a non-static data member of Objective-C pointer
688         //   type (or array thereof), it is a non-POD type and its
689         //   default constructor (if any), copy constructor, move constructor,
690         //   copy assignment operator, move assignment operator, and destructor are
691         //   non-trivial.
692         setHasObjectMember(true);
693         struct DefinitionData &Data = data();
694         Data.PlainOldData = false;
695         Data.HasTrivialSpecialMembers = 0;
696         Data.HasIrrelevantDestructor = false;
697       }
698     } else if (!T.isCXX98PODType(Context))
699       data().PlainOldData = false;
700 
701     if (T->isReferenceType()) {
702       if (!Field->hasInClassInitializer())
703         data().HasUninitializedReferenceMember = true;
704 
705       // C++0x [class]p7:
706       //   A standard-layout class is a class that:
707       //    -- has no non-static data members of type [...] reference,
708       data().IsStandardLayout = false;
709     }
710 
711     // Record if this field is the first non-literal or volatile field or base.
712     if (!T->isLiteralType(Context) || T.isVolatileQualified())
713       data().HasNonLiteralTypeFieldsOrBases = true;
714 
715     if (Field->hasInClassInitializer() ||
716         (Field->isAnonymousStructOrUnion() &&
717          Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
718       data().HasInClassInitializer = true;
719 
720       // C++11 [class]p5:
721       //   A default constructor is trivial if [...] no non-static data member
722       //   of its class has a brace-or-equal-initializer.
723       data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
724 
725       // C++11 [dcl.init.aggr]p1:
726       //   An aggregate is a [...] class with [...] no
727       //   brace-or-equal-initializers for non-static data members.
728       //
729       // This rule was removed in C++1y.
730       if (!getASTContext().getLangOpts().CPlusPlus14)
731         data().Aggregate = false;
732 
733       // C++11 [class]p10:
734       //   A POD struct is [...] a trivial class.
735       data().PlainOldData = false;
736     }
737 
738     // C++11 [class.copy]p23:
739     //   A defaulted copy/move assignment operator for a class X is defined
740     //   as deleted if X has:
741     //    -- a non-static data member of reference type
742     if (T->isReferenceType())
743       data().DefaultedMoveAssignmentIsDeleted = true;
744 
745     if (const RecordType *RecordTy = T->getAs<RecordType>()) {
746       CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
747       if (FieldRec->getDefinition()) {
748         addedClassSubobject(FieldRec);
749 
750         // We may need to perform overload resolution to determine whether a
751         // field can be moved if it's const or volatile qualified.
752         if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
753           data().NeedOverloadResolutionForMoveConstructor = true;
754           data().NeedOverloadResolutionForMoveAssignment = true;
755         }
756 
757         // C++11 [class.ctor]p5, C++11 [class.copy]p11:
758         //   A defaulted [special member] for a class X is defined as
759         //   deleted if:
760         //    -- X is a union-like class that has a variant member with a
761         //       non-trivial [corresponding special member]
762         if (isUnion()) {
763           if (FieldRec->hasNonTrivialMoveConstructor())
764             data().DefaultedMoveConstructorIsDeleted = true;
765           if (FieldRec->hasNonTrivialMoveAssignment())
766             data().DefaultedMoveAssignmentIsDeleted = true;
767           if (FieldRec->hasNonTrivialDestructor())
768             data().DefaultedDestructorIsDeleted = true;
769         }
770 
771         // C++0x [class.ctor]p5:
772         //   A default constructor is trivial [...] if:
773         //    -- for all the non-static data members of its class that are of
774         //       class type (or array thereof), each such class has a trivial
775         //       default constructor.
776         if (!FieldRec->hasTrivialDefaultConstructor())
777           data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
778 
779         // C++0x [class.copy]p13:
780         //   A copy/move constructor for class X is trivial if [...]
781         //    [...]
782         //    -- for each non-static data member of X that is of class type (or
783         //       an array thereof), the constructor selected to copy/move that
784         //       member is trivial;
785         if (!FieldRec->hasTrivialCopyConstructor())
786           data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
787         // If the field doesn't have a simple move constructor, we'll eagerly
788         // declare the move constructor for this class and we'll decide whether
789         // it's trivial then.
790         if (!FieldRec->hasTrivialMoveConstructor())
791           data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
792 
793         // C++0x [class.copy]p27:
794         //   A copy/move assignment operator for class X is trivial if [...]
795         //    [...]
796         //    -- for each non-static data member of X that is of class type (or
797         //       an array thereof), the assignment operator selected to
798         //       copy/move that member is trivial;
799         if (!FieldRec->hasTrivialCopyAssignment())
800           data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
801         // If the field doesn't have a simple move assignment, we'll eagerly
802         // declare the move assignment for this class and we'll decide whether
803         // it's trivial then.
804         if (!FieldRec->hasTrivialMoveAssignment())
805           data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
806 
807         if (!FieldRec->hasTrivialDestructor())
808           data().HasTrivialSpecialMembers &= ~SMF_Destructor;
809         if (!FieldRec->hasIrrelevantDestructor())
810           data().HasIrrelevantDestructor = false;
811         if (FieldRec->hasObjectMember())
812           setHasObjectMember(true);
813         if (FieldRec->hasVolatileMember())
814           setHasVolatileMember(true);
815 
816         // C++0x [class]p7:
817         //   A standard-layout class is a class that:
818         //    -- has no non-static data members of type non-standard-layout
819         //       class (or array of such types) [...]
820         if (!FieldRec->isStandardLayout())
821           data().IsStandardLayout = false;
822 
823         // C++0x [class]p7:
824         //   A standard-layout class is a class that:
825         //    [...]
826         //    -- has no base classes of the same type as the first non-static
827         //       data member.
828         // We don't want to expend bits in the state of the record decl
829         // tracking whether this is the first non-static data member so we
830         // cheat a bit and use some of the existing state: the empty bit.
831         // Virtual bases and virtual methods make a class non-empty, but they
832         // also make it non-standard-layout so we needn't check here.
833         // A non-empty base class may leave the class standard-layout, but not
834         // if we have arrived here, and have at least one non-static data
835         // member. If IsStandardLayout remains true, then the first non-static
836         // data member must come through here with Empty still true, and Empty
837         // will subsequently be set to false below.
838         if (data().IsStandardLayout && data().Empty) {
839           for (const auto &BI : bases()) {
840             if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
841               data().IsStandardLayout = false;
842               break;
843             }
844           }
845         }
846 
847         // Keep track of the presence of mutable fields.
848         if (FieldRec->hasMutableFields())
849           data().HasMutableFields = true;
850 
851         // C++11 [class.copy]p13:
852         //   If the implicitly-defined constructor would satisfy the
853         //   requirements of a constexpr constructor, the implicitly-defined
854         //   constructor is constexpr.
855         // C++11 [dcl.constexpr]p4:
856         //    -- every constructor involved in initializing non-static data
857         //       members [...] shall be a constexpr constructor
858         if (!Field->hasInClassInitializer() &&
859             !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
860           // The standard requires any in-class initializer to be a constant
861           // expression. We consider this to be a defect.
862           data().DefaultedDefaultConstructorIsConstexpr = false;
863 
864         // C++11 [class.copy]p8:
865         //   The implicitly-declared copy constructor for a class X will have
866         //   the form 'X::X(const X&)' if [...] for all the non-static data
867         //   members of X that are of a class type M (or array thereof), each
868         //   such class type has a copy constructor whose first parameter is
869         //   of type 'const M&' or 'const volatile M&'.
870         if (!FieldRec->hasCopyConstructorWithConstParam())
871           data().ImplicitCopyConstructorHasConstParam = false;
872 
873         // C++11 [class.copy]p18:
874         //   The implicitly-declared copy assignment oeprator for a class X will
875         //   have the form 'X& X::operator=(const X&)' if [...] for all the
876         //   non-static data members of X that are of a class type M (or array
877         //   thereof), each such class type has a copy assignment operator whose
878         //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
879         if (!FieldRec->hasCopyAssignmentWithConstParam())
880           data().ImplicitCopyAssignmentHasConstParam = false;
881 
882         if (FieldRec->hasUninitializedReferenceMember() &&
883             !Field->hasInClassInitializer())
884           data().HasUninitializedReferenceMember = true;
885 
886         // C++11 [class.union]p8, DR1460:
887         //   a non-static data member of an anonymous union that is a member of
888         //   X is also a variant member of X.
889         if (FieldRec->hasVariantMembers() &&
890             Field->isAnonymousStructOrUnion())
891           data().HasVariantMembers = true;
892       }
893     } else {
894       // Base element type of field is a non-class type.
895       if (!T->isLiteralType(Context) ||
896           (!Field->hasInClassInitializer() && !isUnion()))
897         data().DefaultedDefaultConstructorIsConstexpr = false;
898 
899       // C++11 [class.copy]p23:
900       //   A defaulted copy/move assignment operator for a class X is defined
901       //   as deleted if X has:
902       //    -- a non-static data member of const non-class type (or array
903       //       thereof)
904       if (T.isConstQualified())
905         data().DefaultedMoveAssignmentIsDeleted = true;
906     }
907 
908     // C++0x [class]p7:
909     //   A standard-layout class is a class that:
910     //    [...]
911     //    -- either has no non-static data members in the most derived
912     //       class and at most one base class with non-static data members,
913     //       or has no base classes with non-static data members, and
914     // At this point we know that we have a non-static data member, so the last
915     // clause holds.
916     if (!data().HasNoNonEmptyBases)
917       data().IsStandardLayout = false;
918 
919     // If this is not a zero-length bit-field, then the class is not empty.
920     if (data().Empty) {
921       if (!Field->isBitField() ||
922           (!Field->getBitWidth()->isTypeDependent() &&
923            !Field->getBitWidth()->isValueDependent() &&
924            Field->getBitWidthValue(Context) != 0))
925         data().Empty = false;
926     }
927   }
928 
929   // Handle using declarations of conversion functions.
930   if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D)) {
931     if (Shadow->getDeclName().getNameKind()
932           == DeclarationName::CXXConversionFunctionName) {
933       ASTContext &Ctx = getASTContext();
934       data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
935     }
936   }
937 }
938 
finishedDefaultedOrDeletedMember(CXXMethodDecl * D)939 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
940   assert(!D->isImplicit() && !D->isUserProvided());
941 
942   // The kind of special member this declaration is, if any.
943   unsigned SMKind = 0;
944 
945   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
946     if (Constructor->isDefaultConstructor()) {
947       SMKind |= SMF_DefaultConstructor;
948       if (Constructor->isConstexpr())
949         data().HasConstexprDefaultConstructor = true;
950     }
951     if (Constructor->isCopyConstructor())
952       SMKind |= SMF_CopyConstructor;
953     else if (Constructor->isMoveConstructor())
954       SMKind |= SMF_MoveConstructor;
955     else if (Constructor->isConstexpr())
956       // We may now know that the constructor is constexpr.
957       data().HasConstexprNonCopyMoveConstructor = true;
958   } else if (isa<CXXDestructorDecl>(D)) {
959     SMKind |= SMF_Destructor;
960     if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
961       data().HasIrrelevantDestructor = false;
962   } else if (D->isCopyAssignmentOperator())
963     SMKind |= SMF_CopyAssignment;
964   else if (D->isMoveAssignmentOperator())
965     SMKind |= SMF_MoveAssignment;
966 
967   // Update which trivial / non-trivial special members we have.
968   // addedMember will have skipped this step for this member.
969   if (D->isTrivial())
970     data().HasTrivialSpecialMembers |= SMKind;
971   else
972     data().DeclaredNonTrivialSpecialMembers |= SMKind;
973 }
974 
isCLike() const975 bool CXXRecordDecl::isCLike() const {
976   if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
977       !TemplateOrInstantiation.isNull())
978     return false;
979   if (!hasDefinition())
980     return true;
981 
982   return isPOD() && data().HasOnlyCMembers;
983 }
984 
isGenericLambda() const985 bool CXXRecordDecl::isGenericLambda() const {
986   if (!isLambda()) return false;
987   return getLambdaData().IsGenericLambda;
988 }
989 
getLambdaCallOperator() const990 CXXMethodDecl* CXXRecordDecl::getLambdaCallOperator() const {
991   if (!isLambda()) return nullptr;
992   DeclarationName Name =
993     getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
994   DeclContext::lookup_result Calls = lookup(Name);
995 
996   assert(!Calls.empty() && "Missing lambda call operator!");
997   assert(Calls.size() == 1 && "More than one lambda call operator!");
998 
999   NamedDecl *CallOp = Calls.front();
1000   if (FunctionTemplateDecl *CallOpTmpl =
1001                     dyn_cast<FunctionTemplateDecl>(CallOp))
1002     return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
1003 
1004   return cast<CXXMethodDecl>(CallOp);
1005 }
1006 
getLambdaStaticInvoker() const1007 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1008   if (!isLambda()) return nullptr;
1009   DeclarationName Name =
1010     &getASTContext().Idents.get(getLambdaStaticInvokerName());
1011   DeclContext::lookup_result Invoker = lookup(Name);
1012   if (Invoker.empty()) return nullptr;
1013   assert(Invoker.size() == 1 && "More than one static invoker operator!");
1014   NamedDecl *InvokerFun = Invoker.front();
1015   if (FunctionTemplateDecl *InvokerTemplate =
1016                   dyn_cast<FunctionTemplateDecl>(InvokerFun))
1017     return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1018 
1019   return cast<CXXMethodDecl>(InvokerFun);
1020 }
1021 
getCaptureFields(llvm::DenseMap<const VarDecl *,FieldDecl * > & Captures,FieldDecl * & ThisCapture) const1022 void CXXRecordDecl::getCaptureFields(
1023        llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1024        FieldDecl *&ThisCapture) const {
1025   Captures.clear();
1026   ThisCapture = nullptr;
1027 
1028   LambdaDefinitionData &Lambda = getLambdaData();
1029   RecordDecl::field_iterator Field = field_begin();
1030   for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
1031        C != CEnd; ++C, ++Field) {
1032     if (C->capturesThis())
1033       ThisCapture = *Field;
1034     else if (C->capturesVariable())
1035       Captures[C->getCapturedVar()] = *Field;
1036   }
1037   assert(Field == field_end());
1038 }
1039 
1040 TemplateParameterList *
getGenericLambdaTemplateParameterList() const1041 CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1042   if (!isLambda()) return nullptr;
1043   CXXMethodDecl *CallOp = getLambdaCallOperator();
1044   if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1045     return Tmpl->getTemplateParameters();
1046   return nullptr;
1047 }
1048 
GetConversionType(ASTContext & Context,NamedDecl * Conv)1049 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1050   QualType T =
1051       cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1052           ->getConversionType();
1053   return Context.getCanonicalType(T);
1054 }
1055 
1056 /// Collect the visible conversions of a base class.
1057 ///
1058 /// \param Record a base class of the class we're considering
1059 /// \param InVirtual whether this base class is a virtual base (or a base
1060 ///   of a virtual base)
1061 /// \param Access the access along the inheritance path to this base
1062 /// \param ParentHiddenTypes the conversions provided by the inheritors
1063 ///   of this base
1064 /// \param Output the set to which to add conversions from non-virtual bases
1065 /// \param VOutput the set to which to add conversions from virtual bases
1066 /// \param HiddenVBaseCs the set of conversions which were hidden in a
1067 ///   virtual base along some inheritance path
CollectVisibleConversions(ASTContext & Context,CXXRecordDecl * Record,bool InVirtual,AccessSpecifier Access,const llvm::SmallPtrSet<CanQualType,8> & ParentHiddenTypes,ASTUnresolvedSet & Output,UnresolvedSetImpl & VOutput,llvm::SmallPtrSet<NamedDecl *,8> & HiddenVBaseCs)1068 static void CollectVisibleConversions(ASTContext &Context,
1069                                       CXXRecordDecl *Record,
1070                                       bool InVirtual,
1071                                       AccessSpecifier Access,
1072                   const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1073                                       ASTUnresolvedSet &Output,
1074                                       UnresolvedSetImpl &VOutput,
1075                            llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
1076   // The set of types which have conversions in this class or its
1077   // subclasses.  As an optimization, we don't copy the derived set
1078   // unless it might change.
1079   const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1080   llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1081 
1082   // Collect the direct conversions and figure out which conversions
1083   // will be hidden in the subclasses.
1084   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1085   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1086   if (ConvI != ConvE) {
1087     HiddenTypesBuffer = ParentHiddenTypes;
1088     HiddenTypes = &HiddenTypesBuffer;
1089 
1090     for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1091       CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1092       bool Hidden = ParentHiddenTypes.count(ConvType);
1093       if (!Hidden)
1094         HiddenTypesBuffer.insert(ConvType);
1095 
1096       // If this conversion is hidden and we're in a virtual base,
1097       // remember that it's hidden along some inheritance path.
1098       if (Hidden && InVirtual)
1099         HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1100 
1101       // If this conversion isn't hidden, add it to the appropriate output.
1102       else if (!Hidden) {
1103         AccessSpecifier IAccess
1104           = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1105 
1106         if (InVirtual)
1107           VOutput.addDecl(I.getDecl(), IAccess);
1108         else
1109           Output.addDecl(Context, I.getDecl(), IAccess);
1110       }
1111     }
1112   }
1113 
1114   // Collect information recursively from any base classes.
1115   for (const auto &I : Record->bases()) {
1116     const RecordType *RT = I.getType()->getAs<RecordType>();
1117     if (!RT) continue;
1118 
1119     AccessSpecifier BaseAccess
1120       = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1121     bool BaseInVirtual = InVirtual || I.isVirtual();
1122 
1123     CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
1124     CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1125                               *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1126   }
1127 }
1128 
1129 /// Collect the visible conversions of a class.
1130 ///
1131 /// This would be extremely straightforward if it weren't for virtual
1132 /// bases.  It might be worth special-casing that, really.
CollectVisibleConversions(ASTContext & Context,CXXRecordDecl * Record,ASTUnresolvedSet & Output)1133 static void CollectVisibleConversions(ASTContext &Context,
1134                                       CXXRecordDecl *Record,
1135                                       ASTUnresolvedSet &Output) {
1136   // The collection of all conversions in virtual bases that we've
1137   // found.  These will be added to the output as long as they don't
1138   // appear in the hidden-conversions set.
1139   UnresolvedSet<8> VBaseCs;
1140 
1141   // The set of conversions in virtual bases that we've determined to
1142   // be hidden.
1143   llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1144 
1145   // The set of types hidden by classes derived from this one.
1146   llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1147 
1148   // Go ahead and collect the direct conversions and add them to the
1149   // hidden-types set.
1150   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1151   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1152   Output.append(Context, ConvI, ConvE);
1153   for (; ConvI != ConvE; ++ConvI)
1154     HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1155 
1156   // Recursively collect conversions from base classes.
1157   for (const auto &I : Record->bases()) {
1158     const RecordType *RT = I.getType()->getAs<RecordType>();
1159     if (!RT) continue;
1160 
1161     CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1162                               I.isVirtual(), I.getAccessSpecifier(),
1163                               HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1164   }
1165 
1166   // Add any unhidden conversions provided by virtual bases.
1167   for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1168          I != E; ++I) {
1169     if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1170       Output.addDecl(Context, I.getDecl(), I.getAccess());
1171   }
1172 }
1173 
1174 /// getVisibleConversionFunctions - get all conversion functions visible
1175 /// in current class; including conversion function templates.
1176 llvm::iterator_range<CXXRecordDecl::conversion_iterator>
getVisibleConversionFunctions()1177 CXXRecordDecl::getVisibleConversionFunctions() {
1178   ASTContext &Ctx = getASTContext();
1179 
1180   ASTUnresolvedSet *Set;
1181   if (bases_begin() == bases_end()) {
1182     // If root class, all conversions are visible.
1183     Set = &data().Conversions.get(Ctx);
1184   } else {
1185     Set = &data().VisibleConversions.get(Ctx);
1186     // If visible conversion list is not evaluated, evaluate it.
1187     if (!data().ComputedVisibleConversions) {
1188       CollectVisibleConversions(Ctx, this, *Set);
1189       data().ComputedVisibleConversions = true;
1190     }
1191   }
1192   return llvm::make_range(Set->begin(), Set->end());
1193 }
1194 
removeConversion(const NamedDecl * ConvDecl)1195 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1196   // This operation is O(N) but extremely rare.  Sema only uses it to
1197   // remove UsingShadowDecls in a class that were followed by a direct
1198   // declaration, e.g.:
1199   //   class A : B {
1200   //     using B::operator int;
1201   //     operator int();
1202   //   };
1203   // This is uncommon by itself and even more uncommon in conjunction
1204   // with sufficiently large numbers of directly-declared conversions
1205   // that asymptotic behavior matters.
1206 
1207   ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1208   for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1209     if (Convs[I].getDecl() == ConvDecl) {
1210       Convs.erase(I);
1211       assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
1212              && "conversion was found multiple times in unresolved set");
1213       return;
1214     }
1215   }
1216 
1217   llvm_unreachable("conversion not found in set!");
1218 }
1219 
getInstantiatedFromMemberClass() const1220 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1221   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1222     return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1223 
1224   return nullptr;
1225 }
1226 
1227 void
setInstantiationOfMemberClass(CXXRecordDecl * RD,TemplateSpecializationKind TSK)1228 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1229                                              TemplateSpecializationKind TSK) {
1230   assert(TemplateOrInstantiation.isNull() &&
1231          "Previous template or instantiation?");
1232   assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1233   TemplateOrInstantiation
1234     = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1235 }
1236 
getTemplateSpecializationKind() const1237 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1238   if (const ClassTemplateSpecializationDecl *Spec
1239         = dyn_cast<ClassTemplateSpecializationDecl>(this))
1240     return Spec->getSpecializationKind();
1241 
1242   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1243     return MSInfo->getTemplateSpecializationKind();
1244 
1245   return TSK_Undeclared;
1246 }
1247 
1248 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK)1249 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1250   if (ClassTemplateSpecializationDecl *Spec
1251       = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1252     Spec->setSpecializationKind(TSK);
1253     return;
1254   }
1255 
1256   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1257     MSInfo->setTemplateSpecializationKind(TSK);
1258     return;
1259   }
1260 
1261   llvm_unreachable("Not a class template or member class specialization");
1262 }
1263 
getTemplateInstantiationPattern() const1264 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
1265   // If it's a class template specialization, find the template or partial
1266   // specialization from which it was instantiated.
1267   if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1268     auto From = TD->getInstantiatedFrom();
1269     if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
1270       while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
1271         if (NewCTD->isMemberSpecialization())
1272           break;
1273         CTD = NewCTD;
1274       }
1275       return CTD->getTemplatedDecl();
1276     }
1277     if (auto *CTPSD =
1278             From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
1279       while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
1280         if (NewCTPSD->isMemberSpecialization())
1281           break;
1282         CTPSD = NewCTPSD;
1283       }
1284       return CTPSD;
1285     }
1286   }
1287 
1288   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1289     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
1290       const CXXRecordDecl *RD = this;
1291       while (auto *NewRD = RD->getInstantiatedFromMemberClass())
1292         RD = NewRD;
1293       return RD;
1294     }
1295   }
1296 
1297   assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1298          "couldn't find pattern for class template instantiation");
1299   return nullptr;
1300 }
1301 
getDestructor() const1302 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1303   ASTContext &Context = getASTContext();
1304   QualType ClassType = Context.getTypeDeclType(this);
1305 
1306   DeclarationName Name
1307     = Context.DeclarationNames.getCXXDestructorName(
1308                                           Context.getCanonicalType(ClassType));
1309 
1310   DeclContext::lookup_result R = lookup(Name);
1311   if (R.empty())
1312     return nullptr;
1313 
1314   CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(R.front());
1315   return Dtor;
1316 }
1317 
completeDefinition()1318 void CXXRecordDecl::completeDefinition() {
1319   completeDefinition(nullptr);
1320 }
1321 
completeDefinition(CXXFinalOverriderMap * FinalOverriders)1322 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1323   RecordDecl::completeDefinition();
1324 
1325   // If the class may be abstract (but hasn't been marked as such), check for
1326   // any pure final overriders.
1327   if (mayBeAbstract()) {
1328     CXXFinalOverriderMap MyFinalOverriders;
1329     if (!FinalOverriders) {
1330       getFinalOverriders(MyFinalOverriders);
1331       FinalOverriders = &MyFinalOverriders;
1332     }
1333 
1334     bool Done = false;
1335     for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
1336                                      MEnd = FinalOverriders->end();
1337          M != MEnd && !Done; ++M) {
1338       for (OverridingMethods::iterator SO = M->second.begin(),
1339                                     SOEnd = M->second.end();
1340            SO != SOEnd && !Done; ++SO) {
1341         assert(SO->second.size() > 0 &&
1342                "All virtual functions have overridding virtual functions");
1343 
1344         // C++ [class.abstract]p4:
1345         //   A class is abstract if it contains or inherits at least one
1346         //   pure virtual function for which the final overrider is pure
1347         //   virtual.
1348         if (SO->second.front().Method->isPure()) {
1349           data().Abstract = true;
1350           Done = true;
1351           break;
1352         }
1353       }
1354     }
1355   }
1356 
1357   // Set access bits correctly on the directly-declared conversions.
1358   for (conversion_iterator I = conversion_begin(), E = conversion_end();
1359        I != E; ++I)
1360     I.setAccess((*I)->getAccess());
1361 }
1362 
mayBeAbstract() const1363 bool CXXRecordDecl::mayBeAbstract() const {
1364   if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
1365       isDependentContext())
1366     return false;
1367 
1368   for (const auto &B : bases()) {
1369     CXXRecordDecl *BaseDecl
1370       = cast<CXXRecordDecl>(B.getType()->getAs<RecordType>()->getDecl());
1371     if (BaseDecl->isAbstract())
1372       return true;
1373   }
1374 
1375   return false;
1376 }
1377 
anchor()1378 void CXXMethodDecl::anchor() { }
1379 
isStatic() const1380 bool CXXMethodDecl::isStatic() const {
1381   const CXXMethodDecl *MD = getCanonicalDecl();
1382 
1383   if (MD->getStorageClass() == SC_Static)
1384     return true;
1385 
1386   OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
1387   return isStaticOverloadedOperator(OOK);
1388 }
1389 
recursivelyOverrides(const CXXMethodDecl * DerivedMD,const CXXMethodDecl * BaseMD)1390 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
1391                                  const CXXMethodDecl *BaseMD) {
1392   for (CXXMethodDecl::method_iterator I = DerivedMD->begin_overridden_methods(),
1393          E = DerivedMD->end_overridden_methods(); I != E; ++I) {
1394     const CXXMethodDecl *MD = *I;
1395     if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
1396       return true;
1397     if (recursivelyOverrides(MD, BaseMD))
1398       return true;
1399   }
1400   return false;
1401 }
1402 
1403 CXXMethodDecl *
getCorrespondingMethodInClass(const CXXRecordDecl * RD,bool MayBeBase)1404 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
1405                                              bool MayBeBase) {
1406   if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
1407     return this;
1408 
1409   // Lookup doesn't work for destructors, so handle them separately.
1410   if (isa<CXXDestructorDecl>(this)) {
1411     CXXMethodDecl *MD = RD->getDestructor();
1412     if (MD) {
1413       if (recursivelyOverrides(MD, this))
1414         return MD;
1415       if (MayBeBase && recursivelyOverrides(this, MD))
1416         return MD;
1417     }
1418     return nullptr;
1419   }
1420 
1421   for (auto *ND : RD->lookup(getDeclName())) {
1422     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND);
1423     if (!MD)
1424       continue;
1425     if (recursivelyOverrides(MD, this))
1426       return MD;
1427     if (MayBeBase && recursivelyOverrides(this, MD))
1428       return MD;
1429   }
1430 
1431   for (const auto &I : RD->bases()) {
1432     const RecordType *RT = I.getType()->getAs<RecordType>();
1433     if (!RT)
1434       continue;
1435     const CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
1436     CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
1437     if (T)
1438       return T;
1439   }
1440 
1441   return nullptr;
1442 }
1443 
1444 CXXMethodDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInline,bool isConstexpr,SourceLocation EndLocation)1445 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1446                       SourceLocation StartLoc,
1447                       const DeclarationNameInfo &NameInfo,
1448                       QualType T, TypeSourceInfo *TInfo,
1449                       StorageClass SC, bool isInline,
1450                       bool isConstexpr, SourceLocation EndLocation) {
1451   return new (C, RD) CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo,
1452                                    T, TInfo, SC, isInline, isConstexpr,
1453                                    EndLocation);
1454 }
1455 
CreateDeserialized(ASTContext & C,unsigned ID)1456 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1457   return new (C, ID) CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(),
1458                                    DeclarationNameInfo(), QualType(), nullptr,
1459                                    SC_None, false, false, SourceLocation());
1460 }
1461 
isUsualDeallocationFunction() const1462 bool CXXMethodDecl::isUsualDeallocationFunction() const {
1463   if (getOverloadedOperator() != OO_Delete &&
1464       getOverloadedOperator() != OO_Array_Delete)
1465     return false;
1466 
1467   // C++ [basic.stc.dynamic.deallocation]p2:
1468   //   A template instance is never a usual deallocation function,
1469   //   regardless of its signature.
1470   if (getPrimaryTemplate())
1471     return false;
1472 
1473   // C++ [basic.stc.dynamic.deallocation]p2:
1474   //   If a class T has a member deallocation function named operator delete
1475   //   with exactly one parameter, then that function is a usual (non-placement)
1476   //   deallocation function. [...]
1477   if (getNumParams() == 1)
1478     return true;
1479 
1480   // C++ [basic.stc.dynamic.deallocation]p2:
1481   //   [...] If class T does not declare such an operator delete but does
1482   //   declare a member deallocation function named operator delete with
1483   //   exactly two parameters, the second of which has type std::size_t (18.1),
1484   //   then this function is a usual deallocation function.
1485   ASTContext &Context = getASTContext();
1486   if (getNumParams() != 2 ||
1487       !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
1488                                       Context.getSizeType()))
1489     return false;
1490 
1491   // This function is a usual deallocation function if there are no
1492   // single-parameter deallocation functions of the same kind.
1493   DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
1494   for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
1495        I != E; ++I) {
1496     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
1497       if (FD->getNumParams() == 1)
1498         return false;
1499   }
1500 
1501   return true;
1502 }
1503 
isCopyAssignmentOperator() const1504 bool CXXMethodDecl::isCopyAssignmentOperator() const {
1505   // C++0x [class.copy]p17:
1506   //  A user-declared copy assignment operator X::operator= is a non-static
1507   //  non-template member function of class X with exactly one parameter of
1508   //  type X, X&, const X&, volatile X& or const volatile X&.
1509   if (/*operator=*/getOverloadedOperator() != OO_Equal ||
1510       /*non-static*/ isStatic() ||
1511       /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
1512       getNumParams() != 1)
1513     return false;
1514 
1515   QualType ParamType = getParamDecl(0)->getType();
1516   if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
1517     ParamType = Ref->getPointeeType();
1518 
1519   ASTContext &Context = getASTContext();
1520   QualType ClassType
1521     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1522   return Context.hasSameUnqualifiedType(ClassType, ParamType);
1523 }
1524 
isMoveAssignmentOperator() const1525 bool CXXMethodDecl::isMoveAssignmentOperator() const {
1526   // C++0x [class.copy]p19:
1527   //  A user-declared move assignment operator X::operator= is a non-static
1528   //  non-template member function of class X with exactly one parameter of type
1529   //  X&&, const X&&, volatile X&&, or const volatile X&&.
1530   if (getOverloadedOperator() != OO_Equal || isStatic() ||
1531       getPrimaryTemplate() || getDescribedFunctionTemplate() ||
1532       getNumParams() != 1)
1533     return false;
1534 
1535   QualType ParamType = getParamDecl(0)->getType();
1536   if (!isa<RValueReferenceType>(ParamType))
1537     return false;
1538   ParamType = ParamType->getPointeeType();
1539 
1540   ASTContext &Context = getASTContext();
1541   QualType ClassType
1542     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1543   return Context.hasSameUnqualifiedType(ClassType, ParamType);
1544 }
1545 
addOverriddenMethod(const CXXMethodDecl * MD)1546 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
1547   assert(MD->isCanonicalDecl() && "Method is not canonical!");
1548   assert(!MD->getParent()->isDependentContext() &&
1549          "Can't add an overridden method to a class template!");
1550   assert(MD->isVirtual() && "Method is not virtual!");
1551 
1552   getASTContext().addOverriddenMethod(this, MD);
1553 }
1554 
begin_overridden_methods() const1555 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
1556   if (isa<CXXConstructorDecl>(this)) return nullptr;
1557   return getASTContext().overridden_methods_begin(this);
1558 }
1559 
end_overridden_methods() const1560 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
1561   if (isa<CXXConstructorDecl>(this)) return nullptr;
1562   return getASTContext().overridden_methods_end(this);
1563 }
1564 
size_overridden_methods() const1565 unsigned CXXMethodDecl::size_overridden_methods() const {
1566   if (isa<CXXConstructorDecl>(this)) return 0;
1567   return getASTContext().overridden_methods_size(this);
1568 }
1569 
getThisType(ASTContext & C) const1570 QualType CXXMethodDecl::getThisType(ASTContext &C) const {
1571   // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
1572   // If the member function is declared const, the type of this is const X*,
1573   // if the member function is declared volatile, the type of this is
1574   // volatile X*, and if the member function is declared const volatile,
1575   // the type of this is const volatile X*.
1576 
1577   assert(isInstance() && "No 'this' for static methods!");
1578 
1579   QualType ClassTy = C.getTypeDeclType(getParent());
1580   ClassTy = C.getQualifiedType(ClassTy,
1581                                Qualifiers::fromCVRMask(getTypeQualifiers()));
1582   return C.getPointerType(ClassTy);
1583 }
1584 
hasInlineBody() const1585 bool CXXMethodDecl::hasInlineBody() const {
1586   // If this function is a template instantiation, look at the template from
1587   // which it was instantiated.
1588   const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
1589   if (!CheckFn)
1590     CheckFn = this;
1591 
1592   const FunctionDecl *fn;
1593   return CheckFn->hasBody(fn) && !fn->isOutOfLine();
1594 }
1595 
isLambdaStaticInvoker() const1596 bool CXXMethodDecl::isLambdaStaticInvoker() const {
1597   const CXXRecordDecl *P = getParent();
1598   if (P->isLambda()) {
1599     if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) {
1600       if (StaticInvoker == this) return true;
1601       if (P->isGenericLambda() && this->isFunctionTemplateSpecialization())
1602         return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl();
1603     }
1604   }
1605   return false;
1606 }
1607 
CXXCtorInitializer(ASTContext & Context,TypeSourceInfo * TInfo,bool IsVirtual,SourceLocation L,Expr * Init,SourceLocation R,SourceLocation EllipsisLoc)1608 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1609                                        TypeSourceInfo *TInfo, bool IsVirtual,
1610                                        SourceLocation L, Expr *Init,
1611                                        SourceLocation R,
1612                                        SourceLocation EllipsisLoc)
1613   : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
1614     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
1615     IsWritten(false), SourceOrderOrNumArrayIndices(0)
1616 {
1617 }
1618 
CXXCtorInitializer(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)1619 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1620                                        FieldDecl *Member,
1621                                        SourceLocation MemberLoc,
1622                                        SourceLocation L, Expr *Init,
1623                                        SourceLocation R)
1624   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1625     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1626     IsWritten(false), SourceOrderOrNumArrayIndices(0)
1627 {
1628 }
1629 
CXXCtorInitializer(ASTContext & Context,IndirectFieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)1630 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1631                                        IndirectFieldDecl *Member,
1632                                        SourceLocation MemberLoc,
1633                                        SourceLocation L, Expr *Init,
1634                                        SourceLocation R)
1635   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1636     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1637     IsWritten(false), SourceOrderOrNumArrayIndices(0)
1638 {
1639 }
1640 
CXXCtorInitializer(ASTContext & Context,TypeSourceInfo * TInfo,SourceLocation L,Expr * Init,SourceLocation R)1641 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1642                                        TypeSourceInfo *TInfo,
1643                                        SourceLocation L, Expr *Init,
1644                                        SourceLocation R)
1645   : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init),
1646     LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false),
1647     IsWritten(false), SourceOrderOrNumArrayIndices(0)
1648 {
1649 }
1650 
CXXCtorInitializer(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R,VarDecl ** Indices,unsigned NumIndices)1651 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1652                                        FieldDecl *Member,
1653                                        SourceLocation MemberLoc,
1654                                        SourceLocation L, Expr *Init,
1655                                        SourceLocation R,
1656                                        VarDecl **Indices,
1657                                        unsigned NumIndices)
1658   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1659     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1660     IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
1661 {
1662   VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
1663   memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
1664 }
1665 
Create(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R,VarDecl ** Indices,unsigned NumIndices)1666 CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
1667                                                FieldDecl *Member,
1668                                                SourceLocation MemberLoc,
1669                                                SourceLocation L, Expr *Init,
1670                                                SourceLocation R,
1671                                                VarDecl **Indices,
1672                                                unsigned NumIndices) {
1673   void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
1674                                sizeof(VarDecl *) * NumIndices,
1675                                llvm::alignOf<CXXCtorInitializer>());
1676   return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
1677                                       Indices, NumIndices);
1678 }
1679 
getBaseClassLoc() const1680 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
1681   if (isBaseInitializer())
1682     return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
1683   else
1684     return TypeLoc();
1685 }
1686 
getBaseClass() const1687 const Type *CXXCtorInitializer::getBaseClass() const {
1688   if (isBaseInitializer())
1689     return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
1690   else
1691     return nullptr;
1692 }
1693 
getSourceLocation() const1694 SourceLocation CXXCtorInitializer::getSourceLocation() const {
1695   if (isInClassMemberInitializer())
1696     return getAnyMember()->getLocation();
1697 
1698   if (isAnyMemberInitializer())
1699     return getMemberLocation();
1700 
1701   if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
1702     return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
1703 
1704   return SourceLocation();
1705 }
1706 
getSourceRange() const1707 SourceRange CXXCtorInitializer::getSourceRange() const {
1708   if (isInClassMemberInitializer()) {
1709     FieldDecl *D = getAnyMember();
1710     if (Expr *I = D->getInClassInitializer())
1711       return I->getSourceRange();
1712     return SourceRange();
1713   }
1714 
1715   return SourceRange(getSourceLocation(), getRParenLoc());
1716 }
1717 
anchor()1718 void CXXConstructorDecl::anchor() { }
1719 
1720 CXXConstructorDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1721 CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1722   return new (C, ID) CXXConstructorDecl(C, nullptr, SourceLocation(),
1723                                         DeclarationNameInfo(), QualType(),
1724                                         nullptr, false, false, false, false);
1725 }
1726 
1727 CXXConstructorDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isExplicit,bool isInline,bool isImplicitlyDeclared,bool isConstexpr)1728 CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1729                            SourceLocation StartLoc,
1730                            const DeclarationNameInfo &NameInfo,
1731                            QualType T, TypeSourceInfo *TInfo,
1732                            bool isExplicit, bool isInline,
1733                            bool isImplicitlyDeclared, bool isConstexpr) {
1734   assert(NameInfo.getName().getNameKind()
1735          == DeclarationName::CXXConstructorName &&
1736          "Name must refer to a constructor");
1737   return new (C, RD) CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
1738                                         isExplicit, isInline,
1739                                         isImplicitlyDeclared, isConstexpr);
1740 }
1741 
init_begin() const1742 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
1743   return CtorInitializers.get(getASTContext().getExternalSource());
1744 }
1745 
getTargetConstructor() const1746 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
1747   assert(isDelegatingConstructor() && "Not a delegating constructor!");
1748   Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
1749   if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
1750     return Construct->getConstructor();
1751 
1752   return nullptr;
1753 }
1754 
isDefaultConstructor() const1755 bool CXXConstructorDecl::isDefaultConstructor() const {
1756   // C++ [class.ctor]p5:
1757   //   A default constructor for a class X is a constructor of class
1758   //   X that can be called without an argument.
1759   return (getNumParams() == 0) ||
1760          (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
1761 }
1762 
1763 bool
isCopyConstructor(unsigned & TypeQuals) const1764 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
1765   return isCopyOrMoveConstructor(TypeQuals) &&
1766          getParamDecl(0)->getType()->isLValueReferenceType();
1767 }
1768 
isMoveConstructor(unsigned & TypeQuals) const1769 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
1770   return isCopyOrMoveConstructor(TypeQuals) &&
1771     getParamDecl(0)->getType()->isRValueReferenceType();
1772 }
1773 
1774 /// \brief Determine whether this is a copy or move constructor.
isCopyOrMoveConstructor(unsigned & TypeQuals) const1775 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
1776   // C++ [class.copy]p2:
1777   //   A non-template constructor for class X is a copy constructor
1778   //   if its first parameter is of type X&, const X&, volatile X& or
1779   //   const volatile X&, and either there are no other parameters
1780   //   or else all other parameters have default arguments (8.3.6).
1781   // C++0x [class.copy]p3:
1782   //   A non-template constructor for class X is a move constructor if its
1783   //   first parameter is of type X&&, const X&&, volatile X&&, or
1784   //   const volatile X&&, and either there are no other parameters or else
1785   //   all other parameters have default arguments.
1786   if ((getNumParams() < 1) ||
1787       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1788       (getPrimaryTemplate() != nullptr) ||
1789       (getDescribedFunctionTemplate() != nullptr))
1790     return false;
1791 
1792   const ParmVarDecl *Param = getParamDecl(0);
1793 
1794   // Do we have a reference type?
1795   const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
1796   if (!ParamRefType)
1797     return false;
1798 
1799   // Is it a reference to our class type?
1800   ASTContext &Context = getASTContext();
1801 
1802   CanQualType PointeeType
1803     = Context.getCanonicalType(ParamRefType->getPointeeType());
1804   CanQualType ClassTy
1805     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1806   if (PointeeType.getUnqualifiedType() != ClassTy)
1807     return false;
1808 
1809   // FIXME: other qualifiers?
1810 
1811   // We have a copy or move constructor.
1812   TypeQuals = PointeeType.getCVRQualifiers();
1813   return true;
1814 }
1815 
isConvertingConstructor(bool AllowExplicit) const1816 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
1817   // C++ [class.conv.ctor]p1:
1818   //   A constructor declared without the function-specifier explicit
1819   //   that can be called with a single parameter specifies a
1820   //   conversion from the type of its first parameter to the type of
1821   //   its class. Such a constructor is called a converting
1822   //   constructor.
1823   if (isExplicit() && !AllowExplicit)
1824     return false;
1825 
1826   return (getNumParams() == 0 &&
1827           getType()->getAs<FunctionProtoType>()->isVariadic()) ||
1828          (getNumParams() == 1) ||
1829          (getNumParams() > 1 &&
1830           (getParamDecl(1)->hasDefaultArg() ||
1831            getParamDecl(1)->isParameterPack()));
1832 }
1833 
isSpecializationCopyingObject() const1834 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
1835   if ((getNumParams() < 1) ||
1836       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1837       (getDescribedFunctionTemplate() != nullptr))
1838     return false;
1839 
1840   const ParmVarDecl *Param = getParamDecl(0);
1841 
1842   ASTContext &Context = getASTContext();
1843   CanQualType ParamType = Context.getCanonicalType(Param->getType());
1844 
1845   // Is it the same as our our class type?
1846   CanQualType ClassTy
1847     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1848   if (ParamType.getUnqualifiedType() != ClassTy)
1849     return false;
1850 
1851   return true;
1852 }
1853 
getInheritedConstructor() const1854 const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
1855   // Hack: we store the inherited constructor in the overridden method table
1856   method_iterator It = getASTContext().overridden_methods_begin(this);
1857   if (It == getASTContext().overridden_methods_end(this))
1858     return nullptr;
1859 
1860   return cast<CXXConstructorDecl>(*It);
1861 }
1862 
1863 void
setInheritedConstructor(const CXXConstructorDecl * BaseCtor)1864 CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
1865   // Hack: we store the inherited constructor in the overridden method table
1866   assert(getASTContext().overridden_methods_size(this) == 0 &&
1867          "Base ctor already set.");
1868   getASTContext().addOverriddenMethod(this, BaseCtor);
1869 }
1870 
anchor()1871 void CXXDestructorDecl::anchor() { }
1872 
1873 CXXDestructorDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1874 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1875   return new (C, ID)
1876       CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
1877                         QualType(), nullptr, false, false);
1878 }
1879 
1880 CXXDestructorDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isImplicitlyDeclared)1881 CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1882                           SourceLocation StartLoc,
1883                           const DeclarationNameInfo &NameInfo,
1884                           QualType T, TypeSourceInfo *TInfo,
1885                           bool isInline, bool isImplicitlyDeclared) {
1886   assert(NameInfo.getName().getNameKind()
1887          == DeclarationName::CXXDestructorName &&
1888          "Name must refer to a destructor");
1889   return new (C, RD) CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
1890                                        isInline, isImplicitlyDeclared);
1891 }
1892 
setOperatorDelete(FunctionDecl * OD)1893 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD) {
1894   auto *First = cast<CXXDestructorDecl>(getFirstDecl());
1895   if (OD && !First->OperatorDelete) {
1896     First->OperatorDelete = OD;
1897     if (auto *L = getASTMutationListener())
1898       L->ResolvedOperatorDelete(First, OD);
1899   }
1900 }
1901 
anchor()1902 void CXXConversionDecl::anchor() { }
1903 
1904 CXXConversionDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1905 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1906   return new (C, ID) CXXConversionDecl(C, nullptr, SourceLocation(),
1907                                        DeclarationNameInfo(), QualType(),
1908                                        nullptr, false, false, false,
1909                                        SourceLocation());
1910 }
1911 
1912 CXXConversionDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isExplicit,bool isConstexpr,SourceLocation EndLocation)1913 CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1914                           SourceLocation StartLoc,
1915                           const DeclarationNameInfo &NameInfo,
1916                           QualType T, TypeSourceInfo *TInfo,
1917                           bool isInline, bool isExplicit,
1918                           bool isConstexpr, SourceLocation EndLocation) {
1919   assert(NameInfo.getName().getNameKind()
1920          == DeclarationName::CXXConversionFunctionName &&
1921          "Name must refer to a conversion function");
1922   return new (C, RD) CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo,
1923                                        isInline, isExplicit, isConstexpr,
1924                                        EndLocation);
1925 }
1926 
isLambdaToBlockPointerConversion() const1927 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
1928   return isImplicit() && getParent()->isLambda() &&
1929          getConversionType()->isBlockPointerType();
1930 }
1931 
anchor()1932 void LinkageSpecDecl::anchor() { }
1933 
Create(ASTContext & C,DeclContext * DC,SourceLocation ExternLoc,SourceLocation LangLoc,LanguageIDs Lang,bool HasBraces)1934 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
1935                                          DeclContext *DC,
1936                                          SourceLocation ExternLoc,
1937                                          SourceLocation LangLoc,
1938                                          LanguageIDs Lang,
1939                                          bool HasBraces) {
1940   return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
1941 }
1942 
CreateDeserialized(ASTContext & C,unsigned ID)1943 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
1944                                                      unsigned ID) {
1945   return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
1946                                      SourceLocation(), lang_c, false);
1947 }
1948 
anchor()1949 void UsingDirectiveDecl::anchor() { }
1950 
Create(ASTContext & C,DeclContext * DC,SourceLocation L,SourceLocation NamespaceLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Used,DeclContext * CommonAncestor)1951 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
1952                                                SourceLocation L,
1953                                                SourceLocation NamespaceLoc,
1954                                            NestedNameSpecifierLoc QualifierLoc,
1955                                                SourceLocation IdentLoc,
1956                                                NamedDecl *Used,
1957                                                DeclContext *CommonAncestor) {
1958   if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
1959     Used = NS->getOriginalNamespace();
1960   return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
1961                                         IdentLoc, Used, CommonAncestor);
1962 }
1963 
CreateDeserialized(ASTContext & C,unsigned ID)1964 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
1965                                                            unsigned ID) {
1966   return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
1967                                         SourceLocation(),
1968                                         NestedNameSpecifierLoc(),
1969                                         SourceLocation(), nullptr, nullptr);
1970 }
1971 
getNominatedNamespace()1972 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
1973   if (NamespaceAliasDecl *NA =
1974         dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
1975     return NA->getNamespace();
1976   return cast_or_null<NamespaceDecl>(NominatedNamespace);
1977 }
1978 
NamespaceDecl(ASTContext & C,DeclContext * DC,bool Inline,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,NamespaceDecl * PrevDecl)1979 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
1980                              SourceLocation StartLoc, SourceLocation IdLoc,
1981                              IdentifierInfo *Id, NamespaceDecl *PrevDecl)
1982     : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
1983       redeclarable_base(C), LocStart(StartLoc), RBraceLoc(),
1984       AnonOrFirstNamespaceAndInline(nullptr, Inline) {
1985   setPreviousDecl(PrevDecl);
1986 
1987   if (PrevDecl)
1988     AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
1989 }
1990 
Create(ASTContext & C,DeclContext * DC,bool Inline,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,NamespaceDecl * PrevDecl)1991 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
1992                                      bool Inline, SourceLocation StartLoc,
1993                                      SourceLocation IdLoc, IdentifierInfo *Id,
1994                                      NamespaceDecl *PrevDecl) {
1995   return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
1996                                    PrevDecl);
1997 }
1998 
CreateDeserialized(ASTContext & C,unsigned ID)1999 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2000   return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
2001                                    SourceLocation(), nullptr, nullptr);
2002 }
2003 
getNextRedeclarationImpl()2004 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
2005   return getNextRedeclaration();
2006 }
getPreviousDeclImpl()2007 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
2008   return getPreviousDecl();
2009 }
getMostRecentDeclImpl()2010 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
2011   return getMostRecentDecl();
2012 }
2013 
anchor()2014 void NamespaceAliasDecl::anchor() { }
2015 
getNextRedeclarationImpl()2016 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
2017   return getNextRedeclaration();
2018 }
getPreviousDeclImpl()2019 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
2020   return getPreviousDecl();
2021 }
getMostRecentDeclImpl()2022 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
2023   return getMostRecentDecl();
2024 }
2025 
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Namespace)2026 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
2027                                                SourceLocation UsingLoc,
2028                                                SourceLocation AliasLoc,
2029                                                IdentifierInfo *Alias,
2030                                            NestedNameSpecifierLoc QualifierLoc,
2031                                                SourceLocation IdentLoc,
2032                                                NamedDecl *Namespace) {
2033   // FIXME: Preserve the aliased namespace as written.
2034   if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
2035     Namespace = NS->getOriginalNamespace();
2036   return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
2037                                         QualifierLoc, IdentLoc, Namespace);
2038 }
2039 
2040 NamespaceAliasDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2041 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2042   return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
2043                                         SourceLocation(), nullptr,
2044                                         NestedNameSpecifierLoc(),
2045                                         SourceLocation(), nullptr);
2046 }
2047 
anchor()2048 void UsingShadowDecl::anchor() { }
2049 
2050 UsingShadowDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2051 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2052   return new (C, ID) UsingShadowDecl(C, nullptr, SourceLocation(),
2053                                      nullptr, nullptr);
2054 }
2055 
getUsingDecl() const2056 UsingDecl *UsingShadowDecl::getUsingDecl() const {
2057   const UsingShadowDecl *Shadow = this;
2058   while (const UsingShadowDecl *NextShadow =
2059          dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
2060     Shadow = NextShadow;
2061   return cast<UsingDecl>(Shadow->UsingOrNextShadow);
2062 }
2063 
anchor()2064 void UsingDecl::anchor() { }
2065 
addShadowDecl(UsingShadowDecl * S)2066 void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
2067   assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
2068          "declaration already in set");
2069   assert(S->getUsingDecl() == this);
2070 
2071   if (FirstUsingShadow.getPointer())
2072     S->UsingOrNextShadow = FirstUsingShadow.getPointer();
2073   FirstUsingShadow.setPointer(S);
2074 }
2075 
removeShadowDecl(UsingShadowDecl * S)2076 void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
2077   assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
2078          "declaration not in set");
2079   assert(S->getUsingDecl() == this);
2080 
2081   // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
2082 
2083   if (FirstUsingShadow.getPointer() == S) {
2084     FirstUsingShadow.setPointer(
2085       dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
2086     S->UsingOrNextShadow = this;
2087     return;
2088   }
2089 
2090   UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
2091   while (Prev->UsingOrNextShadow != S)
2092     Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
2093   Prev->UsingOrNextShadow = S->UsingOrNextShadow;
2094   S->UsingOrNextShadow = this;
2095 }
2096 
Create(ASTContext & C,DeclContext * DC,SourceLocation UL,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,bool HasTypename)2097 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
2098                              NestedNameSpecifierLoc QualifierLoc,
2099                              const DeclarationNameInfo &NameInfo,
2100                              bool HasTypename) {
2101   return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
2102 }
2103 
CreateDeserialized(ASTContext & C,unsigned ID)2104 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2105   return new (C, ID) UsingDecl(nullptr, SourceLocation(),
2106                                NestedNameSpecifierLoc(), DeclarationNameInfo(),
2107                                false);
2108 }
2109 
getSourceRange() const2110 SourceRange UsingDecl::getSourceRange() const {
2111   SourceLocation Begin = isAccessDeclaration()
2112     ? getQualifierLoc().getBeginLoc() : UsingLocation;
2113   return SourceRange(Begin, getNameInfo().getEndLoc());
2114 }
2115 
anchor()2116 void UnresolvedUsingValueDecl::anchor() { }
2117 
2118 UnresolvedUsingValueDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo)2119 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
2120                                  SourceLocation UsingLoc,
2121                                  NestedNameSpecifierLoc QualifierLoc,
2122                                  const DeclarationNameInfo &NameInfo) {
2123   return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
2124                                               QualifierLoc, NameInfo);
2125 }
2126 
2127 UnresolvedUsingValueDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2128 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2129   return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
2130                                               SourceLocation(),
2131                                               NestedNameSpecifierLoc(),
2132                                               DeclarationNameInfo());
2133 }
2134 
getSourceRange() const2135 SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
2136   SourceLocation Begin = isAccessDeclaration()
2137     ? getQualifierLoc().getBeginLoc() : UsingLocation;
2138   return SourceRange(Begin, getNameInfo().getEndLoc());
2139 }
2140 
anchor()2141 void UnresolvedUsingTypenameDecl::anchor() { }
2142 
2143 UnresolvedUsingTypenameDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation TypenameLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TargetNameLoc,DeclarationName TargetName)2144 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
2145                                     SourceLocation UsingLoc,
2146                                     SourceLocation TypenameLoc,
2147                                     NestedNameSpecifierLoc QualifierLoc,
2148                                     SourceLocation TargetNameLoc,
2149                                     DeclarationName TargetName) {
2150   return new (C, DC) UnresolvedUsingTypenameDecl(
2151       DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
2152       TargetName.getAsIdentifierInfo());
2153 }
2154 
2155 UnresolvedUsingTypenameDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2156 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2157   return new (C, ID) UnresolvedUsingTypenameDecl(
2158       nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
2159       SourceLocation(), nullptr);
2160 }
2161 
anchor()2162 void StaticAssertDecl::anchor() { }
2163 
Create(ASTContext & C,DeclContext * DC,SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * Message,SourceLocation RParenLoc,bool Failed)2164 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
2165                                            SourceLocation StaticAssertLoc,
2166                                            Expr *AssertExpr,
2167                                            StringLiteral *Message,
2168                                            SourceLocation RParenLoc,
2169                                            bool Failed) {
2170   return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
2171                                       RParenLoc, Failed);
2172 }
2173 
CreateDeserialized(ASTContext & C,unsigned ID)2174 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
2175                                                        unsigned ID) {
2176   return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
2177                                       nullptr, SourceLocation(), false);
2178 }
2179 
Create(ASTContext & C,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,TypeSourceInfo * TInfo,SourceLocation StartL,IdentifierInfo * Getter,IdentifierInfo * Setter)2180 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
2181                                        SourceLocation L, DeclarationName N,
2182                                        QualType T, TypeSourceInfo *TInfo,
2183                                        SourceLocation StartL,
2184                                        IdentifierInfo *Getter,
2185                                        IdentifierInfo *Setter) {
2186   return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
2187 }
2188 
CreateDeserialized(ASTContext & C,unsigned ID)2189 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
2190                                                    unsigned ID) {
2191   return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
2192                                     DeclarationName(), QualType(), nullptr,
2193                                     SourceLocation(), nullptr, nullptr);
2194 }
2195 
getAccessName(AccessSpecifier AS)2196 static const char *getAccessName(AccessSpecifier AS) {
2197   switch (AS) {
2198     case AS_none:
2199       llvm_unreachable("Invalid access specifier!");
2200     case AS_public:
2201       return "public";
2202     case AS_private:
2203       return "private";
2204     case AS_protected:
2205       return "protected";
2206   }
2207   llvm_unreachable("Invalid access specifier!");
2208 }
2209 
operator <<(const DiagnosticBuilder & DB,AccessSpecifier AS)2210 const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
2211                                            AccessSpecifier AS) {
2212   return DB << getAccessName(AS);
2213 }
2214 
operator <<(const PartialDiagnostic & DB,AccessSpecifier AS)2215 const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
2216                                            AccessSpecifier AS) {
2217   return DB << getAccessName(AS);
2218 }
2219