• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/CodeGen/MachineTraceMetrics.h"
11 #include "llvm/ADT/PostOrderIterator.h"
12 #include "llvm/ADT/SparseSet.h"
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
15 #include "llvm/CodeGen/MachineLoopInfo.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17 #include "llvm/CodeGen/Passes.h"
18 #include "llvm/MC/MCSubtargetInfo.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/Format.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24 #include "llvm/Target/TargetSubtargetInfo.h"
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "machine-trace-metrics"
29 
30 char MachineTraceMetrics::ID = 0;
31 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID;
32 
33 INITIALIZE_PASS_BEGIN(MachineTraceMetrics,
34                   "machine-trace-metrics", "Machine Trace Metrics", false, true)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)35 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
36 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
37 INITIALIZE_PASS_END(MachineTraceMetrics,
38                   "machine-trace-metrics", "Machine Trace Metrics", false, true)
39 
40 MachineTraceMetrics::MachineTraceMetrics()
41   : MachineFunctionPass(ID), MF(nullptr), TII(nullptr), TRI(nullptr),
42     MRI(nullptr), Loops(nullptr) {
43   std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr);
44 }
45 
getAnalysisUsage(AnalysisUsage & AU) const46 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const {
47   AU.setPreservesAll();
48   AU.addRequired<MachineBranchProbabilityInfo>();
49   AU.addRequired<MachineLoopInfo>();
50   MachineFunctionPass::getAnalysisUsage(AU);
51 }
52 
runOnMachineFunction(MachineFunction & Func)53 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) {
54   MF = &Func;
55   const TargetSubtargetInfo &ST = MF->getSubtarget();
56   TII = ST.getInstrInfo();
57   TRI = ST.getRegisterInfo();
58   MRI = &MF->getRegInfo();
59   Loops = &getAnalysis<MachineLoopInfo>();
60   SchedModel.init(ST.getSchedModel(), &ST, TII);
61   BlockInfo.resize(MF->getNumBlockIDs());
62   ProcResourceCycles.resize(MF->getNumBlockIDs() *
63                             SchedModel.getNumProcResourceKinds());
64   return false;
65 }
66 
releaseMemory()67 void MachineTraceMetrics::releaseMemory() {
68   MF = nullptr;
69   BlockInfo.clear();
70   for (unsigned i = 0; i != TS_NumStrategies; ++i) {
71     delete Ensembles[i];
72     Ensembles[i] = nullptr;
73   }
74 }
75 
76 //===----------------------------------------------------------------------===//
77 //                          Fixed block information
78 //===----------------------------------------------------------------------===//
79 //
80 // The number of instructions in a basic block and the CPU resources used by
81 // those instructions don't depend on any given trace strategy.
82 
83 /// Compute the resource usage in basic block MBB.
84 const MachineTraceMetrics::FixedBlockInfo*
getResources(const MachineBasicBlock * MBB)85 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) {
86   assert(MBB && "No basic block");
87   FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()];
88   if (FBI->hasResources())
89     return FBI;
90 
91   // Compute resource usage in the block.
92   FBI->HasCalls = false;
93   unsigned InstrCount = 0;
94 
95   // Add up per-processor resource cycles as well.
96   unsigned PRKinds = SchedModel.getNumProcResourceKinds();
97   SmallVector<unsigned, 32> PRCycles(PRKinds);
98 
99   for (const auto &MI : *MBB) {
100     if (MI.isTransient())
101       continue;
102     ++InstrCount;
103     if (MI.isCall())
104       FBI->HasCalls = true;
105 
106     // Count processor resources used.
107     if (!SchedModel.hasInstrSchedModel())
108       continue;
109     const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI);
110     if (!SC->isValid())
111       continue;
112 
113     for (TargetSchedModel::ProcResIter
114          PI = SchedModel.getWriteProcResBegin(SC),
115          PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
116       assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind");
117       PRCycles[PI->ProcResourceIdx] += PI->Cycles;
118     }
119   }
120   FBI->InstrCount = InstrCount;
121 
122   // Scale the resource cycles so they are comparable.
123   unsigned PROffset = MBB->getNumber() * PRKinds;
124   for (unsigned K = 0; K != PRKinds; ++K)
125     ProcResourceCycles[PROffset + K] =
126       PRCycles[K] * SchedModel.getResourceFactor(K);
127 
128   return FBI;
129 }
130 
131 ArrayRef<unsigned>
getProcResourceCycles(unsigned MBBNum) const132 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const {
133   assert(BlockInfo[MBBNum].hasResources() &&
134          "getResources() must be called before getProcResourceCycles()");
135   unsigned PRKinds = SchedModel.getNumProcResourceKinds();
136   assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size());
137   return makeArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds);
138 }
139 
140 
141 //===----------------------------------------------------------------------===//
142 //                         Ensemble utility functions
143 //===----------------------------------------------------------------------===//
144 
Ensemble(MachineTraceMetrics * ct)145 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct)
146   : MTM(*ct) {
147   BlockInfo.resize(MTM.BlockInfo.size());
148   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
149   ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds);
150   ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds);
151 }
152 
153 // Virtual destructor serves as an anchor.
~Ensemble()154 MachineTraceMetrics::Ensemble::~Ensemble() {}
155 
156 const MachineLoop*
getLoopFor(const MachineBasicBlock * MBB) const157 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const {
158   return MTM.Loops->getLoopFor(MBB);
159 }
160 
161 // Update resource-related information in the TraceBlockInfo for MBB.
162 // Only update resources related to the trace above MBB.
163 void MachineTraceMetrics::Ensemble::
computeDepthResources(const MachineBasicBlock * MBB)164 computeDepthResources(const MachineBasicBlock *MBB) {
165   TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
166   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
167   unsigned PROffset = MBB->getNumber() * PRKinds;
168 
169   // Compute resources from trace above. The top block is simple.
170   if (!TBI->Pred) {
171     TBI->InstrDepth = 0;
172     TBI->Head = MBB->getNumber();
173     std::fill(ProcResourceDepths.begin() + PROffset,
174               ProcResourceDepths.begin() + PROffset + PRKinds, 0);
175     return;
176   }
177 
178   // Compute from the block above. A post-order traversal ensures the
179   // predecessor is always computed first.
180   unsigned PredNum = TBI->Pred->getNumber();
181   TraceBlockInfo *PredTBI = &BlockInfo[PredNum];
182   assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet");
183   const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred);
184   TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount;
185   TBI->Head = PredTBI->Head;
186 
187   // Compute per-resource depths.
188   ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum);
189   ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum);
190   for (unsigned K = 0; K != PRKinds; ++K)
191     ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K];
192 }
193 
194 // Update resource-related information in the TraceBlockInfo for MBB.
195 // Only update resources related to the trace below MBB.
196 void MachineTraceMetrics::Ensemble::
computeHeightResources(const MachineBasicBlock * MBB)197 computeHeightResources(const MachineBasicBlock *MBB) {
198   TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
199   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
200   unsigned PROffset = MBB->getNumber() * PRKinds;
201 
202   // Compute resources for the current block.
203   TBI->InstrHeight = MTM.getResources(MBB)->InstrCount;
204   ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber());
205 
206   // The trace tail is done.
207   if (!TBI->Succ) {
208     TBI->Tail = MBB->getNumber();
209     std::copy(PRCycles.begin(), PRCycles.end(),
210               ProcResourceHeights.begin() + PROffset);
211     return;
212   }
213 
214   // Compute from the block below. A post-order traversal ensures the
215   // predecessor is always computed first.
216   unsigned SuccNum = TBI->Succ->getNumber();
217   TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum];
218   assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet");
219   TBI->InstrHeight += SuccTBI->InstrHeight;
220   TBI->Tail = SuccTBI->Tail;
221 
222   // Compute per-resource heights.
223   ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum);
224   for (unsigned K = 0; K != PRKinds; ++K)
225     ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K];
226 }
227 
228 // Check if depth resources for MBB are valid and return the TBI.
229 // Return NULL if the resources have been invalidated.
230 const MachineTraceMetrics::TraceBlockInfo*
231 MachineTraceMetrics::Ensemble::
getDepthResources(const MachineBasicBlock * MBB) const232 getDepthResources(const MachineBasicBlock *MBB) const {
233   const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
234   return TBI->hasValidDepth() ? TBI : nullptr;
235 }
236 
237 // Check if height resources for MBB are valid and return the TBI.
238 // Return NULL if the resources have been invalidated.
239 const MachineTraceMetrics::TraceBlockInfo*
240 MachineTraceMetrics::Ensemble::
getHeightResources(const MachineBasicBlock * MBB) const241 getHeightResources(const MachineBasicBlock *MBB) const {
242   const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
243   return TBI->hasValidHeight() ? TBI : nullptr;
244 }
245 
246 /// Get an array of processor resource depths for MBB. Indexed by processor
247 /// resource kind, this array contains the scaled processor resources consumed
248 /// by all blocks preceding MBB in its trace. It does not include instructions
249 /// in MBB.
250 ///
251 /// Compare TraceBlockInfo::InstrDepth.
252 ArrayRef<unsigned>
253 MachineTraceMetrics::Ensemble::
getProcResourceDepths(unsigned MBBNum) const254 getProcResourceDepths(unsigned MBBNum) const {
255   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
256   assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size());
257   return makeArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds);
258 }
259 
260 /// Get an array of processor resource heights for MBB. Indexed by processor
261 /// resource kind, this array contains the scaled processor resources consumed
262 /// by this block and all blocks following it in its trace.
263 ///
264 /// Compare TraceBlockInfo::InstrHeight.
265 ArrayRef<unsigned>
266 MachineTraceMetrics::Ensemble::
getProcResourceHeights(unsigned MBBNum) const267 getProcResourceHeights(unsigned MBBNum) const {
268   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
269   assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size());
270   return makeArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds);
271 }
272 
273 //===----------------------------------------------------------------------===//
274 //                         Trace Selection Strategies
275 //===----------------------------------------------------------------------===//
276 //
277 // A trace selection strategy is implemented as a sub-class of Ensemble. The
278 // trace through a block B is computed by two DFS traversals of the CFG
279 // starting from B. One upwards, and one downwards. During the upwards DFS,
280 // pickTracePred() is called on the post-ordered blocks. During the downwards
281 // DFS, pickTraceSucc() is called in a post-order.
282 //
283 
284 // We never allow traces that leave loops, but we do allow traces to enter
285 // nested loops. We also never allow traces to contain back-edges.
286 //
287 // This means that a loop header can never appear above the center block of a
288 // trace, except as the trace head. Below the center block, loop exiting edges
289 // are banned.
290 //
291 // Return true if an edge from the From loop to the To loop is leaving a loop.
292 // Either of To and From can be null.
isExitingLoop(const MachineLoop * From,const MachineLoop * To)293 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) {
294   return From && !From->contains(To);
295 }
296 
297 // MinInstrCountEnsemble - Pick the trace that executes the least number of
298 // instructions.
299 namespace {
300 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble {
getName() const301   const char *getName() const override { return "MinInstr"; }
302   const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override;
303   const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override;
304 
305 public:
MinInstrCountEnsemble(MachineTraceMetrics * mtm)306   MinInstrCountEnsemble(MachineTraceMetrics *mtm)
307     : MachineTraceMetrics::Ensemble(mtm) {}
308 };
309 }
310 
311 // Select the preferred predecessor for MBB.
312 const MachineBasicBlock*
pickTracePred(const MachineBasicBlock * MBB)313 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) {
314   if (MBB->pred_empty())
315     return nullptr;
316   const MachineLoop *CurLoop = getLoopFor(MBB);
317   // Don't leave loops, and never follow back-edges.
318   if (CurLoop && MBB == CurLoop->getHeader())
319     return nullptr;
320   unsigned CurCount = MTM.getResources(MBB)->InstrCount;
321   const MachineBasicBlock *Best = nullptr;
322   unsigned BestDepth = 0;
323   for (MachineBasicBlock::const_pred_iterator
324        I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) {
325     const MachineBasicBlock *Pred = *I;
326     const MachineTraceMetrics::TraceBlockInfo *PredTBI =
327       getDepthResources(Pred);
328     // Ignore cycles that aren't natural loops.
329     if (!PredTBI)
330       continue;
331     // Pick the predecessor that would give this block the smallest InstrDepth.
332     unsigned Depth = PredTBI->InstrDepth + CurCount;
333     if (!Best || Depth < BestDepth)
334       Best = Pred, BestDepth = Depth;
335   }
336   return Best;
337 }
338 
339 // Select the preferred successor for MBB.
340 const MachineBasicBlock*
pickTraceSucc(const MachineBasicBlock * MBB)341 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) {
342   if (MBB->pred_empty())
343     return nullptr;
344   const MachineLoop *CurLoop = getLoopFor(MBB);
345   const MachineBasicBlock *Best = nullptr;
346   unsigned BestHeight = 0;
347   for (MachineBasicBlock::const_succ_iterator
348        I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) {
349     const MachineBasicBlock *Succ = *I;
350     // Don't consider back-edges.
351     if (CurLoop && Succ == CurLoop->getHeader())
352       continue;
353     // Don't consider successors exiting CurLoop.
354     if (isExitingLoop(CurLoop, getLoopFor(Succ)))
355       continue;
356     const MachineTraceMetrics::TraceBlockInfo *SuccTBI =
357       getHeightResources(Succ);
358     // Ignore cycles that aren't natural loops.
359     if (!SuccTBI)
360       continue;
361     // Pick the successor that would give this block the smallest InstrHeight.
362     unsigned Height = SuccTBI->InstrHeight;
363     if (!Best || Height < BestHeight)
364       Best = Succ, BestHeight = Height;
365   }
366   return Best;
367 }
368 
369 // Get an Ensemble sub-class for the requested trace strategy.
370 MachineTraceMetrics::Ensemble *
getEnsemble(MachineTraceMetrics::Strategy strategy)371 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) {
372   assert(strategy < TS_NumStrategies && "Invalid trace strategy enum");
373   Ensemble *&E = Ensembles[strategy];
374   if (E)
375     return E;
376 
377   // Allocate new Ensemble on demand.
378   switch (strategy) {
379   case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this));
380   default: llvm_unreachable("Invalid trace strategy enum");
381   }
382 }
383 
invalidate(const MachineBasicBlock * MBB)384 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) {
385   DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n');
386   BlockInfo[MBB->getNumber()].invalidate();
387   for (unsigned i = 0; i != TS_NumStrategies; ++i)
388     if (Ensembles[i])
389       Ensembles[i]->invalidate(MBB);
390 }
391 
verifyAnalysis() const392 void MachineTraceMetrics::verifyAnalysis() const {
393   if (!MF)
394     return;
395 #ifndef NDEBUG
396   assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size");
397   for (unsigned i = 0; i != TS_NumStrategies; ++i)
398     if (Ensembles[i])
399       Ensembles[i]->verify();
400 #endif
401 }
402 
403 //===----------------------------------------------------------------------===//
404 //                               Trace building
405 //===----------------------------------------------------------------------===//
406 //
407 // Traces are built by two CFG traversals. To avoid recomputing too much, use a
408 // set abstraction that confines the search to the current loop, and doesn't
409 // revisit blocks.
410 
411 namespace {
412 struct LoopBounds {
413   MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks;
414   SmallPtrSet<const MachineBasicBlock*, 8> Visited;
415   const MachineLoopInfo *Loops;
416   bool Downward;
LoopBounds__anona1c304b10211::LoopBounds417   LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks,
418              const MachineLoopInfo *loops)
419     : Blocks(blocks), Loops(loops), Downward(false) {}
420 };
421 }
422 
423 // Specialize po_iterator_storage in order to prune the post-order traversal so
424 // it is limited to the current loop and doesn't traverse the loop back edges.
425 namespace llvm {
426 template<>
427 class po_iterator_storage<LoopBounds, true> {
428   LoopBounds &LB;
429 public:
po_iterator_storage(LoopBounds & lb)430   po_iterator_storage(LoopBounds &lb) : LB(lb) {}
finishPostorder(const MachineBasicBlock *)431   void finishPostorder(const MachineBasicBlock*) {}
432 
insertEdge(const MachineBasicBlock * From,const MachineBasicBlock * To)433   bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) {
434     // Skip already visited To blocks.
435     MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()];
436     if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth())
437       return false;
438     // From is null once when To is the trace center block.
439     if (From) {
440       if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) {
441         // Don't follow backedges, don't leave FromLoop when going upwards.
442         if ((LB.Downward ? To : From) == FromLoop->getHeader())
443           return false;
444         // Don't leave FromLoop.
445         if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To)))
446           return false;
447       }
448     }
449     // To is a new block. Mark the block as visited in case the CFG has cycles
450     // that MachineLoopInfo didn't recognize as a natural loop.
451     return LB.Visited.insert(To).second;
452   }
453 };
454 }
455 
456 /// Compute the trace through MBB.
computeTrace(const MachineBasicBlock * MBB)457 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) {
458   DEBUG(dbgs() << "Computing " << getName() << " trace through BB#"
459                << MBB->getNumber() << '\n');
460   // Set up loop bounds for the backwards post-order traversal.
461   LoopBounds Bounds(BlockInfo, MTM.Loops);
462 
463   // Run an upwards post-order search for the trace start.
464   Bounds.Downward = false;
465   Bounds.Visited.clear();
466   for (auto I : inverse_post_order_ext(MBB, Bounds)) {
467     DEBUG(dbgs() << "  pred for BB#" << I->getNumber() << ": ");
468     TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
469     // All the predecessors have been visited, pick the preferred one.
470     TBI.Pred = pickTracePred(I);
471     DEBUG({
472       if (TBI.Pred)
473         dbgs() << "BB#" << TBI.Pred->getNumber() << '\n';
474       else
475         dbgs() << "null\n";
476     });
477     // The trace leading to I is now known, compute the depth resources.
478     computeDepthResources(I);
479   }
480 
481   // Run a downwards post-order search for the trace end.
482   Bounds.Downward = true;
483   Bounds.Visited.clear();
484   for (auto I : post_order_ext(MBB, Bounds)) {
485     DEBUG(dbgs() << "  succ for BB#" << I->getNumber() << ": ");
486     TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
487     // All the successors have been visited, pick the preferred one.
488     TBI.Succ = pickTraceSucc(I);
489     DEBUG({
490       if (TBI.Succ)
491         dbgs() << "BB#" << TBI.Succ->getNumber() << '\n';
492       else
493         dbgs() << "null\n";
494     });
495     // The trace leaving I is now known, compute the height resources.
496     computeHeightResources(I);
497   }
498 }
499 
500 /// Invalidate traces through BadMBB.
501 void
invalidate(const MachineBasicBlock * BadMBB)502 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) {
503   SmallVector<const MachineBasicBlock*, 16> WorkList;
504   TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()];
505 
506   // Invalidate height resources of blocks above MBB.
507   if (BadTBI.hasValidHeight()) {
508     BadTBI.invalidateHeight();
509     WorkList.push_back(BadMBB);
510     do {
511       const MachineBasicBlock *MBB = WorkList.pop_back_val();
512       DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
513             << " height.\n");
514       // Find any MBB predecessors that have MBB as their preferred successor.
515       // They are the only ones that need to be invalidated.
516       for (MachineBasicBlock::const_pred_iterator
517            I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) {
518         TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()];
519         if (!TBI.hasValidHeight())
520           continue;
521         if (TBI.Succ == MBB) {
522           TBI.invalidateHeight();
523           WorkList.push_back(*I);
524           continue;
525         }
526         // Verify that TBI.Succ is actually a *I successor.
527         assert((!TBI.Succ || (*I)->isSuccessor(TBI.Succ)) && "CFG changed");
528       }
529     } while (!WorkList.empty());
530   }
531 
532   // Invalidate depth resources of blocks below MBB.
533   if (BadTBI.hasValidDepth()) {
534     BadTBI.invalidateDepth();
535     WorkList.push_back(BadMBB);
536     do {
537       const MachineBasicBlock *MBB = WorkList.pop_back_val();
538       DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
539             << " depth.\n");
540       // Find any MBB successors that have MBB as their preferred predecessor.
541       // They are the only ones that need to be invalidated.
542       for (MachineBasicBlock::const_succ_iterator
543            I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) {
544         TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()];
545         if (!TBI.hasValidDepth())
546           continue;
547         if (TBI.Pred == MBB) {
548           TBI.invalidateDepth();
549           WorkList.push_back(*I);
550           continue;
551         }
552         // Verify that TBI.Pred is actually a *I predecessor.
553         assert((!TBI.Pred || (*I)->isPredecessor(TBI.Pred)) && "CFG changed");
554       }
555     } while (!WorkList.empty());
556   }
557 
558   // Clear any per-instruction data. We only have to do this for BadMBB itself
559   // because the instructions in that block may change. Other blocks may be
560   // invalidated, but their instructions will stay the same, so there is no
561   // need to erase the Cycle entries. They will be overwritten when we
562   // recompute.
563   for (const auto &I : *BadMBB)
564     Cycles.erase(&I);
565 }
566 
verify() const567 void MachineTraceMetrics::Ensemble::verify() const {
568 #ifndef NDEBUG
569   assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() &&
570          "Outdated BlockInfo size");
571   for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) {
572     const TraceBlockInfo &TBI = BlockInfo[Num];
573     if (TBI.hasValidDepth() && TBI.Pred) {
574       const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
575       assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace");
576       assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() &&
577              "Trace is broken, depth should have been invalidated.");
578       const MachineLoop *Loop = getLoopFor(MBB);
579       assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge");
580     }
581     if (TBI.hasValidHeight() && TBI.Succ) {
582       const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
583       assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace");
584       assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() &&
585              "Trace is broken, height should have been invalidated.");
586       const MachineLoop *Loop = getLoopFor(MBB);
587       const MachineLoop *SuccLoop = getLoopFor(TBI.Succ);
588       assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) &&
589              "Trace contains backedge");
590     }
591   }
592 #endif
593 }
594 
595 //===----------------------------------------------------------------------===//
596 //                             Data Dependencies
597 //===----------------------------------------------------------------------===//
598 //
599 // Compute the depth and height of each instruction based on data dependencies
600 // and instruction latencies. These cycle numbers assume that the CPU can issue
601 // an infinite number of instructions per cycle as long as their dependencies
602 // are ready.
603 
604 // A data dependency is represented as a defining MI and operand numbers on the
605 // defining and using MI.
606 namespace {
607 struct DataDep {
608   const MachineInstr *DefMI;
609   unsigned DefOp;
610   unsigned UseOp;
611 
DataDep__anona1c304b10311::DataDep612   DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp)
613     : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {}
614 
615   /// Create a DataDep from an SSA form virtual register.
DataDep__anona1c304b10311::DataDep616   DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp)
617     : UseOp(UseOp) {
618     assert(TargetRegisterInfo::isVirtualRegister(VirtReg));
619     MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg);
620     assert(!DefI.atEnd() && "Register has no defs");
621     DefMI = DefI->getParent();
622     DefOp = DefI.getOperandNo();
623     assert((++DefI).atEnd() && "Register has multiple defs");
624   }
625 };
626 }
627 
628 // Get the input data dependencies that must be ready before UseMI can issue.
629 // Return true if UseMI has any physreg operands.
getDataDeps(const MachineInstr * UseMI,SmallVectorImpl<DataDep> & Deps,const MachineRegisterInfo * MRI)630 static bool getDataDeps(const MachineInstr *UseMI,
631                         SmallVectorImpl<DataDep> &Deps,
632                         const MachineRegisterInfo *MRI) {
633   bool HasPhysRegs = false;
634   for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) {
635     if (!MO->isReg())
636       continue;
637     unsigned Reg = MO->getReg();
638     if (!Reg)
639       continue;
640     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
641       HasPhysRegs = true;
642       continue;
643     }
644     // Collect virtual register reads.
645     if (MO->readsReg())
646       Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo()));
647   }
648   return HasPhysRegs;
649 }
650 
651 // Get the input data dependencies of a PHI instruction, using Pred as the
652 // preferred predecessor.
653 // This will add at most one dependency to Deps.
getPHIDeps(const MachineInstr * UseMI,SmallVectorImpl<DataDep> & Deps,const MachineBasicBlock * Pred,const MachineRegisterInfo * MRI)654 static void getPHIDeps(const MachineInstr *UseMI,
655                        SmallVectorImpl<DataDep> &Deps,
656                        const MachineBasicBlock *Pred,
657                        const MachineRegisterInfo *MRI) {
658   // No predecessor at the beginning of a trace. Ignore dependencies.
659   if (!Pred)
660     return;
661   assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI");
662   for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) {
663     if (UseMI->getOperand(i + 1).getMBB() == Pred) {
664       unsigned Reg = UseMI->getOperand(i).getReg();
665       Deps.push_back(DataDep(MRI, Reg, i));
666       return;
667     }
668   }
669 }
670 
671 // Keep track of physreg data dependencies by recording each live register unit.
672 // Associate each regunit with an instruction operand. Depending on the
673 // direction instructions are scanned, it could be the operand that defined the
674 // regunit, or the highest operand to read the regunit.
675 namespace {
676 struct LiveRegUnit {
677   unsigned RegUnit;
678   unsigned Cycle;
679   const MachineInstr *MI;
680   unsigned Op;
681 
getSparseSetIndex__anona1c304b10411::LiveRegUnit682   unsigned getSparseSetIndex() const { return RegUnit; }
683 
LiveRegUnit__anona1c304b10411::LiveRegUnit684   LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(nullptr), Op(0) {}
685 };
686 }
687 
688 // Identify physreg dependencies for UseMI, and update the live regunit
689 // tracking set when scanning instructions downwards.
updatePhysDepsDownwards(const MachineInstr * UseMI,SmallVectorImpl<DataDep> & Deps,SparseSet<LiveRegUnit> & RegUnits,const TargetRegisterInfo * TRI)690 static void updatePhysDepsDownwards(const MachineInstr *UseMI,
691                                     SmallVectorImpl<DataDep> &Deps,
692                                     SparseSet<LiveRegUnit> &RegUnits,
693                                     const TargetRegisterInfo *TRI) {
694   SmallVector<unsigned, 8> Kills;
695   SmallVector<unsigned, 8> LiveDefOps;
696 
697   for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) {
698     if (!MO->isReg())
699       continue;
700     unsigned Reg = MO->getReg();
701     if (!TargetRegisterInfo::isPhysicalRegister(Reg))
702       continue;
703     // Track live defs and kills for updating RegUnits.
704     if (MO->isDef()) {
705       if (MO->isDead())
706         Kills.push_back(Reg);
707       else
708         LiveDefOps.push_back(MO.getOperandNo());
709     } else if (MO->isKill())
710       Kills.push_back(Reg);
711     // Identify dependencies.
712     if (!MO->readsReg())
713       continue;
714     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
715       SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
716       if (I == RegUnits.end())
717         continue;
718       Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo()));
719       break;
720     }
721   }
722 
723   // Update RegUnits to reflect live registers after UseMI.
724   // First kills.
725   for (unsigned i = 0, e = Kills.size(); i != e; ++i)
726     for (MCRegUnitIterator Units(Kills[i], TRI); Units.isValid(); ++Units)
727       RegUnits.erase(*Units);
728 
729   // Second, live defs.
730   for (unsigned i = 0, e = LiveDefOps.size(); i != e; ++i) {
731     unsigned DefOp = LiveDefOps[i];
732     for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI);
733          Units.isValid(); ++Units) {
734       LiveRegUnit &LRU = RegUnits[*Units];
735       LRU.MI = UseMI;
736       LRU.Op = DefOp;
737     }
738   }
739 }
740 
741 /// The length of the critical path through a trace is the maximum of two path
742 /// lengths:
743 ///
744 /// 1. The maximum height+depth over all instructions in the trace center block.
745 ///
746 /// 2. The longest cross-block dependency chain. For small blocks, it is
747 ///    possible that the critical path through the trace doesn't include any
748 ///    instructions in the block.
749 ///
750 /// This function computes the second number from the live-in list of the
751 /// center block.
752 unsigned MachineTraceMetrics::Ensemble::
computeCrossBlockCriticalPath(const TraceBlockInfo & TBI)753 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) {
754   assert(TBI.HasValidInstrDepths && "Missing depth info");
755   assert(TBI.HasValidInstrHeights && "Missing height info");
756   unsigned MaxLen = 0;
757   for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
758     const LiveInReg &LIR = TBI.LiveIns[i];
759     if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg))
760       continue;
761     const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
762     // Ignore dependencies outside the current trace.
763     const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()];
764     if (!DefTBI.isUsefulDominator(TBI))
765       continue;
766     unsigned Len = LIR.Height + Cycles[DefMI].Depth;
767     MaxLen = std::max(MaxLen, Len);
768   }
769   return MaxLen;
770 }
771 
772 /// Compute instruction depths for all instructions above or in MBB in its
773 /// trace. This assumes that the trace through MBB has already been computed.
774 void MachineTraceMetrics::Ensemble::
computeInstrDepths(const MachineBasicBlock * MBB)775 computeInstrDepths(const MachineBasicBlock *MBB) {
776   // The top of the trace may already be computed, and HasValidInstrDepths
777   // implies Head->HasValidInstrDepths, so we only need to start from the first
778   // block in the trace that needs to be recomputed.
779   SmallVector<const MachineBasicBlock*, 8> Stack;
780   do {
781     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
782     assert(TBI.hasValidDepth() && "Incomplete trace");
783     if (TBI.HasValidInstrDepths)
784       break;
785     Stack.push_back(MBB);
786     MBB = TBI.Pred;
787   } while (MBB);
788 
789   // FIXME: If MBB is non-null at this point, it is the last pre-computed block
790   // in the trace. We should track any live-out physregs that were defined in
791   // the trace. This is quite rare in SSA form, typically created by CSE
792   // hoisting a compare.
793   SparseSet<LiveRegUnit> RegUnits;
794   RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
795 
796   // Go through trace blocks in top-down order, stopping after the center block.
797   SmallVector<DataDep, 8> Deps;
798   while (!Stack.empty()) {
799     MBB = Stack.pop_back_val();
800     DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n");
801     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
802     TBI.HasValidInstrDepths = true;
803     TBI.CriticalPath = 0;
804 
805     // Print out resource depths here as well.
806     DEBUG({
807       dbgs() << format("%7u Instructions\n", TBI.InstrDepth);
808       ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber());
809       for (unsigned K = 0; K != PRDepths.size(); ++K)
810         if (PRDepths[K]) {
811           unsigned Factor = MTM.SchedModel.getResourceFactor(K);
812           dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K]))
813                  << MTM.SchedModel.getProcResource(K)->Name << " ("
814                  << PRDepths[K]/Factor << " ops x" << Factor << ")\n";
815         }
816     });
817 
818     // Also compute the critical path length through MBB when possible.
819     if (TBI.HasValidInstrHeights)
820       TBI.CriticalPath = computeCrossBlockCriticalPath(TBI);
821 
822     for (const auto &UseMI : *MBB) {
823       // Collect all data dependencies.
824       Deps.clear();
825       if (UseMI.isPHI())
826         getPHIDeps(&UseMI, Deps, TBI.Pred, MTM.MRI);
827       else if (getDataDeps(&UseMI, Deps, MTM.MRI))
828         updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI);
829 
830       // Filter and process dependencies, computing the earliest issue cycle.
831       unsigned Cycle = 0;
832       for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
833         const DataDep &Dep = Deps[i];
834         const TraceBlockInfo&DepTBI =
835           BlockInfo[Dep.DefMI->getParent()->getNumber()];
836         // Ignore dependencies from outside the current trace.
837         if (!DepTBI.isUsefulDominator(TBI))
838           continue;
839         assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency");
840         unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth;
841         // Add latency if DefMI is a real instruction. Transients get latency 0.
842         if (!Dep.DefMI->isTransient())
843           DepCycle += MTM.SchedModel
844             .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp);
845         Cycle = std::max(Cycle, DepCycle);
846       }
847       // Remember the instruction depth.
848       InstrCycles &MICycles = Cycles[&UseMI];
849       MICycles.Depth = Cycle;
850 
851       if (!TBI.HasValidInstrHeights) {
852         DEBUG(dbgs() << Cycle << '\t' << UseMI);
853         continue;
854       }
855       // Update critical path length.
856       TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height);
857       DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI);
858     }
859   }
860 }
861 
862 // Identify physreg dependencies for MI when scanning instructions upwards.
863 // Return the issue height of MI after considering any live regunits.
864 // Height is the issue height computed from virtual register dependencies alone.
updatePhysDepsUpwards(const MachineInstr * MI,unsigned Height,SparseSet<LiveRegUnit> & RegUnits,const TargetSchedModel & SchedModel,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI)865 static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height,
866                                       SparseSet<LiveRegUnit> &RegUnits,
867                                       const TargetSchedModel &SchedModel,
868                                       const TargetInstrInfo *TII,
869                                       const TargetRegisterInfo *TRI) {
870   SmallVector<unsigned, 8> ReadOps;
871   for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
872     if (!MO->isReg())
873       continue;
874     unsigned Reg = MO->getReg();
875     if (!TargetRegisterInfo::isPhysicalRegister(Reg))
876       continue;
877     if (MO->readsReg())
878       ReadOps.push_back(MO.getOperandNo());
879     if (!MO->isDef())
880       continue;
881     // This is a def of Reg. Remove corresponding entries from RegUnits, and
882     // update MI Height to consider the physreg dependencies.
883     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
884       SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
885       if (I == RegUnits.end())
886         continue;
887       unsigned DepHeight = I->Cycle;
888       if (!MI->isTransient()) {
889         // We may not know the UseMI of this dependency, if it came from the
890         // live-in list. SchedModel can handle a NULL UseMI.
891         DepHeight += SchedModel
892           .computeOperandLatency(MI, MO.getOperandNo(), I->MI, I->Op);
893       }
894       Height = std::max(Height, DepHeight);
895       // This regunit is dead above MI.
896       RegUnits.erase(I);
897     }
898   }
899 
900   // Now we know the height of MI. Update any regunits read.
901   for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) {
902     unsigned Reg = MI->getOperand(ReadOps[i]).getReg();
903     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
904       LiveRegUnit &LRU = RegUnits[*Units];
905       // Set the height to the highest reader of the unit.
906       if (LRU.Cycle <= Height && LRU.MI != MI) {
907         LRU.Cycle = Height;
908         LRU.MI = MI;
909         LRU.Op = ReadOps[i];
910       }
911     }
912   }
913 
914   return Height;
915 }
916 
917 
918 typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap;
919 
920 // Push the height of DefMI upwards if required to match UseMI.
921 // Return true if this is the first time DefMI was seen.
pushDepHeight(const DataDep & Dep,const MachineInstr * UseMI,unsigned UseHeight,MIHeightMap & Heights,const TargetSchedModel & SchedModel,const TargetInstrInfo * TII)922 static bool pushDepHeight(const DataDep &Dep,
923                           const MachineInstr *UseMI, unsigned UseHeight,
924                           MIHeightMap &Heights,
925                           const TargetSchedModel &SchedModel,
926                           const TargetInstrInfo *TII) {
927   // Adjust height by Dep.DefMI latency.
928   if (!Dep.DefMI->isTransient())
929     UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp,
930                                                   UseMI, Dep.UseOp);
931 
932   // Update Heights[DefMI] to be the maximum height seen.
933   MIHeightMap::iterator I;
934   bool New;
935   std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight));
936   if (New)
937     return true;
938 
939   // DefMI has been pushed before. Give it the max height.
940   if (I->second < UseHeight)
941     I->second = UseHeight;
942   return false;
943 }
944 
945 /// Assuming that the virtual register defined by DefMI:DefOp was used by
946 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop
947 /// when reaching the block that contains DefMI.
948 void MachineTraceMetrics::Ensemble::
addLiveIns(const MachineInstr * DefMI,unsigned DefOp,ArrayRef<const MachineBasicBlock * > Trace)949 addLiveIns(const MachineInstr *DefMI, unsigned DefOp,
950            ArrayRef<const MachineBasicBlock*> Trace) {
951   assert(!Trace.empty() && "Trace should contain at least one block");
952   unsigned Reg = DefMI->getOperand(DefOp).getReg();
953   assert(TargetRegisterInfo::isVirtualRegister(Reg));
954   const MachineBasicBlock *DefMBB = DefMI->getParent();
955 
956   // Reg is live-in to all blocks in Trace that follow DefMBB.
957   for (unsigned i = Trace.size(); i; --i) {
958     const MachineBasicBlock *MBB = Trace[i-1];
959     if (MBB == DefMBB)
960       return;
961     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
962     // Just add the register. The height will be updated later.
963     TBI.LiveIns.push_back(Reg);
964   }
965 }
966 
967 /// Compute instruction heights in the trace through MBB. This updates MBB and
968 /// the blocks below it in the trace. It is assumed that the trace has already
969 /// been computed.
970 void MachineTraceMetrics::Ensemble::
computeInstrHeights(const MachineBasicBlock * MBB)971 computeInstrHeights(const MachineBasicBlock *MBB) {
972   // The bottom of the trace may already be computed.
973   // Find the blocks that need updating.
974   SmallVector<const MachineBasicBlock*, 8> Stack;
975   do {
976     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
977     assert(TBI.hasValidHeight() && "Incomplete trace");
978     if (TBI.HasValidInstrHeights)
979       break;
980     Stack.push_back(MBB);
981     TBI.LiveIns.clear();
982     MBB = TBI.Succ;
983   } while (MBB);
984 
985   // As we move upwards in the trace, keep track of instructions that are
986   // required by deeper trace instructions. Map MI -> height required so far.
987   MIHeightMap Heights;
988 
989   // For physregs, the def isn't known when we see the use.
990   // Instead, keep track of the highest use of each regunit.
991   SparseSet<LiveRegUnit> RegUnits;
992   RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
993 
994   // If the bottom of the trace was already precomputed, initialize heights
995   // from its live-in list.
996   // MBB is the highest precomputed block in the trace.
997   if (MBB) {
998     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
999     for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
1000       LiveInReg LI = TBI.LiveIns[i];
1001       if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) {
1002         // For virtual registers, the def latency is included.
1003         unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)];
1004         if (Height < LI.Height)
1005           Height = LI.Height;
1006       } else {
1007         // For register units, the def latency is not included because we don't
1008         // know the def yet.
1009         RegUnits[LI.Reg].Cycle = LI.Height;
1010       }
1011     }
1012   }
1013 
1014   // Go through the trace blocks in bottom-up order.
1015   SmallVector<DataDep, 8> Deps;
1016   for (;!Stack.empty(); Stack.pop_back()) {
1017     MBB = Stack.back();
1018     DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n");
1019     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
1020     TBI.HasValidInstrHeights = true;
1021     TBI.CriticalPath = 0;
1022 
1023     DEBUG({
1024       dbgs() << format("%7u Instructions\n", TBI.InstrHeight);
1025       ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber());
1026       for (unsigned K = 0; K != PRHeights.size(); ++K)
1027         if (PRHeights[K]) {
1028           unsigned Factor = MTM.SchedModel.getResourceFactor(K);
1029           dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K]))
1030                  << MTM.SchedModel.getProcResource(K)->Name << " ("
1031                  << PRHeights[K]/Factor << " ops x" << Factor << ")\n";
1032         }
1033     });
1034 
1035     // Get dependencies from PHIs in the trace successor.
1036     const MachineBasicBlock *Succ = TBI.Succ;
1037     // If MBB is the last block in the trace, and it has a back-edge to the
1038     // loop header, get loop-carried dependencies from PHIs in the header. For
1039     // that purpose, pretend that all the loop header PHIs have height 0.
1040     if (!Succ)
1041       if (const MachineLoop *Loop = getLoopFor(MBB))
1042         if (MBB->isSuccessor(Loop->getHeader()))
1043           Succ = Loop->getHeader();
1044 
1045     if (Succ) {
1046       for (const auto &PHI : *Succ) {
1047         if (!PHI.isPHI())
1048           break;
1049         Deps.clear();
1050         getPHIDeps(&PHI, Deps, MBB, MTM.MRI);
1051         if (!Deps.empty()) {
1052           // Loop header PHI heights are all 0.
1053           unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0;
1054           DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI);
1055           if (pushDepHeight(Deps.front(), &PHI, Height,
1056                             Heights, MTM.SchedModel, MTM.TII))
1057             addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack);
1058         }
1059       }
1060     }
1061 
1062     // Go through the block backwards.
1063     for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin();
1064          BI != BB;) {
1065       const MachineInstr *MI = --BI;
1066 
1067       // Find the MI height as determined by virtual register uses in the
1068       // trace below.
1069       unsigned Cycle = 0;
1070       MIHeightMap::iterator HeightI = Heights.find(MI);
1071       if (HeightI != Heights.end()) {
1072         Cycle = HeightI->second;
1073         // We won't be seeing any more MI uses.
1074         Heights.erase(HeightI);
1075       }
1076 
1077       // Don't process PHI deps. They depend on the specific predecessor, and
1078       // we'll get them when visiting the predecessor.
1079       Deps.clear();
1080       bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI);
1081 
1082       // There may also be regunit dependencies to include in the height.
1083       if (HasPhysRegs)
1084         Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits,
1085                                       MTM.SchedModel, MTM.TII, MTM.TRI);
1086 
1087       // Update the required height of any virtual registers read by MI.
1088       for (unsigned i = 0, e = Deps.size(); i != e; ++i)
1089         if (pushDepHeight(Deps[i], MI, Cycle, Heights, MTM.SchedModel, MTM.TII))
1090           addLiveIns(Deps[i].DefMI, Deps[i].DefOp, Stack);
1091 
1092       InstrCycles &MICycles = Cycles[MI];
1093       MICycles.Height = Cycle;
1094       if (!TBI.HasValidInstrDepths) {
1095         DEBUG(dbgs() << Cycle << '\t' << *MI);
1096         continue;
1097       }
1098       // Update critical path length.
1099       TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth);
1100       DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI);
1101     }
1102 
1103     // Update virtual live-in heights. They were added by addLiveIns() with a 0
1104     // height because the final height isn't known until now.
1105     DEBUG(dbgs() << "BB#" << MBB->getNumber() <<  " Live-ins:");
1106     for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
1107       LiveInReg &LIR = TBI.LiveIns[i];
1108       const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
1109       LIR.Height = Heights.lookup(DefMI);
1110       DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height);
1111     }
1112 
1113     // Transfer the live regunits to the live-in list.
1114     for (SparseSet<LiveRegUnit>::const_iterator
1115          RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) {
1116       TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle));
1117       DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI)
1118                    << '@' << RI->Cycle);
1119     }
1120     DEBUG(dbgs() << '\n');
1121 
1122     if (!TBI.HasValidInstrDepths)
1123       continue;
1124     // Add live-ins to the critical path length.
1125     TBI.CriticalPath = std::max(TBI.CriticalPath,
1126                                 computeCrossBlockCriticalPath(TBI));
1127     DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n');
1128   }
1129 }
1130 
1131 MachineTraceMetrics::Trace
getTrace(const MachineBasicBlock * MBB)1132 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) {
1133   // FIXME: Check cache tags, recompute as needed.
1134   computeTrace(MBB);
1135   computeInstrDepths(MBB);
1136   computeInstrHeights(MBB);
1137   return Trace(*this, BlockInfo[MBB->getNumber()]);
1138 }
1139 
1140 unsigned
getInstrSlack(const MachineInstr * MI) const1141 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const {
1142   assert(MI && "Not an instruction.");
1143   assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) &&
1144          "MI must be in the trace center block");
1145   InstrCycles Cyc = getInstrCycles(MI);
1146   return getCriticalPath() - (Cyc.Depth + Cyc.Height);
1147 }
1148 
1149 unsigned
getPHIDepth(const MachineInstr * PHI) const1150 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const {
1151   const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum());
1152   SmallVector<DataDep, 1> Deps;
1153   getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI);
1154   assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor");
1155   DataDep &Dep = Deps.front();
1156   unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth;
1157   // Add latency if DefMI is a real instruction. Transients get latency 0.
1158   if (!Dep.DefMI->isTransient())
1159     DepCycle += TE.MTM.SchedModel
1160       .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp);
1161   return DepCycle;
1162 }
1163 
1164 /// When bottom is set include instructions in current block in estimate.
getResourceDepth(bool Bottom) const1165 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const {
1166   // Find the limiting processor resource.
1167   // Numbers have been pre-scaled to be comparable.
1168   unsigned PRMax = 0;
1169   ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
1170   if (Bottom) {
1171     ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum());
1172     for (unsigned K = 0; K != PRDepths.size(); ++K)
1173       PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]);
1174   } else {
1175     for (unsigned K = 0; K != PRDepths.size(); ++K)
1176       PRMax = std::max(PRMax, PRDepths[K]);
1177   }
1178   // Convert to cycle count.
1179   PRMax = TE.MTM.getCycles(PRMax);
1180 
1181   /// All instructions before current block
1182   unsigned Instrs = TBI.InstrDepth;
1183   // plus instructions in current block
1184   if (Bottom)
1185     Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount;
1186   if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
1187     Instrs /= IW;
1188   // Assume issue width 1 without a schedule model.
1189   return std::max(Instrs, PRMax);
1190 }
1191 
getResourceLength(ArrayRef<const MachineBasicBlock * > Extrablocks,ArrayRef<const MCSchedClassDesc * > ExtraInstrs,ArrayRef<const MCSchedClassDesc * > RemoveInstrs) const1192 unsigned MachineTraceMetrics::Trace::getResourceLength(
1193     ArrayRef<const MachineBasicBlock *> Extrablocks,
1194     ArrayRef<const MCSchedClassDesc *> ExtraInstrs,
1195     ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const {
1196   // Add up resources above and below the center block.
1197   ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
1198   ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum());
1199   unsigned PRMax = 0;
1200 
1201   // Capture computing cycles from extra instructions
1202   auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs,
1203                             unsigned ResourceIdx)
1204                          ->unsigned {
1205     unsigned Cycles = 0;
1206     for (unsigned I = 0; I != Instrs.size(); ++I) {
1207       const MCSchedClassDesc *SC = Instrs[I];
1208       if (!SC->isValid())
1209         continue;
1210       for (TargetSchedModel::ProcResIter
1211                PI = TE.MTM.SchedModel.getWriteProcResBegin(SC),
1212                PE = TE.MTM.SchedModel.getWriteProcResEnd(SC);
1213            PI != PE; ++PI) {
1214         if (PI->ProcResourceIdx != ResourceIdx)
1215           continue;
1216         Cycles +=
1217             (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx));
1218       }
1219     }
1220     return Cycles;
1221   };
1222 
1223   for (unsigned K = 0; K != PRDepths.size(); ++K) {
1224     unsigned PRCycles = PRDepths[K] + PRHeights[K];
1225     for (unsigned I = 0; I != Extrablocks.size(); ++I)
1226       PRCycles += TE.MTM.getProcResourceCycles(Extrablocks[I]->getNumber())[K];
1227     PRCycles += extraCycles(ExtraInstrs, K);
1228     PRCycles -= extraCycles(RemoveInstrs, K);
1229     PRMax = std::max(PRMax, PRCycles);
1230   }
1231   // Convert to cycle count.
1232   PRMax = TE.MTM.getCycles(PRMax);
1233 
1234   // Instrs: #instructions in current trace outside current block.
1235   unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight;
1236   // Add instruction count from the extra blocks.
1237   for (unsigned i = 0, e = Extrablocks.size(); i != e; ++i)
1238     Instrs += TE.MTM.getResources(Extrablocks[i])->InstrCount;
1239   Instrs += ExtraInstrs.size();
1240   Instrs -= RemoveInstrs.size();
1241   if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
1242     Instrs /= IW;
1243   // Assume issue width 1 without a schedule model.
1244   return std::max(Instrs, PRMax);
1245 }
1246 
isDepInTrace(const MachineInstr * DefMI,const MachineInstr * UseMI) const1247 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr *DefMI,
1248                                               const MachineInstr *UseMI) const {
1249   if (DefMI->getParent() == UseMI->getParent())
1250     return true;
1251 
1252   const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI->getParent()->getNumber()];
1253   const TraceBlockInfo &TBI = TE.BlockInfo[UseMI->getParent()->getNumber()];
1254 
1255   return DepTBI.isUsefulDominator(TBI);
1256 }
1257 
print(raw_ostream & OS) const1258 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const {
1259   OS << getName() << " ensemble:\n";
1260   for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
1261     OS << "  BB#" << i << '\t';
1262     BlockInfo[i].print(OS);
1263     OS << '\n';
1264   }
1265 }
1266 
print(raw_ostream & OS) const1267 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const {
1268   if (hasValidDepth()) {
1269     OS << "depth=" << InstrDepth;
1270     if (Pred)
1271       OS << " pred=BB#" << Pred->getNumber();
1272     else
1273       OS << " pred=null";
1274     OS << " head=BB#" << Head;
1275     if (HasValidInstrDepths)
1276       OS << " +instrs";
1277   } else
1278     OS << "depth invalid";
1279   OS << ", ";
1280   if (hasValidHeight()) {
1281     OS << "height=" << InstrHeight;
1282     if (Succ)
1283       OS << " succ=BB#" << Succ->getNumber();
1284     else
1285       OS << " succ=null";
1286     OS << " tail=BB#" << Tail;
1287     if (HasValidInstrHeights)
1288       OS << " +instrs";
1289   } else
1290     OS << "height invalid";
1291   if (HasValidInstrDepths && HasValidInstrHeights)
1292     OS << ", crit=" << CriticalPath;
1293 }
1294 
print(raw_ostream & OS) const1295 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const {
1296   unsigned MBBNum = &TBI - &TE.BlockInfo[0];
1297 
1298   OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum
1299      << " --> BB#" << TBI.Tail << ':';
1300   if (TBI.hasValidHeight() && TBI.hasValidDepth())
1301     OS << ' ' << getInstrCount() << " instrs.";
1302   if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights)
1303     OS << ' ' << TBI.CriticalPath << " cycles.";
1304 
1305   const MachineTraceMetrics::TraceBlockInfo *Block = &TBI;
1306   OS << "\nBB#" << MBBNum;
1307   while (Block->hasValidDepth() && Block->Pred) {
1308     unsigned Num = Block->Pred->getNumber();
1309     OS << " <- BB#" << Num;
1310     Block = &TE.BlockInfo[Num];
1311   }
1312 
1313   Block = &TBI;
1314   OS << "\n    ";
1315   while (Block->hasValidHeight() && Block->Succ) {
1316     unsigned Num = Block->Succ->getNumber();
1317     OS << " -> BB#" << Num;
1318     Block = &TE.BlockInfo[Num];
1319   }
1320   OS << '\n';
1321 }
1322