• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- Type.cpp - Implement the Type class -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Type class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Type.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/IR/Module.h"
18 #include <algorithm>
19 #include <cstdarg>
20 using namespace llvm;
21 
22 //===----------------------------------------------------------------------===//
23 //                         Type Class Implementation
24 //===----------------------------------------------------------------------===//
25 
getPrimitiveType(LLVMContext & C,TypeID IDNumber)26 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
27   switch (IDNumber) {
28   case VoidTyID      : return getVoidTy(C);
29   case HalfTyID      : return getHalfTy(C);
30   case FloatTyID     : return getFloatTy(C);
31   case DoubleTyID    : return getDoubleTy(C);
32   case X86_FP80TyID  : return getX86_FP80Ty(C);
33   case FP128TyID     : return getFP128Ty(C);
34   case PPC_FP128TyID : return getPPC_FP128Ty(C);
35   case LabelTyID     : return getLabelTy(C);
36   case MetadataTyID  : return getMetadataTy(C);
37   case X86_MMXTyID   : return getX86_MMXTy(C);
38   default:
39     return nullptr;
40   }
41 }
42 
43 /// getScalarType - If this is a vector type, return the element type,
44 /// otherwise return this.
getScalarType()45 Type *Type::getScalarType() {
46   if (VectorType *VTy = dyn_cast<VectorType>(this))
47     return VTy->getElementType();
48   return this;
49 }
50 
getScalarType() const51 const Type *Type::getScalarType() const {
52   if (const VectorType *VTy = dyn_cast<VectorType>(this))
53     return VTy->getElementType();
54   return this;
55 }
56 
57 /// isIntegerTy - Return true if this is an IntegerType of the specified width.
isIntegerTy(unsigned Bitwidth) const58 bool Type::isIntegerTy(unsigned Bitwidth) const {
59   return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
60 }
61 
62 // canLosslesslyBitCastTo - Return true if this type can be converted to
63 // 'Ty' without any reinterpretation of bits.  For example, i8* to i32*.
64 //
canLosslesslyBitCastTo(Type * Ty) const65 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
66   // Identity cast means no change so return true
67   if (this == Ty)
68     return true;
69 
70   // They are not convertible unless they are at least first class types
71   if (!this->isFirstClassType() || !Ty->isFirstClassType())
72     return false;
73 
74   // Vector -> Vector conversions are always lossless if the two vector types
75   // have the same size, otherwise not.  Also, 64-bit vector types can be
76   // converted to x86mmx.
77   if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
78     if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
79       return thisPTy->getBitWidth() == thatPTy->getBitWidth();
80     if (Ty->getTypeID() == Type::X86_MMXTyID &&
81         thisPTy->getBitWidth() == 64)
82       return true;
83   }
84 
85   if (this->getTypeID() == Type::X86_MMXTyID)
86     if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
87       if (thatPTy->getBitWidth() == 64)
88         return true;
89 
90   // At this point we have only various mismatches of the first class types
91   // remaining and ptr->ptr. Just select the lossless conversions. Everything
92   // else is not lossless. Conservatively assume we can't losslessly convert
93   // between pointers with different address spaces.
94   if (const PointerType *PTy = dyn_cast<PointerType>(this)) {
95     if (const PointerType *OtherPTy = dyn_cast<PointerType>(Ty))
96       return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
97     return false;
98   }
99   return false;  // Other types have no identity values
100 }
101 
isEmptyTy() const102 bool Type::isEmptyTy() const {
103   const ArrayType *ATy = dyn_cast<ArrayType>(this);
104   if (ATy) {
105     unsigned NumElements = ATy->getNumElements();
106     return NumElements == 0 || ATy->getElementType()->isEmptyTy();
107   }
108 
109   const StructType *STy = dyn_cast<StructType>(this);
110   if (STy) {
111     unsigned NumElements = STy->getNumElements();
112     for (unsigned i = 0; i < NumElements; ++i)
113       if (!STy->getElementType(i)->isEmptyTy())
114         return false;
115     return true;
116   }
117 
118   return false;
119 }
120 
getPrimitiveSizeInBits() const121 unsigned Type::getPrimitiveSizeInBits() const {
122   switch (getTypeID()) {
123   case Type::HalfTyID: return 16;
124   case Type::FloatTyID: return 32;
125   case Type::DoubleTyID: return 64;
126   case Type::X86_FP80TyID: return 80;
127   case Type::FP128TyID: return 128;
128   case Type::PPC_FP128TyID: return 128;
129   case Type::X86_MMXTyID: return 64;
130   case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
131   case Type::VectorTyID:  return cast<VectorType>(this)->getBitWidth();
132   default: return 0;
133   }
134 }
135 
136 /// getScalarSizeInBits - If this is a vector type, return the
137 /// getPrimitiveSizeInBits value for the element type. Otherwise return the
138 /// getPrimitiveSizeInBits value for this type.
getScalarSizeInBits() const139 unsigned Type::getScalarSizeInBits() const {
140   return getScalarType()->getPrimitiveSizeInBits();
141 }
142 
143 /// getFPMantissaWidth - Return the width of the mantissa of this type.  This
144 /// is only valid on floating point types.  If the FP type does not
145 /// have a stable mantissa (e.g. ppc long double), this method returns -1.
getFPMantissaWidth() const146 int Type::getFPMantissaWidth() const {
147   if (const VectorType *VTy = dyn_cast<VectorType>(this))
148     return VTy->getElementType()->getFPMantissaWidth();
149   assert(isFloatingPointTy() && "Not a floating point type!");
150   if (getTypeID() == HalfTyID) return 11;
151   if (getTypeID() == FloatTyID) return 24;
152   if (getTypeID() == DoubleTyID) return 53;
153   if (getTypeID() == X86_FP80TyID) return 64;
154   if (getTypeID() == FP128TyID) return 113;
155   assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
156   return -1;
157 }
158 
159 /// isSizedDerivedType - Derived types like structures and arrays are sized
160 /// iff all of the members of the type are sized as well.  Since asking for
161 /// their size is relatively uncommon, move this operation out of line.
isSizedDerivedType(SmallPtrSetImpl<const Type * > * Visited) const162 bool Type::isSizedDerivedType(SmallPtrSetImpl<const Type*> *Visited) const {
163   if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
164     return ATy->getElementType()->isSized(Visited);
165 
166   if (const VectorType *VTy = dyn_cast<VectorType>(this))
167     return VTy->getElementType()->isSized(Visited);
168 
169   return cast<StructType>(this)->isSized(Visited);
170 }
171 
172 //===----------------------------------------------------------------------===//
173 //                         Subclass Helper Methods
174 //===----------------------------------------------------------------------===//
175 
getIntegerBitWidth() const176 unsigned Type::getIntegerBitWidth() const {
177   return cast<IntegerType>(this)->getBitWidth();
178 }
179 
isFunctionVarArg() const180 bool Type::isFunctionVarArg() const {
181   return cast<FunctionType>(this)->isVarArg();
182 }
183 
getFunctionParamType(unsigned i) const184 Type *Type::getFunctionParamType(unsigned i) const {
185   return cast<FunctionType>(this)->getParamType(i);
186 }
187 
getFunctionNumParams() const188 unsigned Type::getFunctionNumParams() const {
189   return cast<FunctionType>(this)->getNumParams();
190 }
191 
getStructName() const192 StringRef Type::getStructName() const {
193   return cast<StructType>(this)->getName();
194 }
195 
getStructNumElements() const196 unsigned Type::getStructNumElements() const {
197   return cast<StructType>(this)->getNumElements();
198 }
199 
getStructElementType(unsigned N) const200 Type *Type::getStructElementType(unsigned N) const {
201   return cast<StructType>(this)->getElementType(N);
202 }
203 
getSequentialElementType() const204 Type *Type::getSequentialElementType() const {
205   return cast<SequentialType>(this)->getElementType();
206 }
207 
getArrayNumElements() const208 uint64_t Type::getArrayNumElements() const {
209   return cast<ArrayType>(this)->getNumElements();
210 }
211 
getVectorNumElements() const212 unsigned Type::getVectorNumElements() const {
213   return cast<VectorType>(this)->getNumElements();
214 }
215 
getPointerAddressSpace() const216 unsigned Type::getPointerAddressSpace() const {
217   return cast<PointerType>(getScalarType())->getAddressSpace();
218 }
219 
220 
221 //===----------------------------------------------------------------------===//
222 //                          Primitive 'Type' data
223 //===----------------------------------------------------------------------===//
224 
getVoidTy(LLVMContext & C)225 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
getLabelTy(LLVMContext & C)226 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
getHalfTy(LLVMContext & C)227 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
getFloatTy(LLVMContext & C)228 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
getDoubleTy(LLVMContext & C)229 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
getMetadataTy(LLVMContext & C)230 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
getX86_FP80Ty(LLVMContext & C)231 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
getFP128Ty(LLVMContext & C)232 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
getPPC_FP128Ty(LLVMContext & C)233 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
getX86_MMXTy(LLVMContext & C)234 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
235 
getInt1Ty(LLVMContext & C)236 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
getInt8Ty(LLVMContext & C)237 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
getInt16Ty(LLVMContext & C)238 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
getInt32Ty(LLVMContext & C)239 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
getInt64Ty(LLVMContext & C)240 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
241 
getIntNTy(LLVMContext & C,unsigned N)242 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
243   return IntegerType::get(C, N);
244 }
245 
getHalfPtrTy(LLVMContext & C,unsigned AS)246 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
247   return getHalfTy(C)->getPointerTo(AS);
248 }
249 
getFloatPtrTy(LLVMContext & C,unsigned AS)250 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
251   return getFloatTy(C)->getPointerTo(AS);
252 }
253 
getDoublePtrTy(LLVMContext & C,unsigned AS)254 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
255   return getDoubleTy(C)->getPointerTo(AS);
256 }
257 
getX86_FP80PtrTy(LLVMContext & C,unsigned AS)258 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
259   return getX86_FP80Ty(C)->getPointerTo(AS);
260 }
261 
getFP128PtrTy(LLVMContext & C,unsigned AS)262 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
263   return getFP128Ty(C)->getPointerTo(AS);
264 }
265 
getPPC_FP128PtrTy(LLVMContext & C,unsigned AS)266 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
267   return getPPC_FP128Ty(C)->getPointerTo(AS);
268 }
269 
getX86_MMXPtrTy(LLVMContext & C,unsigned AS)270 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
271   return getX86_MMXTy(C)->getPointerTo(AS);
272 }
273 
getIntNPtrTy(LLVMContext & C,unsigned N,unsigned AS)274 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
275   return getIntNTy(C, N)->getPointerTo(AS);
276 }
277 
getInt1PtrTy(LLVMContext & C,unsigned AS)278 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
279   return getInt1Ty(C)->getPointerTo(AS);
280 }
281 
getInt8PtrTy(LLVMContext & C,unsigned AS)282 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
283   return getInt8Ty(C)->getPointerTo(AS);
284 }
285 
getInt16PtrTy(LLVMContext & C,unsigned AS)286 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
287   return getInt16Ty(C)->getPointerTo(AS);
288 }
289 
getInt32PtrTy(LLVMContext & C,unsigned AS)290 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
291   return getInt32Ty(C)->getPointerTo(AS);
292 }
293 
getInt64PtrTy(LLVMContext & C,unsigned AS)294 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
295   return getInt64Ty(C)->getPointerTo(AS);
296 }
297 
298 
299 //===----------------------------------------------------------------------===//
300 //                       IntegerType Implementation
301 //===----------------------------------------------------------------------===//
302 
get(LLVMContext & C,unsigned NumBits)303 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
304   assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
305   assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
306 
307   // Check for the built-in integer types
308   switch (NumBits) {
309   case  1: return cast<IntegerType>(Type::getInt1Ty(C));
310   case  8: return cast<IntegerType>(Type::getInt8Ty(C));
311   case 16: return cast<IntegerType>(Type::getInt16Ty(C));
312   case 32: return cast<IntegerType>(Type::getInt32Ty(C));
313   case 64: return cast<IntegerType>(Type::getInt64Ty(C));
314   default:
315     break;
316   }
317 
318   IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
319 
320   if (!Entry)
321     Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
322 
323   return Entry;
324 }
325 
isPowerOf2ByteWidth() const326 bool IntegerType::isPowerOf2ByteWidth() const {
327   unsigned BitWidth = getBitWidth();
328   return (BitWidth > 7) && isPowerOf2_32(BitWidth);
329 }
330 
getMask() const331 APInt IntegerType::getMask() const {
332   return APInt::getAllOnesValue(getBitWidth());
333 }
334 
335 //===----------------------------------------------------------------------===//
336 //                       FunctionType Implementation
337 //===----------------------------------------------------------------------===//
338 
FunctionType(Type * Result,ArrayRef<Type * > Params,bool IsVarArgs)339 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
340                            bool IsVarArgs)
341   : Type(Result->getContext(), FunctionTyID) {
342   Type **SubTys = reinterpret_cast<Type**>(this+1);
343   assert(isValidReturnType(Result) && "invalid return type for function");
344   setSubclassData(IsVarArgs);
345 
346   SubTys[0] = const_cast<Type*>(Result);
347 
348   for (unsigned i = 0, e = Params.size(); i != e; ++i) {
349     assert(isValidArgumentType(Params[i]) &&
350            "Not a valid type for function argument!");
351     SubTys[i+1] = Params[i];
352   }
353 
354   ContainedTys = SubTys;
355   NumContainedTys = Params.size() + 1; // + 1 for result type
356 }
357 
358 // FunctionType::get - The factory function for the FunctionType class.
get(Type * ReturnType,ArrayRef<Type * > Params,bool isVarArg)359 FunctionType *FunctionType::get(Type *ReturnType,
360                                 ArrayRef<Type*> Params, bool isVarArg) {
361   LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
362   FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
363   auto I = pImpl->FunctionTypes.find_as(Key);
364   FunctionType *FT;
365 
366   if (I == pImpl->FunctionTypes.end()) {
367     FT = (FunctionType*) pImpl->TypeAllocator.
368       Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
369                AlignOf<FunctionType>::Alignment);
370     new (FT) FunctionType(ReturnType, Params, isVarArg);
371     pImpl->FunctionTypes.insert(FT);
372   } else {
373     FT = *I;
374   }
375 
376   return FT;
377 }
378 
get(Type * Result,bool isVarArg)379 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
380   return get(Result, None, isVarArg);
381 }
382 
383 /// isValidReturnType - Return true if the specified type is valid as a return
384 /// type.
isValidReturnType(Type * RetTy)385 bool FunctionType::isValidReturnType(Type *RetTy) {
386   return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
387   !RetTy->isMetadataTy();
388 }
389 
390 /// isValidArgumentType - Return true if the specified type is valid as an
391 /// argument type.
isValidArgumentType(Type * ArgTy)392 bool FunctionType::isValidArgumentType(Type *ArgTy) {
393   return ArgTy->isFirstClassType();
394 }
395 
396 //===----------------------------------------------------------------------===//
397 //                       StructType Implementation
398 //===----------------------------------------------------------------------===//
399 
400 // Primitive Constructors.
401 
get(LLVMContext & Context,ArrayRef<Type * > ETypes,bool isPacked)402 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
403                             bool isPacked) {
404   LLVMContextImpl *pImpl = Context.pImpl;
405   AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
406   auto I = pImpl->AnonStructTypes.find_as(Key);
407   StructType *ST;
408 
409   if (I == pImpl->AnonStructTypes.end()) {
410     // Value not found.  Create a new type!
411     ST = new (Context.pImpl->TypeAllocator) StructType(Context);
412     ST->setSubclassData(SCDB_IsLiteral);  // Literal struct.
413     ST->setBody(ETypes, isPacked);
414     Context.pImpl->AnonStructTypes.insert(ST);
415   } else {
416     ST = *I;
417   }
418 
419   return ST;
420 }
421 
setBody(ArrayRef<Type * > Elements,bool isPacked)422 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
423   assert(isOpaque() && "Struct body already set!");
424 
425   setSubclassData(getSubclassData() | SCDB_HasBody);
426   if (isPacked)
427     setSubclassData(getSubclassData() | SCDB_Packed);
428 
429   unsigned NumElements = Elements.size();
430   Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements);
431   memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements);
432 
433   ContainedTys = Elts;
434   NumContainedTys = NumElements;
435 }
436 
setName(StringRef Name)437 void StructType::setName(StringRef Name) {
438   if (Name == getName()) return;
439 
440   StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
441   typedef StringMap<StructType *>::MapEntryTy EntryTy;
442 
443   // If this struct already had a name, remove its symbol table entry. Don't
444   // delete the data yet because it may be part of the new name.
445   if (SymbolTableEntry)
446     SymbolTable.remove((EntryTy *)SymbolTableEntry);
447 
448   // If this is just removing the name, we're done.
449   if (Name.empty()) {
450     if (SymbolTableEntry) {
451       // Delete the old string data.
452       ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
453       SymbolTableEntry = nullptr;
454     }
455     return;
456   }
457 
458   // Look up the entry for the name.
459   auto IterBool =
460       getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
461 
462   // While we have a name collision, try a random rename.
463   if (!IterBool.second) {
464     SmallString<64> TempStr(Name);
465     TempStr.push_back('.');
466     raw_svector_ostream TmpStream(TempStr);
467     unsigned NameSize = Name.size();
468 
469     do {
470       TempStr.resize(NameSize + 1);
471       TmpStream.resync();
472       TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
473 
474       IterBool = getContext().pImpl->NamedStructTypes.insert(
475           std::make_pair(TmpStream.str(), this));
476     } while (!IterBool.second);
477   }
478 
479   // Delete the old string data.
480   if (SymbolTableEntry)
481     ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
482   SymbolTableEntry = &*IterBool.first;
483 }
484 
485 //===----------------------------------------------------------------------===//
486 // StructType Helper functions.
487 
create(LLVMContext & Context,StringRef Name)488 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
489   StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
490   if (!Name.empty())
491     ST->setName(Name);
492   return ST;
493 }
494 
get(LLVMContext & Context,bool isPacked)495 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
496   return get(Context, None, isPacked);
497 }
498 
get(Type * type,...)499 StructType *StructType::get(Type *type, ...) {
500   assert(type && "Cannot create a struct type with no elements with this");
501   LLVMContext &Ctx = type->getContext();
502   va_list ap;
503   SmallVector<llvm::Type*, 8> StructFields;
504   va_start(ap, type);
505   while (type) {
506     StructFields.push_back(type);
507     type = va_arg(ap, llvm::Type*);
508   }
509   auto *Ret = llvm::StructType::get(Ctx, StructFields);
510   va_end(ap);
511   return Ret;
512 }
513 
create(LLVMContext & Context,ArrayRef<Type * > Elements,StringRef Name,bool isPacked)514 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
515                                StringRef Name, bool isPacked) {
516   StructType *ST = create(Context, Name);
517   ST->setBody(Elements, isPacked);
518   return ST;
519 }
520 
create(LLVMContext & Context,ArrayRef<Type * > Elements)521 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
522   return create(Context, Elements, StringRef());
523 }
524 
create(LLVMContext & Context)525 StructType *StructType::create(LLVMContext &Context) {
526   return create(Context, StringRef());
527 }
528 
create(ArrayRef<Type * > Elements,StringRef Name,bool isPacked)529 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
530                                bool isPacked) {
531   assert(!Elements.empty() &&
532          "This method may not be invoked with an empty list");
533   return create(Elements[0]->getContext(), Elements, Name, isPacked);
534 }
535 
create(ArrayRef<Type * > Elements)536 StructType *StructType::create(ArrayRef<Type*> Elements) {
537   assert(!Elements.empty() &&
538          "This method may not be invoked with an empty list");
539   return create(Elements[0]->getContext(), Elements, StringRef());
540 }
541 
create(StringRef Name,Type * type,...)542 StructType *StructType::create(StringRef Name, Type *type, ...) {
543   assert(type && "Cannot create a struct type with no elements with this");
544   LLVMContext &Ctx = type->getContext();
545   va_list ap;
546   SmallVector<llvm::Type*, 8> StructFields;
547   va_start(ap, type);
548   while (type) {
549     StructFields.push_back(type);
550     type = va_arg(ap, llvm::Type*);
551   }
552   auto *Ret = llvm::StructType::create(Ctx, StructFields, Name);
553   va_end(ap);
554   return Ret;
555 }
556 
isSized(SmallPtrSetImpl<const Type * > * Visited) const557 bool StructType::isSized(SmallPtrSetImpl<const Type*> *Visited) const {
558   if ((getSubclassData() & SCDB_IsSized) != 0)
559     return true;
560   if (isOpaque())
561     return false;
562 
563   if (Visited && !Visited->insert(this).second)
564     return false;
565 
566   // Okay, our struct is sized if all of the elements are, but if one of the
567   // elements is opaque, the struct isn't sized *yet*, but may become sized in
568   // the future, so just bail out without caching.
569   for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
570     if (!(*I)->isSized(Visited))
571       return false;
572 
573   // Here we cheat a bit and cast away const-ness. The goal is to memoize when
574   // we find a sized type, as types can only move from opaque to sized, not the
575   // other way.
576   const_cast<StructType*>(this)->setSubclassData(
577     getSubclassData() | SCDB_IsSized);
578   return true;
579 }
580 
getName() const581 StringRef StructType::getName() const {
582   assert(!isLiteral() && "Literal structs never have names");
583   if (!SymbolTableEntry) return StringRef();
584 
585   return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
586 }
587 
setBody(Type * type,...)588 void StructType::setBody(Type *type, ...) {
589   assert(type && "Cannot create a struct type with no elements with this");
590   va_list ap;
591   SmallVector<llvm::Type*, 8> StructFields;
592   va_start(ap, type);
593   while (type) {
594     StructFields.push_back(type);
595     type = va_arg(ap, llvm::Type*);
596   }
597   setBody(StructFields);
598   va_end(ap);
599 }
600 
isValidElementType(Type * ElemTy)601 bool StructType::isValidElementType(Type *ElemTy) {
602   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
603          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
604 }
605 
606 /// isLayoutIdentical - Return true if this is layout identical to the
607 /// specified struct.
isLayoutIdentical(StructType * Other) const608 bool StructType::isLayoutIdentical(StructType *Other) const {
609   if (this == Other) return true;
610 
611   if (isPacked() != Other->isPacked() ||
612       getNumElements() != Other->getNumElements())
613     return false;
614 
615   return std::equal(element_begin(), element_end(), Other->element_begin());
616 }
617 
618 /// getTypeByName - Return the type with the specified name, or null if there
619 /// is none by that name.
getTypeByName(StringRef Name) const620 StructType *Module::getTypeByName(StringRef Name) const {
621   return getContext().pImpl->NamedStructTypes.lookup(Name);
622 }
623 
624 
625 //===----------------------------------------------------------------------===//
626 //                       CompositeType Implementation
627 //===----------------------------------------------------------------------===//
628 
getTypeAtIndex(const Value * V)629 Type *CompositeType::getTypeAtIndex(const Value *V) {
630   if (StructType *STy = dyn_cast<StructType>(this)) {
631     unsigned Idx =
632       (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
633     assert(indexValid(Idx) && "Invalid structure index!");
634     return STy->getElementType(Idx);
635   }
636 
637   return cast<SequentialType>(this)->getElementType();
638 }
getTypeAtIndex(unsigned Idx)639 Type *CompositeType::getTypeAtIndex(unsigned Idx) {
640   if (StructType *STy = dyn_cast<StructType>(this)) {
641     assert(indexValid(Idx) && "Invalid structure index!");
642     return STy->getElementType(Idx);
643   }
644 
645   return cast<SequentialType>(this)->getElementType();
646 }
indexValid(const Value * V) const647 bool CompositeType::indexValid(const Value *V) const {
648   if (const StructType *STy = dyn_cast<StructType>(this)) {
649     // Structure indexes require (vectors of) 32-bit integer constants.  In the
650     // vector case all of the indices must be equal.
651     if (!V->getType()->getScalarType()->isIntegerTy(32))
652       return false;
653     const Constant *C = dyn_cast<Constant>(V);
654     if (C && V->getType()->isVectorTy())
655       C = C->getSplatValue();
656     const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
657     return CU && CU->getZExtValue() < STy->getNumElements();
658   }
659 
660   // Sequential types can be indexed by any integer.
661   return V->getType()->isIntOrIntVectorTy();
662 }
663 
indexValid(unsigned Idx) const664 bool CompositeType::indexValid(unsigned Idx) const {
665   if (const StructType *STy = dyn_cast<StructType>(this))
666     return Idx < STy->getNumElements();
667   // Sequential types can be indexed by any integer.
668   return true;
669 }
670 
671 
672 //===----------------------------------------------------------------------===//
673 //                           ArrayType Implementation
674 //===----------------------------------------------------------------------===//
675 
ArrayType(Type * ElType,uint64_t NumEl)676 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
677   : SequentialType(ArrayTyID, ElType) {
678   NumElements = NumEl;
679 }
680 
get(Type * elementType,uint64_t NumElements)681 ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) {
682   Type *ElementType = const_cast<Type*>(elementType);
683   assert(isValidElementType(ElementType) && "Invalid type for array element!");
684 
685   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
686   ArrayType *&Entry =
687     pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
688 
689   if (!Entry)
690     Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
691   return Entry;
692 }
693 
isValidElementType(Type * ElemTy)694 bool ArrayType::isValidElementType(Type *ElemTy) {
695   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
696          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
697 }
698 
699 //===----------------------------------------------------------------------===//
700 //                          VectorType Implementation
701 //===----------------------------------------------------------------------===//
702 
VectorType(Type * ElType,unsigned NumEl)703 VectorType::VectorType(Type *ElType, unsigned NumEl)
704   : SequentialType(VectorTyID, ElType) {
705   NumElements = NumEl;
706 }
707 
get(Type * elementType,unsigned NumElements)708 VectorType *VectorType::get(Type *elementType, unsigned NumElements) {
709   Type *ElementType = const_cast<Type*>(elementType);
710   assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
711   assert(isValidElementType(ElementType) && "Element type of a VectorType must "
712                                             "be an integer, floating point, or "
713                                             "pointer type.");
714 
715   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
716   VectorType *&Entry = ElementType->getContext().pImpl
717     ->VectorTypes[std::make_pair(ElementType, NumElements)];
718 
719   if (!Entry)
720     Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
721   return Entry;
722 }
723 
isValidElementType(Type * ElemTy)724 bool VectorType::isValidElementType(Type *ElemTy) {
725   return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
726     ElemTy->isPointerTy();
727 }
728 
729 //===----------------------------------------------------------------------===//
730 //                         PointerType Implementation
731 //===----------------------------------------------------------------------===//
732 
get(Type * EltTy,unsigned AddressSpace)733 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
734   assert(EltTy && "Can't get a pointer to <null> type!");
735   assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
736 
737   LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
738 
739   // Since AddressSpace #0 is the common case, we special case it.
740   PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
741      : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
742 
743   if (!Entry)
744     Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
745   return Entry;
746 }
747 
748 
PointerType(Type * E,unsigned AddrSpace)749 PointerType::PointerType(Type *E, unsigned AddrSpace)
750   : SequentialType(PointerTyID, E) {
751 #ifndef NDEBUG
752   const unsigned oldNCT = NumContainedTys;
753 #endif
754   setSubclassData(AddrSpace);
755   // Check for miscompile. PR11652.
756   assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
757 }
758 
getPointerTo(unsigned addrs)759 PointerType *Type::getPointerTo(unsigned addrs) {
760   return PointerType::get(this, addrs);
761 }
762 
isValidElementType(Type * ElemTy)763 bool PointerType::isValidElementType(Type *ElemTy) {
764   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
765          !ElemTy->isMetadataTy();
766 }
767