1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Type.h"
30 using namespace clang;
31 using namespace CodeGen;
32
33
EmitDecl(const Decl & D)34 void CodeGenFunction::EmitDecl(const Decl &D) {
35 switch (D.getKind()) {
36 case Decl::TranslationUnit:
37 case Decl::ExternCContext:
38 case Decl::Namespace:
39 case Decl::UnresolvedUsingTypename:
40 case Decl::ClassTemplateSpecialization:
41 case Decl::ClassTemplatePartialSpecialization:
42 case Decl::VarTemplateSpecialization:
43 case Decl::VarTemplatePartialSpecialization:
44 case Decl::TemplateTypeParm:
45 case Decl::UnresolvedUsingValue:
46 case Decl::NonTypeTemplateParm:
47 case Decl::CXXMethod:
48 case Decl::CXXConstructor:
49 case Decl::CXXDestructor:
50 case Decl::CXXConversion:
51 case Decl::Field:
52 case Decl::MSProperty:
53 case Decl::IndirectField:
54 case Decl::ObjCIvar:
55 case Decl::ObjCAtDefsField:
56 case Decl::ParmVar:
57 case Decl::ImplicitParam:
58 case Decl::ClassTemplate:
59 case Decl::VarTemplate:
60 case Decl::FunctionTemplate:
61 case Decl::TypeAliasTemplate:
62 case Decl::TemplateTemplateParm:
63 case Decl::ObjCMethod:
64 case Decl::ObjCCategory:
65 case Decl::ObjCProtocol:
66 case Decl::ObjCInterface:
67 case Decl::ObjCCategoryImpl:
68 case Decl::ObjCImplementation:
69 case Decl::ObjCProperty:
70 case Decl::ObjCCompatibleAlias:
71 case Decl::AccessSpec:
72 case Decl::LinkageSpec:
73 case Decl::ObjCPropertyImpl:
74 case Decl::FileScopeAsm:
75 case Decl::Friend:
76 case Decl::FriendTemplate:
77 case Decl::Block:
78 case Decl::Captured:
79 case Decl::ClassScopeFunctionSpecialization:
80 case Decl::UsingShadow:
81 llvm_unreachable("Declaration should not be in declstmts!");
82 case Decl::Function: // void X();
83 case Decl::Record: // struct/union/class X;
84 case Decl::Enum: // enum X;
85 case Decl::EnumConstant: // enum ? { X = ? }
86 case Decl::CXXRecord: // struct/union/class X; [C++]
87 case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
88 case Decl::Label: // __label__ x;
89 case Decl::Import:
90 case Decl::OMPThreadPrivate:
91 case Decl::Empty:
92 // None of these decls require codegen support.
93 return;
94
95 case Decl::NamespaceAlias:
96 if (CGDebugInfo *DI = getDebugInfo())
97 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
98 return;
99 case Decl::Using: // using X; [C++]
100 if (CGDebugInfo *DI = getDebugInfo())
101 DI->EmitUsingDecl(cast<UsingDecl>(D));
102 return;
103 case Decl::UsingDirective: // using namespace X; [C++]
104 if (CGDebugInfo *DI = getDebugInfo())
105 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
106 return;
107 case Decl::Var: {
108 const VarDecl &VD = cast<VarDecl>(D);
109 assert(VD.isLocalVarDecl() &&
110 "Should not see file-scope variables inside a function!");
111 return EmitVarDecl(VD);
112 }
113
114 case Decl::Typedef: // typedef int X;
115 case Decl::TypeAlias: { // using X = int; [C++0x]
116 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
117 QualType Ty = TD.getUnderlyingType();
118
119 if (Ty->isVariablyModifiedType())
120 EmitVariablyModifiedType(Ty);
121 }
122 }
123 }
124
125 /// EmitVarDecl - This method handles emission of any variable declaration
126 /// inside a function, including static vars etc.
EmitVarDecl(const VarDecl & D)127 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
128 if (D.isStaticLocal()) {
129 llvm::GlobalValue::LinkageTypes Linkage =
130 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
131
132 // FIXME: We need to force the emission/use of a guard variable for
133 // some variables even if we can constant-evaluate them because
134 // we can't guarantee every translation unit will constant-evaluate them.
135
136 return EmitStaticVarDecl(D, Linkage);
137 }
138
139 if (D.hasExternalStorage())
140 // Don't emit it now, allow it to be emitted lazily on its first use.
141 return;
142
143 if (D.getStorageClass() == SC_OpenCLWorkGroupLocal)
144 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
145
146 assert(D.hasLocalStorage());
147 return EmitAutoVarDecl(D);
148 }
149
getStaticDeclName(CodeGenModule & CGM,const VarDecl & D)150 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
151 if (CGM.getLangOpts().CPlusPlus)
152 return CGM.getMangledName(&D).str();
153
154 // If this isn't C++, we don't need a mangled name, just a pretty one.
155 assert(!D.isExternallyVisible() && "name shouldn't matter");
156 std::string ContextName;
157 const DeclContext *DC = D.getDeclContext();
158 if (const auto *FD = dyn_cast<FunctionDecl>(DC))
159 ContextName = CGM.getMangledName(FD);
160 else if (const auto *BD = dyn_cast<BlockDecl>(DC))
161 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
162 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
163 ContextName = OMD->getSelector().getAsString();
164 else
165 llvm_unreachable("Unknown context for static var decl");
166
167 ContextName += "." + D.getNameAsString();
168 return ContextName;
169 }
170
getOrCreateStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)171 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
172 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
173 // In general, we don't always emit static var decls once before we reference
174 // them. It is possible to reference them before emitting the function that
175 // contains them, and it is possible to emit the containing function multiple
176 // times.
177 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
178 return ExistingGV;
179
180 QualType Ty = D.getType();
181 assert(Ty->isConstantSizeType() && "VLAs can't be static");
182
183 // Use the label if the variable is renamed with the asm-label extension.
184 std::string Name;
185 if (D.hasAttr<AsmLabelAttr>())
186 Name = getMangledName(&D);
187 else
188 Name = getStaticDeclName(*this, D);
189
190 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
191 unsigned AddrSpace =
192 GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty));
193
194 // Local address space cannot have an initializer.
195 llvm::Constant *Init = nullptr;
196 if (Ty.getAddressSpace() != LangAS::opencl_local)
197 Init = EmitNullConstant(Ty);
198 else
199 Init = llvm::UndefValue::get(LTy);
200
201 llvm::GlobalVariable *GV =
202 new llvm::GlobalVariable(getModule(), LTy,
203 Ty.isConstant(getContext()), Linkage,
204 Init, Name, nullptr,
205 llvm::GlobalVariable::NotThreadLocal,
206 AddrSpace);
207 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
208 setGlobalVisibility(GV, &D);
209
210 if (supportsCOMDAT() && GV->isWeakForLinker())
211 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
212
213 if (D.getTLSKind())
214 setTLSMode(GV, D);
215
216 if (D.isExternallyVisible()) {
217 if (D.hasAttr<DLLImportAttr>())
218 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
219 else if (D.hasAttr<DLLExportAttr>())
220 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
221 }
222
223 // Make sure the result is of the correct type.
224 unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty);
225 llvm::Constant *Addr = GV;
226 if (AddrSpace != ExpectedAddrSpace) {
227 llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
228 Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
229 }
230
231 setStaticLocalDeclAddress(&D, Addr);
232
233 // Ensure that the static local gets initialized by making sure the parent
234 // function gets emitted eventually.
235 const Decl *DC = cast<Decl>(D.getDeclContext());
236
237 // We can't name blocks or captured statements directly, so try to emit their
238 // parents.
239 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
240 DC = DC->getNonClosureContext();
241 // FIXME: Ensure that global blocks get emitted.
242 if (!DC)
243 return Addr;
244 }
245
246 GlobalDecl GD;
247 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
248 GD = GlobalDecl(CD, Ctor_Base);
249 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
250 GD = GlobalDecl(DD, Dtor_Base);
251 else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
252 GD = GlobalDecl(FD);
253 else {
254 // Don't do anything for Obj-C method decls or global closures. We should
255 // never defer them.
256 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
257 }
258 if (GD.getDecl())
259 (void)GetAddrOfGlobal(GD);
260
261 return Addr;
262 }
263
264 /// hasNontrivialDestruction - Determine whether a type's destruction is
265 /// non-trivial. If so, and the variable uses static initialization, we must
266 /// register its destructor to run on exit.
hasNontrivialDestruction(QualType T)267 static bool hasNontrivialDestruction(QualType T) {
268 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
269 return RD && !RD->hasTrivialDestructor();
270 }
271
272 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
273 /// global variable that has already been created for it. If the initializer
274 /// has a different type than GV does, this may free GV and return a different
275 /// one. Otherwise it just returns GV.
276 llvm::GlobalVariable *
AddInitializerToStaticVarDecl(const VarDecl & D,llvm::GlobalVariable * GV)277 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
278 llvm::GlobalVariable *GV) {
279 llvm::Constant *Init = CGM.EmitConstantInit(D, this);
280
281 // If constant emission failed, then this should be a C++ static
282 // initializer.
283 if (!Init) {
284 if (!getLangOpts().CPlusPlus)
285 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
286 else if (Builder.GetInsertBlock()) {
287 // Since we have a static initializer, this global variable can't
288 // be constant.
289 GV->setConstant(false);
290
291 EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
292 }
293 return GV;
294 }
295
296 // The initializer may differ in type from the global. Rewrite
297 // the global to match the initializer. (We have to do this
298 // because some types, like unions, can't be completely represented
299 // in the LLVM type system.)
300 if (GV->getType()->getElementType() != Init->getType()) {
301 llvm::GlobalVariable *OldGV = GV;
302
303 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
304 OldGV->isConstant(),
305 OldGV->getLinkage(), Init, "",
306 /*InsertBefore*/ OldGV,
307 OldGV->getThreadLocalMode(),
308 CGM.getContext().getTargetAddressSpace(D.getType()));
309 GV->setVisibility(OldGV->getVisibility());
310
311 // Steal the name of the old global
312 GV->takeName(OldGV);
313
314 // Replace all uses of the old global with the new global
315 llvm::Constant *NewPtrForOldDecl =
316 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
317 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
318
319 // Erase the old global, since it is no longer used.
320 OldGV->eraseFromParent();
321 }
322
323 GV->setConstant(CGM.isTypeConstant(D.getType(), true));
324 GV->setInitializer(Init);
325
326 if (hasNontrivialDestruction(D.getType())) {
327 // We have a constant initializer, but a nontrivial destructor. We still
328 // need to perform a guarded "initialization" in order to register the
329 // destructor.
330 EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
331 }
332
333 return GV;
334 }
335
EmitStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)336 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
337 llvm::GlobalValue::LinkageTypes Linkage) {
338 llvm::Value *&DMEntry = LocalDeclMap[&D];
339 assert(!DMEntry && "Decl already exists in localdeclmap!");
340
341 // Check to see if we already have a global variable for this
342 // declaration. This can happen when double-emitting function
343 // bodies, e.g. with complete and base constructors.
344 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
345
346 // Store into LocalDeclMap before generating initializer to handle
347 // circular references.
348 DMEntry = addr;
349
350 // We can't have a VLA here, but we can have a pointer to a VLA,
351 // even though that doesn't really make any sense.
352 // Make sure to evaluate VLA bounds now so that we have them for later.
353 if (D.getType()->isVariablyModifiedType())
354 EmitVariablyModifiedType(D.getType());
355
356 // Save the type in case adding the initializer forces a type change.
357 llvm::Type *expectedType = addr->getType();
358
359 llvm::GlobalVariable *var =
360 cast<llvm::GlobalVariable>(addr->stripPointerCasts());
361 // If this value has an initializer, emit it.
362 if (D.getInit())
363 var = AddInitializerToStaticVarDecl(D, var);
364
365 var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
366
367 if (D.hasAttr<AnnotateAttr>())
368 CGM.AddGlobalAnnotations(&D, var);
369
370 if (const SectionAttr *SA = D.getAttr<SectionAttr>())
371 var->setSection(SA->getName());
372
373 if (D.hasAttr<UsedAttr>())
374 CGM.addUsedGlobal(var);
375
376 // We may have to cast the constant because of the initializer
377 // mismatch above.
378 //
379 // FIXME: It is really dangerous to store this in the map; if anyone
380 // RAUW's the GV uses of this constant will be invalid.
381 llvm::Constant *castedAddr =
382 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
383 DMEntry = castedAddr;
384 CGM.setStaticLocalDeclAddress(&D, castedAddr);
385
386 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
387
388 // Emit global variable debug descriptor for static vars.
389 CGDebugInfo *DI = getDebugInfo();
390 if (DI &&
391 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
392 DI->setLocation(D.getLocation());
393 DI->EmitGlobalVariable(var, &D);
394 }
395 }
396
397 namespace {
398 struct DestroyObject : EHScopeStack::Cleanup {
DestroyObject__anonea743ae20111::DestroyObject399 DestroyObject(llvm::Value *addr, QualType type,
400 CodeGenFunction::Destroyer *destroyer,
401 bool useEHCleanupForArray)
402 : addr(addr), type(type), destroyer(destroyer),
403 useEHCleanupForArray(useEHCleanupForArray) {}
404
405 llvm::Value *addr;
406 QualType type;
407 CodeGenFunction::Destroyer *destroyer;
408 bool useEHCleanupForArray;
409
Emit__anonea743ae20111::DestroyObject410 void Emit(CodeGenFunction &CGF, Flags flags) override {
411 // Don't use an EH cleanup recursively from an EH cleanup.
412 bool useEHCleanupForArray =
413 flags.isForNormalCleanup() && this->useEHCleanupForArray;
414
415 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
416 }
417 };
418
419 struct DestroyNRVOVariable : EHScopeStack::Cleanup {
DestroyNRVOVariable__anonea743ae20111::DestroyNRVOVariable420 DestroyNRVOVariable(llvm::Value *addr,
421 const CXXDestructorDecl *Dtor,
422 llvm::Value *NRVOFlag)
423 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
424
425 const CXXDestructorDecl *Dtor;
426 llvm::Value *NRVOFlag;
427 llvm::Value *Loc;
428
Emit__anonea743ae20111::DestroyNRVOVariable429 void Emit(CodeGenFunction &CGF, Flags flags) override {
430 // Along the exceptions path we always execute the dtor.
431 bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
432
433 llvm::BasicBlock *SkipDtorBB = nullptr;
434 if (NRVO) {
435 // If we exited via NRVO, we skip the destructor call.
436 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
437 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
438 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
439 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
440 CGF.EmitBlock(RunDtorBB);
441 }
442
443 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
444 /*ForVirtualBase=*/false,
445 /*Delegating=*/false,
446 Loc);
447
448 if (NRVO) CGF.EmitBlock(SkipDtorBB);
449 }
450 };
451
452 struct CallStackRestore : EHScopeStack::Cleanup {
453 llvm::Value *Stack;
CallStackRestore__anonea743ae20111::CallStackRestore454 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
Emit__anonea743ae20111::CallStackRestore455 void Emit(CodeGenFunction &CGF, Flags flags) override {
456 llvm::Value *V = CGF.Builder.CreateLoad(Stack);
457 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
458 CGF.Builder.CreateCall(F, V);
459 }
460 };
461
462 struct ExtendGCLifetime : EHScopeStack::Cleanup {
463 const VarDecl &Var;
ExtendGCLifetime__anonea743ae20111::ExtendGCLifetime464 ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
465
Emit__anonea743ae20111::ExtendGCLifetime466 void Emit(CodeGenFunction &CGF, Flags flags) override {
467 // Compute the address of the local variable, in case it's a
468 // byref or something.
469 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
470 Var.getType(), VK_LValue, SourceLocation());
471 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
472 SourceLocation());
473 CGF.EmitExtendGCLifetime(value);
474 }
475 };
476
477 struct CallCleanupFunction : EHScopeStack::Cleanup {
478 llvm::Constant *CleanupFn;
479 const CGFunctionInfo &FnInfo;
480 const VarDecl &Var;
481
CallCleanupFunction__anonea743ae20111::CallCleanupFunction482 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
483 const VarDecl *Var)
484 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
485
Emit__anonea743ae20111::CallCleanupFunction486 void Emit(CodeGenFunction &CGF, Flags flags) override {
487 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
488 Var.getType(), VK_LValue, SourceLocation());
489 // Compute the address of the local variable, in case it's a byref
490 // or something.
491 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
492
493 // In some cases, the type of the function argument will be different from
494 // the type of the pointer. An example of this is
495 // void f(void* arg);
496 // __attribute__((cleanup(f))) void *g;
497 //
498 // To fix this we insert a bitcast here.
499 QualType ArgTy = FnInfo.arg_begin()->type;
500 llvm::Value *Arg =
501 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
502
503 CallArgList Args;
504 Args.add(RValue::get(Arg),
505 CGF.getContext().getPointerType(Var.getType()));
506 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
507 }
508 };
509
510 /// A cleanup to call @llvm.lifetime.end.
511 class CallLifetimeEnd : public EHScopeStack::Cleanup {
512 llvm::Value *Addr;
513 llvm::Value *Size;
514 public:
CallLifetimeEnd(llvm::Value * addr,llvm::Value * size)515 CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
516 : Addr(addr), Size(size) {}
517
Emit(CodeGenFunction & CGF,Flags flags)518 void Emit(CodeGenFunction &CGF, Flags flags) override {
519 llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy);
520 CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(),
521 Size, castAddr)
522 ->setDoesNotThrow();
523 }
524 };
525 }
526
527 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
528 /// variable with lifetime.
EmitAutoVarWithLifetime(CodeGenFunction & CGF,const VarDecl & var,llvm::Value * addr,Qualifiers::ObjCLifetime lifetime)529 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
530 llvm::Value *addr,
531 Qualifiers::ObjCLifetime lifetime) {
532 switch (lifetime) {
533 case Qualifiers::OCL_None:
534 llvm_unreachable("present but none");
535
536 case Qualifiers::OCL_ExplicitNone:
537 // nothing to do
538 break;
539
540 case Qualifiers::OCL_Strong: {
541 CodeGenFunction::Destroyer *destroyer =
542 (var.hasAttr<ObjCPreciseLifetimeAttr>()
543 ? CodeGenFunction::destroyARCStrongPrecise
544 : CodeGenFunction::destroyARCStrongImprecise);
545
546 CleanupKind cleanupKind = CGF.getARCCleanupKind();
547 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
548 cleanupKind & EHCleanup);
549 break;
550 }
551 case Qualifiers::OCL_Autoreleasing:
552 // nothing to do
553 break;
554
555 case Qualifiers::OCL_Weak:
556 // __weak objects always get EH cleanups; otherwise, exceptions
557 // could cause really nasty crashes instead of mere leaks.
558 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
559 CodeGenFunction::destroyARCWeak,
560 /*useEHCleanup*/ true);
561 break;
562 }
563 }
564
isAccessedBy(const VarDecl & var,const Stmt * s)565 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
566 if (const Expr *e = dyn_cast<Expr>(s)) {
567 // Skip the most common kinds of expressions that make
568 // hierarchy-walking expensive.
569 s = e = e->IgnoreParenCasts();
570
571 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
572 return (ref->getDecl() == &var);
573 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
574 const BlockDecl *block = be->getBlockDecl();
575 for (const auto &I : block->captures()) {
576 if (I.getVariable() == &var)
577 return true;
578 }
579 }
580 }
581
582 for (Stmt::const_child_range children = s->children(); children; ++children)
583 // children might be null; as in missing decl or conditional of an if-stmt.
584 if ((*children) && isAccessedBy(var, *children))
585 return true;
586
587 return false;
588 }
589
isAccessedBy(const ValueDecl * decl,const Expr * e)590 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
591 if (!decl) return false;
592 if (!isa<VarDecl>(decl)) return false;
593 const VarDecl *var = cast<VarDecl>(decl);
594 return isAccessedBy(*var, e);
595 }
596
drillIntoBlockVariable(CodeGenFunction & CGF,LValue & lvalue,const VarDecl * var)597 static void drillIntoBlockVariable(CodeGenFunction &CGF,
598 LValue &lvalue,
599 const VarDecl *var) {
600 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
601 }
602
EmitScalarInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)603 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
604 LValue lvalue, bool capturedByInit) {
605 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
606 if (!lifetime) {
607 llvm::Value *value = EmitScalarExpr(init);
608 if (capturedByInit)
609 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
610 EmitStoreThroughLValue(RValue::get(value), lvalue, true);
611 return;
612 }
613
614 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
615 init = DIE->getExpr();
616
617 // If we're emitting a value with lifetime, we have to do the
618 // initialization *before* we leave the cleanup scopes.
619 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
620 enterFullExpression(ewc);
621 init = ewc->getSubExpr();
622 }
623 CodeGenFunction::RunCleanupsScope Scope(*this);
624
625 // We have to maintain the illusion that the variable is
626 // zero-initialized. If the variable might be accessed in its
627 // initializer, zero-initialize before running the initializer, then
628 // actually perform the initialization with an assign.
629 bool accessedByInit = false;
630 if (lifetime != Qualifiers::OCL_ExplicitNone)
631 accessedByInit = (capturedByInit || isAccessedBy(D, init));
632 if (accessedByInit) {
633 LValue tempLV = lvalue;
634 // Drill down to the __block object if necessary.
635 if (capturedByInit) {
636 // We can use a simple GEP for this because it can't have been
637 // moved yet.
638 tempLV.setAddress(Builder.CreateStructGEP(
639 nullptr, tempLV.getAddress(),
640 getByRefValueLLVMField(cast<VarDecl>(D)).second));
641 }
642
643 llvm::PointerType *ty
644 = cast<llvm::PointerType>(tempLV.getAddress()->getType());
645 ty = cast<llvm::PointerType>(ty->getElementType());
646
647 llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
648
649 // If __weak, we want to use a barrier under certain conditions.
650 if (lifetime == Qualifiers::OCL_Weak)
651 EmitARCInitWeak(tempLV.getAddress(), zero);
652
653 // Otherwise just do a simple store.
654 else
655 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
656 }
657
658 // Emit the initializer.
659 llvm::Value *value = nullptr;
660
661 switch (lifetime) {
662 case Qualifiers::OCL_None:
663 llvm_unreachable("present but none");
664
665 case Qualifiers::OCL_ExplicitNone:
666 // nothing to do
667 value = EmitScalarExpr(init);
668 break;
669
670 case Qualifiers::OCL_Strong: {
671 value = EmitARCRetainScalarExpr(init);
672 break;
673 }
674
675 case Qualifiers::OCL_Weak: {
676 // No way to optimize a producing initializer into this. It's not
677 // worth optimizing for, because the value will immediately
678 // disappear in the common case.
679 value = EmitScalarExpr(init);
680
681 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
682 if (accessedByInit)
683 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
684 else
685 EmitARCInitWeak(lvalue.getAddress(), value);
686 return;
687 }
688
689 case Qualifiers::OCL_Autoreleasing:
690 value = EmitARCRetainAutoreleaseScalarExpr(init);
691 break;
692 }
693
694 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
695
696 // If the variable might have been accessed by its initializer, we
697 // might have to initialize with a barrier. We have to do this for
698 // both __weak and __strong, but __weak got filtered out above.
699 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
700 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
701 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
702 EmitARCRelease(oldValue, ARCImpreciseLifetime);
703 return;
704 }
705
706 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
707 }
708
709 /// EmitScalarInit - Initialize the given lvalue with the given object.
EmitScalarInit(llvm::Value * init,LValue lvalue)710 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
711 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
712 if (!lifetime)
713 return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
714
715 switch (lifetime) {
716 case Qualifiers::OCL_None:
717 llvm_unreachable("present but none");
718
719 case Qualifiers::OCL_ExplicitNone:
720 // nothing to do
721 break;
722
723 case Qualifiers::OCL_Strong:
724 init = EmitARCRetain(lvalue.getType(), init);
725 break;
726
727 case Qualifiers::OCL_Weak:
728 // Initialize and then skip the primitive store.
729 EmitARCInitWeak(lvalue.getAddress(), init);
730 return;
731
732 case Qualifiers::OCL_Autoreleasing:
733 init = EmitARCRetainAutorelease(lvalue.getType(), init);
734 break;
735 }
736
737 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
738 }
739
740 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
741 /// non-zero parts of the specified initializer with equal or fewer than
742 /// NumStores scalar stores.
canEmitInitWithFewStoresAfterMemset(llvm::Constant * Init,unsigned & NumStores)743 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
744 unsigned &NumStores) {
745 // Zero and Undef never requires any extra stores.
746 if (isa<llvm::ConstantAggregateZero>(Init) ||
747 isa<llvm::ConstantPointerNull>(Init) ||
748 isa<llvm::UndefValue>(Init))
749 return true;
750 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
751 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
752 isa<llvm::ConstantExpr>(Init))
753 return Init->isNullValue() || NumStores--;
754
755 // See if we can emit each element.
756 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
757 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
758 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
759 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
760 return false;
761 }
762 return true;
763 }
764
765 if (llvm::ConstantDataSequential *CDS =
766 dyn_cast<llvm::ConstantDataSequential>(Init)) {
767 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
768 llvm::Constant *Elt = CDS->getElementAsConstant(i);
769 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
770 return false;
771 }
772 return true;
773 }
774
775 // Anything else is hard and scary.
776 return false;
777 }
778
779 /// emitStoresForInitAfterMemset - For inits that
780 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
781 /// stores that would be required.
emitStoresForInitAfterMemset(llvm::Constant * Init,llvm::Value * Loc,bool isVolatile,CGBuilderTy & Builder)782 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
783 bool isVolatile, CGBuilderTy &Builder) {
784 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
785 "called emitStoresForInitAfterMemset for zero or undef value.");
786
787 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
788 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
789 isa<llvm::ConstantExpr>(Init)) {
790 Builder.CreateStore(Init, Loc, isVolatile);
791 return;
792 }
793
794 if (llvm::ConstantDataSequential *CDS =
795 dyn_cast<llvm::ConstantDataSequential>(Init)) {
796 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
797 llvm::Constant *Elt = CDS->getElementAsConstant(i);
798
799 // If necessary, get a pointer to the element and emit it.
800 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
801 emitStoresForInitAfterMemset(
802 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
803 isVolatile, Builder);
804 }
805 return;
806 }
807
808 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
809 "Unknown value type!");
810
811 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
812 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
813
814 // If necessary, get a pointer to the element and emit it.
815 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
816 emitStoresForInitAfterMemset(
817 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
818 isVolatile, Builder);
819 }
820 }
821
822
823 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
824 /// plus some stores to initialize a local variable instead of using a memcpy
825 /// from a constant global. It is beneficial to use memset if the global is all
826 /// zeros, or mostly zeros and large.
shouldUseMemSetPlusStoresToInitialize(llvm::Constant * Init,uint64_t GlobalSize)827 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
828 uint64_t GlobalSize) {
829 // If a global is all zeros, always use a memset.
830 if (isa<llvm::ConstantAggregateZero>(Init)) return true;
831
832 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large,
833 // do it if it will require 6 or fewer scalar stores.
834 // TODO: Should budget depends on the size? Avoiding a large global warrants
835 // plopping in more stores.
836 unsigned StoreBudget = 6;
837 uint64_t SizeLimit = 32;
838
839 return GlobalSize > SizeLimit &&
840 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
841 }
842
843 /// Should we use the LLVM lifetime intrinsics for the given local variable?
shouldUseLifetimeMarkers(CodeGenFunction & CGF,const VarDecl & D,unsigned Size)844 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D,
845 unsigned Size) {
846 // For now, only in optimized builds.
847 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0)
848 return false;
849
850 // Limit the size of marked objects to 32 bytes. We don't want to increase
851 // compile time by marking tiny objects.
852 unsigned SizeThreshold = 32;
853
854 return Size > SizeThreshold;
855 }
856
857
858 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
859 /// variable declaration with auto, register, or no storage class specifier.
860 /// These turn into simple stack objects, or GlobalValues depending on target.
EmitAutoVarDecl(const VarDecl & D)861 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
862 AutoVarEmission emission = EmitAutoVarAlloca(D);
863 EmitAutoVarInit(emission);
864 EmitAutoVarCleanups(emission);
865 }
866
867 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
868 /// local variable. Does not emit initialization or destruction.
869 CodeGenFunction::AutoVarEmission
EmitAutoVarAlloca(const VarDecl & D)870 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
871 QualType Ty = D.getType();
872
873 AutoVarEmission emission(D);
874
875 bool isByRef = D.hasAttr<BlocksAttr>();
876 emission.IsByRef = isByRef;
877
878 CharUnits alignment = getContext().getDeclAlign(&D);
879 emission.Alignment = alignment;
880
881 // If the type is variably-modified, emit all the VLA sizes for it.
882 if (Ty->isVariablyModifiedType())
883 EmitVariablyModifiedType(Ty);
884
885 llvm::Value *DeclPtr;
886 if (Ty->isConstantSizeType()) {
887 bool NRVO = getLangOpts().ElideConstructors &&
888 D.isNRVOVariable();
889
890 // If this value is an array or struct with a statically determinable
891 // constant initializer, there are optimizations we can do.
892 //
893 // TODO: We should constant-evaluate the initializer of any variable,
894 // as long as it is initialized by a constant expression. Currently,
895 // isConstantInitializer produces wrong answers for structs with
896 // reference or bitfield members, and a few other cases, and checking
897 // for POD-ness protects us from some of these.
898 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
899 (D.isConstexpr() ||
900 ((Ty.isPODType(getContext()) ||
901 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
902 D.getInit()->isConstantInitializer(getContext(), false)))) {
903
904 // If the variable's a const type, and it's neither an NRVO
905 // candidate nor a __block variable and has no mutable members,
906 // emit it as a global instead.
907 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
908 CGM.isTypeConstant(Ty, true)) {
909 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
910
911 emission.Address = nullptr; // signal this condition to later callbacks
912 assert(emission.wasEmittedAsGlobal());
913 return emission;
914 }
915
916 // Otherwise, tell the initialization code that we're in this case.
917 emission.IsConstantAggregate = true;
918 }
919
920 // A normal fixed sized variable becomes an alloca in the entry block,
921 // unless it's an NRVO variable.
922 llvm::Type *LTy = ConvertTypeForMem(Ty);
923
924 if (NRVO) {
925 // The named return value optimization: allocate this variable in the
926 // return slot, so that we can elide the copy when returning this
927 // variable (C++0x [class.copy]p34).
928 DeclPtr = ReturnValue;
929
930 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
931 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
932 // Create a flag that is used to indicate when the NRVO was applied
933 // to this variable. Set it to zero to indicate that NRVO was not
934 // applied.
935 llvm::Value *Zero = Builder.getFalse();
936 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
937 EnsureInsertPoint();
938 Builder.CreateStore(Zero, NRVOFlag);
939
940 // Record the NRVO flag for this variable.
941 NRVOFlags[&D] = NRVOFlag;
942 emission.NRVOFlag = NRVOFlag;
943 }
944 }
945 } else {
946 if (isByRef)
947 LTy = BuildByRefType(&D);
948
949 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
950 Alloc->setName(D.getName());
951
952 CharUnits allocaAlignment = alignment;
953 if (isByRef)
954 allocaAlignment = std::max(allocaAlignment,
955 getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0)));
956 Alloc->setAlignment(allocaAlignment.getQuantity());
957 DeclPtr = Alloc;
958
959 // Emit a lifetime intrinsic if meaningful. There's no point
960 // in doing this if we don't have a valid insertion point (?).
961 uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
962 if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) {
963 llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size);
964
965 emission.SizeForLifetimeMarkers = sizeV;
966 llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy);
967 Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr)
968 ->setDoesNotThrow();
969 } else {
970 assert(!emission.useLifetimeMarkers());
971 }
972 }
973 } else {
974 EnsureInsertPoint();
975
976 if (!DidCallStackSave) {
977 // Save the stack.
978 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
979
980 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
981 llvm::Value *V = Builder.CreateCall(F);
982
983 Builder.CreateStore(V, Stack);
984
985 DidCallStackSave = true;
986
987 // Push a cleanup block and restore the stack there.
988 // FIXME: in general circumstances, this should be an EH cleanup.
989 pushStackRestore(NormalCleanup, Stack);
990 }
991
992 llvm::Value *elementCount;
993 QualType elementType;
994 std::tie(elementCount, elementType) = getVLASize(Ty);
995
996 llvm::Type *llvmTy = ConvertTypeForMem(elementType);
997
998 // Allocate memory for the array.
999 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
1000 vla->setAlignment(alignment.getQuantity());
1001
1002 DeclPtr = vla;
1003 }
1004
1005 llvm::Value *&DMEntry = LocalDeclMap[&D];
1006 assert(!DMEntry && "Decl already exists in localdeclmap!");
1007 DMEntry = DeclPtr;
1008 emission.Address = DeclPtr;
1009
1010 // Emit debug info for local var declaration.
1011 if (HaveInsertPoint())
1012 if (CGDebugInfo *DI = getDebugInfo()) {
1013 if (CGM.getCodeGenOpts().getDebugInfo()
1014 >= CodeGenOptions::LimitedDebugInfo) {
1015 DI->setLocation(D.getLocation());
1016 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
1017 }
1018 }
1019
1020 if (D.hasAttr<AnnotateAttr>())
1021 EmitVarAnnotations(&D, emission.Address);
1022
1023 return emission;
1024 }
1025
1026 /// Determines whether the given __block variable is potentially
1027 /// captured by the given expression.
isCapturedBy(const VarDecl & var,const Expr * e)1028 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
1029 // Skip the most common kinds of expressions that make
1030 // hierarchy-walking expensive.
1031 e = e->IgnoreParenCasts();
1032
1033 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
1034 const BlockDecl *block = be->getBlockDecl();
1035 for (const auto &I : block->captures()) {
1036 if (I.getVariable() == &var)
1037 return true;
1038 }
1039
1040 // No need to walk into the subexpressions.
1041 return false;
1042 }
1043
1044 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1045 const CompoundStmt *CS = SE->getSubStmt();
1046 for (const auto *BI : CS->body())
1047 if (const auto *E = dyn_cast<Expr>(BI)) {
1048 if (isCapturedBy(var, E))
1049 return true;
1050 }
1051 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1052 // special case declarations
1053 for (const auto *I : DS->decls()) {
1054 if (const auto *VD = dyn_cast<VarDecl>((I))) {
1055 const Expr *Init = VD->getInit();
1056 if (Init && isCapturedBy(var, Init))
1057 return true;
1058 }
1059 }
1060 }
1061 else
1062 // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1063 // Later, provide code to poke into statements for capture analysis.
1064 return true;
1065 return false;
1066 }
1067
1068 for (Stmt::const_child_range children = e->children(); children; ++children)
1069 if (isCapturedBy(var, cast<Expr>(*children)))
1070 return true;
1071
1072 return false;
1073 }
1074
1075 /// \brief Determine whether the given initializer is trivial in the sense
1076 /// that it requires no code to be generated.
isTrivialInitializer(const Expr * Init)1077 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1078 if (!Init)
1079 return true;
1080
1081 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1082 if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1083 if (Constructor->isTrivial() &&
1084 Constructor->isDefaultConstructor() &&
1085 !Construct->requiresZeroInitialization())
1086 return true;
1087
1088 return false;
1089 }
EmitAutoVarInit(const AutoVarEmission & emission)1090 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1091 assert(emission.Variable && "emission was not valid!");
1092
1093 // If this was emitted as a global constant, we're done.
1094 if (emission.wasEmittedAsGlobal()) return;
1095
1096 const VarDecl &D = *emission.Variable;
1097 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1098 QualType type = D.getType();
1099
1100 // If this local has an initializer, emit it now.
1101 const Expr *Init = D.getInit();
1102
1103 // If we are at an unreachable point, we don't need to emit the initializer
1104 // unless it contains a label.
1105 if (!HaveInsertPoint()) {
1106 if (!Init || !ContainsLabel(Init)) return;
1107 EnsureInsertPoint();
1108 }
1109
1110 // Initialize the structure of a __block variable.
1111 if (emission.IsByRef)
1112 emitByrefStructureInit(emission);
1113
1114 if (isTrivialInitializer(Init))
1115 return;
1116
1117 CharUnits alignment = emission.Alignment;
1118
1119 // Check whether this is a byref variable that's potentially
1120 // captured and moved by its own initializer. If so, we'll need to
1121 // emit the initializer first, then copy into the variable.
1122 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1123
1124 llvm::Value *Loc =
1125 capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1126
1127 llvm::Constant *constant = nullptr;
1128 if (emission.IsConstantAggregate || D.isConstexpr()) {
1129 assert(!capturedByInit && "constant init contains a capturing block?");
1130 constant = CGM.EmitConstantInit(D, this);
1131 }
1132
1133 if (!constant) {
1134 LValue lv = MakeAddrLValue(Loc, type, alignment);
1135 lv.setNonGC(true);
1136 return EmitExprAsInit(Init, &D, lv, capturedByInit);
1137 }
1138
1139 if (!emission.IsConstantAggregate) {
1140 // For simple scalar/complex initialization, store the value directly.
1141 LValue lv = MakeAddrLValue(Loc, type, alignment);
1142 lv.setNonGC(true);
1143 return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1144 }
1145
1146 // If this is a simple aggregate initialization, we can optimize it
1147 // in various ways.
1148 bool isVolatile = type.isVolatileQualified();
1149
1150 llvm::Value *SizeVal =
1151 llvm::ConstantInt::get(IntPtrTy,
1152 getContext().getTypeSizeInChars(type).getQuantity());
1153
1154 llvm::Type *BP = Int8PtrTy;
1155 if (Loc->getType() != BP)
1156 Loc = Builder.CreateBitCast(Loc, BP);
1157
1158 // If the initializer is all or mostly zeros, codegen with memset then do
1159 // a few stores afterward.
1160 if (shouldUseMemSetPlusStoresToInitialize(constant,
1161 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1162 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1163 alignment.getQuantity(), isVolatile);
1164 // Zero and undef don't require a stores.
1165 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1166 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1167 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1168 }
1169 } else {
1170 // Otherwise, create a temporary global with the initializer then
1171 // memcpy from the global to the alloca.
1172 std::string Name = getStaticDeclName(CGM, D);
1173 llvm::GlobalVariable *GV =
1174 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1175 llvm::GlobalValue::PrivateLinkage,
1176 constant, Name);
1177 GV->setAlignment(alignment.getQuantity());
1178 GV->setUnnamedAddr(true);
1179
1180 llvm::Value *SrcPtr = GV;
1181 if (SrcPtr->getType() != BP)
1182 SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1183
1184 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1185 isVolatile);
1186 }
1187 }
1188
1189 /// Emit an expression as an initializer for a variable at the given
1190 /// location. The expression is not necessarily the normal
1191 /// initializer for the variable, and the address is not necessarily
1192 /// its normal location.
1193 ///
1194 /// \param init the initializing expression
1195 /// \param var the variable to act as if we're initializing
1196 /// \param loc the address to initialize; its type is a pointer
1197 /// to the LLVM mapping of the variable's type
1198 /// \param alignment the alignment of the address
1199 /// \param capturedByInit true if the variable is a __block variable
1200 /// whose address is potentially changed by the initializer
EmitExprAsInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)1201 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1202 LValue lvalue, bool capturedByInit) {
1203 QualType type = D->getType();
1204
1205 if (type->isReferenceType()) {
1206 RValue rvalue = EmitReferenceBindingToExpr(init);
1207 if (capturedByInit)
1208 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1209 EmitStoreThroughLValue(rvalue, lvalue, true);
1210 return;
1211 }
1212 switch (getEvaluationKind(type)) {
1213 case TEK_Scalar:
1214 EmitScalarInit(init, D, lvalue, capturedByInit);
1215 return;
1216 case TEK_Complex: {
1217 ComplexPairTy complex = EmitComplexExpr(init);
1218 if (capturedByInit)
1219 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1220 EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1221 return;
1222 }
1223 case TEK_Aggregate:
1224 if (type->isAtomicType()) {
1225 EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1226 } else {
1227 // TODO: how can we delay here if D is captured by its initializer?
1228 EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1229 AggValueSlot::IsDestructed,
1230 AggValueSlot::DoesNotNeedGCBarriers,
1231 AggValueSlot::IsNotAliased));
1232 }
1233 return;
1234 }
1235 llvm_unreachable("bad evaluation kind");
1236 }
1237
1238 /// Enter a destroy cleanup for the given local variable.
emitAutoVarTypeCleanup(const CodeGenFunction::AutoVarEmission & emission,QualType::DestructionKind dtorKind)1239 void CodeGenFunction::emitAutoVarTypeCleanup(
1240 const CodeGenFunction::AutoVarEmission &emission,
1241 QualType::DestructionKind dtorKind) {
1242 assert(dtorKind != QualType::DK_none);
1243
1244 // Note that for __block variables, we want to destroy the
1245 // original stack object, not the possibly forwarded object.
1246 llvm::Value *addr = emission.getObjectAddress(*this);
1247
1248 const VarDecl *var = emission.Variable;
1249 QualType type = var->getType();
1250
1251 CleanupKind cleanupKind = NormalAndEHCleanup;
1252 CodeGenFunction::Destroyer *destroyer = nullptr;
1253
1254 switch (dtorKind) {
1255 case QualType::DK_none:
1256 llvm_unreachable("no cleanup for trivially-destructible variable");
1257
1258 case QualType::DK_cxx_destructor:
1259 // If there's an NRVO flag on the emission, we need a different
1260 // cleanup.
1261 if (emission.NRVOFlag) {
1262 assert(!type->isArrayType());
1263 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1264 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1265 emission.NRVOFlag);
1266 return;
1267 }
1268 break;
1269
1270 case QualType::DK_objc_strong_lifetime:
1271 // Suppress cleanups for pseudo-strong variables.
1272 if (var->isARCPseudoStrong()) return;
1273
1274 // Otherwise, consider whether to use an EH cleanup or not.
1275 cleanupKind = getARCCleanupKind();
1276
1277 // Use the imprecise destroyer by default.
1278 if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1279 destroyer = CodeGenFunction::destroyARCStrongImprecise;
1280 break;
1281
1282 case QualType::DK_objc_weak_lifetime:
1283 break;
1284 }
1285
1286 // If we haven't chosen a more specific destroyer, use the default.
1287 if (!destroyer) destroyer = getDestroyer(dtorKind);
1288
1289 // Use an EH cleanup in array destructors iff the destructor itself
1290 // is being pushed as an EH cleanup.
1291 bool useEHCleanup = (cleanupKind & EHCleanup);
1292 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1293 useEHCleanup);
1294 }
1295
EmitAutoVarCleanups(const AutoVarEmission & emission)1296 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1297 assert(emission.Variable && "emission was not valid!");
1298
1299 // If this was emitted as a global constant, we're done.
1300 if (emission.wasEmittedAsGlobal()) return;
1301
1302 // If we don't have an insertion point, we're done. Sema prevents
1303 // us from jumping into any of these scopes anyway.
1304 if (!HaveInsertPoint()) return;
1305
1306 const VarDecl &D = *emission.Variable;
1307
1308 // Make sure we call @llvm.lifetime.end. This needs to happen
1309 // *last*, so the cleanup needs to be pushed *first*.
1310 if (emission.useLifetimeMarkers()) {
1311 EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1312 emission.getAllocatedAddress(),
1313 emission.getSizeForLifetimeMarkers());
1314 }
1315
1316 // Check the type for a cleanup.
1317 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1318 emitAutoVarTypeCleanup(emission, dtorKind);
1319
1320 // In GC mode, honor objc_precise_lifetime.
1321 if (getLangOpts().getGC() != LangOptions::NonGC &&
1322 D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1323 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1324 }
1325
1326 // Handle the cleanup attribute.
1327 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1328 const FunctionDecl *FD = CA->getFunctionDecl();
1329
1330 llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1331 assert(F && "Could not find function!");
1332
1333 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1334 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1335 }
1336
1337 // If this is a block variable, call _Block_object_destroy
1338 // (on the unforwarded address).
1339 if (emission.IsByRef)
1340 enterByrefCleanup(emission);
1341 }
1342
1343 CodeGenFunction::Destroyer *
getDestroyer(QualType::DestructionKind kind)1344 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1345 switch (kind) {
1346 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1347 case QualType::DK_cxx_destructor:
1348 return destroyCXXObject;
1349 case QualType::DK_objc_strong_lifetime:
1350 return destroyARCStrongPrecise;
1351 case QualType::DK_objc_weak_lifetime:
1352 return destroyARCWeak;
1353 }
1354 llvm_unreachable("Unknown DestructionKind");
1355 }
1356
1357 /// pushEHDestroy - Push the standard destructor for the given type as
1358 /// an EH-only cleanup.
pushEHDestroy(QualType::DestructionKind dtorKind,llvm::Value * addr,QualType type)1359 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1360 llvm::Value *addr, QualType type) {
1361 assert(dtorKind && "cannot push destructor for trivial type");
1362 assert(needsEHCleanup(dtorKind));
1363
1364 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1365 }
1366
1367 /// pushDestroy - Push the standard destructor for the given type as
1368 /// at least a normal cleanup.
pushDestroy(QualType::DestructionKind dtorKind,llvm::Value * addr,QualType type)1369 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1370 llvm::Value *addr, QualType type) {
1371 assert(dtorKind && "cannot push destructor for trivial type");
1372
1373 CleanupKind cleanupKind = getCleanupKind(dtorKind);
1374 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1375 cleanupKind & EHCleanup);
1376 }
1377
pushDestroy(CleanupKind cleanupKind,llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1378 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1379 QualType type, Destroyer *destroyer,
1380 bool useEHCleanupForArray) {
1381 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1382 destroyer, useEHCleanupForArray);
1383 }
1384
pushStackRestore(CleanupKind Kind,llvm::Value * SPMem)1385 void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) {
1386 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1387 }
1388
pushLifetimeExtendedDestroy(CleanupKind cleanupKind,llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1389 void CodeGenFunction::pushLifetimeExtendedDestroy(
1390 CleanupKind cleanupKind, llvm::Value *addr, QualType type,
1391 Destroyer *destroyer, bool useEHCleanupForArray) {
1392 assert(!isInConditionalBranch() &&
1393 "performing lifetime extension from within conditional");
1394
1395 // Push an EH-only cleanup for the object now.
1396 // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1397 // around in case a temporary's destructor throws an exception.
1398 if (cleanupKind & EHCleanup)
1399 EHStack.pushCleanup<DestroyObject>(
1400 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1401 destroyer, useEHCleanupForArray);
1402
1403 // Remember that we need to push a full cleanup for the object at the
1404 // end of the full-expression.
1405 pushCleanupAfterFullExpr<DestroyObject>(
1406 cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1407 }
1408
1409 /// emitDestroy - Immediately perform the destruction of the given
1410 /// object.
1411 ///
1412 /// \param addr - the address of the object; a type*
1413 /// \param type - the type of the object; if an array type, all
1414 /// objects are destroyed in reverse order
1415 /// \param destroyer - the function to call to destroy individual
1416 /// elements
1417 /// \param useEHCleanupForArray - whether an EH cleanup should be
1418 /// used when destroying array elements, in case one of the
1419 /// destructions throws an exception
emitDestroy(llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1420 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1421 Destroyer *destroyer,
1422 bool useEHCleanupForArray) {
1423 const ArrayType *arrayType = getContext().getAsArrayType(type);
1424 if (!arrayType)
1425 return destroyer(*this, addr, type);
1426
1427 llvm::Value *begin = addr;
1428 llvm::Value *length = emitArrayLength(arrayType, type, begin);
1429
1430 // Normally we have to check whether the array is zero-length.
1431 bool checkZeroLength = true;
1432
1433 // But if the array length is constant, we can suppress that.
1434 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1435 // ...and if it's constant zero, we can just skip the entire thing.
1436 if (constLength->isZero()) return;
1437 checkZeroLength = false;
1438 }
1439
1440 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1441 emitArrayDestroy(begin, end, type, destroyer,
1442 checkZeroLength, useEHCleanupForArray);
1443 }
1444
1445 /// emitArrayDestroy - Destroys all the elements of the given array,
1446 /// beginning from last to first. The array cannot be zero-length.
1447 ///
1448 /// \param begin - a type* denoting the first element of the array
1449 /// \param end - a type* denoting one past the end of the array
1450 /// \param type - the element type of the array
1451 /// \param destroyer - the function to call to destroy elements
1452 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1453 /// the remaining elements in case the destruction of a single
1454 /// element throws
emitArrayDestroy(llvm::Value * begin,llvm::Value * end,QualType type,Destroyer * destroyer,bool checkZeroLength,bool useEHCleanup)1455 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1456 llvm::Value *end,
1457 QualType type,
1458 Destroyer *destroyer,
1459 bool checkZeroLength,
1460 bool useEHCleanup) {
1461 assert(!type->isArrayType());
1462
1463 // The basic structure here is a do-while loop, because we don't
1464 // need to check for the zero-element case.
1465 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1466 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1467
1468 if (checkZeroLength) {
1469 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1470 "arraydestroy.isempty");
1471 Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1472 }
1473
1474 // Enter the loop body, making that address the current address.
1475 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1476 EmitBlock(bodyBB);
1477 llvm::PHINode *elementPast =
1478 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1479 elementPast->addIncoming(end, entryBB);
1480
1481 // Shift the address back by one element.
1482 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1483 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1484 "arraydestroy.element");
1485
1486 if (useEHCleanup)
1487 pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1488
1489 // Perform the actual destruction there.
1490 destroyer(*this, element, type);
1491
1492 if (useEHCleanup)
1493 PopCleanupBlock();
1494
1495 // Check whether we've reached the end.
1496 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1497 Builder.CreateCondBr(done, doneBB, bodyBB);
1498 elementPast->addIncoming(element, Builder.GetInsertBlock());
1499
1500 // Done.
1501 EmitBlock(doneBB);
1502 }
1503
1504 /// Perform partial array destruction as if in an EH cleanup. Unlike
1505 /// emitArrayDestroy, the element type here may still be an array type.
emitPartialArrayDestroy(CodeGenFunction & CGF,llvm::Value * begin,llvm::Value * end,QualType type,CodeGenFunction::Destroyer * destroyer)1506 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1507 llvm::Value *begin, llvm::Value *end,
1508 QualType type,
1509 CodeGenFunction::Destroyer *destroyer) {
1510 // If the element type is itself an array, drill down.
1511 unsigned arrayDepth = 0;
1512 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1513 // VLAs don't require a GEP index to walk into.
1514 if (!isa<VariableArrayType>(arrayType))
1515 arrayDepth++;
1516 type = arrayType->getElementType();
1517 }
1518
1519 if (arrayDepth) {
1520 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1521
1522 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1523 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1524 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1525 }
1526
1527 // Destroy the array. We don't ever need an EH cleanup because we
1528 // assume that we're in an EH cleanup ourselves, so a throwing
1529 // destructor causes an immediate terminate.
1530 CGF.emitArrayDestroy(begin, end, type, destroyer,
1531 /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1532 }
1533
1534 namespace {
1535 /// RegularPartialArrayDestroy - a cleanup which performs a partial
1536 /// array destroy where the end pointer is regularly determined and
1537 /// does not need to be loaded from a local.
1538 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1539 llvm::Value *ArrayBegin;
1540 llvm::Value *ArrayEnd;
1541 QualType ElementType;
1542 CodeGenFunction::Destroyer *Destroyer;
1543 public:
RegularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,CodeGenFunction::Destroyer * destroyer)1544 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1545 QualType elementType,
1546 CodeGenFunction::Destroyer *destroyer)
1547 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1548 ElementType(elementType), Destroyer(destroyer) {}
1549
Emit(CodeGenFunction & CGF,Flags flags)1550 void Emit(CodeGenFunction &CGF, Flags flags) override {
1551 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1552 ElementType, Destroyer);
1553 }
1554 };
1555
1556 /// IrregularPartialArrayDestroy - a cleanup which performs a
1557 /// partial array destroy where the end pointer is irregularly
1558 /// determined and must be loaded from a local.
1559 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1560 llvm::Value *ArrayBegin;
1561 llvm::Value *ArrayEndPointer;
1562 QualType ElementType;
1563 CodeGenFunction::Destroyer *Destroyer;
1564 public:
IrregularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,CodeGenFunction::Destroyer * destroyer)1565 IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1566 llvm::Value *arrayEndPointer,
1567 QualType elementType,
1568 CodeGenFunction::Destroyer *destroyer)
1569 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1570 ElementType(elementType), Destroyer(destroyer) {}
1571
Emit(CodeGenFunction & CGF,Flags flags)1572 void Emit(CodeGenFunction &CGF, Flags flags) override {
1573 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1574 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1575 ElementType, Destroyer);
1576 }
1577 };
1578 }
1579
1580 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1581 /// already-constructed elements of the given array. The cleanup
1582 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1583 ///
1584 /// \param elementType - the immediate element type of the array;
1585 /// possibly still an array type
pushIrregularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,Destroyer * destroyer)1586 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1587 llvm::Value *arrayEndPointer,
1588 QualType elementType,
1589 Destroyer *destroyer) {
1590 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1591 arrayBegin, arrayEndPointer,
1592 elementType, destroyer);
1593 }
1594
1595 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1596 /// already-constructed elements of the given array. The cleanup
1597 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1598 ///
1599 /// \param elementType - the immediate element type of the array;
1600 /// possibly still an array type
pushRegularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,Destroyer * destroyer)1601 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1602 llvm::Value *arrayEnd,
1603 QualType elementType,
1604 Destroyer *destroyer) {
1605 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1606 arrayBegin, arrayEnd,
1607 elementType, destroyer);
1608 }
1609
1610 /// Lazily declare the @llvm.lifetime.start intrinsic.
getLLVMLifetimeStartFn()1611 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1612 if (LifetimeStartFn) return LifetimeStartFn;
1613 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1614 llvm::Intrinsic::lifetime_start);
1615 return LifetimeStartFn;
1616 }
1617
1618 /// Lazily declare the @llvm.lifetime.end intrinsic.
getLLVMLifetimeEndFn()1619 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1620 if (LifetimeEndFn) return LifetimeEndFn;
1621 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1622 llvm::Intrinsic::lifetime_end);
1623 return LifetimeEndFn;
1624 }
1625
1626 namespace {
1627 /// A cleanup to perform a release of an object at the end of a
1628 /// function. This is used to balance out the incoming +1 of a
1629 /// ns_consumed argument when we can't reasonably do that just by
1630 /// not doing the initial retain for a __block argument.
1631 struct ConsumeARCParameter : EHScopeStack::Cleanup {
ConsumeARCParameter__anonea743ae20311::ConsumeARCParameter1632 ConsumeARCParameter(llvm::Value *param,
1633 ARCPreciseLifetime_t precise)
1634 : Param(param), Precise(precise) {}
1635
1636 llvm::Value *Param;
1637 ARCPreciseLifetime_t Precise;
1638
Emit__anonea743ae20311::ConsumeARCParameter1639 void Emit(CodeGenFunction &CGF, Flags flags) override {
1640 CGF.EmitARCRelease(Param, Precise);
1641 }
1642 };
1643 }
1644
1645 /// Emit an alloca (or GlobalValue depending on target)
1646 /// for the specified parameter and set up LocalDeclMap.
EmitParmDecl(const VarDecl & D,llvm::Value * Arg,bool ArgIsPointer,unsigned ArgNo)1647 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1648 bool ArgIsPointer, unsigned ArgNo) {
1649 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1650 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1651 "Invalid argument to EmitParmDecl");
1652
1653 Arg->setName(D.getName());
1654
1655 QualType Ty = D.getType();
1656
1657 // Use better IR generation for certain implicit parameters.
1658 if (isa<ImplicitParamDecl>(D)) {
1659 // The only implicit argument a block has is its literal.
1660 if (BlockInfo) {
1661 LocalDeclMap[&D] = Arg;
1662 llvm::Value *LocalAddr = nullptr;
1663 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1664 // Allocate a stack slot to let the debug info survive the RA.
1665 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1666 D.getName() + ".addr");
1667 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1668 LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
1669 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1670 LocalAddr = Builder.CreateLoad(Alloc);
1671 }
1672
1673 if (CGDebugInfo *DI = getDebugInfo()) {
1674 if (CGM.getCodeGenOpts().getDebugInfo()
1675 >= CodeGenOptions::LimitedDebugInfo) {
1676 DI->setLocation(D.getLocation());
1677 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, ArgNo,
1678 LocalAddr, Builder);
1679 }
1680 }
1681
1682 return;
1683 }
1684 }
1685
1686 llvm::Value *DeclPtr;
1687 bool DoStore = false;
1688 bool IsScalar = hasScalarEvaluationKind(Ty);
1689 CharUnits Align = getContext().getDeclAlign(&D);
1690 // If we already have a pointer to the argument, reuse the input pointer.
1691 if (ArgIsPointer) {
1692 // If we have a prettier pointer type at this point, bitcast to that.
1693 unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace();
1694 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1695 DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy,
1696 D.getName());
1697 // Push a destructor cleanup for this parameter if the ABI requires it.
1698 // Don't push a cleanup in a thunk for a method that will also emit a
1699 // cleanup.
1700 if (!IsScalar && !CurFuncIsThunk &&
1701 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1702 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1703 if (RD && RD->hasNonTrivialDestructor())
1704 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1705 }
1706 } else {
1707 // Otherwise, create a temporary to hold the value.
1708 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1709 D.getName() + ".addr");
1710 Alloc->setAlignment(Align.getQuantity());
1711 DeclPtr = Alloc;
1712 DoStore = true;
1713 }
1714
1715 LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
1716 if (IsScalar) {
1717 Qualifiers qs = Ty.getQualifiers();
1718 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1719 // We honor __attribute__((ns_consumed)) for types with lifetime.
1720 // For __strong, it's handled by just skipping the initial retain;
1721 // otherwise we have to balance out the initial +1 with an extra
1722 // cleanup to do the release at the end of the function.
1723 bool isConsumed = D.hasAttr<NSConsumedAttr>();
1724
1725 // 'self' is always formally __strong, but if this is not an
1726 // init method then we don't want to retain it.
1727 if (D.isARCPseudoStrong()) {
1728 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1729 assert(&D == method->getSelfDecl());
1730 assert(lt == Qualifiers::OCL_Strong);
1731 assert(qs.hasConst());
1732 assert(method->getMethodFamily() != OMF_init);
1733 (void) method;
1734 lt = Qualifiers::OCL_ExplicitNone;
1735 }
1736
1737 if (lt == Qualifiers::OCL_Strong) {
1738 if (!isConsumed) {
1739 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1740 // use objc_storeStrong(&dest, value) for retaining the
1741 // object. But first, store a null into 'dest' because
1742 // objc_storeStrong attempts to release its old value.
1743 llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1744 EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1745 EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
1746 DoStore = false;
1747 }
1748 else
1749 // Don't use objc_retainBlock for block pointers, because we
1750 // don't want to Block_copy something just because we got it
1751 // as a parameter.
1752 Arg = EmitARCRetainNonBlock(Arg);
1753 }
1754 } else {
1755 // Push the cleanup for a consumed parameter.
1756 if (isConsumed) {
1757 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1758 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1759 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
1760 precise);
1761 }
1762
1763 if (lt == Qualifiers::OCL_Weak) {
1764 EmitARCInitWeak(DeclPtr, Arg);
1765 DoStore = false; // The weak init is a store, no need to do two.
1766 }
1767 }
1768
1769 // Enter the cleanup scope.
1770 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1771 }
1772 }
1773
1774 // Store the initial value into the alloca.
1775 if (DoStore)
1776 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1777
1778 llvm::Value *&DMEntry = LocalDeclMap[&D];
1779 assert(!DMEntry && "Decl already exists in localdeclmap!");
1780 DMEntry = DeclPtr;
1781
1782 // Emit debug info for param declaration.
1783 if (CGDebugInfo *DI = getDebugInfo()) {
1784 if (CGM.getCodeGenOpts().getDebugInfo()
1785 >= CodeGenOptions::LimitedDebugInfo) {
1786 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1787 }
1788 }
1789
1790 if (D.hasAttr<AnnotateAttr>())
1791 EmitVarAnnotations(&D, DeclPtr);
1792 }
1793