• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2  //
3  //                     The LLVM Compiler Infrastructure
4  //
5  // This file is distributed under the University of Illinois Open Source
6  // License. See LICENSE.TXT for details.
7  //
8  //===----------------------------------------------------------------------===//
9  //
10  //  This file implements the ASTContext interface.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "clang/AST/ASTContext.h"
15  #include "CXXABI.h"
16  #include "clang/AST/ASTMutationListener.h"
17  #include "clang/AST/Attr.h"
18  #include "clang/AST/CharUnits.h"
19  #include "clang/AST/Comment.h"
20  #include "clang/AST/CommentCommandTraits.h"
21  #include "clang/AST/DeclCXX.h"
22  #include "clang/AST/DeclObjC.h"
23  #include "clang/AST/DeclTemplate.h"
24  #include "clang/AST/Expr.h"
25  #include "clang/AST/ExprCXX.h"
26  #include "clang/AST/ExternalASTSource.h"
27  #include "clang/AST/Mangle.h"
28  #include "clang/AST/MangleNumberingContext.h"
29  #include "clang/AST/RecordLayout.h"
30  #include "clang/AST/RecursiveASTVisitor.h"
31  #include "clang/AST/TypeLoc.h"
32  #include "clang/AST/VTableBuilder.h"
33  #include "clang/Basic/Builtins.h"
34  #include "clang/Basic/SourceManager.h"
35  #include "clang/Basic/TargetInfo.h"
36  #include "llvm/ADT/SmallString.h"
37  #include "llvm/ADT/StringExtras.h"
38  #include "llvm/ADT/Triple.h"
39  #include "llvm/Support/Capacity.h"
40  #include "llvm/Support/MathExtras.h"
41  #include "llvm/Support/raw_ostream.h"
42  #include <map>
43  
44  using namespace clang;
45  
46  unsigned ASTContext::NumImplicitDefaultConstructors;
47  unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
48  unsigned ASTContext::NumImplicitCopyConstructors;
49  unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
50  unsigned ASTContext::NumImplicitMoveConstructors;
51  unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
52  unsigned ASTContext::NumImplicitCopyAssignmentOperators;
53  unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
54  unsigned ASTContext::NumImplicitMoveAssignmentOperators;
55  unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
56  unsigned ASTContext::NumImplicitDestructors;
57  unsigned ASTContext::NumImplicitDestructorsDeclared;
58  
59  enum FloatingRank {
60    HalfRank, FloatRank, DoubleRank, LongDoubleRank
61  };
62  
getRawCommentForDeclNoCache(const Decl * D) const63  RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
64    if (!CommentsLoaded && ExternalSource) {
65      ExternalSource->ReadComments();
66  
67  #ifndef NDEBUG
68      ArrayRef<RawComment *> RawComments = Comments.getComments();
69      assert(std::is_sorted(RawComments.begin(), RawComments.end(),
70                            BeforeThanCompare<RawComment>(SourceMgr)));
71  #endif
72  
73      CommentsLoaded = true;
74    }
75  
76    assert(D);
77  
78    // User can not attach documentation to implicit declarations.
79    if (D->isImplicit())
80      return nullptr;
81  
82    // User can not attach documentation to implicit instantiations.
83    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
84      if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85        return nullptr;
86    }
87  
88    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
89      if (VD->isStaticDataMember() &&
90          VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
91        return nullptr;
92    }
93  
94    if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
95      if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
96        return nullptr;
97    }
98  
99    if (const ClassTemplateSpecializationDecl *CTSD =
100            dyn_cast<ClassTemplateSpecializationDecl>(D)) {
101      TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
102      if (TSK == TSK_ImplicitInstantiation ||
103          TSK == TSK_Undeclared)
104        return nullptr;
105    }
106  
107    if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
108      if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
109        return nullptr;
110    }
111    if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
112      // When tag declaration (but not definition!) is part of the
113      // decl-specifier-seq of some other declaration, it doesn't get comment
114      if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
115        return nullptr;
116    }
117    // TODO: handle comments for function parameters properly.
118    if (isa<ParmVarDecl>(D))
119      return nullptr;
120  
121    // TODO: we could look up template parameter documentation in the template
122    // documentation.
123    if (isa<TemplateTypeParmDecl>(D) ||
124        isa<NonTypeTemplateParmDecl>(D) ||
125        isa<TemplateTemplateParmDecl>(D))
126      return nullptr;
127  
128    ArrayRef<RawComment *> RawComments = Comments.getComments();
129  
130    // If there are no comments anywhere, we won't find anything.
131    if (RawComments.empty())
132      return nullptr;
133  
134    // Find declaration location.
135    // For Objective-C declarations we generally don't expect to have multiple
136    // declarators, thus use declaration starting location as the "declaration
137    // location".
138    // For all other declarations multiple declarators are used quite frequently,
139    // so we use the location of the identifier as the "declaration location".
140    SourceLocation DeclLoc;
141    if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
142        isa<ObjCPropertyDecl>(D) ||
143        isa<RedeclarableTemplateDecl>(D) ||
144        isa<ClassTemplateSpecializationDecl>(D))
145      DeclLoc = D->getLocStart();
146    else {
147      DeclLoc = D->getLocation();
148      if (DeclLoc.isMacroID()) {
149        if (isa<TypedefDecl>(D)) {
150          // If location of the typedef name is in a macro, it is because being
151          // declared via a macro. Try using declaration's starting location as
152          // the "declaration location".
153          DeclLoc = D->getLocStart();
154        } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
155          // If location of the tag decl is inside a macro, but the spelling of
156          // the tag name comes from a macro argument, it looks like a special
157          // macro like NS_ENUM is being used to define the tag decl.  In that
158          // case, adjust the source location to the expansion loc so that we can
159          // attach the comment to the tag decl.
160          if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
161              TD->isCompleteDefinition())
162            DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
163        }
164      }
165    }
166  
167    // If the declaration doesn't map directly to a location in a file, we
168    // can't find the comment.
169    if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
170      return nullptr;
171  
172    // Find the comment that occurs just after this declaration.
173    ArrayRef<RawComment *>::iterator Comment;
174    {
175      // When searching for comments during parsing, the comment we are looking
176      // for is usually among the last two comments we parsed -- check them
177      // first.
178      RawComment CommentAtDeclLoc(
179          SourceMgr, SourceRange(DeclLoc), false,
180          LangOpts.CommentOpts.ParseAllComments);
181      BeforeThanCompare<RawComment> Compare(SourceMgr);
182      ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
183      bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
184      if (!Found && RawComments.size() >= 2) {
185        MaybeBeforeDecl--;
186        Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
187      }
188  
189      if (Found) {
190        Comment = MaybeBeforeDecl + 1;
191        assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
192                                           &CommentAtDeclLoc, Compare));
193      } else {
194        // Slow path.
195        Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
196                                   &CommentAtDeclLoc, Compare);
197      }
198    }
199  
200    // Decompose the location for the declaration and find the beginning of the
201    // file buffer.
202    std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
203  
204    // First check whether we have a trailing comment.
205    if (Comment != RawComments.end() &&
206        (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
207        (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
208         isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
209      std::pair<FileID, unsigned> CommentBeginDecomp
210        = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
211      // Check that Doxygen trailing comment comes after the declaration, starts
212      // on the same line and in the same file as the declaration.
213      if (DeclLocDecomp.first == CommentBeginDecomp.first &&
214          SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
215            == SourceMgr.getLineNumber(CommentBeginDecomp.first,
216                                       CommentBeginDecomp.second)) {
217        return *Comment;
218      }
219    }
220  
221    // The comment just after the declaration was not a trailing comment.
222    // Let's look at the previous comment.
223    if (Comment == RawComments.begin())
224      return nullptr;
225    --Comment;
226  
227    // Check that we actually have a non-member Doxygen comment.
228    if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
229      return nullptr;
230  
231    // Decompose the end of the comment.
232    std::pair<FileID, unsigned> CommentEndDecomp
233      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
234  
235    // If the comment and the declaration aren't in the same file, then they
236    // aren't related.
237    if (DeclLocDecomp.first != CommentEndDecomp.first)
238      return nullptr;
239  
240    // Get the corresponding buffer.
241    bool Invalid = false;
242    const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
243                                                 &Invalid).data();
244    if (Invalid)
245      return nullptr;
246  
247    // Extract text between the comment and declaration.
248    StringRef Text(Buffer + CommentEndDecomp.second,
249                   DeclLocDecomp.second - CommentEndDecomp.second);
250  
251    // There should be no other declarations or preprocessor directives between
252    // comment and declaration.
253    if (Text.find_first_of(";{}#@") != StringRef::npos)
254      return nullptr;
255  
256    return *Comment;
257  }
258  
259  namespace {
260  /// If we have a 'templated' declaration for a template, adjust 'D' to
261  /// refer to the actual template.
262  /// If we have an implicit instantiation, adjust 'D' to refer to template.
adjustDeclToTemplate(const Decl * D)263  const Decl *adjustDeclToTemplate(const Decl *D) {
264    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
265      // Is this function declaration part of a function template?
266      if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
267        return FTD;
268  
269      // Nothing to do if function is not an implicit instantiation.
270      if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
271        return D;
272  
273      // Function is an implicit instantiation of a function template?
274      if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
275        return FTD;
276  
277      // Function is instantiated from a member definition of a class template?
278      if (const FunctionDecl *MemberDecl =
279              FD->getInstantiatedFromMemberFunction())
280        return MemberDecl;
281  
282      return D;
283    }
284    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
285      // Static data member is instantiated from a member definition of a class
286      // template?
287      if (VD->isStaticDataMember())
288        if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
289          return MemberDecl;
290  
291      return D;
292    }
293    if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
294      // Is this class declaration part of a class template?
295      if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
296        return CTD;
297  
298      // Class is an implicit instantiation of a class template or partial
299      // specialization?
300      if (const ClassTemplateSpecializationDecl *CTSD =
301              dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
302        if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
303          return D;
304        llvm::PointerUnion<ClassTemplateDecl *,
305                           ClassTemplatePartialSpecializationDecl *>
306            PU = CTSD->getSpecializedTemplateOrPartial();
307        return PU.is<ClassTemplateDecl*>() ?
308            static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
309            static_cast<const Decl*>(
310                PU.get<ClassTemplatePartialSpecializationDecl *>());
311      }
312  
313      // Class is instantiated from a member definition of a class template?
314      if (const MemberSpecializationInfo *Info =
315                     CRD->getMemberSpecializationInfo())
316        return Info->getInstantiatedFrom();
317  
318      return D;
319    }
320    if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
321      // Enum is instantiated from a member definition of a class template?
322      if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
323        return MemberDecl;
324  
325      return D;
326    }
327    // FIXME: Adjust alias templates?
328    return D;
329  }
330  } // unnamed namespace
331  
getRawCommentForAnyRedecl(const Decl * D,const Decl ** OriginalDecl) const332  const RawComment *ASTContext::getRawCommentForAnyRedecl(
333                                                  const Decl *D,
334                                                  const Decl **OriginalDecl) const {
335    D = adjustDeclToTemplate(D);
336  
337    // Check whether we have cached a comment for this declaration already.
338    {
339      llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
340          RedeclComments.find(D);
341      if (Pos != RedeclComments.end()) {
342        const RawCommentAndCacheFlags &Raw = Pos->second;
343        if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
344          if (OriginalDecl)
345            *OriginalDecl = Raw.getOriginalDecl();
346          return Raw.getRaw();
347        }
348      }
349    }
350  
351    // Search for comments attached to declarations in the redeclaration chain.
352    const RawComment *RC = nullptr;
353    const Decl *OriginalDeclForRC = nullptr;
354    for (auto I : D->redecls()) {
355      llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
356          RedeclComments.find(I);
357      if (Pos != RedeclComments.end()) {
358        const RawCommentAndCacheFlags &Raw = Pos->second;
359        if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
360          RC = Raw.getRaw();
361          OriginalDeclForRC = Raw.getOriginalDecl();
362          break;
363        }
364      } else {
365        RC = getRawCommentForDeclNoCache(I);
366        OriginalDeclForRC = I;
367        RawCommentAndCacheFlags Raw;
368        if (RC) {
369          Raw.setRaw(RC);
370          Raw.setKind(RawCommentAndCacheFlags::FromDecl);
371        } else
372          Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
373        Raw.setOriginalDecl(I);
374        RedeclComments[I] = Raw;
375        if (RC)
376          break;
377      }
378    }
379  
380    // If we found a comment, it should be a documentation comment.
381    assert(!RC || RC->isDocumentation());
382  
383    if (OriginalDecl)
384      *OriginalDecl = OriginalDeclForRC;
385  
386    // Update cache for every declaration in the redeclaration chain.
387    RawCommentAndCacheFlags Raw;
388    Raw.setRaw(RC);
389    Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
390    Raw.setOriginalDecl(OriginalDeclForRC);
391  
392    for (auto I : D->redecls()) {
393      RawCommentAndCacheFlags &R = RedeclComments[I];
394      if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
395        R = Raw;
396    }
397  
398    return RC;
399  }
400  
addRedeclaredMethods(const ObjCMethodDecl * ObjCMethod,SmallVectorImpl<const NamedDecl * > & Redeclared)401  static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
402                     SmallVectorImpl<const NamedDecl *> &Redeclared) {
403    const DeclContext *DC = ObjCMethod->getDeclContext();
404    if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
405      const ObjCInterfaceDecl *ID = IMD->getClassInterface();
406      if (!ID)
407        return;
408      // Add redeclared method here.
409      for (const auto *Ext : ID->known_extensions()) {
410        if (ObjCMethodDecl *RedeclaredMethod =
411              Ext->getMethod(ObjCMethod->getSelector(),
412                                    ObjCMethod->isInstanceMethod()))
413          Redeclared.push_back(RedeclaredMethod);
414      }
415    }
416  }
417  
cloneFullComment(comments::FullComment * FC,const Decl * D) const418  comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
419                                                      const Decl *D) const {
420    comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
421    ThisDeclInfo->CommentDecl = D;
422    ThisDeclInfo->IsFilled = false;
423    ThisDeclInfo->fill();
424    ThisDeclInfo->CommentDecl = FC->getDecl();
425    if (!ThisDeclInfo->TemplateParameters)
426      ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
427    comments::FullComment *CFC =
428      new (*this) comments::FullComment(FC->getBlocks(),
429                                        ThisDeclInfo);
430    return CFC;
431  
432  }
433  
getLocalCommentForDeclUncached(const Decl * D) const434  comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
435    const RawComment *RC = getRawCommentForDeclNoCache(D);
436    return RC ? RC->parse(*this, nullptr, D) : nullptr;
437  }
438  
getCommentForDecl(const Decl * D,const Preprocessor * PP) const439  comments::FullComment *ASTContext::getCommentForDecl(
440                                                const Decl *D,
441                                                const Preprocessor *PP) const {
442    if (D->isInvalidDecl())
443      return nullptr;
444    D = adjustDeclToTemplate(D);
445  
446    const Decl *Canonical = D->getCanonicalDecl();
447    llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
448        ParsedComments.find(Canonical);
449  
450    if (Pos != ParsedComments.end()) {
451      if (Canonical != D) {
452        comments::FullComment *FC = Pos->second;
453        comments::FullComment *CFC = cloneFullComment(FC, D);
454        return CFC;
455      }
456      return Pos->second;
457    }
458  
459    const Decl *OriginalDecl;
460  
461    const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
462    if (!RC) {
463      if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
464        SmallVector<const NamedDecl*, 8> Overridden;
465        const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
466        if (OMD && OMD->isPropertyAccessor())
467          if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
468            if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
469              return cloneFullComment(FC, D);
470        if (OMD)
471          addRedeclaredMethods(OMD, Overridden);
472        getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
473        for (unsigned i = 0, e = Overridden.size(); i < e; i++)
474          if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
475            return cloneFullComment(FC, D);
476      }
477      else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
478        // Attach any tag type's documentation to its typedef if latter
479        // does not have one of its own.
480        QualType QT = TD->getUnderlyingType();
481        if (const TagType *TT = QT->getAs<TagType>())
482          if (const Decl *TD = TT->getDecl())
483            if (comments::FullComment *FC = getCommentForDecl(TD, PP))
484              return cloneFullComment(FC, D);
485      }
486      else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
487        while (IC->getSuperClass()) {
488          IC = IC->getSuperClass();
489          if (comments::FullComment *FC = getCommentForDecl(IC, PP))
490            return cloneFullComment(FC, D);
491        }
492      }
493      else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
494        if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
495          if (comments::FullComment *FC = getCommentForDecl(IC, PP))
496            return cloneFullComment(FC, D);
497      }
498      else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
499        if (!(RD = RD->getDefinition()))
500          return nullptr;
501        // Check non-virtual bases.
502        for (const auto &I : RD->bases()) {
503          if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
504            continue;
505          QualType Ty = I.getType();
506          if (Ty.isNull())
507            continue;
508          if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
509            if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
510              continue;
511  
512            if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
513              return cloneFullComment(FC, D);
514          }
515        }
516        // Check virtual bases.
517        for (const auto &I : RD->vbases()) {
518          if (I.getAccessSpecifier() != AS_public)
519            continue;
520          QualType Ty = I.getType();
521          if (Ty.isNull())
522            continue;
523          if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
524            if (!(VirtualBase= VirtualBase->getDefinition()))
525              continue;
526            if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
527              return cloneFullComment(FC, D);
528          }
529        }
530      }
531      return nullptr;
532    }
533  
534    // If the RawComment was attached to other redeclaration of this Decl, we
535    // should parse the comment in context of that other Decl.  This is important
536    // because comments can contain references to parameter names which can be
537    // different across redeclarations.
538    if (D != OriginalDecl)
539      return getCommentForDecl(OriginalDecl, PP);
540  
541    comments::FullComment *FC = RC->parse(*this, PP, D);
542    ParsedComments[Canonical] = FC;
543    return FC;
544  }
545  
546  void
Profile(llvm::FoldingSetNodeID & ID,TemplateTemplateParmDecl * Parm)547  ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
548                                                 TemplateTemplateParmDecl *Parm) {
549    ID.AddInteger(Parm->getDepth());
550    ID.AddInteger(Parm->getPosition());
551    ID.AddBoolean(Parm->isParameterPack());
552  
553    TemplateParameterList *Params = Parm->getTemplateParameters();
554    ID.AddInteger(Params->size());
555    for (TemplateParameterList::const_iterator P = Params->begin(),
556                                            PEnd = Params->end();
557         P != PEnd; ++P) {
558      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
559        ID.AddInteger(0);
560        ID.AddBoolean(TTP->isParameterPack());
561        continue;
562      }
563  
564      if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
565        ID.AddInteger(1);
566        ID.AddBoolean(NTTP->isParameterPack());
567        ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
568        if (NTTP->isExpandedParameterPack()) {
569          ID.AddBoolean(true);
570          ID.AddInteger(NTTP->getNumExpansionTypes());
571          for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
572            QualType T = NTTP->getExpansionType(I);
573            ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
574          }
575        } else
576          ID.AddBoolean(false);
577        continue;
578      }
579  
580      TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
581      ID.AddInteger(2);
582      Profile(ID, TTP);
583    }
584  }
585  
586  TemplateTemplateParmDecl *
getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl * TTP) const587  ASTContext::getCanonicalTemplateTemplateParmDecl(
588                                            TemplateTemplateParmDecl *TTP) const {
589    // Check if we already have a canonical template template parameter.
590    llvm::FoldingSetNodeID ID;
591    CanonicalTemplateTemplateParm::Profile(ID, TTP);
592    void *InsertPos = nullptr;
593    CanonicalTemplateTemplateParm *Canonical
594      = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
595    if (Canonical)
596      return Canonical->getParam();
597  
598    // Build a canonical template parameter list.
599    TemplateParameterList *Params = TTP->getTemplateParameters();
600    SmallVector<NamedDecl *, 4> CanonParams;
601    CanonParams.reserve(Params->size());
602    for (TemplateParameterList::const_iterator P = Params->begin(),
603                                            PEnd = Params->end();
604         P != PEnd; ++P) {
605      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
606        CanonParams.push_back(
607                    TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
608                                                 SourceLocation(),
609                                                 SourceLocation(),
610                                                 TTP->getDepth(),
611                                                 TTP->getIndex(), nullptr, false,
612                                                 TTP->isParameterPack()));
613      else if (NonTypeTemplateParmDecl *NTTP
614               = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
615        QualType T = getCanonicalType(NTTP->getType());
616        TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
617        NonTypeTemplateParmDecl *Param;
618        if (NTTP->isExpandedParameterPack()) {
619          SmallVector<QualType, 2> ExpandedTypes;
620          SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
621          for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
622            ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
623            ExpandedTInfos.push_back(
624                                  getTrivialTypeSourceInfo(ExpandedTypes.back()));
625          }
626  
627          Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
628                                                  SourceLocation(),
629                                                  SourceLocation(),
630                                                  NTTP->getDepth(),
631                                                  NTTP->getPosition(), nullptr,
632                                                  T,
633                                                  TInfo,
634                                                  ExpandedTypes.data(),
635                                                  ExpandedTypes.size(),
636                                                  ExpandedTInfos.data());
637        } else {
638          Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
639                                                  SourceLocation(),
640                                                  SourceLocation(),
641                                                  NTTP->getDepth(),
642                                                  NTTP->getPosition(), nullptr,
643                                                  T,
644                                                  NTTP->isParameterPack(),
645                                                  TInfo);
646        }
647        CanonParams.push_back(Param);
648  
649      } else
650        CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
651                                             cast<TemplateTemplateParmDecl>(*P)));
652    }
653  
654    TemplateTemplateParmDecl *CanonTTP
655      = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
656                                         SourceLocation(), TTP->getDepth(),
657                                         TTP->getPosition(),
658                                         TTP->isParameterPack(),
659                                         nullptr,
660                           TemplateParameterList::Create(*this, SourceLocation(),
661                                                         SourceLocation(),
662                                                         CanonParams.data(),
663                                                         CanonParams.size(),
664                                                         SourceLocation()));
665  
666    // Get the new insert position for the node we care about.
667    Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
668    assert(!Canonical && "Shouldn't be in the map!");
669    (void)Canonical;
670  
671    // Create the canonical template template parameter entry.
672    Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
673    CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
674    return CanonTTP;
675  }
676  
createCXXABI(const TargetInfo & T)677  CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
678    if (!LangOpts.CPlusPlus) return nullptr;
679  
680    switch (T.getCXXABI().getKind()) {
681    case TargetCXXABI::GenericARM: // Same as Itanium at this level
682    case TargetCXXABI::iOS:
683    case TargetCXXABI::iOS64:
684    case TargetCXXABI::GenericAArch64:
685    case TargetCXXABI::GenericMIPS:
686    case TargetCXXABI::GenericItanium:
687      return CreateItaniumCXXABI(*this);
688    case TargetCXXABI::Microsoft:
689      return CreateMicrosoftCXXABI(*this);
690    }
691    llvm_unreachable("Invalid CXXABI type!");
692  }
693  
getAddressSpaceMap(const TargetInfo & T,const LangOptions & LOpts)694  static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
695                                               const LangOptions &LOpts) {
696    if (LOpts.FakeAddressSpaceMap) {
697      // The fake address space map must have a distinct entry for each
698      // language-specific address space.
699      static const unsigned FakeAddrSpaceMap[] = {
700        1, // opencl_global
701        2, // opencl_local
702        3, // opencl_constant
703        4, // opencl_generic
704        5, // cuda_device
705        6, // cuda_constant
706        7  // cuda_shared
707      };
708      return &FakeAddrSpaceMap;
709    } else {
710      return &T.getAddressSpaceMap();
711    }
712  }
713  
isAddrSpaceMapManglingEnabled(const TargetInfo & TI,const LangOptions & LangOpts)714  static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
715                                            const LangOptions &LangOpts) {
716    switch (LangOpts.getAddressSpaceMapMangling()) {
717    case LangOptions::ASMM_Target:
718      return TI.useAddressSpaceMapMangling();
719    case LangOptions::ASMM_On:
720      return true;
721    case LangOptions::ASMM_Off:
722      return false;
723    }
724    llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
725  }
726  
ASTContext(LangOptions & LOpts,SourceManager & SM,IdentifierTable & idents,SelectorTable & sels,Builtin::Context & builtins)727  ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
728                         IdentifierTable &idents, SelectorTable &sels,
729                         Builtin::Context &builtins)
730      : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()),
731        DependentTemplateSpecializationTypes(this_()),
732        SubstTemplateTemplateParmPacks(this_()),
733        GlobalNestedNameSpecifier(nullptr), Int128Decl(nullptr),
734        UInt128Decl(nullptr), Float128StubDecl(nullptr),
735        BuiltinVaListDecl(nullptr), ObjCIdDecl(nullptr), ObjCSelDecl(nullptr),
736        ObjCClassDecl(nullptr), ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr),
737        CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr),
738        FILEDecl(nullptr), jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr),
739        ucontext_tDecl(nullptr), BlockDescriptorType(nullptr),
740        BlockDescriptorExtendedType(nullptr), cudaConfigureCallDecl(nullptr),
741        FirstLocalImport(), LastLocalImport(), ExternCContext(nullptr),
742        SourceMgr(SM), LangOpts(LOpts),
743        SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
744        AddrSpaceMap(nullptr), Target(nullptr), PrintingPolicy(LOpts),
745        Idents(idents), Selectors(sels), BuiltinInfo(builtins),
746        DeclarationNames(*this), ExternalSource(nullptr), Listener(nullptr),
747        Comments(SM), CommentsLoaded(false),
748        CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), LastSDM(nullptr, 0) {
749    TUDecl = TranslationUnitDecl::Create(*this);
750  }
751  
~ASTContext()752  ASTContext::~ASTContext() {
753    ReleaseParentMapEntries();
754  
755    // Release the DenseMaps associated with DeclContext objects.
756    // FIXME: Is this the ideal solution?
757    ReleaseDeclContextMaps();
758  
759    // Call all of the deallocation functions on all of their targets.
760    for (DeallocationMap::const_iterator I = Deallocations.begin(),
761             E = Deallocations.end(); I != E; ++I)
762      for (unsigned J = 0, N = I->second.size(); J != N; ++J)
763        (I->first)((I->second)[J]);
764  
765    // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
766    // because they can contain DenseMaps.
767    for (llvm::DenseMap<const ObjCContainerDecl*,
768         const ASTRecordLayout*>::iterator
769         I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
770      // Increment in loop to prevent using deallocated memory.
771      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
772        R->Destroy(*this);
773  
774    for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
775         I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
776      // Increment in loop to prevent using deallocated memory.
777      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
778        R->Destroy(*this);
779    }
780  
781    for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
782                                                      AEnd = DeclAttrs.end();
783         A != AEnd; ++A)
784      A->second->~AttrVec();
785  
786    llvm::DeleteContainerSeconds(MangleNumberingContexts);
787  }
788  
ReleaseParentMapEntries()789  void ASTContext::ReleaseParentMapEntries() {
790    if (!AllParents) return;
791    for (const auto &Entry : *AllParents) {
792      if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
793        delete Entry.second.get<ast_type_traits::DynTypedNode *>();
794      } else {
795        assert(Entry.second.is<ParentVector *>());
796        delete Entry.second.get<ParentVector *>();
797      }
798    }
799  }
800  
AddDeallocation(void (* Callback)(void *),void * Data)801  void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
802    Deallocations[Callback].push_back(Data);
803  }
804  
805  void
setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source)806  ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
807    ExternalSource = Source;
808  }
809  
PrintStats() const810  void ASTContext::PrintStats() const {
811    llvm::errs() << "\n*** AST Context Stats:\n";
812    llvm::errs() << "  " << Types.size() << " types total.\n";
813  
814    unsigned counts[] = {
815  #define TYPE(Name, Parent) 0,
816  #define ABSTRACT_TYPE(Name, Parent)
817  #include "clang/AST/TypeNodes.def"
818      0 // Extra
819    };
820  
821    for (unsigned i = 0, e = Types.size(); i != e; ++i) {
822      Type *T = Types[i];
823      counts[(unsigned)T->getTypeClass()]++;
824    }
825  
826    unsigned Idx = 0;
827    unsigned TotalBytes = 0;
828  #define TYPE(Name, Parent)                                              \
829    if (counts[Idx])                                                      \
830      llvm::errs() << "    " << counts[Idx] << " " << #Name               \
831                   << " types\n";                                         \
832    TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
833    ++Idx;
834  #define ABSTRACT_TYPE(Name, Parent)
835  #include "clang/AST/TypeNodes.def"
836  
837    llvm::errs() << "Total bytes = " << TotalBytes << "\n";
838  
839    // Implicit special member functions.
840    llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
841                 << NumImplicitDefaultConstructors
842                 << " implicit default constructors created\n";
843    llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
844                 << NumImplicitCopyConstructors
845                 << " implicit copy constructors created\n";
846    if (getLangOpts().CPlusPlus)
847      llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
848                   << NumImplicitMoveConstructors
849                   << " implicit move constructors created\n";
850    llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
851                 << NumImplicitCopyAssignmentOperators
852                 << " implicit copy assignment operators created\n";
853    if (getLangOpts().CPlusPlus)
854      llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
855                   << NumImplicitMoveAssignmentOperators
856                   << " implicit move assignment operators created\n";
857    llvm::errs() << NumImplicitDestructorsDeclared << "/"
858                 << NumImplicitDestructors
859                 << " implicit destructors created\n";
860  
861    if (ExternalSource) {
862      llvm::errs() << "\n";
863      ExternalSource->PrintStats();
864    }
865  
866    BumpAlloc.PrintStats();
867  }
868  
getExternCContextDecl() const869  ExternCContextDecl *ASTContext::getExternCContextDecl() const {
870    if (!ExternCContext)
871      ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
872  
873    return ExternCContext;
874  }
875  
buildImplicitRecord(StringRef Name,RecordDecl::TagKind TK) const876  RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
877                                              RecordDecl::TagKind TK) const {
878    SourceLocation Loc;
879    RecordDecl *NewDecl;
880    if (getLangOpts().CPlusPlus)
881      NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
882                                      Loc, &Idents.get(Name));
883    else
884      NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
885                                   &Idents.get(Name));
886    NewDecl->setImplicit();
887    NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
888        const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
889    return NewDecl;
890  }
891  
buildImplicitTypedef(QualType T,StringRef Name) const892  TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
893                                                StringRef Name) const {
894    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
895    TypedefDecl *NewDecl = TypedefDecl::Create(
896        const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
897        SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
898    NewDecl->setImplicit();
899    return NewDecl;
900  }
901  
getInt128Decl() const902  TypedefDecl *ASTContext::getInt128Decl() const {
903    if (!Int128Decl)
904      Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
905    return Int128Decl;
906  }
907  
getUInt128Decl() const908  TypedefDecl *ASTContext::getUInt128Decl() const {
909    if (!UInt128Decl)
910      UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
911    return UInt128Decl;
912  }
913  
getFloat128StubType() const914  TypeDecl *ASTContext::getFloat128StubType() const {
915    assert(LangOpts.CPlusPlus && "should only be called for c++");
916    if (!Float128StubDecl)
917      Float128StubDecl = buildImplicitRecord("__float128");
918  
919    return Float128StubDecl;
920  }
921  
InitBuiltinType(CanQualType & R,BuiltinType::Kind K)922  void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
923    BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
924    R = CanQualType::CreateUnsafe(QualType(Ty, 0));
925    Types.push_back(Ty);
926  }
927  
InitBuiltinTypes(const TargetInfo & Target)928  void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
929    assert((!this->Target || this->Target == &Target) &&
930           "Incorrect target reinitialization");
931    assert(VoidTy.isNull() && "Context reinitialized?");
932  
933    this->Target = &Target;
934  
935    ABI.reset(createCXXABI(Target));
936    AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
937    AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
938  
939    // C99 6.2.5p19.
940    InitBuiltinType(VoidTy,              BuiltinType::Void);
941  
942    // C99 6.2.5p2.
943    InitBuiltinType(BoolTy,              BuiltinType::Bool);
944    // C99 6.2.5p3.
945    if (LangOpts.CharIsSigned)
946      InitBuiltinType(CharTy,            BuiltinType::Char_S);
947    else
948      InitBuiltinType(CharTy,            BuiltinType::Char_U);
949    // C99 6.2.5p4.
950    InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
951    InitBuiltinType(ShortTy,             BuiltinType::Short);
952    InitBuiltinType(IntTy,               BuiltinType::Int);
953    InitBuiltinType(LongTy,              BuiltinType::Long);
954    InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
955  
956    // C99 6.2.5p6.
957    InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
958    InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
959    InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
960    InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
961    InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
962  
963    // C99 6.2.5p10.
964    InitBuiltinType(FloatTy,             BuiltinType::Float);
965    InitBuiltinType(DoubleTy,            BuiltinType::Double);
966    InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
967  
968    // GNU extension, 128-bit integers.
969    InitBuiltinType(Int128Ty,            BuiltinType::Int128);
970    InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
971  
972    // C++ 3.9.1p5
973    if (TargetInfo::isTypeSigned(Target.getWCharType()))
974      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
975    else  // -fshort-wchar makes wchar_t be unsigned.
976      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
977    if (LangOpts.CPlusPlus && LangOpts.WChar)
978      WideCharTy = WCharTy;
979    else {
980      // C99 (or C++ using -fno-wchar).
981      WideCharTy = getFromTargetType(Target.getWCharType());
982    }
983  
984    WIntTy = getFromTargetType(Target.getWIntType());
985  
986    if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
987      InitBuiltinType(Char16Ty,           BuiltinType::Char16);
988    else // C99
989      Char16Ty = getFromTargetType(Target.getChar16Type());
990  
991    if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
992      InitBuiltinType(Char32Ty,           BuiltinType::Char32);
993    else // C99
994      Char32Ty = getFromTargetType(Target.getChar32Type());
995  
996    // Placeholder type for type-dependent expressions whose type is
997    // completely unknown. No code should ever check a type against
998    // DependentTy and users should never see it; however, it is here to
999    // help diagnose failures to properly check for type-dependent
1000    // expressions.
1001    InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1002  
1003    // Placeholder type for functions.
1004    InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1005  
1006    // Placeholder type for bound members.
1007    InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1008  
1009    // Placeholder type for pseudo-objects.
1010    InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1011  
1012    // "any" type; useful for debugger-like clients.
1013    InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1014  
1015    // Placeholder type for unbridged ARC casts.
1016    InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1017  
1018    // Placeholder type for builtin functions.
1019    InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1020  
1021    // C99 6.2.5p11.
1022    FloatComplexTy      = getComplexType(FloatTy);
1023    DoubleComplexTy     = getComplexType(DoubleTy);
1024    LongDoubleComplexTy = getComplexType(LongDoubleTy);
1025  
1026    // Builtin types for 'id', 'Class', and 'SEL'.
1027    InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1028    InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1029    InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1030  
1031    if (LangOpts.OpenCL) {
1032      InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
1033      InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
1034      InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
1035      InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
1036      InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
1037      InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
1038  
1039      InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1040      InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1041    }
1042  
1043    // Builtin type for __objc_yes and __objc_no
1044    ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1045                         SignedCharTy : BoolTy);
1046  
1047    ObjCConstantStringType = QualType();
1048  
1049    ObjCSuperType = QualType();
1050  
1051    // void * type
1052    VoidPtrTy = getPointerType(VoidTy);
1053  
1054    // nullptr type (C++0x 2.14.7)
1055    InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1056  
1057    // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1058    InitBuiltinType(HalfTy, BuiltinType::Half);
1059  
1060    // Builtin type used to help define __builtin_va_list.
1061    VaListTagTy = QualType();
1062  }
1063  
getDiagnostics() const1064  DiagnosticsEngine &ASTContext::getDiagnostics() const {
1065    return SourceMgr.getDiagnostics();
1066  }
1067  
getDeclAttrs(const Decl * D)1068  AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1069    AttrVec *&Result = DeclAttrs[D];
1070    if (!Result) {
1071      void *Mem = Allocate(sizeof(AttrVec));
1072      Result = new (Mem) AttrVec;
1073    }
1074  
1075    return *Result;
1076  }
1077  
1078  /// \brief Erase the attributes corresponding to the given declaration.
eraseDeclAttrs(const Decl * D)1079  void ASTContext::eraseDeclAttrs(const Decl *D) {
1080    llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1081    if (Pos != DeclAttrs.end()) {
1082      Pos->second->~AttrVec();
1083      DeclAttrs.erase(Pos);
1084    }
1085  }
1086  
1087  // FIXME: Remove ?
1088  MemberSpecializationInfo *
getInstantiatedFromStaticDataMember(const VarDecl * Var)1089  ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1090    assert(Var->isStaticDataMember() && "Not a static data member");
1091    return getTemplateOrSpecializationInfo(Var)
1092        .dyn_cast<MemberSpecializationInfo *>();
1093  }
1094  
1095  ASTContext::TemplateOrSpecializationInfo
getTemplateOrSpecializationInfo(const VarDecl * Var)1096  ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1097    llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1098        TemplateOrInstantiation.find(Var);
1099    if (Pos == TemplateOrInstantiation.end())
1100      return TemplateOrSpecializationInfo();
1101  
1102    return Pos->second;
1103  }
1104  
1105  void
setInstantiatedFromStaticDataMember(VarDecl * Inst,VarDecl * Tmpl,TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)1106  ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1107                                                  TemplateSpecializationKind TSK,
1108                                            SourceLocation PointOfInstantiation) {
1109    assert(Inst->isStaticDataMember() && "Not a static data member");
1110    assert(Tmpl->isStaticDataMember() && "Not a static data member");
1111    setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1112                                              Tmpl, TSK, PointOfInstantiation));
1113  }
1114  
1115  void
setTemplateOrSpecializationInfo(VarDecl * Inst,TemplateOrSpecializationInfo TSI)1116  ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1117                                              TemplateOrSpecializationInfo TSI) {
1118    assert(!TemplateOrInstantiation[Inst] &&
1119           "Already noted what the variable was instantiated from");
1120    TemplateOrInstantiation[Inst] = TSI;
1121  }
1122  
getClassScopeSpecializationPattern(const FunctionDecl * FD)1123  FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1124                                                       const FunctionDecl *FD){
1125    assert(FD && "Specialization is 0");
1126    llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1127      = ClassScopeSpecializationPattern.find(FD);
1128    if (Pos == ClassScopeSpecializationPattern.end())
1129      return nullptr;
1130  
1131    return Pos->second;
1132  }
1133  
setClassScopeSpecializationPattern(FunctionDecl * FD,FunctionDecl * Pattern)1134  void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1135                                          FunctionDecl *Pattern) {
1136    assert(FD && "Specialization is 0");
1137    assert(Pattern && "Class scope specialization pattern is 0");
1138    ClassScopeSpecializationPattern[FD] = Pattern;
1139  }
1140  
1141  NamedDecl *
getInstantiatedFromUsingDecl(UsingDecl * UUD)1142  ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1143    llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1144      = InstantiatedFromUsingDecl.find(UUD);
1145    if (Pos == InstantiatedFromUsingDecl.end())
1146      return nullptr;
1147  
1148    return Pos->second;
1149  }
1150  
1151  void
setInstantiatedFromUsingDecl(UsingDecl * Inst,NamedDecl * Pattern)1152  ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1153    assert((isa<UsingDecl>(Pattern) ||
1154            isa<UnresolvedUsingValueDecl>(Pattern) ||
1155            isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1156           "pattern decl is not a using decl");
1157    assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1158    InstantiatedFromUsingDecl[Inst] = Pattern;
1159  }
1160  
1161  UsingShadowDecl *
getInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst)1162  ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1163    llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1164      = InstantiatedFromUsingShadowDecl.find(Inst);
1165    if (Pos == InstantiatedFromUsingShadowDecl.end())
1166      return nullptr;
1167  
1168    return Pos->second;
1169  }
1170  
1171  void
setInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst,UsingShadowDecl * Pattern)1172  ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1173                                                 UsingShadowDecl *Pattern) {
1174    assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1175    InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1176  }
1177  
getInstantiatedFromUnnamedFieldDecl(FieldDecl * Field)1178  FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1179    llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1180      = InstantiatedFromUnnamedFieldDecl.find(Field);
1181    if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1182      return nullptr;
1183  
1184    return Pos->second;
1185  }
1186  
setInstantiatedFromUnnamedFieldDecl(FieldDecl * Inst,FieldDecl * Tmpl)1187  void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1188                                                       FieldDecl *Tmpl) {
1189    assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1190    assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1191    assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1192           "Already noted what unnamed field was instantiated from");
1193  
1194    InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1195  }
1196  
1197  ASTContext::overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl * Method) const1198  ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1199    llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1200      = OverriddenMethods.find(Method->getCanonicalDecl());
1201    if (Pos == OverriddenMethods.end())
1202      return nullptr;
1203  
1204    return Pos->second.begin();
1205  }
1206  
1207  ASTContext::overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl * Method) const1208  ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1209    llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1210      = OverriddenMethods.find(Method->getCanonicalDecl());
1211    if (Pos == OverriddenMethods.end())
1212      return nullptr;
1213  
1214    return Pos->second.end();
1215  }
1216  
1217  unsigned
overridden_methods_size(const CXXMethodDecl * Method) const1218  ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1219    llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1220      = OverriddenMethods.find(Method->getCanonicalDecl());
1221    if (Pos == OverriddenMethods.end())
1222      return 0;
1223  
1224    return Pos->second.size();
1225  }
1226  
addOverriddenMethod(const CXXMethodDecl * Method,const CXXMethodDecl * Overridden)1227  void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1228                                       const CXXMethodDecl *Overridden) {
1229    assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1230    OverriddenMethods[Method].push_back(Overridden);
1231  }
1232  
getOverriddenMethods(const NamedDecl * D,SmallVectorImpl<const NamedDecl * > & Overridden) const1233  void ASTContext::getOverriddenMethods(
1234                        const NamedDecl *D,
1235                        SmallVectorImpl<const NamedDecl *> &Overridden) const {
1236    assert(D);
1237  
1238    if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1239      Overridden.append(overridden_methods_begin(CXXMethod),
1240                        overridden_methods_end(CXXMethod));
1241      return;
1242    }
1243  
1244    const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1245    if (!Method)
1246      return;
1247  
1248    SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1249    Method->getOverriddenMethods(OverDecls);
1250    Overridden.append(OverDecls.begin(), OverDecls.end());
1251  }
1252  
addedLocalImportDecl(ImportDecl * Import)1253  void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1254    assert(!Import->NextLocalImport && "Import declaration already in the chain");
1255    assert(!Import->isFromASTFile() && "Non-local import declaration");
1256    if (!FirstLocalImport) {
1257      FirstLocalImport = Import;
1258      LastLocalImport = Import;
1259      return;
1260    }
1261  
1262    LastLocalImport->NextLocalImport = Import;
1263    LastLocalImport = Import;
1264  }
1265  
1266  //===----------------------------------------------------------------------===//
1267  //                         Type Sizing and Analysis
1268  //===----------------------------------------------------------------------===//
1269  
1270  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1271  /// scalar floating point type.
getFloatTypeSemantics(QualType T) const1272  const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1273    const BuiltinType *BT = T->getAs<BuiltinType>();
1274    assert(BT && "Not a floating point type!");
1275    switch (BT->getKind()) {
1276    default: llvm_unreachable("Not a floating point type!");
1277    case BuiltinType::Half:       return Target->getHalfFormat();
1278    case BuiltinType::Float:      return Target->getFloatFormat();
1279    case BuiltinType::Double:     return Target->getDoubleFormat();
1280    case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1281    }
1282  }
1283  
getDeclAlign(const Decl * D,bool ForAlignof) const1284  CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1285    unsigned Align = Target->getCharWidth();
1286  
1287    bool UseAlignAttrOnly = false;
1288    if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1289      Align = AlignFromAttr;
1290  
1291      // __attribute__((aligned)) can increase or decrease alignment
1292      // *except* on a struct or struct member, where it only increases
1293      // alignment unless 'packed' is also specified.
1294      //
1295      // It is an error for alignas to decrease alignment, so we can
1296      // ignore that possibility;  Sema should diagnose it.
1297      if (isa<FieldDecl>(D)) {
1298        UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1299          cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1300      } else {
1301        UseAlignAttrOnly = true;
1302      }
1303    }
1304    else if (isa<FieldDecl>(D))
1305        UseAlignAttrOnly =
1306          D->hasAttr<PackedAttr>() ||
1307          cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1308  
1309    // If we're using the align attribute only, just ignore everything
1310    // else about the declaration and its type.
1311    if (UseAlignAttrOnly) {
1312      // do nothing
1313  
1314    } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1315      QualType T = VD->getType();
1316      if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
1317        if (ForAlignof)
1318          T = RT->getPointeeType();
1319        else
1320          T = getPointerType(RT->getPointeeType());
1321      }
1322      QualType BaseT = getBaseElementType(T);
1323      if (!BaseT->isIncompleteType() && !T->isFunctionType()) {
1324        // Adjust alignments of declarations with array type by the
1325        // large-array alignment on the target.
1326        if (const ArrayType *arrayType = getAsArrayType(T)) {
1327          unsigned MinWidth = Target->getLargeArrayMinWidth();
1328          if (!ForAlignof && MinWidth) {
1329            if (isa<VariableArrayType>(arrayType))
1330              Align = std::max(Align, Target->getLargeArrayAlign());
1331            else if (isa<ConstantArrayType>(arrayType) &&
1332                     MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1333              Align = std::max(Align, Target->getLargeArrayAlign());
1334          }
1335        }
1336        Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1337        if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1338          if (VD->hasGlobalStorage())
1339            Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1340        }
1341      }
1342  
1343      // Fields can be subject to extra alignment constraints, like if
1344      // the field is packed, the struct is packed, or the struct has a
1345      // a max-field-alignment constraint (#pragma pack).  So calculate
1346      // the actual alignment of the field within the struct, and then
1347      // (as we're expected to) constrain that by the alignment of the type.
1348      if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
1349        const RecordDecl *Parent = Field->getParent();
1350        // We can only produce a sensible answer if the record is valid.
1351        if (!Parent->isInvalidDecl()) {
1352          const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1353  
1354          // Start with the record's overall alignment.
1355          unsigned FieldAlign = toBits(Layout.getAlignment());
1356  
1357          // Use the GCD of that and the offset within the record.
1358          uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1359          if (Offset > 0) {
1360            // Alignment is always a power of 2, so the GCD will be a power of 2,
1361            // which means we get to do this crazy thing instead of Euclid's.
1362            uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1363            if (LowBitOfOffset < FieldAlign)
1364              FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1365          }
1366  
1367          Align = std::min(Align, FieldAlign);
1368        }
1369      }
1370    }
1371  
1372    return toCharUnitsFromBits(Align);
1373  }
1374  
1375  // getTypeInfoDataSizeInChars - Return the size of a type, in
1376  // chars. If the type is a record, its data size is returned.  This is
1377  // the size of the memcpy that's performed when assigning this type
1378  // using a trivial copy/move assignment operator.
1379  std::pair<CharUnits, CharUnits>
getTypeInfoDataSizeInChars(QualType T) const1380  ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1381    std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1382  
1383    // In C++, objects can sometimes be allocated into the tail padding
1384    // of a base-class subobject.  We decide whether that's possible
1385    // during class layout, so here we can just trust the layout results.
1386    if (getLangOpts().CPlusPlus) {
1387      if (const RecordType *RT = T->getAs<RecordType>()) {
1388        const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1389        sizeAndAlign.first = layout.getDataSize();
1390      }
1391    }
1392  
1393    return sizeAndAlign;
1394  }
1395  
1396  /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1397  /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1398  std::pair<CharUnits, CharUnits>
getConstantArrayInfoInChars(const ASTContext & Context,const ConstantArrayType * CAT)1399  static getConstantArrayInfoInChars(const ASTContext &Context,
1400                                     const ConstantArrayType *CAT) {
1401    std::pair<CharUnits, CharUnits> EltInfo =
1402        Context.getTypeInfoInChars(CAT->getElementType());
1403    uint64_t Size = CAT->getSize().getZExtValue();
1404    assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1405                (uint64_t)(-1)/Size) &&
1406           "Overflow in array type char size evaluation");
1407    uint64_t Width = EltInfo.first.getQuantity() * Size;
1408    unsigned Align = EltInfo.second.getQuantity();
1409    if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1410        Context.getTargetInfo().getPointerWidth(0) == 64)
1411      Width = llvm::RoundUpToAlignment(Width, Align);
1412    return std::make_pair(CharUnits::fromQuantity(Width),
1413                          CharUnits::fromQuantity(Align));
1414  }
1415  
1416  std::pair<CharUnits, CharUnits>
getTypeInfoInChars(const Type * T) const1417  ASTContext::getTypeInfoInChars(const Type *T) const {
1418    if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
1419      return getConstantArrayInfoInChars(*this, CAT);
1420    TypeInfo Info = getTypeInfo(T);
1421    return std::make_pair(toCharUnitsFromBits(Info.Width),
1422                          toCharUnitsFromBits(Info.Align));
1423  }
1424  
1425  std::pair<CharUnits, CharUnits>
getTypeInfoInChars(QualType T) const1426  ASTContext::getTypeInfoInChars(QualType T) const {
1427    return getTypeInfoInChars(T.getTypePtr());
1428  }
1429  
isAlignmentRequired(const Type * T) const1430  bool ASTContext::isAlignmentRequired(const Type *T) const {
1431    return getTypeInfo(T).AlignIsRequired;
1432  }
1433  
isAlignmentRequired(QualType T) const1434  bool ASTContext::isAlignmentRequired(QualType T) const {
1435    return isAlignmentRequired(T.getTypePtr());
1436  }
1437  
getTypeInfo(const Type * T) const1438  TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1439    TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1440    if (I != MemoizedTypeInfo.end())
1441      return I->second;
1442  
1443    // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1444    TypeInfo TI = getTypeInfoImpl(T);
1445    MemoizedTypeInfo[T] = TI;
1446    return TI;
1447  }
1448  
1449  /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1450  /// method does not work on incomplete types.
1451  ///
1452  /// FIXME: Pointers into different addr spaces could have different sizes and
1453  /// alignment requirements: getPointerInfo should take an AddrSpace, this
1454  /// should take a QualType, &c.
getTypeInfoImpl(const Type * T) const1455  TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1456    uint64_t Width = 0;
1457    unsigned Align = 8;
1458    bool AlignIsRequired = false;
1459    switch (T->getTypeClass()) {
1460  #define TYPE(Class, Base)
1461  #define ABSTRACT_TYPE(Class, Base)
1462  #define NON_CANONICAL_TYPE(Class, Base)
1463  #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1464  #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1465    case Type::Class:                                                            \
1466    assert(!T->isDependentType() && "should not see dependent types here");      \
1467    return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1468  #include "clang/AST/TypeNodes.def"
1469      llvm_unreachable("Should not see dependent types");
1470  
1471    case Type::FunctionNoProto:
1472    case Type::FunctionProto:
1473      // GCC extension: alignof(function) = 32 bits
1474      Width = 0;
1475      Align = 32;
1476      break;
1477  
1478    case Type::IncompleteArray:
1479    case Type::VariableArray:
1480      Width = 0;
1481      Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1482      break;
1483  
1484    case Type::ConstantArray: {
1485      const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1486  
1487      TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
1488      uint64_t Size = CAT->getSize().getZExtValue();
1489      assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1490             "Overflow in array type bit size evaluation");
1491      Width = EltInfo.Width * Size;
1492      Align = EltInfo.Align;
1493      if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1494          getTargetInfo().getPointerWidth(0) == 64)
1495        Width = llvm::RoundUpToAlignment(Width, Align);
1496      break;
1497    }
1498    case Type::ExtVector:
1499    case Type::Vector: {
1500      const VectorType *VT = cast<VectorType>(T);
1501      TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1502      Width = EltInfo.Width * VT->getNumElements();
1503      Align = Width;
1504      // If the alignment is not a power of 2, round up to the next power of 2.
1505      // This happens for non-power-of-2 length vectors.
1506      if (Align & (Align-1)) {
1507        Align = llvm::NextPowerOf2(Align);
1508        Width = llvm::RoundUpToAlignment(Width, Align);
1509      }
1510      // Adjust the alignment based on the target max.
1511      uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1512      if (TargetVectorAlign && TargetVectorAlign < Align)
1513        Align = TargetVectorAlign;
1514      break;
1515    }
1516  
1517    case Type::Builtin:
1518      switch (cast<BuiltinType>(T)->getKind()) {
1519      default: llvm_unreachable("Unknown builtin type!");
1520      case BuiltinType::Void:
1521        // GCC extension: alignof(void) = 8 bits.
1522        Width = 0;
1523        Align = 8;
1524        break;
1525  
1526      case BuiltinType::Bool:
1527        Width = Target->getBoolWidth();
1528        Align = Target->getBoolAlign();
1529        break;
1530      case BuiltinType::Char_S:
1531      case BuiltinType::Char_U:
1532      case BuiltinType::UChar:
1533      case BuiltinType::SChar:
1534        Width = Target->getCharWidth();
1535        Align = Target->getCharAlign();
1536        break;
1537      case BuiltinType::WChar_S:
1538      case BuiltinType::WChar_U:
1539        Width = Target->getWCharWidth();
1540        Align = Target->getWCharAlign();
1541        break;
1542      case BuiltinType::Char16:
1543        Width = Target->getChar16Width();
1544        Align = Target->getChar16Align();
1545        break;
1546      case BuiltinType::Char32:
1547        Width = Target->getChar32Width();
1548        Align = Target->getChar32Align();
1549        break;
1550      case BuiltinType::UShort:
1551      case BuiltinType::Short:
1552        Width = Target->getShortWidth();
1553        Align = Target->getShortAlign();
1554        break;
1555      case BuiltinType::UInt:
1556      case BuiltinType::Int:
1557        Width = Target->getIntWidth();
1558        Align = Target->getIntAlign();
1559        break;
1560      case BuiltinType::ULong:
1561      case BuiltinType::Long:
1562        Width = Target->getLongWidth();
1563        Align = Target->getLongAlign();
1564        break;
1565      case BuiltinType::ULongLong:
1566      case BuiltinType::LongLong:
1567        Width = Target->getLongLongWidth();
1568        Align = Target->getLongLongAlign();
1569        break;
1570      case BuiltinType::Int128:
1571      case BuiltinType::UInt128:
1572        Width = 128;
1573        Align = 128; // int128_t is 128-bit aligned on all targets.
1574        break;
1575      case BuiltinType::Half:
1576        Width = Target->getHalfWidth();
1577        Align = Target->getHalfAlign();
1578        break;
1579      case BuiltinType::Float:
1580        Width = Target->getFloatWidth();
1581        Align = Target->getFloatAlign();
1582        break;
1583      case BuiltinType::Double:
1584        Width = Target->getDoubleWidth();
1585        Align = Target->getDoubleAlign();
1586        break;
1587      case BuiltinType::LongDouble:
1588        Width = Target->getLongDoubleWidth();
1589        Align = Target->getLongDoubleAlign();
1590        break;
1591      case BuiltinType::NullPtr:
1592        Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1593        Align = Target->getPointerAlign(0); //   == sizeof(void*)
1594        break;
1595      case BuiltinType::ObjCId:
1596      case BuiltinType::ObjCClass:
1597      case BuiltinType::ObjCSel:
1598        Width = Target->getPointerWidth(0);
1599        Align = Target->getPointerAlign(0);
1600        break;
1601      case BuiltinType::OCLSampler:
1602        // Samplers are modeled as integers.
1603        Width = Target->getIntWidth();
1604        Align = Target->getIntAlign();
1605        break;
1606      case BuiltinType::OCLEvent:
1607      case BuiltinType::OCLImage1d:
1608      case BuiltinType::OCLImage1dArray:
1609      case BuiltinType::OCLImage1dBuffer:
1610      case BuiltinType::OCLImage2d:
1611      case BuiltinType::OCLImage2dArray:
1612      case BuiltinType::OCLImage3d:
1613        // Currently these types are pointers to opaque types.
1614        Width = Target->getPointerWidth(0);
1615        Align = Target->getPointerAlign(0);
1616        break;
1617      }
1618      break;
1619    case Type::ObjCObjectPointer:
1620      Width = Target->getPointerWidth(0);
1621      Align = Target->getPointerAlign(0);
1622      break;
1623    case Type::BlockPointer: {
1624      unsigned AS = getTargetAddressSpace(
1625          cast<BlockPointerType>(T)->getPointeeType());
1626      Width = Target->getPointerWidth(AS);
1627      Align = Target->getPointerAlign(AS);
1628      break;
1629    }
1630    case Type::LValueReference:
1631    case Type::RValueReference: {
1632      // alignof and sizeof should never enter this code path here, so we go
1633      // the pointer route.
1634      unsigned AS = getTargetAddressSpace(
1635          cast<ReferenceType>(T)->getPointeeType());
1636      Width = Target->getPointerWidth(AS);
1637      Align = Target->getPointerAlign(AS);
1638      break;
1639    }
1640    case Type::Pointer: {
1641      unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1642      Width = Target->getPointerWidth(AS);
1643      Align = Target->getPointerAlign(AS);
1644      break;
1645    }
1646    case Type::MemberPointer: {
1647      const MemberPointerType *MPT = cast<MemberPointerType>(T);
1648      std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1649      break;
1650    }
1651    case Type::Complex: {
1652      // Complex types have the same alignment as their elements, but twice the
1653      // size.
1654      TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
1655      Width = EltInfo.Width * 2;
1656      Align = EltInfo.Align;
1657      break;
1658    }
1659    case Type::ObjCObject:
1660      return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1661    case Type::Adjusted:
1662    case Type::Decayed:
1663      return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
1664    case Type::ObjCInterface: {
1665      const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1666      const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1667      Width = toBits(Layout.getSize());
1668      Align = toBits(Layout.getAlignment());
1669      break;
1670    }
1671    case Type::Record:
1672    case Type::Enum: {
1673      const TagType *TT = cast<TagType>(T);
1674  
1675      if (TT->getDecl()->isInvalidDecl()) {
1676        Width = 8;
1677        Align = 8;
1678        break;
1679      }
1680  
1681      if (const EnumType *ET = dyn_cast<EnumType>(TT)) {
1682        const EnumDecl *ED = ET->getDecl();
1683        TypeInfo Info =
1684            getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
1685        if (unsigned AttrAlign = ED->getMaxAlignment()) {
1686          Info.Align = AttrAlign;
1687          Info.AlignIsRequired = true;
1688        }
1689        return Info;
1690      }
1691  
1692      const RecordType *RT = cast<RecordType>(TT);
1693      const RecordDecl *RD = RT->getDecl();
1694      const ASTRecordLayout &Layout = getASTRecordLayout(RD);
1695      Width = toBits(Layout.getSize());
1696      Align = toBits(Layout.getAlignment());
1697      AlignIsRequired = RD->hasAttr<AlignedAttr>();
1698      break;
1699    }
1700  
1701    case Type::SubstTemplateTypeParm:
1702      return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1703                         getReplacementType().getTypePtr());
1704  
1705    case Type::Auto: {
1706      const AutoType *A = cast<AutoType>(T);
1707      assert(!A->getDeducedType().isNull() &&
1708             "cannot request the size of an undeduced or dependent auto type");
1709      return getTypeInfo(A->getDeducedType().getTypePtr());
1710    }
1711  
1712    case Type::Paren:
1713      return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1714  
1715    case Type::Typedef: {
1716      const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1717      TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1718      // If the typedef has an aligned attribute on it, it overrides any computed
1719      // alignment we have.  This violates the GCC documentation (which says that
1720      // attribute(aligned) can only round up) but matches its implementation.
1721      if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
1722        Align = AttrAlign;
1723        AlignIsRequired = true;
1724      } else {
1725        Align = Info.Align;
1726        AlignIsRequired = Info.AlignIsRequired;
1727      }
1728      Width = Info.Width;
1729      break;
1730    }
1731  
1732    case Type::Elaborated:
1733      return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1734  
1735    case Type::Attributed:
1736      return getTypeInfo(
1737                    cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1738  
1739    case Type::Atomic: {
1740      // Start with the base type information.
1741      TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
1742      Width = Info.Width;
1743      Align = Info.Align;
1744  
1745      // If the size of the type doesn't exceed the platform's max
1746      // atomic promotion width, make the size and alignment more
1747      // favorable to atomic operations:
1748      if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1749        // Round the size up to a power of 2.
1750        if (!llvm::isPowerOf2_64(Width))
1751          Width = llvm::NextPowerOf2(Width);
1752  
1753        // Set the alignment equal to the size.
1754        Align = static_cast<unsigned>(Width);
1755      }
1756    }
1757  
1758    }
1759  
1760    assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1761    return TypeInfo(Width, Align, AlignIsRequired);
1762  }
1763  
1764  /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
toCharUnitsFromBits(int64_t BitSize) const1765  CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1766    return CharUnits::fromQuantity(BitSize / getCharWidth());
1767  }
1768  
1769  /// toBits - Convert a size in characters to a size in characters.
toBits(CharUnits CharSize) const1770  int64_t ASTContext::toBits(CharUnits CharSize) const {
1771    return CharSize.getQuantity() * getCharWidth();
1772  }
1773  
1774  /// getTypeSizeInChars - Return the size of the specified type, in characters.
1775  /// This method does not work on incomplete types.
getTypeSizeInChars(QualType T) const1776  CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1777    return getTypeInfoInChars(T).first;
1778  }
getTypeSizeInChars(const Type * T) const1779  CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1780    return getTypeInfoInChars(T).first;
1781  }
1782  
1783  /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1784  /// characters. This method does not work on incomplete types.
getTypeAlignInChars(QualType T) const1785  CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1786    return toCharUnitsFromBits(getTypeAlign(T));
1787  }
getTypeAlignInChars(const Type * T) const1788  CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1789    return toCharUnitsFromBits(getTypeAlign(T));
1790  }
1791  
1792  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1793  /// type for the current target in bits.  This can be different than the ABI
1794  /// alignment in cases where it is beneficial for performance to overalign
1795  /// a data type.
getPreferredTypeAlign(const Type * T) const1796  unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1797    TypeInfo TI = getTypeInfo(T);
1798    unsigned ABIAlign = TI.Align;
1799  
1800    if (Target->getTriple().getArch() == llvm::Triple::xcore)
1801      return ABIAlign;  // Never overalign on XCore.
1802  
1803    // Double and long long should be naturally aligned if possible.
1804    T = T->getBaseElementTypeUnsafe();
1805    if (const ComplexType *CT = T->getAs<ComplexType>())
1806      T = CT->getElementType().getTypePtr();
1807    if (const EnumType *ET = T->getAs<EnumType>())
1808      T = ET->getDecl()->getIntegerType().getTypePtr();
1809    if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1810        T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1811        T->isSpecificBuiltinType(BuiltinType::ULongLong))
1812      // Don't increase the alignment if an alignment attribute was specified on a
1813      // typedef declaration.
1814      if (!TI.AlignIsRequired)
1815        return std::max(ABIAlign, (unsigned)getTypeSize(T));
1816  
1817    return ABIAlign;
1818  }
1819  
1820  /// getAlignOfGlobalVar - Return the alignment in bits that should be given
1821  /// to a global variable of the specified type.
getAlignOfGlobalVar(QualType T) const1822  unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1823    return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1824  }
1825  
1826  /// getAlignOfGlobalVarInChars - Return the alignment in characters that
1827  /// should be given to a global variable of the specified type.
getAlignOfGlobalVarInChars(QualType T) const1828  CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1829    return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1830  }
1831  
1832  /// DeepCollectObjCIvars -
1833  /// This routine first collects all declared, but not synthesized, ivars in
1834  /// super class and then collects all ivars, including those synthesized for
1835  /// current class. This routine is used for implementation of current class
1836  /// when all ivars, declared and synthesized are known.
1837  ///
DeepCollectObjCIvars(const ObjCInterfaceDecl * OI,bool leafClass,SmallVectorImpl<const ObjCIvarDecl * > & Ivars) const1838  void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1839                                        bool leafClass,
1840                              SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1841    if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1842      DeepCollectObjCIvars(SuperClass, false, Ivars);
1843    if (!leafClass) {
1844      for (const auto *I : OI->ivars())
1845        Ivars.push_back(I);
1846    } else {
1847      ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1848      for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1849           Iv= Iv->getNextIvar())
1850        Ivars.push_back(Iv);
1851    }
1852  }
1853  
1854  /// CollectInheritedProtocols - Collect all protocols in current class and
1855  /// those inherited by it.
CollectInheritedProtocols(const Decl * CDecl,llvm::SmallPtrSet<ObjCProtocolDecl *,8> & Protocols)1856  void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1857                            llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1858    if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1859      // We can use protocol_iterator here instead of
1860      // all_referenced_protocol_iterator since we are walking all categories.
1861      for (auto *Proto : OI->all_referenced_protocols()) {
1862        Protocols.insert(Proto->getCanonicalDecl());
1863        for (auto *P : Proto->protocols()) {
1864          Protocols.insert(P->getCanonicalDecl());
1865          CollectInheritedProtocols(P, Protocols);
1866        }
1867      }
1868  
1869      // Categories of this Interface.
1870      for (const auto *Cat : OI->visible_categories())
1871        CollectInheritedProtocols(Cat, Protocols);
1872  
1873      if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1874        while (SD) {
1875          CollectInheritedProtocols(SD, Protocols);
1876          SD = SD->getSuperClass();
1877        }
1878    } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1879      for (auto *Proto : OC->protocols()) {
1880        Protocols.insert(Proto->getCanonicalDecl());
1881        for (const auto *P : Proto->protocols())
1882          CollectInheritedProtocols(P, Protocols);
1883      }
1884    } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1885      for (auto *Proto : OP->protocols()) {
1886        Protocols.insert(Proto->getCanonicalDecl());
1887        for (const auto *P : Proto->protocols())
1888          CollectInheritedProtocols(P, Protocols);
1889      }
1890    }
1891  }
1892  
CountNonClassIvars(const ObjCInterfaceDecl * OI) const1893  unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1894    unsigned count = 0;
1895    // Count ivars declared in class extension.
1896    for (const auto *Ext : OI->known_extensions())
1897      count += Ext->ivar_size();
1898  
1899    // Count ivar defined in this class's implementation.  This
1900    // includes synthesized ivars.
1901    if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1902      count += ImplDecl->ivar_size();
1903  
1904    return count;
1905  }
1906  
isSentinelNullExpr(const Expr * E)1907  bool ASTContext::isSentinelNullExpr(const Expr *E) {
1908    if (!E)
1909      return false;
1910  
1911    // nullptr_t is always treated as null.
1912    if (E->getType()->isNullPtrType()) return true;
1913  
1914    if (E->getType()->isAnyPointerType() &&
1915        E->IgnoreParenCasts()->isNullPointerConstant(*this,
1916                                                  Expr::NPC_ValueDependentIsNull))
1917      return true;
1918  
1919    // Unfortunately, __null has type 'int'.
1920    if (isa<GNUNullExpr>(E)) return true;
1921  
1922    return false;
1923  }
1924  
1925  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
getObjCImplementation(ObjCInterfaceDecl * D)1926  ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1927    llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1928      I = ObjCImpls.find(D);
1929    if (I != ObjCImpls.end())
1930      return cast<ObjCImplementationDecl>(I->second);
1931    return nullptr;
1932  }
1933  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
getObjCImplementation(ObjCCategoryDecl * D)1934  ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1935    llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1936      I = ObjCImpls.find(D);
1937    if (I != ObjCImpls.end())
1938      return cast<ObjCCategoryImplDecl>(I->second);
1939    return nullptr;
1940  }
1941  
1942  /// \brief Set the implementation of ObjCInterfaceDecl.
setObjCImplementation(ObjCInterfaceDecl * IFaceD,ObjCImplementationDecl * ImplD)1943  void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1944                             ObjCImplementationDecl *ImplD) {
1945    assert(IFaceD && ImplD && "Passed null params");
1946    ObjCImpls[IFaceD] = ImplD;
1947  }
1948  /// \brief Set the implementation of ObjCCategoryDecl.
setObjCImplementation(ObjCCategoryDecl * CatD,ObjCCategoryImplDecl * ImplD)1949  void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1950                             ObjCCategoryImplDecl *ImplD) {
1951    assert(CatD && ImplD && "Passed null params");
1952    ObjCImpls[CatD] = ImplD;
1953  }
1954  
getObjContainingInterface(const NamedDecl * ND) const1955  const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1956                                                const NamedDecl *ND) const {
1957    if (const ObjCInterfaceDecl *ID =
1958            dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1959      return ID;
1960    if (const ObjCCategoryDecl *CD =
1961            dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1962      return CD->getClassInterface();
1963    if (const ObjCImplDecl *IMD =
1964            dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1965      return IMD->getClassInterface();
1966  
1967    return nullptr;
1968  }
1969  
1970  /// \brief Get the copy initialization expression of VarDecl,or NULL if
1971  /// none exists.
getBlockVarCopyInits(const VarDecl * VD)1972  Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1973    assert(VD && "Passed null params");
1974    assert(VD->hasAttr<BlocksAttr>() &&
1975           "getBlockVarCopyInits - not __block var");
1976    llvm::DenseMap<const VarDecl*, Expr*>::iterator
1977      I = BlockVarCopyInits.find(VD);
1978    return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr;
1979  }
1980  
1981  /// \brief Set the copy inialization expression of a block var decl.
setBlockVarCopyInits(VarDecl * VD,Expr * Init)1982  void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1983    assert(VD && Init && "Passed null params");
1984    assert(VD->hasAttr<BlocksAttr>() &&
1985           "setBlockVarCopyInits - not __block var");
1986    BlockVarCopyInits[VD] = Init;
1987  }
1988  
CreateTypeSourceInfo(QualType T,unsigned DataSize) const1989  TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1990                                                   unsigned DataSize) const {
1991    if (!DataSize)
1992      DataSize = TypeLoc::getFullDataSizeForType(T);
1993    else
1994      assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1995             "incorrect data size provided to CreateTypeSourceInfo!");
1996  
1997    TypeSourceInfo *TInfo =
1998      (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1999    new (TInfo) TypeSourceInfo(T);
2000    return TInfo;
2001  }
2002  
getTrivialTypeSourceInfo(QualType T,SourceLocation L) const2003  TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2004                                                       SourceLocation L) const {
2005    TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2006    DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2007    return DI;
2008  }
2009  
2010  const ASTRecordLayout &
getASTObjCInterfaceLayout(const ObjCInterfaceDecl * D) const2011  ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2012    return getObjCLayout(D, nullptr);
2013  }
2014  
2015  const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl * D) const2016  ASTContext::getASTObjCImplementationLayout(
2017                                          const ObjCImplementationDecl *D) const {
2018    return getObjCLayout(D->getClassInterface(), D);
2019  }
2020  
2021  //===----------------------------------------------------------------------===//
2022  //                   Type creation/memoization methods
2023  //===----------------------------------------------------------------------===//
2024  
2025  QualType
getExtQualType(const Type * baseType,Qualifiers quals) const2026  ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2027    unsigned fastQuals = quals.getFastQualifiers();
2028    quals.removeFastQualifiers();
2029  
2030    // Check if we've already instantiated this type.
2031    llvm::FoldingSetNodeID ID;
2032    ExtQuals::Profile(ID, baseType, quals);
2033    void *insertPos = nullptr;
2034    if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2035      assert(eq->getQualifiers() == quals);
2036      return QualType(eq, fastQuals);
2037    }
2038  
2039    // If the base type is not canonical, make the appropriate canonical type.
2040    QualType canon;
2041    if (!baseType->isCanonicalUnqualified()) {
2042      SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2043      canonSplit.Quals.addConsistentQualifiers(quals);
2044      canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2045  
2046      // Re-find the insert position.
2047      (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2048    }
2049  
2050    ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2051    ExtQualNodes.InsertNode(eq, insertPos);
2052    return QualType(eq, fastQuals);
2053  }
2054  
2055  QualType
getAddrSpaceQualType(QualType T,unsigned AddressSpace) const2056  ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
2057    QualType CanT = getCanonicalType(T);
2058    if (CanT.getAddressSpace() == AddressSpace)
2059      return T;
2060  
2061    // If we are composing extended qualifiers together, merge together
2062    // into one ExtQuals node.
2063    QualifierCollector Quals;
2064    const Type *TypeNode = Quals.strip(T);
2065  
2066    // If this type already has an address space specified, it cannot get
2067    // another one.
2068    assert(!Quals.hasAddressSpace() &&
2069           "Type cannot be in multiple addr spaces!");
2070    Quals.addAddressSpace(AddressSpace);
2071  
2072    return getExtQualType(TypeNode, Quals);
2073  }
2074  
getObjCGCQualType(QualType T,Qualifiers::GC GCAttr) const2075  QualType ASTContext::getObjCGCQualType(QualType T,
2076                                         Qualifiers::GC GCAttr) const {
2077    QualType CanT = getCanonicalType(T);
2078    if (CanT.getObjCGCAttr() == GCAttr)
2079      return T;
2080  
2081    if (const PointerType *ptr = T->getAs<PointerType>()) {
2082      QualType Pointee = ptr->getPointeeType();
2083      if (Pointee->isAnyPointerType()) {
2084        QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2085        return getPointerType(ResultType);
2086      }
2087    }
2088  
2089    // If we are composing extended qualifiers together, merge together
2090    // into one ExtQuals node.
2091    QualifierCollector Quals;
2092    const Type *TypeNode = Quals.strip(T);
2093  
2094    // If this type already has an ObjCGC specified, it cannot get
2095    // another one.
2096    assert(!Quals.hasObjCGCAttr() &&
2097           "Type cannot have multiple ObjCGCs!");
2098    Quals.addObjCGCAttr(GCAttr);
2099  
2100    return getExtQualType(TypeNode, Quals);
2101  }
2102  
adjustFunctionType(const FunctionType * T,FunctionType::ExtInfo Info)2103  const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2104                                                     FunctionType::ExtInfo Info) {
2105    if (T->getExtInfo() == Info)
2106      return T;
2107  
2108    QualType Result;
2109    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2110      Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2111    } else {
2112      const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2113      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2114      EPI.ExtInfo = Info;
2115      Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2116    }
2117  
2118    return cast<FunctionType>(Result.getTypePtr());
2119  }
2120  
adjustDeducedFunctionResultType(FunctionDecl * FD,QualType ResultType)2121  void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2122                                                   QualType ResultType) {
2123    FD = FD->getMostRecentDecl();
2124    while (true) {
2125      const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2126      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2127      FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2128      if (FunctionDecl *Next = FD->getPreviousDecl())
2129        FD = Next;
2130      else
2131        break;
2132    }
2133    if (ASTMutationListener *L = getASTMutationListener())
2134      L->DeducedReturnType(FD, ResultType);
2135  }
2136  
2137  /// Get a function type and produce the equivalent function type with the
2138  /// specified exception specification. Type sugar that can be present on a
2139  /// declaration of a function with an exception specification is permitted
2140  /// and preserved. Other type sugar (for instance, typedefs) is not.
getFunctionTypeWithExceptionSpec(ASTContext & Context,QualType Orig,const FunctionProtoType::ExceptionSpecInfo & ESI)2141  static QualType getFunctionTypeWithExceptionSpec(
2142      ASTContext &Context, QualType Orig,
2143      const FunctionProtoType::ExceptionSpecInfo &ESI) {
2144    // Might have some parens.
2145    if (auto *PT = dyn_cast<ParenType>(Orig))
2146      return Context.getParenType(
2147          getFunctionTypeWithExceptionSpec(Context, PT->getInnerType(), ESI));
2148  
2149    // Might have a calling-convention attribute.
2150    if (auto *AT = dyn_cast<AttributedType>(Orig))
2151      return Context.getAttributedType(
2152          AT->getAttrKind(),
2153          getFunctionTypeWithExceptionSpec(Context, AT->getModifiedType(), ESI),
2154          getFunctionTypeWithExceptionSpec(Context, AT->getEquivalentType(),
2155                                           ESI));
2156  
2157    // Anything else must be a function type. Rebuild it with the new exception
2158    // specification.
2159    const FunctionProtoType *Proto = cast<FunctionProtoType>(Orig);
2160    return Context.getFunctionType(
2161        Proto->getReturnType(), Proto->getParamTypes(),
2162        Proto->getExtProtoInfo().withExceptionSpec(ESI));
2163  }
2164  
adjustExceptionSpec(FunctionDecl * FD,const FunctionProtoType::ExceptionSpecInfo & ESI,bool AsWritten)2165  void ASTContext::adjustExceptionSpec(
2166      FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
2167      bool AsWritten) {
2168    // Update the type.
2169    QualType Updated =
2170        getFunctionTypeWithExceptionSpec(*this, FD->getType(), ESI);
2171    FD->setType(Updated);
2172  
2173    if (!AsWritten)
2174      return;
2175  
2176    // Update the type in the type source information too.
2177    if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
2178      // If the type and the type-as-written differ, we may need to update
2179      // the type-as-written too.
2180      if (TSInfo->getType() != FD->getType())
2181        Updated = getFunctionTypeWithExceptionSpec(*this, TSInfo->getType(), ESI);
2182  
2183      // FIXME: When we get proper type location information for exceptions,
2184      // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
2185      // up the TypeSourceInfo;
2186      assert(TypeLoc::getFullDataSizeForType(Updated) ==
2187                 TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
2188             "TypeLoc size mismatch from updating exception specification");
2189      TSInfo->overrideType(Updated);
2190    }
2191  }
2192  
2193  /// getComplexType - Return the uniqued reference to the type for a complex
2194  /// number with the specified element type.
getComplexType(QualType T) const2195  QualType ASTContext::getComplexType(QualType T) const {
2196    // Unique pointers, to guarantee there is only one pointer of a particular
2197    // structure.
2198    llvm::FoldingSetNodeID ID;
2199    ComplexType::Profile(ID, T);
2200  
2201    void *InsertPos = nullptr;
2202    if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2203      return QualType(CT, 0);
2204  
2205    // If the pointee type isn't canonical, this won't be a canonical type either,
2206    // so fill in the canonical type field.
2207    QualType Canonical;
2208    if (!T.isCanonical()) {
2209      Canonical = getComplexType(getCanonicalType(T));
2210  
2211      // Get the new insert position for the node we care about.
2212      ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2213      assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2214    }
2215    ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2216    Types.push_back(New);
2217    ComplexTypes.InsertNode(New, InsertPos);
2218    return QualType(New, 0);
2219  }
2220  
2221  /// getPointerType - Return the uniqued reference to the type for a pointer to
2222  /// the specified type.
getPointerType(QualType T) const2223  QualType ASTContext::getPointerType(QualType T) const {
2224    // Unique pointers, to guarantee there is only one pointer of a particular
2225    // structure.
2226    llvm::FoldingSetNodeID ID;
2227    PointerType::Profile(ID, T);
2228  
2229    void *InsertPos = nullptr;
2230    if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2231      return QualType(PT, 0);
2232  
2233    // If the pointee type isn't canonical, this won't be a canonical type either,
2234    // so fill in the canonical type field.
2235    QualType Canonical;
2236    if (!T.isCanonical()) {
2237      Canonical = getPointerType(getCanonicalType(T));
2238  
2239      // Get the new insert position for the node we care about.
2240      PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2241      assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2242    }
2243    PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2244    Types.push_back(New);
2245    PointerTypes.InsertNode(New, InsertPos);
2246    return QualType(New, 0);
2247  }
2248  
getAdjustedType(QualType Orig,QualType New) const2249  QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
2250    llvm::FoldingSetNodeID ID;
2251    AdjustedType::Profile(ID, Orig, New);
2252    void *InsertPos = nullptr;
2253    AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2254    if (AT)
2255      return QualType(AT, 0);
2256  
2257    QualType Canonical = getCanonicalType(New);
2258  
2259    // Get the new insert position for the node we care about.
2260    AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2261    assert(!AT && "Shouldn't be in the map!");
2262  
2263    AT = new (*this, TypeAlignment)
2264        AdjustedType(Type::Adjusted, Orig, New, Canonical);
2265    Types.push_back(AT);
2266    AdjustedTypes.InsertNode(AT, InsertPos);
2267    return QualType(AT, 0);
2268  }
2269  
getDecayedType(QualType T) const2270  QualType ASTContext::getDecayedType(QualType T) const {
2271    assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
2272  
2273    QualType Decayed;
2274  
2275    // C99 6.7.5.3p7:
2276    //   A declaration of a parameter as "array of type" shall be
2277    //   adjusted to "qualified pointer to type", where the type
2278    //   qualifiers (if any) are those specified within the [ and ] of
2279    //   the array type derivation.
2280    if (T->isArrayType())
2281      Decayed = getArrayDecayedType(T);
2282  
2283    // C99 6.7.5.3p8:
2284    //   A declaration of a parameter as "function returning type"
2285    //   shall be adjusted to "pointer to function returning type", as
2286    //   in 6.3.2.1.
2287    if (T->isFunctionType())
2288      Decayed = getPointerType(T);
2289  
2290    llvm::FoldingSetNodeID ID;
2291    AdjustedType::Profile(ID, T, Decayed);
2292    void *InsertPos = nullptr;
2293    AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2294    if (AT)
2295      return QualType(AT, 0);
2296  
2297    QualType Canonical = getCanonicalType(Decayed);
2298  
2299    // Get the new insert position for the node we care about.
2300    AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2301    assert(!AT && "Shouldn't be in the map!");
2302  
2303    AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
2304    Types.push_back(AT);
2305    AdjustedTypes.InsertNode(AT, InsertPos);
2306    return QualType(AT, 0);
2307  }
2308  
2309  /// getBlockPointerType - Return the uniqued reference to the type for
2310  /// a pointer to the specified block.
getBlockPointerType(QualType T) const2311  QualType ASTContext::getBlockPointerType(QualType T) const {
2312    assert(T->isFunctionType() && "block of function types only");
2313    // Unique pointers, to guarantee there is only one block of a particular
2314    // structure.
2315    llvm::FoldingSetNodeID ID;
2316    BlockPointerType::Profile(ID, T);
2317  
2318    void *InsertPos = nullptr;
2319    if (BlockPointerType *PT =
2320          BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2321      return QualType(PT, 0);
2322  
2323    // If the block pointee type isn't canonical, this won't be a canonical
2324    // type either so fill in the canonical type field.
2325    QualType Canonical;
2326    if (!T.isCanonical()) {
2327      Canonical = getBlockPointerType(getCanonicalType(T));
2328  
2329      // Get the new insert position for the node we care about.
2330      BlockPointerType *NewIP =
2331        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2332      assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2333    }
2334    BlockPointerType *New
2335      = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2336    Types.push_back(New);
2337    BlockPointerTypes.InsertNode(New, InsertPos);
2338    return QualType(New, 0);
2339  }
2340  
2341  /// getLValueReferenceType - Return the uniqued reference to the type for an
2342  /// lvalue reference to the specified type.
2343  QualType
getLValueReferenceType(QualType T,bool SpelledAsLValue) const2344  ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2345    assert(getCanonicalType(T) != OverloadTy &&
2346           "Unresolved overloaded function type");
2347  
2348    // Unique pointers, to guarantee there is only one pointer of a particular
2349    // structure.
2350    llvm::FoldingSetNodeID ID;
2351    ReferenceType::Profile(ID, T, SpelledAsLValue);
2352  
2353    void *InsertPos = nullptr;
2354    if (LValueReferenceType *RT =
2355          LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2356      return QualType(RT, 0);
2357  
2358    const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2359  
2360    // If the referencee type isn't canonical, this won't be a canonical type
2361    // either, so fill in the canonical type field.
2362    QualType Canonical;
2363    if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2364      QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2365      Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2366  
2367      // Get the new insert position for the node we care about.
2368      LValueReferenceType *NewIP =
2369        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2370      assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2371    }
2372  
2373    LValueReferenceType *New
2374      = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2375                                                       SpelledAsLValue);
2376    Types.push_back(New);
2377    LValueReferenceTypes.InsertNode(New, InsertPos);
2378  
2379    return QualType(New, 0);
2380  }
2381  
2382  /// getRValueReferenceType - Return the uniqued reference to the type for an
2383  /// rvalue reference to the specified type.
getRValueReferenceType(QualType T) const2384  QualType ASTContext::getRValueReferenceType(QualType T) const {
2385    // Unique pointers, to guarantee there is only one pointer of a particular
2386    // structure.
2387    llvm::FoldingSetNodeID ID;
2388    ReferenceType::Profile(ID, T, false);
2389  
2390    void *InsertPos = nullptr;
2391    if (RValueReferenceType *RT =
2392          RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2393      return QualType(RT, 0);
2394  
2395    const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2396  
2397    // If the referencee type isn't canonical, this won't be a canonical type
2398    // either, so fill in the canonical type field.
2399    QualType Canonical;
2400    if (InnerRef || !T.isCanonical()) {
2401      QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2402      Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2403  
2404      // Get the new insert position for the node we care about.
2405      RValueReferenceType *NewIP =
2406        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2407      assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2408    }
2409  
2410    RValueReferenceType *New
2411      = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2412    Types.push_back(New);
2413    RValueReferenceTypes.InsertNode(New, InsertPos);
2414    return QualType(New, 0);
2415  }
2416  
2417  /// getMemberPointerType - Return the uniqued reference to the type for a
2418  /// member pointer to the specified type, in the specified class.
getMemberPointerType(QualType T,const Type * Cls) const2419  QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2420    // Unique pointers, to guarantee there is only one pointer of a particular
2421    // structure.
2422    llvm::FoldingSetNodeID ID;
2423    MemberPointerType::Profile(ID, T, Cls);
2424  
2425    void *InsertPos = nullptr;
2426    if (MemberPointerType *PT =
2427        MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2428      return QualType(PT, 0);
2429  
2430    // If the pointee or class type isn't canonical, this won't be a canonical
2431    // type either, so fill in the canonical type field.
2432    QualType Canonical;
2433    if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2434      Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2435  
2436      // Get the new insert position for the node we care about.
2437      MemberPointerType *NewIP =
2438        MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2439      assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2440    }
2441    MemberPointerType *New
2442      = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2443    Types.push_back(New);
2444    MemberPointerTypes.InsertNode(New, InsertPos);
2445    return QualType(New, 0);
2446  }
2447  
2448  /// getConstantArrayType - Return the unique reference to the type for an
2449  /// array of the specified element type.
getConstantArrayType(QualType EltTy,const llvm::APInt & ArySizeIn,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals) const2450  QualType ASTContext::getConstantArrayType(QualType EltTy,
2451                                            const llvm::APInt &ArySizeIn,
2452                                            ArrayType::ArraySizeModifier ASM,
2453                                            unsigned IndexTypeQuals) const {
2454    assert((EltTy->isDependentType() ||
2455            EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2456           "Constant array of VLAs is illegal!");
2457  
2458    // Convert the array size into a canonical width matching the pointer size for
2459    // the target.
2460    llvm::APInt ArySize(ArySizeIn);
2461    ArySize =
2462      ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2463  
2464    llvm::FoldingSetNodeID ID;
2465    ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2466  
2467    void *InsertPos = nullptr;
2468    if (ConstantArrayType *ATP =
2469        ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2470      return QualType(ATP, 0);
2471  
2472    // If the element type isn't canonical or has qualifiers, this won't
2473    // be a canonical type either, so fill in the canonical type field.
2474    QualType Canon;
2475    if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2476      SplitQualType canonSplit = getCanonicalType(EltTy).split();
2477      Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2478                                   ASM, IndexTypeQuals);
2479      Canon = getQualifiedType(Canon, canonSplit.Quals);
2480  
2481      // Get the new insert position for the node we care about.
2482      ConstantArrayType *NewIP =
2483        ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2484      assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2485    }
2486  
2487    ConstantArrayType *New = new(*this,TypeAlignment)
2488      ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2489    ConstantArrayTypes.InsertNode(New, InsertPos);
2490    Types.push_back(New);
2491    return QualType(New, 0);
2492  }
2493  
2494  /// getVariableArrayDecayedType - Turns the given type, which may be
2495  /// variably-modified, into the corresponding type with all the known
2496  /// sizes replaced with [*].
getVariableArrayDecayedType(QualType type) const2497  QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2498    // Vastly most common case.
2499    if (!type->isVariablyModifiedType()) return type;
2500  
2501    QualType result;
2502  
2503    SplitQualType split = type.getSplitDesugaredType();
2504    const Type *ty = split.Ty;
2505    switch (ty->getTypeClass()) {
2506  #define TYPE(Class, Base)
2507  #define ABSTRACT_TYPE(Class, Base)
2508  #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2509  #include "clang/AST/TypeNodes.def"
2510      llvm_unreachable("didn't desugar past all non-canonical types?");
2511  
2512    // These types should never be variably-modified.
2513    case Type::Builtin:
2514    case Type::Complex:
2515    case Type::Vector:
2516    case Type::ExtVector:
2517    case Type::DependentSizedExtVector:
2518    case Type::ObjCObject:
2519    case Type::ObjCInterface:
2520    case Type::ObjCObjectPointer:
2521    case Type::Record:
2522    case Type::Enum:
2523    case Type::UnresolvedUsing:
2524    case Type::TypeOfExpr:
2525    case Type::TypeOf:
2526    case Type::Decltype:
2527    case Type::UnaryTransform:
2528    case Type::DependentName:
2529    case Type::InjectedClassName:
2530    case Type::TemplateSpecialization:
2531    case Type::DependentTemplateSpecialization:
2532    case Type::TemplateTypeParm:
2533    case Type::SubstTemplateTypeParmPack:
2534    case Type::Auto:
2535    case Type::PackExpansion:
2536      llvm_unreachable("type should never be variably-modified");
2537  
2538    // These types can be variably-modified but should never need to
2539    // further decay.
2540    case Type::FunctionNoProto:
2541    case Type::FunctionProto:
2542    case Type::BlockPointer:
2543    case Type::MemberPointer:
2544      return type;
2545  
2546    // These types can be variably-modified.  All these modifications
2547    // preserve structure except as noted by comments.
2548    // TODO: if we ever care about optimizing VLAs, there are no-op
2549    // optimizations available here.
2550    case Type::Pointer:
2551      result = getPointerType(getVariableArrayDecayedType(
2552                                cast<PointerType>(ty)->getPointeeType()));
2553      break;
2554  
2555    case Type::LValueReference: {
2556      const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2557      result = getLValueReferenceType(
2558                   getVariableArrayDecayedType(lv->getPointeeType()),
2559                                      lv->isSpelledAsLValue());
2560      break;
2561    }
2562  
2563    case Type::RValueReference: {
2564      const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2565      result = getRValueReferenceType(
2566                   getVariableArrayDecayedType(lv->getPointeeType()));
2567      break;
2568    }
2569  
2570    case Type::Atomic: {
2571      const AtomicType *at = cast<AtomicType>(ty);
2572      result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2573      break;
2574    }
2575  
2576    case Type::ConstantArray: {
2577      const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2578      result = getConstantArrayType(
2579                   getVariableArrayDecayedType(cat->getElementType()),
2580                                    cat->getSize(),
2581                                    cat->getSizeModifier(),
2582                                    cat->getIndexTypeCVRQualifiers());
2583      break;
2584    }
2585  
2586    case Type::DependentSizedArray: {
2587      const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2588      result = getDependentSizedArrayType(
2589                   getVariableArrayDecayedType(dat->getElementType()),
2590                                          dat->getSizeExpr(),
2591                                          dat->getSizeModifier(),
2592                                          dat->getIndexTypeCVRQualifiers(),
2593                                          dat->getBracketsRange());
2594      break;
2595    }
2596  
2597    // Turn incomplete types into [*] types.
2598    case Type::IncompleteArray: {
2599      const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2600      result = getVariableArrayType(
2601                   getVariableArrayDecayedType(iat->getElementType()),
2602                                    /*size*/ nullptr,
2603                                    ArrayType::Normal,
2604                                    iat->getIndexTypeCVRQualifiers(),
2605                                    SourceRange());
2606      break;
2607    }
2608  
2609    // Turn VLA types into [*] types.
2610    case Type::VariableArray: {
2611      const VariableArrayType *vat = cast<VariableArrayType>(ty);
2612      result = getVariableArrayType(
2613                   getVariableArrayDecayedType(vat->getElementType()),
2614                                    /*size*/ nullptr,
2615                                    ArrayType::Star,
2616                                    vat->getIndexTypeCVRQualifiers(),
2617                                    vat->getBracketsRange());
2618      break;
2619    }
2620    }
2621  
2622    // Apply the top-level qualifiers from the original.
2623    return getQualifiedType(result, split.Quals);
2624  }
2625  
2626  /// getVariableArrayType - Returns a non-unique reference to the type for a
2627  /// variable array of the specified element type.
getVariableArrayType(QualType EltTy,Expr * NumElts,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals,SourceRange Brackets) const2628  QualType ASTContext::getVariableArrayType(QualType EltTy,
2629                                            Expr *NumElts,
2630                                            ArrayType::ArraySizeModifier ASM,
2631                                            unsigned IndexTypeQuals,
2632                                            SourceRange Brackets) const {
2633    // Since we don't unique expressions, it isn't possible to unique VLA's
2634    // that have an expression provided for their size.
2635    QualType Canon;
2636  
2637    // Be sure to pull qualifiers off the element type.
2638    if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2639      SplitQualType canonSplit = getCanonicalType(EltTy).split();
2640      Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2641                                   IndexTypeQuals, Brackets);
2642      Canon = getQualifiedType(Canon, canonSplit.Quals);
2643    }
2644  
2645    VariableArrayType *New = new(*this, TypeAlignment)
2646      VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2647  
2648    VariableArrayTypes.push_back(New);
2649    Types.push_back(New);
2650    return QualType(New, 0);
2651  }
2652  
2653  /// getDependentSizedArrayType - Returns a non-unique reference to
2654  /// the type for a dependently-sized array of the specified element
2655  /// type.
getDependentSizedArrayType(QualType elementType,Expr * numElements,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals,SourceRange brackets) const2656  QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2657                                                  Expr *numElements,
2658                                                  ArrayType::ArraySizeModifier ASM,
2659                                                  unsigned elementTypeQuals,
2660                                                  SourceRange brackets) const {
2661    assert((!numElements || numElements->isTypeDependent() ||
2662            numElements->isValueDependent()) &&
2663           "Size must be type- or value-dependent!");
2664  
2665    // Dependently-sized array types that do not have a specified number
2666    // of elements will have their sizes deduced from a dependent
2667    // initializer.  We do no canonicalization here at all, which is okay
2668    // because they can't be used in most locations.
2669    if (!numElements) {
2670      DependentSizedArrayType *newType
2671        = new (*this, TypeAlignment)
2672            DependentSizedArrayType(*this, elementType, QualType(),
2673                                    numElements, ASM, elementTypeQuals,
2674                                    brackets);
2675      Types.push_back(newType);
2676      return QualType(newType, 0);
2677    }
2678  
2679    // Otherwise, we actually build a new type every time, but we
2680    // also build a canonical type.
2681  
2682    SplitQualType canonElementType = getCanonicalType(elementType).split();
2683  
2684    void *insertPos = nullptr;
2685    llvm::FoldingSetNodeID ID;
2686    DependentSizedArrayType::Profile(ID, *this,
2687                                     QualType(canonElementType.Ty, 0),
2688                                     ASM, elementTypeQuals, numElements);
2689  
2690    // Look for an existing type with these properties.
2691    DependentSizedArrayType *canonTy =
2692      DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2693  
2694    // If we don't have one, build one.
2695    if (!canonTy) {
2696      canonTy = new (*this, TypeAlignment)
2697        DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2698                                QualType(), numElements, ASM, elementTypeQuals,
2699                                brackets);
2700      DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2701      Types.push_back(canonTy);
2702    }
2703  
2704    // Apply qualifiers from the element type to the array.
2705    QualType canon = getQualifiedType(QualType(canonTy,0),
2706                                      canonElementType.Quals);
2707  
2708    // If we didn't need extra canonicalization for the element type,
2709    // then just use that as our result.
2710    if (QualType(canonElementType.Ty, 0) == elementType)
2711      return canon;
2712  
2713    // Otherwise, we need to build a type which follows the spelling
2714    // of the element type.
2715    DependentSizedArrayType *sugaredType
2716      = new (*this, TypeAlignment)
2717          DependentSizedArrayType(*this, elementType, canon, numElements,
2718                                  ASM, elementTypeQuals, brackets);
2719    Types.push_back(sugaredType);
2720    return QualType(sugaredType, 0);
2721  }
2722  
getIncompleteArrayType(QualType elementType,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals) const2723  QualType ASTContext::getIncompleteArrayType(QualType elementType,
2724                                              ArrayType::ArraySizeModifier ASM,
2725                                              unsigned elementTypeQuals) const {
2726    llvm::FoldingSetNodeID ID;
2727    IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2728  
2729    void *insertPos = nullptr;
2730    if (IncompleteArrayType *iat =
2731         IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2732      return QualType(iat, 0);
2733  
2734    // If the element type isn't canonical, this won't be a canonical type
2735    // either, so fill in the canonical type field.  We also have to pull
2736    // qualifiers off the element type.
2737    QualType canon;
2738  
2739    if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2740      SplitQualType canonSplit = getCanonicalType(elementType).split();
2741      canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2742                                     ASM, elementTypeQuals);
2743      canon = getQualifiedType(canon, canonSplit.Quals);
2744  
2745      // Get the new insert position for the node we care about.
2746      IncompleteArrayType *existing =
2747        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2748      assert(!existing && "Shouldn't be in the map!"); (void) existing;
2749    }
2750  
2751    IncompleteArrayType *newType = new (*this, TypeAlignment)
2752      IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2753  
2754    IncompleteArrayTypes.InsertNode(newType, insertPos);
2755    Types.push_back(newType);
2756    return QualType(newType, 0);
2757  }
2758  
2759  /// getVectorType - Return the unique reference to a vector type of
2760  /// the specified element type and size. VectorType must be a built-in type.
getVectorType(QualType vecType,unsigned NumElts,VectorType::VectorKind VecKind) const2761  QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2762                                     VectorType::VectorKind VecKind) const {
2763    assert(vecType->isBuiltinType());
2764  
2765    // Check if we've already instantiated a vector of this type.
2766    llvm::FoldingSetNodeID ID;
2767    VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2768  
2769    void *InsertPos = nullptr;
2770    if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2771      return QualType(VTP, 0);
2772  
2773    // If the element type isn't canonical, this won't be a canonical type either,
2774    // so fill in the canonical type field.
2775    QualType Canonical;
2776    if (!vecType.isCanonical()) {
2777      Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2778  
2779      // Get the new insert position for the node we care about.
2780      VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2781      assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2782    }
2783    VectorType *New = new (*this, TypeAlignment)
2784      VectorType(vecType, NumElts, Canonical, VecKind);
2785    VectorTypes.InsertNode(New, InsertPos);
2786    Types.push_back(New);
2787    return QualType(New, 0);
2788  }
2789  
2790  /// getExtVectorType - Return the unique reference to an extended vector type of
2791  /// the specified element type and size. VectorType must be a built-in type.
2792  QualType
getExtVectorType(QualType vecType,unsigned NumElts) const2793  ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2794    assert(vecType->isBuiltinType() || vecType->isDependentType());
2795  
2796    // Check if we've already instantiated a vector of this type.
2797    llvm::FoldingSetNodeID ID;
2798    VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2799                        VectorType::GenericVector);
2800    void *InsertPos = nullptr;
2801    if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2802      return QualType(VTP, 0);
2803  
2804    // If the element type isn't canonical, this won't be a canonical type either,
2805    // so fill in the canonical type field.
2806    QualType Canonical;
2807    if (!vecType.isCanonical()) {
2808      Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2809  
2810      // Get the new insert position for the node we care about.
2811      VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2812      assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2813    }
2814    ExtVectorType *New = new (*this, TypeAlignment)
2815      ExtVectorType(vecType, NumElts, Canonical);
2816    VectorTypes.InsertNode(New, InsertPos);
2817    Types.push_back(New);
2818    return QualType(New, 0);
2819  }
2820  
2821  QualType
getDependentSizedExtVectorType(QualType vecType,Expr * SizeExpr,SourceLocation AttrLoc) const2822  ASTContext::getDependentSizedExtVectorType(QualType vecType,
2823                                             Expr *SizeExpr,
2824                                             SourceLocation AttrLoc) const {
2825    llvm::FoldingSetNodeID ID;
2826    DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2827                                         SizeExpr);
2828  
2829    void *InsertPos = nullptr;
2830    DependentSizedExtVectorType *Canon
2831      = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2832    DependentSizedExtVectorType *New;
2833    if (Canon) {
2834      // We already have a canonical version of this array type; use it as
2835      // the canonical type for a newly-built type.
2836      New = new (*this, TypeAlignment)
2837        DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2838                                    SizeExpr, AttrLoc);
2839    } else {
2840      QualType CanonVecTy = getCanonicalType(vecType);
2841      if (CanonVecTy == vecType) {
2842        New = new (*this, TypeAlignment)
2843          DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2844                                      AttrLoc);
2845  
2846        DependentSizedExtVectorType *CanonCheck
2847          = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2848        assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2849        (void)CanonCheck;
2850        DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2851      } else {
2852        QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2853                                                        SourceLocation());
2854        New = new (*this, TypeAlignment)
2855          DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2856      }
2857    }
2858  
2859    Types.push_back(New);
2860    return QualType(New, 0);
2861  }
2862  
2863  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2864  ///
2865  QualType
getFunctionNoProtoType(QualType ResultTy,const FunctionType::ExtInfo & Info) const2866  ASTContext::getFunctionNoProtoType(QualType ResultTy,
2867                                     const FunctionType::ExtInfo &Info) const {
2868    const CallingConv CallConv = Info.getCC();
2869  
2870    // Unique functions, to guarantee there is only one function of a particular
2871    // structure.
2872    llvm::FoldingSetNodeID ID;
2873    FunctionNoProtoType::Profile(ID, ResultTy, Info);
2874  
2875    void *InsertPos = nullptr;
2876    if (FunctionNoProtoType *FT =
2877          FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2878      return QualType(FT, 0);
2879  
2880    QualType Canonical;
2881    if (!ResultTy.isCanonical()) {
2882      Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info);
2883  
2884      // Get the new insert position for the node we care about.
2885      FunctionNoProtoType *NewIP =
2886        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2887      assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2888    }
2889  
2890    FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2891    FunctionNoProtoType *New = new (*this, TypeAlignment)
2892      FunctionNoProtoType(ResultTy, Canonical, newInfo);
2893    Types.push_back(New);
2894    FunctionNoProtoTypes.InsertNode(New, InsertPos);
2895    return QualType(New, 0);
2896  }
2897  
2898  /// \brief Determine whether \p T is canonical as the result type of a function.
isCanonicalResultType(QualType T)2899  static bool isCanonicalResultType(QualType T) {
2900    return T.isCanonical() &&
2901           (T.getObjCLifetime() == Qualifiers::OCL_None ||
2902            T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2903  }
2904  
2905  QualType
getFunctionType(QualType ResultTy,ArrayRef<QualType> ArgArray,const FunctionProtoType::ExtProtoInfo & EPI) const2906  ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2907                              const FunctionProtoType::ExtProtoInfo &EPI) const {
2908    size_t NumArgs = ArgArray.size();
2909  
2910    // Unique functions, to guarantee there is only one function of a particular
2911    // structure.
2912    llvm::FoldingSetNodeID ID;
2913    FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2914                               *this);
2915  
2916    void *InsertPos = nullptr;
2917    if (FunctionProtoType *FTP =
2918          FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2919      return QualType(FTP, 0);
2920  
2921    // Determine whether the type being created is already canonical or not.
2922    bool isCanonical =
2923      EPI.ExceptionSpec.Type == EST_None && isCanonicalResultType(ResultTy) &&
2924      !EPI.HasTrailingReturn;
2925    for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2926      if (!ArgArray[i].isCanonicalAsParam())
2927        isCanonical = false;
2928  
2929    // If this type isn't canonical, get the canonical version of it.
2930    // The exception spec is not part of the canonical type.
2931    QualType Canonical;
2932    if (!isCanonical) {
2933      SmallVector<QualType, 16> CanonicalArgs;
2934      CanonicalArgs.reserve(NumArgs);
2935      for (unsigned i = 0; i != NumArgs; ++i)
2936        CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2937  
2938      FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2939      CanonicalEPI.HasTrailingReturn = false;
2940      CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
2941  
2942      // Result types do not have ARC lifetime qualifiers.
2943      QualType CanResultTy = getCanonicalType(ResultTy);
2944      if (ResultTy.getQualifiers().hasObjCLifetime()) {
2945        Qualifiers Qs = CanResultTy.getQualifiers();
2946        Qs.removeObjCLifetime();
2947        CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2948      }
2949  
2950      Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2951  
2952      // Get the new insert position for the node we care about.
2953      FunctionProtoType *NewIP =
2954        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2955      assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2956    }
2957  
2958    // FunctionProtoType objects are allocated with extra bytes after
2959    // them for three variable size arrays at the end:
2960    //  - parameter types
2961    //  - exception types
2962    //  - consumed-arguments flags
2963    // Instead of the exception types, there could be a noexcept
2964    // expression, or information used to resolve the exception
2965    // specification.
2966    size_t Size = sizeof(FunctionProtoType) +
2967                  NumArgs * sizeof(QualType);
2968    if (EPI.ExceptionSpec.Type == EST_Dynamic) {
2969      Size += EPI.ExceptionSpec.Exceptions.size() * sizeof(QualType);
2970    } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
2971      Size += sizeof(Expr*);
2972    } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
2973      Size += 2 * sizeof(FunctionDecl*);
2974    } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
2975      Size += sizeof(FunctionDecl*);
2976    }
2977    if (EPI.ConsumedParameters)
2978      Size += NumArgs * sizeof(bool);
2979  
2980    FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2981    FunctionProtoType::ExtProtoInfo newEPI = EPI;
2982    new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2983    Types.push_back(FTP);
2984    FunctionProtoTypes.InsertNode(FTP, InsertPos);
2985    return QualType(FTP, 0);
2986  }
2987  
2988  #ifndef NDEBUG
NeedsInjectedClassNameType(const RecordDecl * D)2989  static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2990    if (!isa<CXXRecordDecl>(D)) return false;
2991    const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2992    if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2993      return true;
2994    if (RD->getDescribedClassTemplate() &&
2995        !isa<ClassTemplateSpecializationDecl>(RD))
2996      return true;
2997    return false;
2998  }
2999  #endif
3000  
3001  /// getInjectedClassNameType - Return the unique reference to the
3002  /// injected class name type for the specified templated declaration.
getInjectedClassNameType(CXXRecordDecl * Decl,QualType TST) const3003  QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
3004                                                QualType TST) const {
3005    assert(NeedsInjectedClassNameType(Decl));
3006    if (Decl->TypeForDecl) {
3007      assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
3008    } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
3009      assert(PrevDecl->TypeForDecl && "previous declaration has no type");
3010      Decl->TypeForDecl = PrevDecl->TypeForDecl;
3011      assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
3012    } else {
3013      Type *newType =
3014        new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
3015      Decl->TypeForDecl = newType;
3016      Types.push_back(newType);
3017    }
3018    return QualType(Decl->TypeForDecl, 0);
3019  }
3020  
3021  /// getTypeDeclType - Return the unique reference to the type for the
3022  /// specified type declaration.
getTypeDeclTypeSlow(const TypeDecl * Decl) const3023  QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
3024    assert(Decl && "Passed null for Decl param");
3025    assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
3026  
3027    if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
3028      return getTypedefType(Typedef);
3029  
3030    assert(!isa<TemplateTypeParmDecl>(Decl) &&
3031           "Template type parameter types are always available.");
3032  
3033    if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
3034      assert(Record->isFirstDecl() && "struct/union has previous declaration");
3035      assert(!NeedsInjectedClassNameType(Record));
3036      return getRecordType(Record);
3037    } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
3038      assert(Enum->isFirstDecl() && "enum has previous declaration");
3039      return getEnumType(Enum);
3040    } else if (const UnresolvedUsingTypenameDecl *Using =
3041                 dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
3042      Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
3043      Decl->TypeForDecl = newType;
3044      Types.push_back(newType);
3045    } else
3046      llvm_unreachable("TypeDecl without a type?");
3047  
3048    return QualType(Decl->TypeForDecl, 0);
3049  }
3050  
3051  /// getTypedefType - Return the unique reference to the type for the
3052  /// specified typedef name decl.
3053  QualType
getTypedefType(const TypedefNameDecl * Decl,QualType Canonical) const3054  ASTContext::getTypedefType(const TypedefNameDecl *Decl,
3055                             QualType Canonical) const {
3056    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3057  
3058    if (Canonical.isNull())
3059      Canonical = getCanonicalType(Decl->getUnderlyingType());
3060    TypedefType *newType = new(*this, TypeAlignment)
3061      TypedefType(Type::Typedef, Decl, Canonical);
3062    Decl->TypeForDecl = newType;
3063    Types.push_back(newType);
3064    return QualType(newType, 0);
3065  }
3066  
getRecordType(const RecordDecl * Decl) const3067  QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
3068    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3069  
3070    if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
3071      if (PrevDecl->TypeForDecl)
3072        return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3073  
3074    RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
3075    Decl->TypeForDecl = newType;
3076    Types.push_back(newType);
3077    return QualType(newType, 0);
3078  }
3079  
getEnumType(const EnumDecl * Decl) const3080  QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
3081    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3082  
3083    if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
3084      if (PrevDecl->TypeForDecl)
3085        return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3086  
3087    EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
3088    Decl->TypeForDecl = newType;
3089    Types.push_back(newType);
3090    return QualType(newType, 0);
3091  }
3092  
getAttributedType(AttributedType::Kind attrKind,QualType modifiedType,QualType equivalentType)3093  QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
3094                                         QualType modifiedType,
3095                                         QualType equivalentType) {
3096    llvm::FoldingSetNodeID id;
3097    AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
3098  
3099    void *insertPos = nullptr;
3100    AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
3101    if (type) return QualType(type, 0);
3102  
3103    QualType canon = getCanonicalType(equivalentType);
3104    type = new (*this, TypeAlignment)
3105             AttributedType(canon, attrKind, modifiedType, equivalentType);
3106  
3107    Types.push_back(type);
3108    AttributedTypes.InsertNode(type, insertPos);
3109  
3110    return QualType(type, 0);
3111  }
3112  
3113  
3114  /// \brief Retrieve a substitution-result type.
3115  QualType
getSubstTemplateTypeParmType(const TemplateTypeParmType * Parm,QualType Replacement) const3116  ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
3117                                           QualType Replacement) const {
3118    assert(Replacement.isCanonical()
3119           && "replacement types must always be canonical");
3120  
3121    llvm::FoldingSetNodeID ID;
3122    SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
3123    void *InsertPos = nullptr;
3124    SubstTemplateTypeParmType *SubstParm
3125      = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3126  
3127    if (!SubstParm) {
3128      SubstParm = new (*this, TypeAlignment)
3129        SubstTemplateTypeParmType(Parm, Replacement);
3130      Types.push_back(SubstParm);
3131      SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3132    }
3133  
3134    return QualType(SubstParm, 0);
3135  }
3136  
3137  /// \brief Retrieve a
getSubstTemplateTypeParmPackType(const TemplateTypeParmType * Parm,const TemplateArgument & ArgPack)3138  QualType ASTContext::getSubstTemplateTypeParmPackType(
3139                                            const TemplateTypeParmType *Parm,
3140                                                const TemplateArgument &ArgPack) {
3141  #ifndef NDEBUG
3142    for (const auto &P : ArgPack.pack_elements()) {
3143      assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3144      assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
3145    }
3146  #endif
3147  
3148    llvm::FoldingSetNodeID ID;
3149    SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3150    void *InsertPos = nullptr;
3151    if (SubstTemplateTypeParmPackType *SubstParm
3152          = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3153      return QualType(SubstParm, 0);
3154  
3155    QualType Canon;
3156    if (!Parm->isCanonicalUnqualified()) {
3157      Canon = getCanonicalType(QualType(Parm, 0));
3158      Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3159                                               ArgPack);
3160      SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3161    }
3162  
3163    SubstTemplateTypeParmPackType *SubstParm
3164      = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3165                                                                 ArgPack);
3166    Types.push_back(SubstParm);
3167    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3168    return QualType(SubstParm, 0);
3169  }
3170  
3171  /// \brief Retrieve the template type parameter type for a template
3172  /// parameter or parameter pack with the given depth, index, and (optionally)
3173  /// name.
getTemplateTypeParmType(unsigned Depth,unsigned Index,bool ParameterPack,TemplateTypeParmDecl * TTPDecl) const3174  QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3175                                               bool ParameterPack,
3176                                               TemplateTypeParmDecl *TTPDecl) const {
3177    llvm::FoldingSetNodeID ID;
3178    TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3179    void *InsertPos = nullptr;
3180    TemplateTypeParmType *TypeParm
3181      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3182  
3183    if (TypeParm)
3184      return QualType(TypeParm, 0);
3185  
3186    if (TTPDecl) {
3187      QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3188      TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3189  
3190      TemplateTypeParmType *TypeCheck
3191        = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3192      assert(!TypeCheck && "Template type parameter canonical type broken");
3193      (void)TypeCheck;
3194    } else
3195      TypeParm = new (*this, TypeAlignment)
3196        TemplateTypeParmType(Depth, Index, ParameterPack);
3197  
3198    Types.push_back(TypeParm);
3199    TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3200  
3201    return QualType(TypeParm, 0);
3202  }
3203  
3204  TypeSourceInfo *
getTemplateSpecializationTypeInfo(TemplateName Name,SourceLocation NameLoc,const TemplateArgumentListInfo & Args,QualType Underlying) const3205  ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3206                                                SourceLocation NameLoc,
3207                                          const TemplateArgumentListInfo &Args,
3208                                                QualType Underlying) const {
3209    assert(!Name.getAsDependentTemplateName() &&
3210           "No dependent template names here!");
3211    QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3212  
3213    TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3214    TemplateSpecializationTypeLoc TL =
3215        DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3216    TL.setTemplateKeywordLoc(SourceLocation());
3217    TL.setTemplateNameLoc(NameLoc);
3218    TL.setLAngleLoc(Args.getLAngleLoc());
3219    TL.setRAngleLoc(Args.getRAngleLoc());
3220    for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3221      TL.setArgLocInfo(i, Args[i].getLocInfo());
3222    return DI;
3223  }
3224  
3225  QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgumentListInfo & Args,QualType Underlying) const3226  ASTContext::getTemplateSpecializationType(TemplateName Template,
3227                                            const TemplateArgumentListInfo &Args,
3228                                            QualType Underlying) const {
3229    assert(!Template.getAsDependentTemplateName() &&
3230           "No dependent template names here!");
3231  
3232    unsigned NumArgs = Args.size();
3233  
3234    SmallVector<TemplateArgument, 4> ArgVec;
3235    ArgVec.reserve(NumArgs);
3236    for (unsigned i = 0; i != NumArgs; ++i)
3237      ArgVec.push_back(Args[i].getArgument());
3238  
3239    return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3240                                         Underlying);
3241  }
3242  
3243  #ifndef NDEBUG
hasAnyPackExpansions(const TemplateArgument * Args,unsigned NumArgs)3244  static bool hasAnyPackExpansions(const TemplateArgument *Args,
3245                                   unsigned NumArgs) {
3246    for (unsigned I = 0; I != NumArgs; ++I)
3247      if (Args[I].isPackExpansion())
3248        return true;
3249  
3250    return true;
3251  }
3252  #endif
3253  
3254  QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs,QualType Underlying) const3255  ASTContext::getTemplateSpecializationType(TemplateName Template,
3256                                            const TemplateArgument *Args,
3257                                            unsigned NumArgs,
3258                                            QualType Underlying) const {
3259    assert(!Template.getAsDependentTemplateName() &&
3260           "No dependent template names here!");
3261    // Look through qualified template names.
3262    if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3263      Template = TemplateName(QTN->getTemplateDecl());
3264  
3265    bool IsTypeAlias =
3266      Template.getAsTemplateDecl() &&
3267      isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3268    QualType CanonType;
3269    if (!Underlying.isNull())
3270      CanonType = getCanonicalType(Underlying);
3271    else {
3272      // We can get here with an alias template when the specialization contains
3273      // a pack expansion that does not match up with a parameter pack.
3274      assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3275             "Caller must compute aliased type");
3276      IsTypeAlias = false;
3277      CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3278                                                         NumArgs);
3279    }
3280  
3281    // Allocate the (non-canonical) template specialization type, but don't
3282    // try to unique it: these types typically have location information that
3283    // we don't unique and don't want to lose.
3284    void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3285                         sizeof(TemplateArgument) * NumArgs +
3286                         (IsTypeAlias? sizeof(QualType) : 0),
3287                         TypeAlignment);
3288    TemplateSpecializationType *Spec
3289      = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3290                                           IsTypeAlias ? Underlying : QualType());
3291  
3292    Types.push_back(Spec);
3293    return QualType(Spec, 0);
3294  }
3295  
3296  QualType
getCanonicalTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs) const3297  ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3298                                                     const TemplateArgument *Args,
3299                                                     unsigned NumArgs) const {
3300    assert(!Template.getAsDependentTemplateName() &&
3301           "No dependent template names here!");
3302  
3303    // Look through qualified template names.
3304    if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3305      Template = TemplateName(QTN->getTemplateDecl());
3306  
3307    // Build the canonical template specialization type.
3308    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3309    SmallVector<TemplateArgument, 4> CanonArgs;
3310    CanonArgs.reserve(NumArgs);
3311    for (unsigned I = 0; I != NumArgs; ++I)
3312      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3313  
3314    // Determine whether this canonical template specialization type already
3315    // exists.
3316    llvm::FoldingSetNodeID ID;
3317    TemplateSpecializationType::Profile(ID, CanonTemplate,
3318                                        CanonArgs.data(), NumArgs, *this);
3319  
3320    void *InsertPos = nullptr;
3321    TemplateSpecializationType *Spec
3322      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3323  
3324    if (!Spec) {
3325      // Allocate a new canonical template specialization type.
3326      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3327                            sizeof(TemplateArgument) * NumArgs),
3328                           TypeAlignment);
3329      Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3330                                                  CanonArgs.data(), NumArgs,
3331                                                  QualType(), QualType());
3332      Types.push_back(Spec);
3333      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3334    }
3335  
3336    assert(Spec->isDependentType() &&
3337           "Non-dependent template-id type must have a canonical type");
3338    return QualType(Spec, 0);
3339  }
3340  
3341  QualType
getElaboratedType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,QualType NamedType) const3342  ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3343                                NestedNameSpecifier *NNS,
3344                                QualType NamedType) const {
3345    llvm::FoldingSetNodeID ID;
3346    ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3347  
3348    void *InsertPos = nullptr;
3349    ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3350    if (T)
3351      return QualType(T, 0);
3352  
3353    QualType Canon = NamedType;
3354    if (!Canon.isCanonical()) {
3355      Canon = getCanonicalType(NamedType);
3356      ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3357      assert(!CheckT && "Elaborated canonical type broken");
3358      (void)CheckT;
3359    }
3360  
3361    T = new (*this, TypeAlignment) ElaboratedType(Keyword, NNS, NamedType, Canon);
3362    Types.push_back(T);
3363    ElaboratedTypes.InsertNode(T, InsertPos);
3364    return QualType(T, 0);
3365  }
3366  
3367  QualType
getParenType(QualType InnerType) const3368  ASTContext::getParenType(QualType InnerType) const {
3369    llvm::FoldingSetNodeID ID;
3370    ParenType::Profile(ID, InnerType);
3371  
3372    void *InsertPos = nullptr;
3373    ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3374    if (T)
3375      return QualType(T, 0);
3376  
3377    QualType Canon = InnerType;
3378    if (!Canon.isCanonical()) {
3379      Canon = getCanonicalType(InnerType);
3380      ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3381      assert(!CheckT && "Paren canonical type broken");
3382      (void)CheckT;
3383    }
3384  
3385    T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
3386    Types.push_back(T);
3387    ParenTypes.InsertNode(T, InsertPos);
3388    return QualType(T, 0);
3389  }
3390  
getDependentNameType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,QualType Canon) const3391  QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3392                                            NestedNameSpecifier *NNS,
3393                                            const IdentifierInfo *Name,
3394                                            QualType Canon) const {
3395    if (Canon.isNull()) {
3396      NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3397      ElaboratedTypeKeyword CanonKeyword = Keyword;
3398      if (Keyword == ETK_None)
3399        CanonKeyword = ETK_Typename;
3400  
3401      if (CanonNNS != NNS || CanonKeyword != Keyword)
3402        Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3403    }
3404  
3405    llvm::FoldingSetNodeID ID;
3406    DependentNameType::Profile(ID, Keyword, NNS, Name);
3407  
3408    void *InsertPos = nullptr;
3409    DependentNameType *T
3410      = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3411    if (T)
3412      return QualType(T, 0);
3413  
3414    T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
3415    Types.push_back(T);
3416    DependentNameTypes.InsertNode(T, InsertPos);
3417    return QualType(T, 0);
3418  }
3419  
3420  QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,const TemplateArgumentListInfo & Args) const3421  ASTContext::getDependentTemplateSpecializationType(
3422                                   ElaboratedTypeKeyword Keyword,
3423                                   NestedNameSpecifier *NNS,
3424                                   const IdentifierInfo *Name,
3425                                   const TemplateArgumentListInfo &Args) const {
3426    // TODO: avoid this copy
3427    SmallVector<TemplateArgument, 16> ArgCopy;
3428    for (unsigned I = 0, E = Args.size(); I != E; ++I)
3429      ArgCopy.push_back(Args[I].getArgument());
3430    return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3431                                                  ArgCopy.size(),
3432                                                  ArgCopy.data());
3433  }
3434  
3435  QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,unsigned NumArgs,const TemplateArgument * Args) const3436  ASTContext::getDependentTemplateSpecializationType(
3437                                   ElaboratedTypeKeyword Keyword,
3438                                   NestedNameSpecifier *NNS,
3439                                   const IdentifierInfo *Name,
3440                                   unsigned NumArgs,
3441                                   const TemplateArgument *Args) const {
3442    assert((!NNS || NNS->isDependent()) &&
3443           "nested-name-specifier must be dependent");
3444  
3445    llvm::FoldingSetNodeID ID;
3446    DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3447                                                 Name, NumArgs, Args);
3448  
3449    void *InsertPos = nullptr;
3450    DependentTemplateSpecializationType *T
3451      = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3452    if (T)
3453      return QualType(T, 0);
3454  
3455    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3456  
3457    ElaboratedTypeKeyword CanonKeyword = Keyword;
3458    if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3459  
3460    bool AnyNonCanonArgs = false;
3461    SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3462    for (unsigned I = 0; I != NumArgs; ++I) {
3463      CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3464      if (!CanonArgs[I].structurallyEquals(Args[I]))
3465        AnyNonCanonArgs = true;
3466    }
3467  
3468    QualType Canon;
3469    if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3470      Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3471                                                     Name, NumArgs,
3472                                                     CanonArgs.data());
3473  
3474      // Find the insert position again.
3475      DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3476    }
3477  
3478    void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3479                          sizeof(TemplateArgument) * NumArgs),
3480                         TypeAlignment);
3481    T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3482                                                      Name, NumArgs, Args, Canon);
3483    Types.push_back(T);
3484    DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3485    return QualType(T, 0);
3486  }
3487  
getPackExpansionType(QualType Pattern,Optional<unsigned> NumExpansions)3488  QualType ASTContext::getPackExpansionType(QualType Pattern,
3489                                            Optional<unsigned> NumExpansions) {
3490    llvm::FoldingSetNodeID ID;
3491    PackExpansionType::Profile(ID, Pattern, NumExpansions);
3492  
3493    assert(Pattern->containsUnexpandedParameterPack() &&
3494           "Pack expansions must expand one or more parameter packs");
3495    void *InsertPos = nullptr;
3496    PackExpansionType *T
3497      = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3498    if (T)
3499      return QualType(T, 0);
3500  
3501    QualType Canon;
3502    if (!Pattern.isCanonical()) {
3503      Canon = getCanonicalType(Pattern);
3504      // The canonical type might not contain an unexpanded parameter pack, if it
3505      // contains an alias template specialization which ignores one of its
3506      // parameters.
3507      if (Canon->containsUnexpandedParameterPack()) {
3508        Canon = getPackExpansionType(Canon, NumExpansions);
3509  
3510        // Find the insert position again, in case we inserted an element into
3511        // PackExpansionTypes and invalidated our insert position.
3512        PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3513      }
3514    }
3515  
3516    T = new (*this, TypeAlignment)
3517        PackExpansionType(Pattern, Canon, NumExpansions);
3518    Types.push_back(T);
3519    PackExpansionTypes.InsertNode(T, InsertPos);
3520    return QualType(T, 0);
3521  }
3522  
3523  /// CmpProtocolNames - Comparison predicate for sorting protocols
3524  /// alphabetically.
CmpProtocolNames(ObjCProtocolDecl * const * LHS,ObjCProtocolDecl * const * RHS)3525  static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
3526                              ObjCProtocolDecl *const *RHS) {
3527    return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
3528  }
3529  
areSortedAndUniqued(ObjCProtocolDecl * const * Protocols,unsigned NumProtocols)3530  static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3531                                  unsigned NumProtocols) {
3532    if (NumProtocols == 0) return true;
3533  
3534    if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3535      return false;
3536  
3537    for (unsigned i = 1; i != NumProtocols; ++i)
3538      if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
3539          Protocols[i]->getCanonicalDecl() != Protocols[i])
3540        return false;
3541    return true;
3542  }
3543  
SortAndUniqueProtocols(ObjCProtocolDecl ** Protocols,unsigned & NumProtocols)3544  static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3545                                     unsigned &NumProtocols) {
3546    ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3547  
3548    // Sort protocols, keyed by name.
3549    llvm::array_pod_sort(Protocols, ProtocolsEnd, CmpProtocolNames);
3550  
3551    // Canonicalize.
3552    for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3553      Protocols[I] = Protocols[I]->getCanonicalDecl();
3554  
3555    // Remove duplicates.
3556    ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3557    NumProtocols = ProtocolsEnd-Protocols;
3558  }
3559  
getObjCObjectType(QualType BaseType,ObjCProtocolDecl * const * Protocols,unsigned NumProtocols) const3560  QualType ASTContext::getObjCObjectType(QualType BaseType,
3561                                         ObjCProtocolDecl * const *Protocols,
3562                                         unsigned NumProtocols) const {
3563    // If the base type is an interface and there aren't any protocols
3564    // to add, then the interface type will do just fine.
3565    if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3566      return BaseType;
3567  
3568    // Look in the folding set for an existing type.
3569    llvm::FoldingSetNodeID ID;
3570    ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3571    void *InsertPos = nullptr;
3572    if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3573      return QualType(QT, 0);
3574  
3575    // Build the canonical type, which has the canonical base type and
3576    // a sorted-and-uniqued list of protocols.
3577    QualType Canonical;
3578    bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3579    if (!ProtocolsSorted || !BaseType.isCanonical()) {
3580      if (!ProtocolsSorted) {
3581        SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3582                                                       Protocols + NumProtocols);
3583        unsigned UniqueCount = NumProtocols;
3584  
3585        SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3586        Canonical = getObjCObjectType(getCanonicalType(BaseType),
3587                                      &Sorted[0], UniqueCount);
3588      } else {
3589        Canonical = getObjCObjectType(getCanonicalType(BaseType),
3590                                      Protocols, NumProtocols);
3591      }
3592  
3593      // Regenerate InsertPos.
3594      ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3595    }
3596  
3597    unsigned Size = sizeof(ObjCObjectTypeImpl);
3598    Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3599    void *Mem = Allocate(Size, TypeAlignment);
3600    ObjCObjectTypeImpl *T =
3601      new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3602  
3603    Types.push_back(T);
3604    ObjCObjectTypes.InsertNode(T, InsertPos);
3605    return QualType(T, 0);
3606  }
3607  
3608  /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
3609  /// protocol list adopt all protocols in QT's qualified-id protocol
3610  /// list.
ObjCObjectAdoptsQTypeProtocols(QualType QT,ObjCInterfaceDecl * IC)3611  bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
3612                                                  ObjCInterfaceDecl *IC) {
3613    if (!QT->isObjCQualifiedIdType())
3614      return false;
3615  
3616    if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) {
3617      // If both the right and left sides have qualifiers.
3618      for (auto *Proto : OPT->quals()) {
3619        if (!IC->ClassImplementsProtocol(Proto, false))
3620          return false;
3621      }
3622      return true;
3623    }
3624    return false;
3625  }
3626  
3627  /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
3628  /// QT's qualified-id protocol list adopt all protocols in IDecl's list
3629  /// of protocols.
QIdProtocolsAdoptObjCObjectProtocols(QualType QT,ObjCInterfaceDecl * IDecl)3630  bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
3631                                                  ObjCInterfaceDecl *IDecl) {
3632    if (!QT->isObjCQualifiedIdType())
3633      return false;
3634    const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
3635    if (!OPT)
3636      return false;
3637    if (!IDecl->hasDefinition())
3638      return false;
3639    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
3640    CollectInheritedProtocols(IDecl, InheritedProtocols);
3641    if (InheritedProtocols.empty())
3642      return false;
3643    // Check that if every protocol in list of id<plist> conforms to a protcol
3644    // of IDecl's, then bridge casting is ok.
3645    bool Conforms = false;
3646    for (auto *Proto : OPT->quals()) {
3647      Conforms = false;
3648      for (auto *PI : InheritedProtocols) {
3649        if (ProtocolCompatibleWithProtocol(Proto, PI)) {
3650          Conforms = true;
3651          break;
3652        }
3653      }
3654      if (!Conforms)
3655        break;
3656    }
3657    if (Conforms)
3658      return true;
3659  
3660    for (auto *PI : InheritedProtocols) {
3661      // If both the right and left sides have qualifiers.
3662      bool Adopts = false;
3663      for (auto *Proto : OPT->quals()) {
3664        // return 'true' if 'PI' is in the inheritance hierarchy of Proto
3665        if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
3666          break;
3667      }
3668      if (!Adopts)
3669        return false;
3670    }
3671    return true;
3672  }
3673  
3674  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3675  /// the given object type.
getObjCObjectPointerType(QualType ObjectT) const3676  QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3677    llvm::FoldingSetNodeID ID;
3678    ObjCObjectPointerType::Profile(ID, ObjectT);
3679  
3680    void *InsertPos = nullptr;
3681    if (ObjCObjectPointerType *QT =
3682                ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3683      return QualType(QT, 0);
3684  
3685    // Find the canonical object type.
3686    QualType Canonical;
3687    if (!ObjectT.isCanonical()) {
3688      Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3689  
3690      // Regenerate InsertPos.
3691      ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3692    }
3693  
3694    // No match.
3695    void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3696    ObjCObjectPointerType *QType =
3697      new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3698  
3699    Types.push_back(QType);
3700    ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3701    return QualType(QType, 0);
3702  }
3703  
3704  /// getObjCInterfaceType - Return the unique reference to the type for the
3705  /// specified ObjC interface decl. The list of protocols is optional.
getObjCInterfaceType(const ObjCInterfaceDecl * Decl,ObjCInterfaceDecl * PrevDecl) const3706  QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3707                                            ObjCInterfaceDecl *PrevDecl) const {
3708    if (Decl->TypeForDecl)
3709      return QualType(Decl->TypeForDecl, 0);
3710  
3711    if (PrevDecl) {
3712      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3713      Decl->TypeForDecl = PrevDecl->TypeForDecl;
3714      return QualType(PrevDecl->TypeForDecl, 0);
3715    }
3716  
3717    // Prefer the definition, if there is one.
3718    if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3719      Decl = Def;
3720  
3721    void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3722    ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3723    Decl->TypeForDecl = T;
3724    Types.push_back(T);
3725    return QualType(T, 0);
3726  }
3727  
3728  /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3729  /// TypeOfExprType AST's (since expression's are never shared). For example,
3730  /// multiple declarations that refer to "typeof(x)" all contain different
3731  /// DeclRefExpr's. This doesn't effect the type checker, since it operates
3732  /// on canonical type's (which are always unique).
getTypeOfExprType(Expr * tofExpr) const3733  QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3734    TypeOfExprType *toe;
3735    if (tofExpr->isTypeDependent()) {
3736      llvm::FoldingSetNodeID ID;
3737      DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3738  
3739      void *InsertPos = nullptr;
3740      DependentTypeOfExprType *Canon
3741        = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3742      if (Canon) {
3743        // We already have a "canonical" version of an identical, dependent
3744        // typeof(expr) type. Use that as our canonical type.
3745        toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3746                                            QualType((TypeOfExprType*)Canon, 0));
3747      } else {
3748        // Build a new, canonical typeof(expr) type.
3749        Canon
3750          = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3751        DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3752        toe = Canon;
3753      }
3754    } else {
3755      QualType Canonical = getCanonicalType(tofExpr->getType());
3756      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3757    }
3758    Types.push_back(toe);
3759    return QualType(toe, 0);
3760  }
3761  
3762  /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3763  /// TypeOfType nodes. The only motivation to unique these nodes would be
3764  /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3765  /// an issue. This doesn't affect the type checker, since it operates
3766  /// on canonical types (which are always unique).
getTypeOfType(QualType tofType) const3767  QualType ASTContext::getTypeOfType(QualType tofType) const {
3768    QualType Canonical = getCanonicalType(tofType);
3769    TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3770    Types.push_back(tot);
3771    return QualType(tot, 0);
3772  }
3773  
3774  
3775  /// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType
3776  /// nodes. This would never be helpful, since each such type has its own
3777  /// expression, and would not give a significant memory saving, since there
3778  /// is an Expr tree under each such type.
getDecltypeType(Expr * e,QualType UnderlyingType) const3779  QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3780    DecltypeType *dt;
3781  
3782    // C++11 [temp.type]p2:
3783    //   If an expression e involves a template parameter, decltype(e) denotes a
3784    //   unique dependent type. Two such decltype-specifiers refer to the same
3785    //   type only if their expressions are equivalent (14.5.6.1).
3786    if (e->isInstantiationDependent()) {
3787      llvm::FoldingSetNodeID ID;
3788      DependentDecltypeType::Profile(ID, *this, e);
3789  
3790      void *InsertPos = nullptr;
3791      DependentDecltypeType *Canon
3792        = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3793      if (!Canon) {
3794        // Build a new, canonical typeof(expr) type.
3795        Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3796        DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3797      }
3798      dt = new (*this, TypeAlignment)
3799          DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
3800    } else {
3801      dt = new (*this, TypeAlignment)
3802          DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
3803    }
3804    Types.push_back(dt);
3805    return QualType(dt, 0);
3806  }
3807  
3808  /// getUnaryTransformationType - We don't unique these, since the memory
3809  /// savings are minimal and these are rare.
getUnaryTransformType(QualType BaseType,QualType UnderlyingType,UnaryTransformType::UTTKind Kind) const3810  QualType ASTContext::getUnaryTransformType(QualType BaseType,
3811                                             QualType UnderlyingType,
3812                                             UnaryTransformType::UTTKind Kind)
3813      const {
3814    UnaryTransformType *Ty =
3815      new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3816                                                     Kind,
3817                                   UnderlyingType->isDependentType() ?
3818                                   QualType() : getCanonicalType(UnderlyingType));
3819    Types.push_back(Ty);
3820    return QualType(Ty, 0);
3821  }
3822  
3823  /// getAutoType - Return the uniqued reference to the 'auto' type which has been
3824  /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3825  /// canonical deduced-but-dependent 'auto' type.
getAutoType(QualType DeducedType,bool IsDecltypeAuto,bool IsDependent) const3826  QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3827                                   bool IsDependent) const {
3828    if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3829      return getAutoDeductType();
3830  
3831    // Look in the folding set for an existing type.
3832    void *InsertPos = nullptr;
3833    llvm::FoldingSetNodeID ID;
3834    AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3835    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3836      return QualType(AT, 0);
3837  
3838    AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3839                                                       IsDecltypeAuto,
3840                                                       IsDependent);
3841    Types.push_back(AT);
3842    if (InsertPos)
3843      AutoTypes.InsertNode(AT, InsertPos);
3844    return QualType(AT, 0);
3845  }
3846  
3847  /// getAtomicType - Return the uniqued reference to the atomic type for
3848  /// the given value type.
getAtomicType(QualType T) const3849  QualType ASTContext::getAtomicType(QualType T) const {
3850    // Unique pointers, to guarantee there is only one pointer of a particular
3851    // structure.
3852    llvm::FoldingSetNodeID ID;
3853    AtomicType::Profile(ID, T);
3854  
3855    void *InsertPos = nullptr;
3856    if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3857      return QualType(AT, 0);
3858  
3859    // If the atomic value type isn't canonical, this won't be a canonical type
3860    // either, so fill in the canonical type field.
3861    QualType Canonical;
3862    if (!T.isCanonical()) {
3863      Canonical = getAtomicType(getCanonicalType(T));
3864  
3865      // Get the new insert position for the node we care about.
3866      AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3867      assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3868    }
3869    AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3870    Types.push_back(New);
3871    AtomicTypes.InsertNode(New, InsertPos);
3872    return QualType(New, 0);
3873  }
3874  
3875  /// getAutoDeductType - Get type pattern for deducing against 'auto'.
getAutoDeductType() const3876  QualType ASTContext::getAutoDeductType() const {
3877    if (AutoDeductTy.isNull())
3878      AutoDeductTy = QualType(
3879        new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
3880                                            /*dependent*/false),
3881        0);
3882    return AutoDeductTy;
3883  }
3884  
3885  /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
getAutoRRefDeductType() const3886  QualType ASTContext::getAutoRRefDeductType() const {
3887    if (AutoRRefDeductTy.isNull())
3888      AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3889    assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3890    return AutoRRefDeductTy;
3891  }
3892  
3893  /// getTagDeclType - Return the unique reference to the type for the
3894  /// specified TagDecl (struct/union/class/enum) decl.
getTagDeclType(const TagDecl * Decl) const3895  QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3896    assert (Decl);
3897    // FIXME: What is the design on getTagDeclType when it requires casting
3898    // away const?  mutable?
3899    return getTypeDeclType(const_cast<TagDecl*>(Decl));
3900  }
3901  
3902  /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3903  /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3904  /// needs to agree with the definition in <stddef.h>.
getSizeType() const3905  CanQualType ASTContext::getSizeType() const {
3906    return getFromTargetType(Target->getSizeType());
3907  }
3908  
3909  /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
getIntMaxType() const3910  CanQualType ASTContext::getIntMaxType() const {
3911    return getFromTargetType(Target->getIntMaxType());
3912  }
3913  
3914  /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
getUIntMaxType() const3915  CanQualType ASTContext::getUIntMaxType() const {
3916    return getFromTargetType(Target->getUIntMaxType());
3917  }
3918  
3919  /// getSignedWCharType - Return the type of "signed wchar_t".
3920  /// Used when in C++, as a GCC extension.
getSignedWCharType() const3921  QualType ASTContext::getSignedWCharType() const {
3922    // FIXME: derive from "Target" ?
3923    return WCharTy;
3924  }
3925  
3926  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3927  /// Used when in C++, as a GCC extension.
getUnsignedWCharType() const3928  QualType ASTContext::getUnsignedWCharType() const {
3929    // FIXME: derive from "Target" ?
3930    return UnsignedIntTy;
3931  }
3932  
getIntPtrType() const3933  QualType ASTContext::getIntPtrType() const {
3934    return getFromTargetType(Target->getIntPtrType());
3935  }
3936  
getUIntPtrType() const3937  QualType ASTContext::getUIntPtrType() const {
3938    return getCorrespondingUnsignedType(getIntPtrType());
3939  }
3940  
3941  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3942  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
getPointerDiffType() const3943  QualType ASTContext::getPointerDiffType() const {
3944    return getFromTargetType(Target->getPtrDiffType(0));
3945  }
3946  
3947  /// \brief Return the unique type for "pid_t" defined in
3948  /// <sys/types.h>. We need this to compute the correct type for vfork().
getProcessIDType() const3949  QualType ASTContext::getProcessIDType() const {
3950    return getFromTargetType(Target->getProcessIDType());
3951  }
3952  
3953  //===----------------------------------------------------------------------===//
3954  //                              Type Operators
3955  //===----------------------------------------------------------------------===//
3956  
getCanonicalParamType(QualType T) const3957  CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3958    // Push qualifiers into arrays, and then discard any remaining
3959    // qualifiers.
3960    T = getCanonicalType(T);
3961    T = getVariableArrayDecayedType(T);
3962    const Type *Ty = T.getTypePtr();
3963    QualType Result;
3964    if (isa<ArrayType>(Ty)) {
3965      Result = getArrayDecayedType(QualType(Ty,0));
3966    } else if (isa<FunctionType>(Ty)) {
3967      Result = getPointerType(QualType(Ty, 0));
3968    } else {
3969      Result = QualType(Ty, 0);
3970    }
3971  
3972    return CanQualType::CreateUnsafe(Result);
3973  }
3974  
getUnqualifiedArrayType(QualType type,Qualifiers & quals)3975  QualType ASTContext::getUnqualifiedArrayType(QualType type,
3976                                               Qualifiers &quals) {
3977    SplitQualType splitType = type.getSplitUnqualifiedType();
3978  
3979    // FIXME: getSplitUnqualifiedType() actually walks all the way to
3980    // the unqualified desugared type and then drops it on the floor.
3981    // We then have to strip that sugar back off with
3982    // getUnqualifiedDesugaredType(), which is silly.
3983    const ArrayType *AT =
3984      dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3985  
3986    // If we don't have an array, just use the results in splitType.
3987    if (!AT) {
3988      quals = splitType.Quals;
3989      return QualType(splitType.Ty, 0);
3990    }
3991  
3992    // Otherwise, recurse on the array's element type.
3993    QualType elementType = AT->getElementType();
3994    QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3995  
3996    // If that didn't change the element type, AT has no qualifiers, so we
3997    // can just use the results in splitType.
3998    if (elementType == unqualElementType) {
3999      assert(quals.empty()); // from the recursive call
4000      quals = splitType.Quals;
4001      return QualType(splitType.Ty, 0);
4002    }
4003  
4004    // Otherwise, add in the qualifiers from the outermost type, then
4005    // build the type back up.
4006    quals.addConsistentQualifiers(splitType.Quals);
4007  
4008    if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4009      return getConstantArrayType(unqualElementType, CAT->getSize(),
4010                                  CAT->getSizeModifier(), 0);
4011    }
4012  
4013    if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
4014      return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
4015    }
4016  
4017    if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
4018      return getVariableArrayType(unqualElementType,
4019                                  VAT->getSizeExpr(),
4020                                  VAT->getSizeModifier(),
4021                                  VAT->getIndexTypeCVRQualifiers(),
4022                                  VAT->getBracketsRange());
4023    }
4024  
4025    const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
4026    return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
4027                                      DSAT->getSizeModifier(), 0,
4028                                      SourceRange());
4029  }
4030  
4031  /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
4032  /// may be similar (C++ 4.4), replaces T1 and T2 with the type that
4033  /// they point to and return true. If T1 and T2 aren't pointer types
4034  /// or pointer-to-member types, or if they are not similar at this
4035  /// level, returns false and leaves T1 and T2 unchanged. Top-level
4036  /// qualifiers on T1 and T2 are ignored. This function will typically
4037  /// be called in a loop that successively "unwraps" pointer and
4038  /// pointer-to-member types to compare them at each level.
UnwrapSimilarPointerTypes(QualType & T1,QualType & T2)4039  bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
4040    const PointerType *T1PtrType = T1->getAs<PointerType>(),
4041                      *T2PtrType = T2->getAs<PointerType>();
4042    if (T1PtrType && T2PtrType) {
4043      T1 = T1PtrType->getPointeeType();
4044      T2 = T2PtrType->getPointeeType();
4045      return true;
4046    }
4047  
4048    const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
4049                            *T2MPType = T2->getAs<MemberPointerType>();
4050    if (T1MPType && T2MPType &&
4051        hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
4052                               QualType(T2MPType->getClass(), 0))) {
4053      T1 = T1MPType->getPointeeType();
4054      T2 = T2MPType->getPointeeType();
4055      return true;
4056    }
4057  
4058    if (getLangOpts().ObjC1) {
4059      const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
4060                                  *T2OPType = T2->getAs<ObjCObjectPointerType>();
4061      if (T1OPType && T2OPType) {
4062        T1 = T1OPType->getPointeeType();
4063        T2 = T2OPType->getPointeeType();
4064        return true;
4065      }
4066    }
4067  
4068    // FIXME: Block pointers, too?
4069  
4070    return false;
4071  }
4072  
4073  DeclarationNameInfo
getNameForTemplate(TemplateName Name,SourceLocation NameLoc) const4074  ASTContext::getNameForTemplate(TemplateName Name,
4075                                 SourceLocation NameLoc) const {
4076    switch (Name.getKind()) {
4077    case TemplateName::QualifiedTemplate:
4078    case TemplateName::Template:
4079      // DNInfo work in progress: CHECKME: what about DNLoc?
4080      return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
4081                                 NameLoc);
4082  
4083    case TemplateName::OverloadedTemplate: {
4084      OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
4085      // DNInfo work in progress: CHECKME: what about DNLoc?
4086      return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
4087    }
4088  
4089    case TemplateName::DependentTemplate: {
4090      DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4091      DeclarationName DName;
4092      if (DTN->isIdentifier()) {
4093        DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
4094        return DeclarationNameInfo(DName, NameLoc);
4095      } else {
4096        DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
4097        // DNInfo work in progress: FIXME: source locations?
4098        DeclarationNameLoc DNLoc;
4099        DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
4100        DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
4101        return DeclarationNameInfo(DName, NameLoc, DNLoc);
4102      }
4103    }
4104  
4105    case TemplateName::SubstTemplateTemplateParm: {
4106      SubstTemplateTemplateParmStorage *subst
4107        = Name.getAsSubstTemplateTemplateParm();
4108      return DeclarationNameInfo(subst->getParameter()->getDeclName(),
4109                                 NameLoc);
4110    }
4111  
4112    case TemplateName::SubstTemplateTemplateParmPack: {
4113      SubstTemplateTemplateParmPackStorage *subst
4114        = Name.getAsSubstTemplateTemplateParmPack();
4115      return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
4116                                 NameLoc);
4117    }
4118    }
4119  
4120    llvm_unreachable("bad template name kind!");
4121  }
4122  
getCanonicalTemplateName(TemplateName Name) const4123  TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
4124    switch (Name.getKind()) {
4125    case TemplateName::QualifiedTemplate:
4126    case TemplateName::Template: {
4127      TemplateDecl *Template = Name.getAsTemplateDecl();
4128      if (TemplateTemplateParmDecl *TTP
4129            = dyn_cast<TemplateTemplateParmDecl>(Template))
4130        Template = getCanonicalTemplateTemplateParmDecl(TTP);
4131  
4132      // The canonical template name is the canonical template declaration.
4133      return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
4134    }
4135  
4136    case TemplateName::OverloadedTemplate:
4137      llvm_unreachable("cannot canonicalize overloaded template");
4138  
4139    case TemplateName::DependentTemplate: {
4140      DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4141      assert(DTN && "Non-dependent template names must refer to template decls.");
4142      return DTN->CanonicalTemplateName;
4143    }
4144  
4145    case TemplateName::SubstTemplateTemplateParm: {
4146      SubstTemplateTemplateParmStorage *subst
4147        = Name.getAsSubstTemplateTemplateParm();
4148      return getCanonicalTemplateName(subst->getReplacement());
4149    }
4150  
4151    case TemplateName::SubstTemplateTemplateParmPack: {
4152      SubstTemplateTemplateParmPackStorage *subst
4153                                    = Name.getAsSubstTemplateTemplateParmPack();
4154      TemplateTemplateParmDecl *canonParameter
4155        = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
4156      TemplateArgument canonArgPack
4157        = getCanonicalTemplateArgument(subst->getArgumentPack());
4158      return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
4159    }
4160    }
4161  
4162    llvm_unreachable("bad template name!");
4163  }
4164  
hasSameTemplateName(TemplateName X,TemplateName Y)4165  bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
4166    X = getCanonicalTemplateName(X);
4167    Y = getCanonicalTemplateName(Y);
4168    return X.getAsVoidPointer() == Y.getAsVoidPointer();
4169  }
4170  
4171  TemplateArgument
getCanonicalTemplateArgument(const TemplateArgument & Arg) const4172  ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
4173    switch (Arg.getKind()) {
4174      case TemplateArgument::Null:
4175        return Arg;
4176  
4177      case TemplateArgument::Expression:
4178        return Arg;
4179  
4180      case TemplateArgument::Declaration: {
4181        ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
4182        return TemplateArgument(D, Arg.getParamTypeForDecl());
4183      }
4184  
4185      case TemplateArgument::NullPtr:
4186        return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
4187                                /*isNullPtr*/true);
4188  
4189      case TemplateArgument::Template:
4190        return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
4191  
4192      case TemplateArgument::TemplateExpansion:
4193        return TemplateArgument(getCanonicalTemplateName(
4194                                           Arg.getAsTemplateOrTemplatePattern()),
4195                                Arg.getNumTemplateExpansions());
4196  
4197      case TemplateArgument::Integral:
4198        return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
4199  
4200      case TemplateArgument::Type:
4201        return TemplateArgument(getCanonicalType(Arg.getAsType()));
4202  
4203      case TemplateArgument::Pack: {
4204        if (Arg.pack_size() == 0)
4205          return Arg;
4206  
4207        TemplateArgument *CanonArgs
4208          = new (*this) TemplateArgument[Arg.pack_size()];
4209        unsigned Idx = 0;
4210        for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
4211                                          AEnd = Arg.pack_end();
4212             A != AEnd; (void)++A, ++Idx)
4213          CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
4214  
4215        return TemplateArgument(CanonArgs, Arg.pack_size());
4216      }
4217    }
4218  
4219    // Silence GCC warning
4220    llvm_unreachable("Unhandled template argument kind");
4221  }
4222  
4223  NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier * NNS) const4224  ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4225    if (!NNS)
4226      return nullptr;
4227  
4228    switch (NNS->getKind()) {
4229    case NestedNameSpecifier::Identifier:
4230      // Canonicalize the prefix but keep the identifier the same.
4231      return NestedNameSpecifier::Create(*this,
4232                           getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4233                                         NNS->getAsIdentifier());
4234  
4235    case NestedNameSpecifier::Namespace:
4236      // A namespace is canonical; build a nested-name-specifier with
4237      // this namespace and no prefix.
4238      return NestedNameSpecifier::Create(*this, nullptr,
4239                                   NNS->getAsNamespace()->getOriginalNamespace());
4240  
4241    case NestedNameSpecifier::NamespaceAlias:
4242      // A namespace is canonical; build a nested-name-specifier with
4243      // this namespace and no prefix.
4244      return NestedNameSpecifier::Create(*this, nullptr,
4245                                      NNS->getAsNamespaceAlias()->getNamespace()
4246                                                        ->getOriginalNamespace());
4247  
4248    case NestedNameSpecifier::TypeSpec:
4249    case NestedNameSpecifier::TypeSpecWithTemplate: {
4250      QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4251  
4252      // If we have some kind of dependent-named type (e.g., "typename T::type"),
4253      // break it apart into its prefix and identifier, then reconsititute those
4254      // as the canonical nested-name-specifier. This is required to canonicalize
4255      // a dependent nested-name-specifier involving typedefs of dependent-name
4256      // types, e.g.,
4257      //   typedef typename T::type T1;
4258      //   typedef typename T1::type T2;
4259      if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4260        return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4261                             const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4262  
4263      // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4264      // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4265      // first place?
4266      return NestedNameSpecifier::Create(*this, nullptr, false,
4267                                         const_cast<Type *>(T.getTypePtr()));
4268    }
4269  
4270    case NestedNameSpecifier::Global:
4271    case NestedNameSpecifier::Super:
4272      // The global specifier and __super specifer are canonical and unique.
4273      return NNS;
4274    }
4275  
4276    llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4277  }
4278  
4279  
getAsArrayType(QualType T) const4280  const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4281    // Handle the non-qualified case efficiently.
4282    if (!T.hasLocalQualifiers()) {
4283      // Handle the common positive case fast.
4284      if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4285        return AT;
4286    }
4287  
4288    // Handle the common negative case fast.
4289    if (!isa<ArrayType>(T.getCanonicalType()))
4290      return nullptr;
4291  
4292    // Apply any qualifiers from the array type to the element type.  This
4293    // implements C99 6.7.3p8: "If the specification of an array type includes
4294    // any type qualifiers, the element type is so qualified, not the array type."
4295  
4296    // If we get here, we either have type qualifiers on the type, or we have
4297    // sugar such as a typedef in the way.  If we have type qualifiers on the type
4298    // we must propagate them down into the element type.
4299  
4300    SplitQualType split = T.getSplitDesugaredType();
4301    Qualifiers qs = split.Quals;
4302  
4303    // If we have a simple case, just return now.
4304    const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4305    if (!ATy || qs.empty())
4306      return ATy;
4307  
4308    // Otherwise, we have an array and we have qualifiers on it.  Push the
4309    // qualifiers into the array element type and return a new array type.
4310    QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4311  
4312    if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4313      return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4314                                                  CAT->getSizeModifier(),
4315                                             CAT->getIndexTypeCVRQualifiers()));
4316    if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4317      return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4318                                                    IAT->getSizeModifier(),
4319                                             IAT->getIndexTypeCVRQualifiers()));
4320  
4321    if (const DependentSizedArrayType *DSAT
4322          = dyn_cast<DependentSizedArrayType>(ATy))
4323      return cast<ArrayType>(
4324                       getDependentSizedArrayType(NewEltTy,
4325                                                  DSAT->getSizeExpr(),
4326                                                  DSAT->getSizeModifier(),
4327                                                DSAT->getIndexTypeCVRQualifiers(),
4328                                                  DSAT->getBracketsRange()));
4329  
4330    const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4331    return cast<ArrayType>(getVariableArrayType(NewEltTy,
4332                                                VAT->getSizeExpr(),
4333                                                VAT->getSizeModifier(),
4334                                                VAT->getIndexTypeCVRQualifiers(),
4335                                                VAT->getBracketsRange()));
4336  }
4337  
getAdjustedParameterType(QualType T) const4338  QualType ASTContext::getAdjustedParameterType(QualType T) const {
4339    if (T->isArrayType() || T->isFunctionType())
4340      return getDecayedType(T);
4341    return T;
4342  }
4343  
getSignatureParameterType(QualType T) const4344  QualType ASTContext::getSignatureParameterType(QualType T) const {
4345    T = getVariableArrayDecayedType(T);
4346    T = getAdjustedParameterType(T);
4347    return T.getUnqualifiedType();
4348  }
4349  
getExceptionObjectType(QualType T) const4350  QualType ASTContext::getExceptionObjectType(QualType T) const {
4351    // C++ [except.throw]p3:
4352    //   A throw-expression initializes a temporary object, called the exception
4353    //   object, the type of which is determined by removing any top-level
4354    //   cv-qualifiers from the static type of the operand of throw and adjusting
4355    //   the type from "array of T" or "function returning T" to "pointer to T"
4356    //   or "pointer to function returning T", [...]
4357    T = getVariableArrayDecayedType(T);
4358    if (T->isArrayType() || T->isFunctionType())
4359      T = getDecayedType(T);
4360    return T.getUnqualifiedType();
4361  }
4362  
4363  /// getArrayDecayedType - Return the properly qualified result of decaying the
4364  /// specified array type to a pointer.  This operation is non-trivial when
4365  /// handling typedefs etc.  The canonical type of "T" must be an array type,
4366  /// this returns a pointer to a properly qualified element of the array.
4367  ///
4368  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
getArrayDecayedType(QualType Ty) const4369  QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4370    // Get the element type with 'getAsArrayType' so that we don't lose any
4371    // typedefs in the element type of the array.  This also handles propagation
4372    // of type qualifiers from the array type into the element type if present
4373    // (C99 6.7.3p8).
4374    const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4375    assert(PrettyArrayType && "Not an array type!");
4376  
4377    QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4378  
4379    // int x[restrict 4] ->  int *restrict
4380    return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4381  }
4382  
getBaseElementType(const ArrayType * array) const4383  QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4384    return getBaseElementType(array->getElementType());
4385  }
4386  
getBaseElementType(QualType type) const4387  QualType ASTContext::getBaseElementType(QualType type) const {
4388    Qualifiers qs;
4389    while (true) {
4390      SplitQualType split = type.getSplitDesugaredType();
4391      const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4392      if (!array) break;
4393  
4394      type = array->getElementType();
4395      qs.addConsistentQualifiers(split.Quals);
4396    }
4397  
4398    return getQualifiedType(type, qs);
4399  }
4400  
4401  /// getConstantArrayElementCount - Returns number of constant array elements.
4402  uint64_t
getConstantArrayElementCount(const ConstantArrayType * CA) const4403  ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4404    uint64_t ElementCount = 1;
4405    do {
4406      ElementCount *= CA->getSize().getZExtValue();
4407      CA = dyn_cast_or_null<ConstantArrayType>(
4408        CA->getElementType()->getAsArrayTypeUnsafe());
4409    } while (CA);
4410    return ElementCount;
4411  }
4412  
4413  /// getFloatingRank - Return a relative rank for floating point types.
4414  /// This routine will assert if passed a built-in type that isn't a float.
getFloatingRank(QualType T)4415  static FloatingRank getFloatingRank(QualType T) {
4416    if (const ComplexType *CT = T->getAs<ComplexType>())
4417      return getFloatingRank(CT->getElementType());
4418  
4419    assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4420    switch (T->getAs<BuiltinType>()->getKind()) {
4421    default: llvm_unreachable("getFloatingRank(): not a floating type");
4422    case BuiltinType::Half:       return HalfRank;
4423    case BuiltinType::Float:      return FloatRank;
4424    case BuiltinType::Double:     return DoubleRank;
4425    case BuiltinType::LongDouble: return LongDoubleRank;
4426    }
4427  }
4428  
4429  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4430  /// point or a complex type (based on typeDomain/typeSize).
4431  /// 'typeDomain' is a real floating point or complex type.
4432  /// 'typeSize' is a real floating point or complex type.
getFloatingTypeOfSizeWithinDomain(QualType Size,QualType Domain) const4433  QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4434                                                         QualType Domain) const {
4435    FloatingRank EltRank = getFloatingRank(Size);
4436    if (Domain->isComplexType()) {
4437      switch (EltRank) {
4438      case HalfRank: llvm_unreachable("Complex half is not supported");
4439      case FloatRank:      return FloatComplexTy;
4440      case DoubleRank:     return DoubleComplexTy;
4441      case LongDoubleRank: return LongDoubleComplexTy;
4442      }
4443    }
4444  
4445    assert(Domain->isRealFloatingType() && "Unknown domain!");
4446    switch (EltRank) {
4447    case HalfRank:       return HalfTy;
4448    case FloatRank:      return FloatTy;
4449    case DoubleRank:     return DoubleTy;
4450    case LongDoubleRank: return LongDoubleTy;
4451    }
4452    llvm_unreachable("getFloatingRank(): illegal value for rank");
4453  }
4454  
4455  /// getFloatingTypeOrder - Compare the rank of the two specified floating
4456  /// point types, ignoring the domain of the type (i.e. 'double' ==
4457  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4458  /// LHS < RHS, return -1.
getFloatingTypeOrder(QualType LHS,QualType RHS) const4459  int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4460    FloatingRank LHSR = getFloatingRank(LHS);
4461    FloatingRank RHSR = getFloatingRank(RHS);
4462  
4463    if (LHSR == RHSR)
4464      return 0;
4465    if (LHSR > RHSR)
4466      return 1;
4467    return -1;
4468  }
4469  
4470  /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4471  /// routine will assert if passed a built-in type that isn't an integer or enum,
4472  /// or if it is not canonicalized.
getIntegerRank(const Type * T) const4473  unsigned ASTContext::getIntegerRank(const Type *T) const {
4474    assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4475  
4476    switch (cast<BuiltinType>(T)->getKind()) {
4477    default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4478    case BuiltinType::Bool:
4479      return 1 + (getIntWidth(BoolTy) << 3);
4480    case BuiltinType::Char_S:
4481    case BuiltinType::Char_U:
4482    case BuiltinType::SChar:
4483    case BuiltinType::UChar:
4484      return 2 + (getIntWidth(CharTy) << 3);
4485    case BuiltinType::Short:
4486    case BuiltinType::UShort:
4487      return 3 + (getIntWidth(ShortTy) << 3);
4488    case BuiltinType::Int:
4489    case BuiltinType::UInt:
4490      return 4 + (getIntWidth(IntTy) << 3);
4491    case BuiltinType::Long:
4492    case BuiltinType::ULong:
4493      return 5 + (getIntWidth(LongTy) << 3);
4494    case BuiltinType::LongLong:
4495    case BuiltinType::ULongLong:
4496      return 6 + (getIntWidth(LongLongTy) << 3);
4497    case BuiltinType::Int128:
4498    case BuiltinType::UInt128:
4499      return 7 + (getIntWidth(Int128Ty) << 3);
4500    }
4501  }
4502  
4503  /// \brief Whether this is a promotable bitfield reference according
4504  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4505  ///
4506  /// \returns the type this bit-field will promote to, or NULL if no
4507  /// promotion occurs.
isPromotableBitField(Expr * E) const4508  QualType ASTContext::isPromotableBitField(Expr *E) const {
4509    if (E->isTypeDependent() || E->isValueDependent())
4510      return QualType();
4511  
4512    // FIXME: We should not do this unless E->refersToBitField() is true. This
4513    // matters in C where getSourceBitField() will find bit-fields for various
4514    // cases where the source expression is not a bit-field designator.
4515  
4516    FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4517    if (!Field)
4518      return QualType();
4519  
4520    QualType FT = Field->getType();
4521  
4522    uint64_t BitWidth = Field->getBitWidthValue(*this);
4523    uint64_t IntSize = getTypeSize(IntTy);
4524    // C++ [conv.prom]p5:
4525    //   A prvalue for an integral bit-field can be converted to a prvalue of type
4526    //   int if int can represent all the values of the bit-field; otherwise, it
4527    //   can be converted to unsigned int if unsigned int can represent all the
4528    //   values of the bit-field. If the bit-field is larger yet, no integral
4529    //   promotion applies to it.
4530    // C11 6.3.1.1/2:
4531    //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
4532    //   If an int can represent all values of the original type (as restricted by
4533    //   the width, for a bit-field), the value is converted to an int; otherwise,
4534    //   it is converted to an unsigned int.
4535    //
4536    // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
4537    //        We perform that promotion here to match GCC and C++.
4538    if (BitWidth < IntSize)
4539      return IntTy;
4540  
4541    if (BitWidth == IntSize)
4542      return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4543  
4544    // Types bigger than int are not subject to promotions, and therefore act
4545    // like the base type. GCC has some weird bugs in this area that we
4546    // deliberately do not follow (GCC follows a pre-standard resolution to
4547    // C's DR315 which treats bit-width as being part of the type, and this leaks
4548    // into their semantics in some cases).
4549    return QualType();
4550  }
4551  
4552  /// getPromotedIntegerType - Returns the type that Promotable will
4553  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4554  /// integer type.
getPromotedIntegerType(QualType Promotable) const4555  QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4556    assert(!Promotable.isNull());
4557    assert(Promotable->isPromotableIntegerType());
4558    if (const EnumType *ET = Promotable->getAs<EnumType>())
4559      return ET->getDecl()->getPromotionType();
4560  
4561    if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4562      // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4563      // (3.9.1) can be converted to a prvalue of the first of the following
4564      // types that can represent all the values of its underlying type:
4565      // int, unsigned int, long int, unsigned long int, long long int, or
4566      // unsigned long long int [...]
4567      // FIXME: Is there some better way to compute this?
4568      if (BT->getKind() == BuiltinType::WChar_S ||
4569          BT->getKind() == BuiltinType::WChar_U ||
4570          BT->getKind() == BuiltinType::Char16 ||
4571          BT->getKind() == BuiltinType::Char32) {
4572        bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4573        uint64_t FromSize = getTypeSize(BT);
4574        QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4575                                    LongLongTy, UnsignedLongLongTy };
4576        for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4577          uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4578          if (FromSize < ToSize ||
4579              (FromSize == ToSize &&
4580               FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4581            return PromoteTypes[Idx];
4582        }
4583        llvm_unreachable("char type should fit into long long");
4584      }
4585    }
4586  
4587    // At this point, we should have a signed or unsigned integer type.
4588    if (Promotable->isSignedIntegerType())
4589      return IntTy;
4590    uint64_t PromotableSize = getIntWidth(Promotable);
4591    uint64_t IntSize = getIntWidth(IntTy);
4592    assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4593    return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4594  }
4595  
4596  /// \brief Recurses in pointer/array types until it finds an objc retainable
4597  /// type and returns its ownership.
getInnerObjCOwnership(QualType T) const4598  Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4599    while (!T.isNull()) {
4600      if (T.getObjCLifetime() != Qualifiers::OCL_None)
4601        return T.getObjCLifetime();
4602      if (T->isArrayType())
4603        T = getBaseElementType(T);
4604      else if (const PointerType *PT = T->getAs<PointerType>())
4605        T = PT->getPointeeType();
4606      else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4607        T = RT->getPointeeType();
4608      else
4609        break;
4610    }
4611  
4612    return Qualifiers::OCL_None;
4613  }
4614  
getIntegerTypeForEnum(const EnumType * ET)4615  static const Type *getIntegerTypeForEnum(const EnumType *ET) {
4616    // Incomplete enum types are not treated as integer types.
4617    // FIXME: In C++, enum types are never integer types.
4618    if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
4619      return ET->getDecl()->getIntegerType().getTypePtr();
4620    return nullptr;
4621  }
4622  
4623  /// getIntegerTypeOrder - Returns the highest ranked integer type:
4624  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4625  /// LHS < RHS, return -1.
getIntegerTypeOrder(QualType LHS,QualType RHS) const4626  int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4627    const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4628    const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4629  
4630    // Unwrap enums to their underlying type.
4631    if (const EnumType *ET = dyn_cast<EnumType>(LHSC))
4632      LHSC = getIntegerTypeForEnum(ET);
4633    if (const EnumType *ET = dyn_cast<EnumType>(RHSC))
4634      RHSC = getIntegerTypeForEnum(ET);
4635  
4636    if (LHSC == RHSC) return 0;
4637  
4638    bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4639    bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4640  
4641    unsigned LHSRank = getIntegerRank(LHSC);
4642    unsigned RHSRank = getIntegerRank(RHSC);
4643  
4644    if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4645      if (LHSRank == RHSRank) return 0;
4646      return LHSRank > RHSRank ? 1 : -1;
4647    }
4648  
4649    // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4650    if (LHSUnsigned) {
4651      // If the unsigned [LHS] type is larger, return it.
4652      if (LHSRank >= RHSRank)
4653        return 1;
4654  
4655      // If the signed type can represent all values of the unsigned type, it
4656      // wins.  Because we are dealing with 2's complement and types that are
4657      // powers of two larger than each other, this is always safe.
4658      return -1;
4659    }
4660  
4661    // If the unsigned [RHS] type is larger, return it.
4662    if (RHSRank >= LHSRank)
4663      return -1;
4664  
4665    // If the signed type can represent all values of the unsigned type, it
4666    // wins.  Because we are dealing with 2's complement and types that are
4667    // powers of two larger than each other, this is always safe.
4668    return 1;
4669  }
4670  
4671  // getCFConstantStringType - Return the type used for constant CFStrings.
getCFConstantStringType() const4672  QualType ASTContext::getCFConstantStringType() const {
4673    if (!CFConstantStringTypeDecl) {
4674      CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString");
4675      CFConstantStringTypeDecl->startDefinition();
4676  
4677      QualType FieldTypes[4];
4678  
4679      // const int *isa;
4680      FieldTypes[0] = getPointerType(IntTy.withConst());
4681      // int flags;
4682      FieldTypes[1] = IntTy;
4683      // const char *str;
4684      FieldTypes[2] = getPointerType(CharTy.withConst());
4685      // long length;
4686      FieldTypes[3] = LongTy;
4687  
4688      // Create fields
4689      for (unsigned i = 0; i < 4; ++i) {
4690        FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4691                                             SourceLocation(),
4692                                             SourceLocation(), nullptr,
4693                                             FieldTypes[i], /*TInfo=*/nullptr,
4694                                             /*BitWidth=*/nullptr,
4695                                             /*Mutable=*/false,
4696                                             ICIS_NoInit);
4697        Field->setAccess(AS_public);
4698        CFConstantStringTypeDecl->addDecl(Field);
4699      }
4700  
4701      CFConstantStringTypeDecl->completeDefinition();
4702    }
4703  
4704    return getTagDeclType(CFConstantStringTypeDecl);
4705  }
4706  
getObjCSuperType() const4707  QualType ASTContext::getObjCSuperType() const {
4708    if (ObjCSuperType.isNull()) {
4709      RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
4710      TUDecl->addDecl(ObjCSuperTypeDecl);
4711      ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4712    }
4713    return ObjCSuperType;
4714  }
4715  
setCFConstantStringType(QualType T)4716  void ASTContext::setCFConstantStringType(QualType T) {
4717    const RecordType *Rec = T->getAs<RecordType>();
4718    assert(Rec && "Invalid CFConstantStringType");
4719    CFConstantStringTypeDecl = Rec->getDecl();
4720  }
4721  
getBlockDescriptorType() const4722  QualType ASTContext::getBlockDescriptorType() const {
4723    if (BlockDescriptorType)
4724      return getTagDeclType(BlockDescriptorType);
4725  
4726    RecordDecl *RD;
4727    // FIXME: Needs the FlagAppleBlock bit.
4728    RD = buildImplicitRecord("__block_descriptor");
4729    RD->startDefinition();
4730  
4731    QualType FieldTypes[] = {
4732      UnsignedLongTy,
4733      UnsignedLongTy,
4734    };
4735  
4736    static const char *const FieldNames[] = {
4737      "reserved",
4738      "Size"
4739    };
4740  
4741    for (size_t i = 0; i < 2; ++i) {
4742      FieldDecl *Field = FieldDecl::Create(
4743          *this, RD, SourceLocation(), SourceLocation(),
4744          &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4745          /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
4746      Field->setAccess(AS_public);
4747      RD->addDecl(Field);
4748    }
4749  
4750    RD->completeDefinition();
4751  
4752    BlockDescriptorType = RD;
4753  
4754    return getTagDeclType(BlockDescriptorType);
4755  }
4756  
getBlockDescriptorExtendedType() const4757  QualType ASTContext::getBlockDescriptorExtendedType() const {
4758    if (BlockDescriptorExtendedType)
4759      return getTagDeclType(BlockDescriptorExtendedType);
4760  
4761    RecordDecl *RD;
4762    // FIXME: Needs the FlagAppleBlock bit.
4763    RD = buildImplicitRecord("__block_descriptor_withcopydispose");
4764    RD->startDefinition();
4765  
4766    QualType FieldTypes[] = {
4767      UnsignedLongTy,
4768      UnsignedLongTy,
4769      getPointerType(VoidPtrTy),
4770      getPointerType(VoidPtrTy)
4771    };
4772  
4773    static const char *const FieldNames[] = {
4774      "reserved",
4775      "Size",
4776      "CopyFuncPtr",
4777      "DestroyFuncPtr"
4778    };
4779  
4780    for (size_t i = 0; i < 4; ++i) {
4781      FieldDecl *Field = FieldDecl::Create(
4782          *this, RD, SourceLocation(), SourceLocation(),
4783          &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4784          /*BitWidth=*/nullptr,
4785          /*Mutable=*/false, ICIS_NoInit);
4786      Field->setAccess(AS_public);
4787      RD->addDecl(Field);
4788    }
4789  
4790    RD->completeDefinition();
4791  
4792    BlockDescriptorExtendedType = RD;
4793    return getTagDeclType(BlockDescriptorExtendedType);
4794  }
4795  
4796  /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4797  /// requires copy/dispose. Note that this must match the logic
4798  /// in buildByrefHelpers.
BlockRequiresCopying(QualType Ty,const VarDecl * D)4799  bool ASTContext::BlockRequiresCopying(QualType Ty,
4800                                        const VarDecl *D) {
4801    if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4802      const Expr *copyExpr = getBlockVarCopyInits(D);
4803      if (!copyExpr && record->hasTrivialDestructor()) return false;
4804  
4805      return true;
4806    }
4807  
4808    if (!Ty->isObjCRetainableType()) return false;
4809  
4810    Qualifiers qs = Ty.getQualifiers();
4811  
4812    // If we have lifetime, that dominates.
4813    if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4814      assert(getLangOpts().ObjCAutoRefCount);
4815  
4816      switch (lifetime) {
4817        case Qualifiers::OCL_None: llvm_unreachable("impossible");
4818  
4819        // These are just bits as far as the runtime is concerned.
4820        case Qualifiers::OCL_ExplicitNone:
4821        case Qualifiers::OCL_Autoreleasing:
4822          return false;
4823  
4824        // Tell the runtime that this is ARC __weak, called by the
4825        // byref routines.
4826        case Qualifiers::OCL_Weak:
4827        // ARC __strong __block variables need to be retained.
4828        case Qualifiers::OCL_Strong:
4829          return true;
4830      }
4831      llvm_unreachable("fell out of lifetime switch!");
4832    }
4833    return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4834            Ty->isObjCObjectPointerType());
4835  }
4836  
getByrefLifetime(QualType Ty,Qualifiers::ObjCLifetime & LifeTime,bool & HasByrefExtendedLayout) const4837  bool ASTContext::getByrefLifetime(QualType Ty,
4838                                Qualifiers::ObjCLifetime &LifeTime,
4839                                bool &HasByrefExtendedLayout) const {
4840  
4841    if (!getLangOpts().ObjC1 ||
4842        getLangOpts().getGC() != LangOptions::NonGC)
4843      return false;
4844  
4845    HasByrefExtendedLayout = false;
4846    if (Ty->isRecordType()) {
4847      HasByrefExtendedLayout = true;
4848      LifeTime = Qualifiers::OCL_None;
4849    }
4850    else if (getLangOpts().ObjCAutoRefCount)
4851      LifeTime = Ty.getObjCLifetime();
4852    // MRR.
4853    else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4854      LifeTime = Qualifiers::OCL_ExplicitNone;
4855    else
4856      LifeTime = Qualifiers::OCL_None;
4857    return true;
4858  }
4859  
getObjCInstanceTypeDecl()4860  TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4861    if (!ObjCInstanceTypeDecl)
4862      ObjCInstanceTypeDecl =
4863          buildImplicitTypedef(getObjCIdType(), "instancetype");
4864    return ObjCInstanceTypeDecl;
4865  }
4866  
4867  // This returns true if a type has been typedefed to BOOL:
4868  // typedef <type> BOOL;
isTypeTypedefedAsBOOL(QualType T)4869  static bool isTypeTypedefedAsBOOL(QualType T) {
4870    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4871      if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4872        return II->isStr("BOOL");
4873  
4874    return false;
4875  }
4876  
4877  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
4878  /// purpose.
getObjCEncodingTypeSize(QualType type) const4879  CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4880    if (!type->isIncompleteArrayType() && type->isIncompleteType())
4881      return CharUnits::Zero();
4882  
4883    CharUnits sz = getTypeSizeInChars(type);
4884  
4885    // Make all integer and enum types at least as large as an int
4886    if (sz.isPositive() && type->isIntegralOrEnumerationType())
4887      sz = std::max(sz, getTypeSizeInChars(IntTy));
4888    // Treat arrays as pointers, since that's how they're passed in.
4889    else if (type->isArrayType())
4890      sz = getTypeSizeInChars(VoidPtrTy);
4891    return sz;
4892  }
4893  
isMSStaticDataMemberInlineDefinition(const VarDecl * VD) const4894  bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
4895    return getLangOpts().MSVCCompat && VD->isStaticDataMember() &&
4896           VD->getType()->isIntegralOrEnumerationType() &&
4897           !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
4898  }
4899  
4900  static inline
charUnitsToString(const CharUnits & CU)4901  std::string charUnitsToString(const CharUnits &CU) {
4902    return llvm::itostr(CU.getQuantity());
4903  }
4904  
4905  /// getObjCEncodingForBlock - Return the encoded type for this block
4906  /// declaration.
getObjCEncodingForBlock(const BlockExpr * Expr) const4907  std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4908    std::string S;
4909  
4910    const BlockDecl *Decl = Expr->getBlockDecl();
4911    QualType BlockTy =
4912        Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4913    // Encode result type.
4914    if (getLangOpts().EncodeExtendedBlockSig)
4915      getObjCEncodingForMethodParameter(
4916          Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S,
4917          true /*Extended*/);
4918    else
4919      getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S);
4920    // Compute size of all parameters.
4921    // Start with computing size of a pointer in number of bytes.
4922    // FIXME: There might(should) be a better way of doing this computation!
4923    SourceLocation Loc;
4924    CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4925    CharUnits ParmOffset = PtrSize;
4926    for (auto PI : Decl->params()) {
4927      QualType PType = PI->getType();
4928      CharUnits sz = getObjCEncodingTypeSize(PType);
4929      if (sz.isZero())
4930        continue;
4931      assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4932      ParmOffset += sz;
4933    }
4934    // Size of the argument frame
4935    S += charUnitsToString(ParmOffset);
4936    // Block pointer and offset.
4937    S += "@?0";
4938  
4939    // Argument types.
4940    ParmOffset = PtrSize;
4941    for (auto PVDecl : Decl->params()) {
4942      QualType PType = PVDecl->getOriginalType();
4943      if (const ArrayType *AT =
4944            dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4945        // Use array's original type only if it has known number of
4946        // elements.
4947        if (!isa<ConstantArrayType>(AT))
4948          PType = PVDecl->getType();
4949      } else if (PType->isFunctionType())
4950        PType = PVDecl->getType();
4951      if (getLangOpts().EncodeExtendedBlockSig)
4952        getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4953                                        S, true /*Extended*/);
4954      else
4955        getObjCEncodingForType(PType, S);
4956      S += charUnitsToString(ParmOffset);
4957      ParmOffset += getObjCEncodingTypeSize(PType);
4958    }
4959  
4960    return S;
4961  }
4962  
getObjCEncodingForFunctionDecl(const FunctionDecl * Decl,std::string & S)4963  bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4964                                                  std::string& S) {
4965    // Encode result type.
4966    getObjCEncodingForType(Decl->getReturnType(), S);
4967    CharUnits ParmOffset;
4968    // Compute size of all parameters.
4969    for (auto PI : Decl->params()) {
4970      QualType PType = PI->getType();
4971      CharUnits sz = getObjCEncodingTypeSize(PType);
4972      if (sz.isZero())
4973        continue;
4974  
4975      assert (sz.isPositive() &&
4976          "getObjCEncodingForFunctionDecl - Incomplete param type");
4977      ParmOffset += sz;
4978    }
4979    S += charUnitsToString(ParmOffset);
4980    ParmOffset = CharUnits::Zero();
4981  
4982    // Argument types.
4983    for (auto PVDecl : Decl->params()) {
4984      QualType PType = PVDecl->getOriginalType();
4985      if (const ArrayType *AT =
4986            dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4987        // Use array's original type only if it has known number of
4988        // elements.
4989        if (!isa<ConstantArrayType>(AT))
4990          PType = PVDecl->getType();
4991      } else if (PType->isFunctionType())
4992        PType = PVDecl->getType();
4993      getObjCEncodingForType(PType, S);
4994      S += charUnitsToString(ParmOffset);
4995      ParmOffset += getObjCEncodingTypeSize(PType);
4996    }
4997  
4998    return false;
4999  }
5000  
5001  /// getObjCEncodingForMethodParameter - Return the encoded type for a single
5002  /// method parameter or return type. If Extended, include class names and
5003  /// block object types.
getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,QualType T,std::string & S,bool Extended) const5004  void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
5005                                                     QualType T, std::string& S,
5006                                                     bool Extended) const {
5007    // Encode type qualifer, 'in', 'inout', etc. for the parameter.
5008    getObjCEncodingForTypeQualifier(QT, S);
5009    // Encode parameter type.
5010    getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5011                               true     /*OutermostType*/,
5012                               false    /*EncodingProperty*/,
5013                               false    /*StructField*/,
5014                               Extended /*EncodeBlockParameters*/,
5015                               Extended /*EncodeClassNames*/);
5016  }
5017  
5018  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
5019  /// declaration.
getObjCEncodingForMethodDecl(const ObjCMethodDecl * Decl,std::string & S,bool Extended) const5020  bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
5021                                                std::string& S,
5022                                                bool Extended) const {
5023    // FIXME: This is not very efficient.
5024    // Encode return type.
5025    getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
5026                                      Decl->getReturnType(), S, Extended);
5027    // Compute size of all parameters.
5028    // Start with computing size of a pointer in number of bytes.
5029    // FIXME: There might(should) be a better way of doing this computation!
5030    SourceLocation Loc;
5031    CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
5032    // The first two arguments (self and _cmd) are pointers; account for
5033    // their size.
5034    CharUnits ParmOffset = 2 * PtrSize;
5035    for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5036         E = Decl->sel_param_end(); PI != E; ++PI) {
5037      QualType PType = (*PI)->getType();
5038      CharUnits sz = getObjCEncodingTypeSize(PType);
5039      if (sz.isZero())
5040        continue;
5041  
5042      assert (sz.isPositive() &&
5043          "getObjCEncodingForMethodDecl - Incomplete param type");
5044      ParmOffset += sz;
5045    }
5046    S += charUnitsToString(ParmOffset);
5047    S += "@0:";
5048    S += charUnitsToString(PtrSize);
5049  
5050    // Argument types.
5051    ParmOffset = 2 * PtrSize;
5052    for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5053         E = Decl->sel_param_end(); PI != E; ++PI) {
5054      const ParmVarDecl *PVDecl = *PI;
5055      QualType PType = PVDecl->getOriginalType();
5056      if (const ArrayType *AT =
5057            dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5058        // Use array's original type only if it has known number of
5059        // elements.
5060        if (!isa<ConstantArrayType>(AT))
5061          PType = PVDecl->getType();
5062      } else if (PType->isFunctionType())
5063        PType = PVDecl->getType();
5064      getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
5065                                        PType, S, Extended);
5066      S += charUnitsToString(ParmOffset);
5067      ParmOffset += getObjCEncodingTypeSize(PType);
5068    }
5069  
5070    return false;
5071  }
5072  
5073  ObjCPropertyImplDecl *
getObjCPropertyImplDeclForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container) const5074  ASTContext::getObjCPropertyImplDeclForPropertyDecl(
5075                                        const ObjCPropertyDecl *PD,
5076                                        const Decl *Container) const {
5077    if (!Container)
5078      return nullptr;
5079    if (const ObjCCategoryImplDecl *CID =
5080        dyn_cast<ObjCCategoryImplDecl>(Container)) {
5081      for (auto *PID : CID->property_impls())
5082        if (PID->getPropertyDecl() == PD)
5083          return PID;
5084    } else {
5085      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
5086      for (auto *PID : OID->property_impls())
5087        if (PID->getPropertyDecl() == PD)
5088          return PID;
5089    }
5090    return nullptr;
5091  }
5092  
5093  /// getObjCEncodingForPropertyDecl - Return the encoded type for this
5094  /// property declaration. If non-NULL, Container must be either an
5095  /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
5096  /// NULL when getting encodings for protocol properties.
5097  /// Property attributes are stored as a comma-delimited C string. The simple
5098  /// attributes readonly and bycopy are encoded as single characters. The
5099  /// parametrized attributes, getter=name, setter=name, and ivar=name, are
5100  /// encoded as single characters, followed by an identifier. Property types
5101  /// are also encoded as a parametrized attribute. The characters used to encode
5102  /// these attributes are defined by the following enumeration:
5103  /// @code
5104  /// enum PropertyAttributes {
5105  /// kPropertyReadOnly = 'R',   // property is read-only.
5106  /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
5107  /// kPropertyByref = '&',  // property is a reference to the value last assigned
5108  /// kPropertyDynamic = 'D',    // property is dynamic
5109  /// kPropertyGetter = 'G',     // followed by getter selector name
5110  /// kPropertySetter = 'S',     // followed by setter selector name
5111  /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
5112  /// kPropertyType = 'T'              // followed by old-style type encoding.
5113  /// kPropertyWeak = 'W'              // 'weak' property
5114  /// kPropertyStrong = 'P'            // property GC'able
5115  /// kPropertyNonAtomic = 'N'         // property non-atomic
5116  /// };
5117  /// @endcode
getObjCEncodingForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container,std::string & S) const5118  void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
5119                                                  const Decl *Container,
5120                                                  std::string& S) const {
5121    // Collect information from the property implementation decl(s).
5122    bool Dynamic = false;
5123    ObjCPropertyImplDecl *SynthesizePID = nullptr;
5124  
5125    if (ObjCPropertyImplDecl *PropertyImpDecl =
5126        getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
5127      if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
5128        Dynamic = true;
5129      else
5130        SynthesizePID = PropertyImpDecl;
5131    }
5132  
5133    // FIXME: This is not very efficient.
5134    S = "T";
5135  
5136    // Encode result type.
5137    // GCC has some special rules regarding encoding of properties which
5138    // closely resembles encoding of ivars.
5139    getObjCEncodingForPropertyType(PD->getType(), S);
5140  
5141    if (PD->isReadOnly()) {
5142      S += ",R";
5143      if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
5144        S += ",C";
5145      if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
5146        S += ",&";
5147      if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
5148        S += ",W";
5149    } else {
5150      switch (PD->getSetterKind()) {
5151      case ObjCPropertyDecl::Assign: break;
5152      case ObjCPropertyDecl::Copy:   S += ",C"; break;
5153      case ObjCPropertyDecl::Retain: S += ",&"; break;
5154      case ObjCPropertyDecl::Weak:   S += ",W"; break;
5155      }
5156    }
5157  
5158    // It really isn't clear at all what this means, since properties
5159    // are "dynamic by default".
5160    if (Dynamic)
5161      S += ",D";
5162  
5163    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
5164      S += ",N";
5165  
5166    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
5167      S += ",G";
5168      S += PD->getGetterName().getAsString();
5169    }
5170  
5171    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
5172      S += ",S";
5173      S += PD->getSetterName().getAsString();
5174    }
5175  
5176    if (SynthesizePID) {
5177      const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
5178      S += ",V";
5179      S += OID->getNameAsString();
5180    }
5181  
5182    // FIXME: OBJCGC: weak & strong
5183  }
5184  
5185  /// getLegacyIntegralTypeEncoding -
5186  /// Another legacy compatibility encoding: 32-bit longs are encoded as
5187  /// 'l' or 'L' , but not always.  For typedefs, we need to use
5188  /// 'i' or 'I' instead if encoding a struct field, or a pointer!
5189  ///
getLegacyIntegralTypeEncoding(QualType & PointeeTy) const5190  void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
5191    if (isa<TypedefType>(PointeeTy.getTypePtr())) {
5192      if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
5193        if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
5194          PointeeTy = UnsignedIntTy;
5195        else
5196          if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
5197            PointeeTy = IntTy;
5198      }
5199    }
5200  }
5201  
getObjCEncodingForType(QualType T,std::string & S,const FieldDecl * Field,QualType * NotEncodedT) const5202  void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
5203                                          const FieldDecl *Field,
5204                                          QualType *NotEncodedT) const {
5205    // We follow the behavior of gcc, expanding structures which are
5206    // directly pointed to, and expanding embedded structures. Note that
5207    // these rules are sufficient to prevent recursive encoding of the
5208    // same type.
5209    getObjCEncodingForTypeImpl(T, S, true, true, Field,
5210                               true /* outermost type */, false, false,
5211                               false, false, false, NotEncodedT);
5212  }
5213  
getObjCEncodingForPropertyType(QualType T,std::string & S) const5214  void ASTContext::getObjCEncodingForPropertyType(QualType T,
5215                                                  std::string& S) const {
5216    // Encode result type.
5217    // GCC has some special rules regarding encoding of properties which
5218    // closely resembles encoding of ivars.
5219    getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5220                               true /* outermost type */,
5221                               true /* encoding property */);
5222  }
5223  
getObjCEncodingForPrimitiveKind(const ASTContext * C,BuiltinType::Kind kind)5224  static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
5225                                              BuiltinType::Kind kind) {
5226      switch (kind) {
5227      case BuiltinType::Void:       return 'v';
5228      case BuiltinType::Bool:       return 'B';
5229      case BuiltinType::Char_U:
5230      case BuiltinType::UChar:      return 'C';
5231      case BuiltinType::Char16:
5232      case BuiltinType::UShort:     return 'S';
5233      case BuiltinType::Char32:
5234      case BuiltinType::UInt:       return 'I';
5235      case BuiltinType::ULong:
5236          return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5237      case BuiltinType::UInt128:    return 'T';
5238      case BuiltinType::ULongLong:  return 'Q';
5239      case BuiltinType::Char_S:
5240      case BuiltinType::SChar:      return 'c';
5241      case BuiltinType::Short:      return 's';
5242      case BuiltinType::WChar_S:
5243      case BuiltinType::WChar_U:
5244      case BuiltinType::Int:        return 'i';
5245      case BuiltinType::Long:
5246        return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5247      case BuiltinType::LongLong:   return 'q';
5248      case BuiltinType::Int128:     return 't';
5249      case BuiltinType::Float:      return 'f';
5250      case BuiltinType::Double:     return 'd';
5251      case BuiltinType::LongDouble: return 'D';
5252      case BuiltinType::NullPtr:    return '*'; // like char*
5253  
5254      case BuiltinType::Half:
5255        // FIXME: potentially need @encodes for these!
5256        return ' ';
5257  
5258      case BuiltinType::ObjCId:
5259      case BuiltinType::ObjCClass:
5260      case BuiltinType::ObjCSel:
5261        llvm_unreachable("@encoding ObjC primitive type");
5262  
5263      // OpenCL and placeholder types don't need @encodings.
5264      case BuiltinType::OCLImage1d:
5265      case BuiltinType::OCLImage1dArray:
5266      case BuiltinType::OCLImage1dBuffer:
5267      case BuiltinType::OCLImage2d:
5268      case BuiltinType::OCLImage2dArray:
5269      case BuiltinType::OCLImage3d:
5270      case BuiltinType::OCLEvent:
5271      case BuiltinType::OCLSampler:
5272      case BuiltinType::Dependent:
5273  #define BUILTIN_TYPE(KIND, ID)
5274  #define PLACEHOLDER_TYPE(KIND, ID) \
5275      case BuiltinType::KIND:
5276  #include "clang/AST/BuiltinTypes.def"
5277        llvm_unreachable("invalid builtin type for @encode");
5278      }
5279      llvm_unreachable("invalid BuiltinType::Kind value");
5280  }
5281  
ObjCEncodingForEnumType(const ASTContext * C,const EnumType * ET)5282  static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5283    EnumDecl *Enum = ET->getDecl();
5284  
5285    // The encoding of an non-fixed enum type is always 'i', regardless of size.
5286    if (!Enum->isFixed())
5287      return 'i';
5288  
5289    // The encoding of a fixed enum type matches its fixed underlying type.
5290    const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5291    return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5292  }
5293  
EncodeBitField(const ASTContext * Ctx,std::string & S,QualType T,const FieldDecl * FD)5294  static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5295                             QualType T, const FieldDecl *FD) {
5296    assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5297    S += 'b';
5298    // The NeXT runtime encodes bit fields as b followed by the number of bits.
5299    // The GNU runtime requires more information; bitfields are encoded as b,
5300    // then the offset (in bits) of the first element, then the type of the
5301    // bitfield, then the size in bits.  For example, in this structure:
5302    //
5303    // struct
5304    // {
5305    //    int integer;
5306    //    int flags:2;
5307    // };
5308    // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5309    // runtime, but b32i2 for the GNU runtime.  The reason for this extra
5310    // information is not especially sensible, but we're stuck with it for
5311    // compatibility with GCC, although providing it breaks anything that
5312    // actually uses runtime introspection and wants to work on both runtimes...
5313    if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5314      const RecordDecl *RD = FD->getParent();
5315      const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5316      S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5317      if (const EnumType *ET = T->getAs<EnumType>())
5318        S += ObjCEncodingForEnumType(Ctx, ET);
5319      else {
5320        const BuiltinType *BT = T->castAs<BuiltinType>();
5321        S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5322      }
5323    }
5324    S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5325  }
5326  
5327  // FIXME: Use SmallString for accumulating string.
getObjCEncodingForTypeImpl(QualType T,std::string & S,bool ExpandPointedToStructures,bool ExpandStructures,const FieldDecl * FD,bool OutermostType,bool EncodingProperty,bool StructField,bool EncodeBlockParameters,bool EncodeClassNames,bool EncodePointerToObjCTypedef,QualType * NotEncodedT) const5328  void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5329                                              bool ExpandPointedToStructures,
5330                                              bool ExpandStructures,
5331                                              const FieldDecl *FD,
5332                                              bool OutermostType,
5333                                              bool EncodingProperty,
5334                                              bool StructField,
5335                                              bool EncodeBlockParameters,
5336                                              bool EncodeClassNames,
5337                                              bool EncodePointerToObjCTypedef,
5338                                              QualType *NotEncodedT) const {
5339    CanQualType CT = getCanonicalType(T);
5340    switch (CT->getTypeClass()) {
5341    case Type::Builtin:
5342    case Type::Enum:
5343      if (FD && FD->isBitField())
5344        return EncodeBitField(this, S, T, FD);
5345      if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5346        S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5347      else
5348        S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5349      return;
5350  
5351    case Type::Complex: {
5352      const ComplexType *CT = T->castAs<ComplexType>();
5353      S += 'j';
5354      getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr);
5355      return;
5356    }
5357  
5358    case Type::Atomic: {
5359      const AtomicType *AT = T->castAs<AtomicType>();
5360      S += 'A';
5361      getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr);
5362      return;
5363    }
5364  
5365    // encoding for pointer or reference types.
5366    case Type::Pointer:
5367    case Type::LValueReference:
5368    case Type::RValueReference: {
5369      QualType PointeeTy;
5370      if (isa<PointerType>(CT)) {
5371        const PointerType *PT = T->castAs<PointerType>();
5372        if (PT->isObjCSelType()) {
5373          S += ':';
5374          return;
5375        }
5376        PointeeTy = PT->getPointeeType();
5377      } else {
5378        PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5379      }
5380  
5381      bool isReadOnly = false;
5382      // For historical/compatibility reasons, the read-only qualifier of the
5383      // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5384      // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5385      // Also, do not emit the 'r' for anything but the outermost type!
5386      if (isa<TypedefType>(T.getTypePtr())) {
5387        if (OutermostType && T.isConstQualified()) {
5388          isReadOnly = true;
5389          S += 'r';
5390        }
5391      } else if (OutermostType) {
5392        QualType P = PointeeTy;
5393        while (P->getAs<PointerType>())
5394          P = P->getAs<PointerType>()->getPointeeType();
5395        if (P.isConstQualified()) {
5396          isReadOnly = true;
5397          S += 'r';
5398        }
5399      }
5400      if (isReadOnly) {
5401        // Another legacy compatibility encoding. Some ObjC qualifier and type
5402        // combinations need to be rearranged.
5403        // Rewrite "in const" from "nr" to "rn"
5404        if (StringRef(S).endswith("nr"))
5405          S.replace(S.end()-2, S.end(), "rn");
5406      }
5407  
5408      if (PointeeTy->isCharType()) {
5409        // char pointer types should be encoded as '*' unless it is a
5410        // type that has been typedef'd to 'BOOL'.
5411        if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5412          S += '*';
5413          return;
5414        }
5415      } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5416        // GCC binary compat: Need to convert "struct objc_class *" to "#".
5417        if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5418          S += '#';
5419          return;
5420        }
5421        // GCC binary compat: Need to convert "struct objc_object *" to "@".
5422        if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5423          S += '@';
5424          return;
5425        }
5426        // fall through...
5427      }
5428      S += '^';
5429      getLegacyIntegralTypeEncoding(PointeeTy);
5430  
5431      getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5432                                 nullptr, false, false, false, false, false, false,
5433                                 NotEncodedT);
5434      return;
5435    }
5436  
5437    case Type::ConstantArray:
5438    case Type::IncompleteArray:
5439    case Type::VariableArray: {
5440      const ArrayType *AT = cast<ArrayType>(CT);
5441  
5442      if (isa<IncompleteArrayType>(AT) && !StructField) {
5443        // Incomplete arrays are encoded as a pointer to the array element.
5444        S += '^';
5445  
5446        getObjCEncodingForTypeImpl(AT->getElementType(), S,
5447                                   false, ExpandStructures, FD);
5448      } else {
5449        S += '[';
5450  
5451        if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
5452          S += llvm::utostr(CAT->getSize().getZExtValue());
5453        else {
5454          //Variable length arrays are encoded as a regular array with 0 elements.
5455          assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5456                 "Unknown array type!");
5457          S += '0';
5458        }
5459  
5460        getObjCEncodingForTypeImpl(AT->getElementType(), S,
5461                                   false, ExpandStructures, FD,
5462                                   false, false, false, false, false, false,
5463                                   NotEncodedT);
5464        S += ']';
5465      }
5466      return;
5467    }
5468  
5469    case Type::FunctionNoProto:
5470    case Type::FunctionProto:
5471      S += '?';
5472      return;
5473  
5474    case Type::Record: {
5475      RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5476      S += RDecl->isUnion() ? '(' : '{';
5477      // Anonymous structures print as '?'
5478      if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5479        S += II->getName();
5480        if (ClassTemplateSpecializationDecl *Spec
5481            = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5482          const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5483          llvm::raw_string_ostream OS(S);
5484          TemplateSpecializationType::PrintTemplateArgumentList(OS,
5485                                              TemplateArgs.data(),
5486                                              TemplateArgs.size(),
5487                                              (*this).getPrintingPolicy());
5488        }
5489      } else {
5490        S += '?';
5491      }
5492      if (ExpandStructures) {
5493        S += '=';
5494        if (!RDecl->isUnion()) {
5495          getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
5496        } else {
5497          for (const auto *Field : RDecl->fields()) {
5498            if (FD) {
5499              S += '"';
5500              S += Field->getNameAsString();
5501              S += '"';
5502            }
5503  
5504            // Special case bit-fields.
5505            if (Field->isBitField()) {
5506              getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5507                                         Field);
5508            } else {
5509              QualType qt = Field->getType();
5510              getLegacyIntegralTypeEncoding(qt);
5511              getObjCEncodingForTypeImpl(qt, S, false, true,
5512                                         FD, /*OutermostType*/false,
5513                                         /*EncodingProperty*/false,
5514                                         /*StructField*/true,
5515                                         false, false, false, NotEncodedT);
5516            }
5517          }
5518        }
5519      }
5520      S += RDecl->isUnion() ? ')' : '}';
5521      return;
5522    }
5523  
5524    case Type::BlockPointer: {
5525      const BlockPointerType *BT = T->castAs<BlockPointerType>();
5526      S += "@?"; // Unlike a pointer-to-function, which is "^?".
5527      if (EncodeBlockParameters) {
5528        const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5529  
5530        S += '<';
5531        // Block return type
5532        getObjCEncodingForTypeImpl(
5533            FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures,
5534            FD, false /* OutermostType */, EncodingProperty,
5535            false /* StructField */, EncodeBlockParameters, EncodeClassNames, false,
5536                                   NotEncodedT);
5537        // Block self
5538        S += "@?";
5539        // Block parameters
5540        if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5541          for (const auto &I : FPT->param_types())
5542            getObjCEncodingForTypeImpl(
5543                I, S, ExpandPointedToStructures, ExpandStructures, FD,
5544                false /* OutermostType */, EncodingProperty,
5545                false /* StructField */, EncodeBlockParameters, EncodeClassNames,
5546                                       false, NotEncodedT);
5547        }
5548        S += '>';
5549      }
5550      return;
5551    }
5552  
5553    case Type::ObjCObject: {
5554      // hack to match legacy encoding of *id and *Class
5555      QualType Ty = getObjCObjectPointerType(CT);
5556      if (Ty->isObjCIdType()) {
5557        S += "{objc_object=}";
5558        return;
5559      }
5560      else if (Ty->isObjCClassType()) {
5561        S += "{objc_class=}";
5562        return;
5563      }
5564    }
5565  
5566    case Type::ObjCInterface: {
5567      // Ignore protocol qualifiers when mangling at this level.
5568      T = T->castAs<ObjCObjectType>()->getBaseType();
5569  
5570      // The assumption seems to be that this assert will succeed
5571      // because nested levels will have filtered out 'id' and 'Class'.
5572      const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5573      // @encode(class_name)
5574      ObjCInterfaceDecl *OI = OIT->getDecl();
5575      S += '{';
5576      const IdentifierInfo *II = OI->getIdentifier();
5577      S += II->getName();
5578      S += '=';
5579      SmallVector<const ObjCIvarDecl*, 32> Ivars;
5580      DeepCollectObjCIvars(OI, true, Ivars);
5581      for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5582        const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5583        if (Field->isBitField())
5584          getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5585        else
5586          getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5587                                     false, false, false, false, false,
5588                                     EncodePointerToObjCTypedef,
5589                                     NotEncodedT);
5590      }
5591      S += '}';
5592      return;
5593    }
5594  
5595    case Type::ObjCObjectPointer: {
5596      const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5597      if (OPT->isObjCIdType()) {
5598        S += '@';
5599        return;
5600      }
5601  
5602      if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5603        // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5604        // Since this is a binary compatibility issue, need to consult with runtime
5605        // folks. Fortunately, this is a *very* obsure construct.
5606        S += '#';
5607        return;
5608      }
5609  
5610      if (OPT->isObjCQualifiedIdType()) {
5611        getObjCEncodingForTypeImpl(getObjCIdType(), S,
5612                                   ExpandPointedToStructures,
5613                                   ExpandStructures, FD);
5614        if (FD || EncodingProperty || EncodeClassNames) {
5615          // Note that we do extended encoding of protocol qualifer list
5616          // Only when doing ivar or property encoding.
5617          S += '"';
5618          for (const auto *I : OPT->quals()) {
5619            S += '<';
5620            S += I->getNameAsString();
5621            S += '>';
5622          }
5623          S += '"';
5624        }
5625        return;
5626      }
5627  
5628      QualType PointeeTy = OPT->getPointeeType();
5629      if (!EncodingProperty &&
5630          isa<TypedefType>(PointeeTy.getTypePtr()) &&
5631          !EncodePointerToObjCTypedef) {
5632        // Another historical/compatibility reason.
5633        // We encode the underlying type which comes out as
5634        // {...};
5635        S += '^';
5636        if (FD && OPT->getInterfaceDecl()) {
5637          // Prevent recursive encoding of fields in some rare cases.
5638          ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
5639          SmallVector<const ObjCIvarDecl*, 32> Ivars;
5640          DeepCollectObjCIvars(OI, true, Ivars);
5641          for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5642            if (cast<FieldDecl>(Ivars[i]) == FD) {
5643              S += '{';
5644              S += OI->getIdentifier()->getName();
5645              S += '}';
5646              return;
5647            }
5648          }
5649        }
5650        getObjCEncodingForTypeImpl(PointeeTy, S,
5651                                   false, ExpandPointedToStructures,
5652                                   nullptr,
5653                                   false, false, false, false, false,
5654                                   /*EncodePointerToObjCTypedef*/true);
5655        return;
5656      }
5657  
5658      S += '@';
5659      if (OPT->getInterfaceDecl() &&
5660          (FD || EncodingProperty || EncodeClassNames)) {
5661        S += '"';
5662        S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5663        for (const auto *I : OPT->quals()) {
5664          S += '<';
5665          S += I->getNameAsString();
5666          S += '>';
5667        }
5668        S += '"';
5669      }
5670      return;
5671    }
5672  
5673    // gcc just blithely ignores member pointers.
5674    // FIXME: we shoul do better than that.  'M' is available.
5675    case Type::MemberPointer:
5676    // This matches gcc's encoding, even though technically it is insufficient.
5677    //FIXME. We should do a better job than gcc.
5678    case Type::Vector:
5679    case Type::ExtVector:
5680    // Until we have a coherent encoding of these three types, issue warning.
5681      { if (NotEncodedT)
5682          *NotEncodedT = T;
5683        return;
5684      }
5685  
5686    // We could see an undeduced auto type here during error recovery.
5687    // Just ignore it.
5688    case Type::Auto:
5689      return;
5690  
5691  
5692  #define ABSTRACT_TYPE(KIND, BASE)
5693  #define TYPE(KIND, BASE)
5694  #define DEPENDENT_TYPE(KIND, BASE) \
5695    case Type::KIND:
5696  #define NON_CANONICAL_TYPE(KIND, BASE) \
5697    case Type::KIND:
5698  #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5699    case Type::KIND:
5700  #include "clang/AST/TypeNodes.def"
5701      llvm_unreachable("@encode for dependent type!");
5702    }
5703    llvm_unreachable("bad type kind!");
5704  }
5705  
getObjCEncodingForStructureImpl(RecordDecl * RDecl,std::string & S,const FieldDecl * FD,bool includeVBases,QualType * NotEncodedT) const5706  void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5707                                                   std::string &S,
5708                                                   const FieldDecl *FD,
5709                                                   bool includeVBases,
5710                                                   QualType *NotEncodedT) const {
5711    assert(RDecl && "Expected non-null RecordDecl");
5712    assert(!RDecl->isUnion() && "Should not be called for unions");
5713    if (!RDecl->getDefinition())
5714      return;
5715  
5716    CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5717    std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5718    const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5719  
5720    if (CXXRec) {
5721      for (const auto &BI : CXXRec->bases()) {
5722        if (!BI.isVirtual()) {
5723          CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5724          if (base->isEmpty())
5725            continue;
5726          uint64_t offs = toBits(layout.getBaseClassOffset(base));
5727          FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5728                                    std::make_pair(offs, base));
5729        }
5730      }
5731    }
5732  
5733    unsigned i = 0;
5734    for (auto *Field : RDecl->fields()) {
5735      uint64_t offs = layout.getFieldOffset(i);
5736      FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5737                                std::make_pair(offs, Field));
5738      ++i;
5739    }
5740  
5741    if (CXXRec && includeVBases) {
5742      for (const auto &BI : CXXRec->vbases()) {
5743        CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5744        if (base->isEmpty())
5745          continue;
5746        uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5747        if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
5748            FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5749          FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5750                                    std::make_pair(offs, base));
5751      }
5752    }
5753  
5754    CharUnits size;
5755    if (CXXRec) {
5756      size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5757    } else {
5758      size = layout.getSize();
5759    }
5760  
5761  #ifndef NDEBUG
5762    uint64_t CurOffs = 0;
5763  #endif
5764    std::multimap<uint64_t, NamedDecl *>::iterator
5765      CurLayObj = FieldOrBaseOffsets.begin();
5766  
5767    if (CXXRec && CXXRec->isDynamicClass() &&
5768        (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5769      if (FD) {
5770        S += "\"_vptr$";
5771        std::string recname = CXXRec->getNameAsString();
5772        if (recname.empty()) recname = "?";
5773        S += recname;
5774        S += '"';
5775      }
5776      S += "^^?";
5777  #ifndef NDEBUG
5778      CurOffs += getTypeSize(VoidPtrTy);
5779  #endif
5780    }
5781  
5782    if (!RDecl->hasFlexibleArrayMember()) {
5783      // Mark the end of the structure.
5784      uint64_t offs = toBits(size);
5785      FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5786                                std::make_pair(offs, nullptr));
5787    }
5788  
5789    for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5790  #ifndef NDEBUG
5791      assert(CurOffs <= CurLayObj->first);
5792      if (CurOffs < CurLayObj->first) {
5793        uint64_t padding = CurLayObj->first - CurOffs;
5794        // FIXME: There doesn't seem to be a way to indicate in the encoding that
5795        // packing/alignment of members is different that normal, in which case
5796        // the encoding will be out-of-sync with the real layout.
5797        // If the runtime switches to just consider the size of types without
5798        // taking into account alignment, we could make padding explicit in the
5799        // encoding (e.g. using arrays of chars). The encoding strings would be
5800        // longer then though.
5801        CurOffs += padding;
5802      }
5803  #endif
5804  
5805      NamedDecl *dcl = CurLayObj->second;
5806      if (!dcl)
5807        break; // reached end of structure.
5808  
5809      if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5810        // We expand the bases without their virtual bases since those are going
5811        // in the initial structure. Note that this differs from gcc which
5812        // expands virtual bases each time one is encountered in the hierarchy,
5813        // making the encoding type bigger than it really is.
5814        getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
5815                                        NotEncodedT);
5816        assert(!base->isEmpty());
5817  #ifndef NDEBUG
5818        CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5819  #endif
5820      } else {
5821        FieldDecl *field = cast<FieldDecl>(dcl);
5822        if (FD) {
5823          S += '"';
5824          S += field->getNameAsString();
5825          S += '"';
5826        }
5827  
5828        if (field->isBitField()) {
5829          EncodeBitField(this, S, field->getType(), field);
5830  #ifndef NDEBUG
5831          CurOffs += field->getBitWidthValue(*this);
5832  #endif
5833        } else {
5834          QualType qt = field->getType();
5835          getLegacyIntegralTypeEncoding(qt);
5836          getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5837                                     /*OutermostType*/false,
5838                                     /*EncodingProperty*/false,
5839                                     /*StructField*/true,
5840                                     false, false, false, NotEncodedT);
5841  #ifndef NDEBUG
5842          CurOffs += getTypeSize(field->getType());
5843  #endif
5844        }
5845      }
5846    }
5847  }
5848  
getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,std::string & S) const5849  void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5850                                                   std::string& S) const {
5851    if (QT & Decl::OBJC_TQ_In)
5852      S += 'n';
5853    if (QT & Decl::OBJC_TQ_Inout)
5854      S += 'N';
5855    if (QT & Decl::OBJC_TQ_Out)
5856      S += 'o';
5857    if (QT & Decl::OBJC_TQ_Bycopy)
5858      S += 'O';
5859    if (QT & Decl::OBJC_TQ_Byref)
5860      S += 'R';
5861    if (QT & Decl::OBJC_TQ_Oneway)
5862      S += 'V';
5863  }
5864  
getObjCIdDecl() const5865  TypedefDecl *ASTContext::getObjCIdDecl() const {
5866    if (!ObjCIdDecl) {
5867      QualType T = getObjCObjectType(ObjCBuiltinIdTy, nullptr, 0);
5868      T = getObjCObjectPointerType(T);
5869      ObjCIdDecl = buildImplicitTypedef(T, "id");
5870    }
5871    return ObjCIdDecl;
5872  }
5873  
getObjCSelDecl() const5874  TypedefDecl *ASTContext::getObjCSelDecl() const {
5875    if (!ObjCSelDecl) {
5876      QualType T = getPointerType(ObjCBuiltinSelTy);
5877      ObjCSelDecl = buildImplicitTypedef(T, "SEL");
5878    }
5879    return ObjCSelDecl;
5880  }
5881  
getObjCClassDecl() const5882  TypedefDecl *ASTContext::getObjCClassDecl() const {
5883    if (!ObjCClassDecl) {
5884      QualType T = getObjCObjectType(ObjCBuiltinClassTy, nullptr, 0);
5885      T = getObjCObjectPointerType(T);
5886      ObjCClassDecl = buildImplicitTypedef(T, "Class");
5887    }
5888    return ObjCClassDecl;
5889  }
5890  
getObjCProtocolDecl() const5891  ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5892    if (!ObjCProtocolClassDecl) {
5893      ObjCProtocolClassDecl
5894        = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5895                                    SourceLocation(),
5896                                    &Idents.get("Protocol"),
5897                                    /*PrevDecl=*/nullptr,
5898                                    SourceLocation(), true);
5899    }
5900  
5901    return ObjCProtocolClassDecl;
5902  }
5903  
5904  //===----------------------------------------------------------------------===//
5905  // __builtin_va_list Construction Functions
5906  //===----------------------------------------------------------------------===//
5907  
CreateCharPtrBuiltinVaListDecl(const ASTContext * Context)5908  static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5909    // typedef char* __builtin_va_list;
5910    QualType T = Context->getPointerType(Context->CharTy);
5911    return Context->buildImplicitTypedef(T, "__builtin_va_list");
5912  }
5913  
CreateVoidPtrBuiltinVaListDecl(const ASTContext * Context)5914  static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5915    // typedef void* __builtin_va_list;
5916    QualType T = Context->getPointerType(Context->VoidTy);
5917    return Context->buildImplicitTypedef(T, "__builtin_va_list");
5918  }
5919  
5920  static TypedefDecl *
CreateAArch64ABIBuiltinVaListDecl(const ASTContext * Context)5921  CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5922    // struct __va_list
5923    RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
5924    if (Context->getLangOpts().CPlusPlus) {
5925      // namespace std { struct __va_list {
5926      NamespaceDecl *NS;
5927      NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5928                                 Context->getTranslationUnitDecl(),
5929                                 /*Inline*/ false, SourceLocation(),
5930                                 SourceLocation(), &Context->Idents.get("std"),
5931                                 /*PrevDecl*/ nullptr);
5932      NS->setImplicit();
5933      VaListTagDecl->setDeclContext(NS);
5934    }
5935  
5936    VaListTagDecl->startDefinition();
5937  
5938    const size_t NumFields = 5;
5939    QualType FieldTypes[NumFields];
5940    const char *FieldNames[NumFields];
5941  
5942    // void *__stack;
5943    FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5944    FieldNames[0] = "__stack";
5945  
5946    // void *__gr_top;
5947    FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5948    FieldNames[1] = "__gr_top";
5949  
5950    // void *__vr_top;
5951    FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5952    FieldNames[2] = "__vr_top";
5953  
5954    // int __gr_offs;
5955    FieldTypes[3] = Context->IntTy;
5956    FieldNames[3] = "__gr_offs";
5957  
5958    // int __vr_offs;
5959    FieldTypes[4] = Context->IntTy;
5960    FieldNames[4] = "__vr_offs";
5961  
5962    // Create fields
5963    for (unsigned i = 0; i < NumFields; ++i) {
5964      FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5965                                           VaListTagDecl,
5966                                           SourceLocation(),
5967                                           SourceLocation(),
5968                                           &Context->Idents.get(FieldNames[i]),
5969                                           FieldTypes[i], /*TInfo=*/nullptr,
5970                                           /*BitWidth=*/nullptr,
5971                                           /*Mutable=*/false,
5972                                           ICIS_NoInit);
5973      Field->setAccess(AS_public);
5974      VaListTagDecl->addDecl(Field);
5975    }
5976    VaListTagDecl->completeDefinition();
5977    QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5978    Context->VaListTagTy = VaListTagType;
5979  
5980    // } __builtin_va_list;
5981    return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
5982  }
5983  
CreatePowerABIBuiltinVaListDecl(const ASTContext * Context)5984  static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5985    // typedef struct __va_list_tag {
5986    RecordDecl *VaListTagDecl;
5987  
5988    VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
5989    VaListTagDecl->startDefinition();
5990  
5991    const size_t NumFields = 5;
5992    QualType FieldTypes[NumFields];
5993    const char *FieldNames[NumFields];
5994  
5995    //   unsigned char gpr;
5996    FieldTypes[0] = Context->UnsignedCharTy;
5997    FieldNames[0] = "gpr";
5998  
5999    //   unsigned char fpr;
6000    FieldTypes[1] = Context->UnsignedCharTy;
6001    FieldNames[1] = "fpr";
6002  
6003    //   unsigned short reserved;
6004    FieldTypes[2] = Context->UnsignedShortTy;
6005    FieldNames[2] = "reserved";
6006  
6007    //   void* overflow_arg_area;
6008    FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6009    FieldNames[3] = "overflow_arg_area";
6010  
6011    //   void* reg_save_area;
6012    FieldTypes[4] = Context->getPointerType(Context->VoidTy);
6013    FieldNames[4] = "reg_save_area";
6014  
6015    // Create fields
6016    for (unsigned i = 0; i < NumFields; ++i) {
6017      FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
6018                                           SourceLocation(),
6019                                           SourceLocation(),
6020                                           &Context->Idents.get(FieldNames[i]),
6021                                           FieldTypes[i], /*TInfo=*/nullptr,
6022                                           /*BitWidth=*/nullptr,
6023                                           /*Mutable=*/false,
6024                                           ICIS_NoInit);
6025      Field->setAccess(AS_public);
6026      VaListTagDecl->addDecl(Field);
6027    }
6028    VaListTagDecl->completeDefinition();
6029    QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6030    Context->VaListTagTy = VaListTagType;
6031  
6032    // } __va_list_tag;
6033    TypedefDecl *VaListTagTypedefDecl =
6034        Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6035  
6036    QualType VaListTagTypedefType =
6037      Context->getTypedefType(VaListTagTypedefDecl);
6038  
6039    // typedef __va_list_tag __builtin_va_list[1];
6040    llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6041    QualType VaListTagArrayType
6042      = Context->getConstantArrayType(VaListTagTypedefType,
6043                                      Size, ArrayType::Normal, 0);
6044    return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6045  }
6046  
6047  static TypedefDecl *
CreateX86_64ABIBuiltinVaListDecl(const ASTContext * Context)6048  CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
6049    // typedef struct __va_list_tag {
6050    RecordDecl *VaListTagDecl;
6051    VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6052    VaListTagDecl->startDefinition();
6053  
6054    const size_t NumFields = 4;
6055    QualType FieldTypes[NumFields];
6056    const char *FieldNames[NumFields];
6057  
6058    //   unsigned gp_offset;
6059    FieldTypes[0] = Context->UnsignedIntTy;
6060    FieldNames[0] = "gp_offset";
6061  
6062    //   unsigned fp_offset;
6063    FieldTypes[1] = Context->UnsignedIntTy;
6064    FieldNames[1] = "fp_offset";
6065  
6066    //   void* overflow_arg_area;
6067    FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6068    FieldNames[2] = "overflow_arg_area";
6069  
6070    //   void* reg_save_area;
6071    FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6072    FieldNames[3] = "reg_save_area";
6073  
6074    // Create fields
6075    for (unsigned i = 0; i < NumFields; ++i) {
6076      FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6077                                           VaListTagDecl,
6078                                           SourceLocation(),
6079                                           SourceLocation(),
6080                                           &Context->Idents.get(FieldNames[i]),
6081                                           FieldTypes[i], /*TInfo=*/nullptr,
6082                                           /*BitWidth=*/nullptr,
6083                                           /*Mutable=*/false,
6084                                           ICIS_NoInit);
6085      Field->setAccess(AS_public);
6086      VaListTagDecl->addDecl(Field);
6087    }
6088    VaListTagDecl->completeDefinition();
6089    QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6090    Context->VaListTagTy = VaListTagType;
6091  
6092    // } __va_list_tag;
6093    TypedefDecl *VaListTagTypedefDecl =
6094        Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6095  
6096    QualType VaListTagTypedefType =
6097      Context->getTypedefType(VaListTagTypedefDecl);
6098  
6099    // typedef __va_list_tag __builtin_va_list[1];
6100    llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6101    QualType VaListTagArrayType
6102      = Context->getConstantArrayType(VaListTagTypedefType,
6103                                        Size, ArrayType::Normal,0);
6104    return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6105  }
6106  
CreatePNaClABIBuiltinVaListDecl(const ASTContext * Context)6107  static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
6108    // typedef int __builtin_va_list[4];
6109    llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
6110    QualType IntArrayType
6111      = Context->getConstantArrayType(Context->IntTy,
6112  				    Size, ArrayType::Normal, 0);
6113    return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
6114  }
6115  
6116  static TypedefDecl *
CreateAAPCSABIBuiltinVaListDecl(const ASTContext * Context)6117  CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
6118    // struct __va_list
6119    RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
6120    if (Context->getLangOpts().CPlusPlus) {
6121      // namespace std { struct __va_list {
6122      NamespaceDecl *NS;
6123      NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
6124                                 Context->getTranslationUnitDecl(),
6125                                 /*Inline*/false, SourceLocation(),
6126                                 SourceLocation(), &Context->Idents.get("std"),
6127                                 /*PrevDecl*/ nullptr);
6128      NS->setImplicit();
6129      VaListDecl->setDeclContext(NS);
6130    }
6131  
6132    VaListDecl->startDefinition();
6133  
6134    // void * __ap;
6135    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6136                                         VaListDecl,
6137                                         SourceLocation(),
6138                                         SourceLocation(),
6139                                         &Context->Idents.get("__ap"),
6140                                         Context->getPointerType(Context->VoidTy),
6141                                         /*TInfo=*/nullptr,
6142                                         /*BitWidth=*/nullptr,
6143                                         /*Mutable=*/false,
6144                                         ICIS_NoInit);
6145    Field->setAccess(AS_public);
6146    VaListDecl->addDecl(Field);
6147  
6148    // };
6149    VaListDecl->completeDefinition();
6150  
6151    // typedef struct __va_list __builtin_va_list;
6152    QualType T = Context->getRecordType(VaListDecl);
6153    return Context->buildImplicitTypedef(T, "__builtin_va_list");
6154  }
6155  
6156  static TypedefDecl *
CreateSystemZBuiltinVaListDecl(const ASTContext * Context)6157  CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6158    // typedef struct __va_list_tag {
6159    RecordDecl *VaListTagDecl;
6160    VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6161    VaListTagDecl->startDefinition();
6162  
6163    const size_t NumFields = 4;
6164    QualType FieldTypes[NumFields];
6165    const char *FieldNames[NumFields];
6166  
6167    //   long __gpr;
6168    FieldTypes[0] = Context->LongTy;
6169    FieldNames[0] = "__gpr";
6170  
6171    //   long __fpr;
6172    FieldTypes[1] = Context->LongTy;
6173    FieldNames[1] = "__fpr";
6174  
6175    //   void *__overflow_arg_area;
6176    FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6177    FieldNames[2] = "__overflow_arg_area";
6178  
6179    //   void *__reg_save_area;
6180    FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6181    FieldNames[3] = "__reg_save_area";
6182  
6183    // Create fields
6184    for (unsigned i = 0; i < NumFields; ++i) {
6185      FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6186                                           VaListTagDecl,
6187                                           SourceLocation(),
6188                                           SourceLocation(),
6189                                           &Context->Idents.get(FieldNames[i]),
6190                                           FieldTypes[i], /*TInfo=*/nullptr,
6191                                           /*BitWidth=*/nullptr,
6192                                           /*Mutable=*/false,
6193                                           ICIS_NoInit);
6194      Field->setAccess(AS_public);
6195      VaListTagDecl->addDecl(Field);
6196    }
6197    VaListTagDecl->completeDefinition();
6198    QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6199    Context->VaListTagTy = VaListTagType;
6200  
6201    // } __va_list_tag;
6202    TypedefDecl *VaListTagTypedefDecl =
6203        Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6204    QualType VaListTagTypedefType =
6205      Context->getTypedefType(VaListTagTypedefDecl);
6206  
6207    // typedef __va_list_tag __builtin_va_list[1];
6208    llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6209    QualType VaListTagArrayType
6210      = Context->getConstantArrayType(VaListTagTypedefType,
6211                                        Size, ArrayType::Normal,0);
6212  
6213    return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6214  }
6215  
CreateVaListDecl(const ASTContext * Context,TargetInfo::BuiltinVaListKind Kind)6216  static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6217                                       TargetInfo::BuiltinVaListKind Kind) {
6218    switch (Kind) {
6219    case TargetInfo::CharPtrBuiltinVaList:
6220      return CreateCharPtrBuiltinVaListDecl(Context);
6221    case TargetInfo::VoidPtrBuiltinVaList:
6222      return CreateVoidPtrBuiltinVaListDecl(Context);
6223    case TargetInfo::AArch64ABIBuiltinVaList:
6224      return CreateAArch64ABIBuiltinVaListDecl(Context);
6225    case TargetInfo::PowerABIBuiltinVaList:
6226      return CreatePowerABIBuiltinVaListDecl(Context);
6227    case TargetInfo::X86_64ABIBuiltinVaList:
6228      return CreateX86_64ABIBuiltinVaListDecl(Context);
6229    case TargetInfo::PNaClABIBuiltinVaList:
6230      return CreatePNaClABIBuiltinVaListDecl(Context);
6231    case TargetInfo::AAPCSABIBuiltinVaList:
6232      return CreateAAPCSABIBuiltinVaListDecl(Context);
6233    case TargetInfo::SystemZBuiltinVaList:
6234      return CreateSystemZBuiltinVaListDecl(Context);
6235    }
6236  
6237    llvm_unreachable("Unhandled __builtin_va_list type kind");
6238  }
6239  
getBuiltinVaListDecl() const6240  TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6241    if (!BuiltinVaListDecl) {
6242      BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6243      assert(BuiltinVaListDecl->isImplicit());
6244    }
6245  
6246    return BuiltinVaListDecl;
6247  }
6248  
getVaListTagType() const6249  QualType ASTContext::getVaListTagType() const {
6250    // Force the creation of VaListTagTy by building the __builtin_va_list
6251    // declaration.
6252    if (VaListTagTy.isNull())
6253      (void) getBuiltinVaListDecl();
6254  
6255    return VaListTagTy;
6256  }
6257  
setObjCConstantStringInterface(ObjCInterfaceDecl * Decl)6258  void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6259    assert(ObjCConstantStringType.isNull() &&
6260           "'NSConstantString' type already set!");
6261  
6262    ObjCConstantStringType = getObjCInterfaceType(Decl);
6263  }
6264  
6265  /// \brief Retrieve the template name that corresponds to a non-empty
6266  /// lookup.
6267  TemplateName
getOverloadedTemplateName(UnresolvedSetIterator Begin,UnresolvedSetIterator End) const6268  ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6269                                        UnresolvedSetIterator End) const {
6270    unsigned size = End - Begin;
6271    assert(size > 1 && "set is not overloaded!");
6272  
6273    void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6274                            size * sizeof(FunctionTemplateDecl*));
6275    OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6276  
6277    NamedDecl **Storage = OT->getStorage();
6278    for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6279      NamedDecl *D = *I;
6280      assert(isa<FunctionTemplateDecl>(D) ||
6281             (isa<UsingShadowDecl>(D) &&
6282              isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6283      *Storage++ = D;
6284    }
6285  
6286    return TemplateName(OT);
6287  }
6288  
6289  /// \brief Retrieve the template name that represents a qualified
6290  /// template name such as \c std::vector.
6291  TemplateName
getQualifiedTemplateName(NestedNameSpecifier * NNS,bool TemplateKeyword,TemplateDecl * Template) const6292  ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6293                                       bool TemplateKeyword,
6294                                       TemplateDecl *Template) const {
6295    assert(NNS && "Missing nested-name-specifier in qualified template name");
6296  
6297    // FIXME: Canonicalization?
6298    llvm::FoldingSetNodeID ID;
6299    QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6300  
6301    void *InsertPos = nullptr;
6302    QualifiedTemplateName *QTN =
6303      QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6304    if (!QTN) {
6305      QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6306          QualifiedTemplateName(NNS, TemplateKeyword, Template);
6307      QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6308    }
6309  
6310    return TemplateName(QTN);
6311  }
6312  
6313  /// \brief Retrieve the template name that represents a dependent
6314  /// template name such as \c MetaFun::template apply.
6315  TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,const IdentifierInfo * Name) const6316  ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6317                                       const IdentifierInfo *Name) const {
6318    assert((!NNS || NNS->isDependent()) &&
6319           "Nested name specifier must be dependent");
6320  
6321    llvm::FoldingSetNodeID ID;
6322    DependentTemplateName::Profile(ID, NNS, Name);
6323  
6324    void *InsertPos = nullptr;
6325    DependentTemplateName *QTN =
6326      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6327  
6328    if (QTN)
6329      return TemplateName(QTN);
6330  
6331    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6332    if (CanonNNS == NNS) {
6333      QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6334          DependentTemplateName(NNS, Name);
6335    } else {
6336      TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6337      QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6338          DependentTemplateName(NNS, Name, Canon);
6339      DependentTemplateName *CheckQTN =
6340        DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6341      assert(!CheckQTN && "Dependent type name canonicalization broken");
6342      (void)CheckQTN;
6343    }
6344  
6345    DependentTemplateNames.InsertNode(QTN, InsertPos);
6346    return TemplateName(QTN);
6347  }
6348  
6349  /// \brief Retrieve the template name that represents a dependent
6350  /// template name such as \c MetaFun::template operator+.
6351  TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,OverloadedOperatorKind Operator) const6352  ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6353                                       OverloadedOperatorKind Operator) const {
6354    assert((!NNS || NNS->isDependent()) &&
6355           "Nested name specifier must be dependent");
6356  
6357    llvm::FoldingSetNodeID ID;
6358    DependentTemplateName::Profile(ID, NNS, Operator);
6359  
6360    void *InsertPos = nullptr;
6361    DependentTemplateName *QTN
6362      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6363  
6364    if (QTN)
6365      return TemplateName(QTN);
6366  
6367    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6368    if (CanonNNS == NNS) {
6369      QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6370          DependentTemplateName(NNS, Operator);
6371    } else {
6372      TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6373      QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6374          DependentTemplateName(NNS, Operator, Canon);
6375  
6376      DependentTemplateName *CheckQTN
6377        = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6378      assert(!CheckQTN && "Dependent template name canonicalization broken");
6379      (void)CheckQTN;
6380    }
6381  
6382    DependentTemplateNames.InsertNode(QTN, InsertPos);
6383    return TemplateName(QTN);
6384  }
6385  
6386  TemplateName
getSubstTemplateTemplateParm(TemplateTemplateParmDecl * param,TemplateName replacement) const6387  ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6388                                           TemplateName replacement) const {
6389    llvm::FoldingSetNodeID ID;
6390    SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6391  
6392    void *insertPos = nullptr;
6393    SubstTemplateTemplateParmStorage *subst
6394      = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6395  
6396    if (!subst) {
6397      subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6398      SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6399    }
6400  
6401    return TemplateName(subst);
6402  }
6403  
6404  TemplateName
getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack) const6405  ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6406                                         const TemplateArgument &ArgPack) const {
6407    ASTContext &Self = const_cast<ASTContext &>(*this);
6408    llvm::FoldingSetNodeID ID;
6409    SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6410  
6411    void *InsertPos = nullptr;
6412    SubstTemplateTemplateParmPackStorage *Subst
6413      = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6414  
6415    if (!Subst) {
6416      Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6417                                                             ArgPack.pack_size(),
6418                                                           ArgPack.pack_begin());
6419      SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6420    }
6421  
6422    return TemplateName(Subst);
6423  }
6424  
6425  /// getFromTargetType - Given one of the integer types provided by
6426  /// TargetInfo, produce the corresponding type. The unsigned @p Type
6427  /// is actually a value of type @c TargetInfo::IntType.
getFromTargetType(unsigned Type) const6428  CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6429    switch (Type) {
6430    case TargetInfo::NoInt: return CanQualType();
6431    case TargetInfo::SignedChar: return SignedCharTy;
6432    case TargetInfo::UnsignedChar: return UnsignedCharTy;
6433    case TargetInfo::SignedShort: return ShortTy;
6434    case TargetInfo::UnsignedShort: return UnsignedShortTy;
6435    case TargetInfo::SignedInt: return IntTy;
6436    case TargetInfo::UnsignedInt: return UnsignedIntTy;
6437    case TargetInfo::SignedLong: return LongTy;
6438    case TargetInfo::UnsignedLong: return UnsignedLongTy;
6439    case TargetInfo::SignedLongLong: return LongLongTy;
6440    case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6441    }
6442  
6443    llvm_unreachable("Unhandled TargetInfo::IntType value");
6444  }
6445  
6446  //===----------------------------------------------------------------------===//
6447  //                        Type Predicates.
6448  //===----------------------------------------------------------------------===//
6449  
6450  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6451  /// garbage collection attribute.
6452  ///
getObjCGCAttrKind(QualType Ty) const6453  Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6454    if (getLangOpts().getGC() == LangOptions::NonGC)
6455      return Qualifiers::GCNone;
6456  
6457    assert(getLangOpts().ObjC1);
6458    Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6459  
6460    // Default behaviour under objective-C's gc is for ObjC pointers
6461    // (or pointers to them) be treated as though they were declared
6462    // as __strong.
6463    if (GCAttrs == Qualifiers::GCNone) {
6464      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6465        return Qualifiers::Strong;
6466      else if (Ty->isPointerType())
6467        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6468    } else {
6469      // It's not valid to set GC attributes on anything that isn't a
6470      // pointer.
6471  #ifndef NDEBUG
6472      QualType CT = Ty->getCanonicalTypeInternal();
6473      while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6474        CT = AT->getElementType();
6475      assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6476  #endif
6477    }
6478    return GCAttrs;
6479  }
6480  
6481  //===----------------------------------------------------------------------===//
6482  //                        Type Compatibility Testing
6483  //===----------------------------------------------------------------------===//
6484  
6485  /// areCompatVectorTypes - Return true if the two specified vector types are
6486  /// compatible.
areCompatVectorTypes(const VectorType * LHS,const VectorType * RHS)6487  static bool areCompatVectorTypes(const VectorType *LHS,
6488                                   const VectorType *RHS) {
6489    assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6490    return LHS->getElementType() == RHS->getElementType() &&
6491           LHS->getNumElements() == RHS->getNumElements();
6492  }
6493  
areCompatibleVectorTypes(QualType FirstVec,QualType SecondVec)6494  bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6495                                            QualType SecondVec) {
6496    assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6497    assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6498  
6499    if (hasSameUnqualifiedType(FirstVec, SecondVec))
6500      return true;
6501  
6502    // Treat Neon vector types and most AltiVec vector types as if they are the
6503    // equivalent GCC vector types.
6504    const VectorType *First = FirstVec->getAs<VectorType>();
6505    const VectorType *Second = SecondVec->getAs<VectorType>();
6506    if (First->getNumElements() == Second->getNumElements() &&
6507        hasSameType(First->getElementType(), Second->getElementType()) &&
6508        First->getVectorKind() != VectorType::AltiVecPixel &&
6509        First->getVectorKind() != VectorType::AltiVecBool &&
6510        Second->getVectorKind() != VectorType::AltiVecPixel &&
6511        Second->getVectorKind() != VectorType::AltiVecBool)
6512      return true;
6513  
6514    return false;
6515  }
6516  
6517  //===----------------------------------------------------------------------===//
6518  // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6519  //===----------------------------------------------------------------------===//
6520  
6521  /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6522  /// inheritance hierarchy of 'rProto'.
6523  bool
ProtocolCompatibleWithProtocol(ObjCProtocolDecl * lProto,ObjCProtocolDecl * rProto) const6524  ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6525                                             ObjCProtocolDecl *rProto) const {
6526    if (declaresSameEntity(lProto, rProto))
6527      return true;
6528    for (auto *PI : rProto->protocols())
6529      if (ProtocolCompatibleWithProtocol(lProto, PI))
6530        return true;
6531    return false;
6532  }
6533  
6534  /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6535  /// Class<pr1, ...>.
ObjCQualifiedClassTypesAreCompatible(QualType lhs,QualType rhs)6536  bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6537                                                        QualType rhs) {
6538    const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6539    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6540    assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6541  
6542    for (auto *lhsProto : lhsQID->quals()) {
6543      bool match = false;
6544      for (auto *rhsProto : rhsOPT->quals()) {
6545        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6546          match = true;
6547          break;
6548        }
6549      }
6550      if (!match)
6551        return false;
6552    }
6553    return true;
6554  }
6555  
6556  /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6557  /// ObjCQualifiedIDType.
ObjCQualifiedIdTypesAreCompatible(QualType lhs,QualType rhs,bool compare)6558  bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6559                                                     bool compare) {
6560    // Allow id<P..> and an 'id' or void* type in all cases.
6561    if (lhs->isVoidPointerType() ||
6562        lhs->isObjCIdType() || lhs->isObjCClassType())
6563      return true;
6564    else if (rhs->isVoidPointerType() ||
6565             rhs->isObjCIdType() || rhs->isObjCClassType())
6566      return true;
6567  
6568    if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6569      const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6570  
6571      if (!rhsOPT) return false;
6572  
6573      if (rhsOPT->qual_empty()) {
6574        // If the RHS is a unqualified interface pointer "NSString*",
6575        // make sure we check the class hierarchy.
6576        if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6577          for (auto *I : lhsQID->quals()) {
6578            // when comparing an id<P> on lhs with a static type on rhs,
6579            // see if static class implements all of id's protocols, directly or
6580            // through its super class and categories.
6581            if (!rhsID->ClassImplementsProtocol(I, true))
6582              return false;
6583          }
6584        }
6585        // If there are no qualifiers and no interface, we have an 'id'.
6586        return true;
6587      }
6588      // Both the right and left sides have qualifiers.
6589      for (auto *lhsProto : lhsQID->quals()) {
6590        bool match = false;
6591  
6592        // when comparing an id<P> on lhs with a static type on rhs,
6593        // see if static class implements all of id's protocols, directly or
6594        // through its super class and categories.
6595        for (auto *rhsProto : rhsOPT->quals()) {
6596          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6597              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6598            match = true;
6599            break;
6600          }
6601        }
6602        // If the RHS is a qualified interface pointer "NSString<P>*",
6603        // make sure we check the class hierarchy.
6604        if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6605          for (auto *I : lhsQID->quals()) {
6606            // when comparing an id<P> on lhs with a static type on rhs,
6607            // see if static class implements all of id's protocols, directly or
6608            // through its super class and categories.
6609            if (rhsID->ClassImplementsProtocol(I, true)) {
6610              match = true;
6611              break;
6612            }
6613          }
6614        }
6615        if (!match)
6616          return false;
6617      }
6618  
6619      return true;
6620    }
6621  
6622    const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6623    assert(rhsQID && "One of the LHS/RHS should be id<x>");
6624  
6625    if (const ObjCObjectPointerType *lhsOPT =
6626          lhs->getAsObjCInterfacePointerType()) {
6627      // If both the right and left sides have qualifiers.
6628      for (auto *lhsProto : lhsOPT->quals()) {
6629        bool match = false;
6630  
6631        // when comparing an id<P> on rhs with a static type on lhs,
6632        // see if static class implements all of id's protocols, directly or
6633        // through its super class and categories.
6634        // First, lhs protocols in the qualifier list must be found, direct
6635        // or indirect in rhs's qualifier list or it is a mismatch.
6636        for (auto *rhsProto : rhsQID->quals()) {
6637          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6638              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6639            match = true;
6640            break;
6641          }
6642        }
6643        if (!match)
6644          return false;
6645      }
6646  
6647      // Static class's protocols, or its super class or category protocols
6648      // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6649      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6650        llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6651        CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6652        // This is rather dubious but matches gcc's behavior. If lhs has
6653        // no type qualifier and its class has no static protocol(s)
6654        // assume that it is mismatch.
6655        if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6656          return false;
6657        for (auto *lhsProto : LHSInheritedProtocols) {
6658          bool match = false;
6659          for (auto *rhsProto : rhsQID->quals()) {
6660            if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6661                (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6662              match = true;
6663              break;
6664            }
6665          }
6666          if (!match)
6667            return false;
6668        }
6669      }
6670      return true;
6671    }
6672    return false;
6673  }
6674  
6675  /// canAssignObjCInterfaces - Return true if the two interface types are
6676  /// compatible for assignment from RHS to LHS.  This handles validation of any
6677  /// protocol qualifiers on the LHS or RHS.
6678  ///
canAssignObjCInterfaces(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT)6679  bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6680                                           const ObjCObjectPointerType *RHSOPT) {
6681    const ObjCObjectType* LHS = LHSOPT->getObjectType();
6682    const ObjCObjectType* RHS = RHSOPT->getObjectType();
6683  
6684    // If either type represents the built-in 'id' or 'Class' types, return true.
6685    if (LHS->isObjCUnqualifiedIdOrClass() ||
6686        RHS->isObjCUnqualifiedIdOrClass())
6687      return true;
6688  
6689    if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6690      return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6691                                               QualType(RHSOPT,0),
6692                                               false);
6693  
6694    if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6695      return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6696                                                  QualType(RHSOPT,0));
6697  
6698    // If we have 2 user-defined types, fall into that path.
6699    if (LHS->getInterface() && RHS->getInterface())
6700      return canAssignObjCInterfaces(LHS, RHS);
6701  
6702    return false;
6703  }
6704  
6705  /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6706  /// for providing type-safety for objective-c pointers used to pass/return
6707  /// arguments in block literals. When passed as arguments, passing 'A*' where
6708  /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6709  /// not OK. For the return type, the opposite is not OK.
canAssignObjCInterfacesInBlockPointer(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,bool BlockReturnType)6710  bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6711                                           const ObjCObjectPointerType *LHSOPT,
6712                                           const ObjCObjectPointerType *RHSOPT,
6713                                           bool BlockReturnType) {
6714    if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6715      return true;
6716  
6717    if (LHSOPT->isObjCBuiltinType()) {
6718      return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6719    }
6720  
6721    if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6722      return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6723                                               QualType(RHSOPT,0),
6724                                               false);
6725  
6726    const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6727    const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6728    if (LHS && RHS)  { // We have 2 user-defined types.
6729      if (LHS != RHS) {
6730        if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6731          return BlockReturnType;
6732        if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6733          return !BlockReturnType;
6734      }
6735      else
6736        return true;
6737    }
6738    return false;
6739  }
6740  
6741  /// getIntersectionOfProtocols - This routine finds the intersection of set
6742  /// of protocols inherited from two distinct objective-c pointer objects.
6743  /// It is used to build composite qualifier list of the composite type of
6744  /// the conditional expression involving two objective-c pointer objects.
6745  static
getIntersectionOfProtocols(ASTContext & Context,const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,SmallVectorImpl<ObjCProtocolDecl * > & IntersectionOfProtocols)6746  void getIntersectionOfProtocols(ASTContext &Context,
6747                                  const ObjCObjectPointerType *LHSOPT,
6748                                  const ObjCObjectPointerType *RHSOPT,
6749        SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6750  
6751    const ObjCObjectType* LHS = LHSOPT->getObjectType();
6752    const ObjCObjectType* RHS = RHSOPT->getObjectType();
6753    assert(LHS->getInterface() && "LHS must have an interface base");
6754    assert(RHS->getInterface() && "RHS must have an interface base");
6755  
6756    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6757    unsigned LHSNumProtocols = LHS->getNumProtocols();
6758    if (LHSNumProtocols > 0)
6759      InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6760    else {
6761      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6762      Context.CollectInheritedProtocols(LHS->getInterface(),
6763                                        LHSInheritedProtocols);
6764      InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6765                                  LHSInheritedProtocols.end());
6766    }
6767  
6768    unsigned RHSNumProtocols = RHS->getNumProtocols();
6769    if (RHSNumProtocols > 0) {
6770      ObjCProtocolDecl **RHSProtocols =
6771        const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6772      for (unsigned i = 0; i < RHSNumProtocols; ++i)
6773        if (InheritedProtocolSet.count(RHSProtocols[i]))
6774          IntersectionOfProtocols.push_back(RHSProtocols[i]);
6775    } else {
6776      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6777      Context.CollectInheritedProtocols(RHS->getInterface(),
6778                                        RHSInheritedProtocols);
6779      for (ObjCProtocolDecl *ProtDecl : RHSInheritedProtocols)
6780        if (InheritedProtocolSet.count(ProtDecl))
6781          IntersectionOfProtocols.push_back(ProtDecl);
6782    }
6783  }
6784  
6785  /// areCommonBaseCompatible - Returns common base class of the two classes if
6786  /// one found. Note that this is O'2 algorithm. But it will be called as the
6787  /// last type comparison in a ?-exp of ObjC pointer types before a
6788  /// warning is issued. So, its invokation is extremely rare.
areCommonBaseCompatible(const ObjCObjectPointerType * Lptr,const ObjCObjectPointerType * Rptr)6789  QualType ASTContext::areCommonBaseCompatible(
6790                                            const ObjCObjectPointerType *Lptr,
6791                                            const ObjCObjectPointerType *Rptr) {
6792    const ObjCObjectType *LHS = Lptr->getObjectType();
6793    const ObjCObjectType *RHS = Rptr->getObjectType();
6794    const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6795    const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6796    if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6797      return QualType();
6798  
6799    do {
6800      LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6801      if (canAssignObjCInterfaces(LHS, RHS)) {
6802        SmallVector<ObjCProtocolDecl *, 8> Protocols;
6803        getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6804  
6805        QualType Result = QualType(LHS, 0);
6806        if (!Protocols.empty())
6807          Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6808        Result = getObjCObjectPointerType(Result);
6809        return Result;
6810      }
6811    } while ((LDecl = LDecl->getSuperClass()));
6812  
6813    return QualType();
6814  }
6815  
canAssignObjCInterfaces(const ObjCObjectType * LHS,const ObjCObjectType * RHS)6816  bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6817                                           const ObjCObjectType *RHS) {
6818    assert(LHS->getInterface() && "LHS is not an interface type");
6819    assert(RHS->getInterface() && "RHS is not an interface type");
6820  
6821    // Verify that the base decls are compatible: the RHS must be a subclass of
6822    // the LHS.
6823    if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6824      return false;
6825  
6826    // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6827    // protocol qualified at all, then we are good.
6828    if (LHS->getNumProtocols() == 0)
6829      return true;
6830  
6831    // Okay, we know the LHS has protocol qualifiers. But RHS may or may not.
6832    // More detailed analysis is required.
6833    // OK, if LHS is same or a superclass of RHS *and*
6834    // this LHS, or as RHS's super class is assignment compatible with LHS.
6835    bool IsSuperClass =
6836      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6837    if (IsSuperClass) {
6838      // OK if conversion of LHS to SuperClass results in narrowing of types
6839      // ; i.e., SuperClass may implement at least one of the protocols
6840      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6841      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6842      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6843      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6844      // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
6845      // qualifiers.
6846      for (auto *RHSPI : RHS->quals())
6847        SuperClassInheritedProtocols.insert(RHSPI->getCanonicalDecl());
6848      // If there is no protocols associated with RHS, it is not a match.
6849      if (SuperClassInheritedProtocols.empty())
6850        return false;
6851  
6852      for (const auto *LHSProto : LHS->quals()) {
6853        bool SuperImplementsProtocol = false;
6854        for (auto *SuperClassProto : SuperClassInheritedProtocols)
6855          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6856            SuperImplementsProtocol = true;
6857            break;
6858          }
6859        if (!SuperImplementsProtocol)
6860          return false;
6861      }
6862      return true;
6863    }
6864    return false;
6865  }
6866  
areComparableObjCPointerTypes(QualType LHS,QualType RHS)6867  bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6868    // get the "pointed to" types
6869    const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6870    const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6871  
6872    if (!LHSOPT || !RHSOPT)
6873      return false;
6874  
6875    return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6876           canAssignObjCInterfaces(RHSOPT, LHSOPT);
6877  }
6878  
canBindObjCObjectType(QualType To,QualType From)6879  bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6880    return canAssignObjCInterfaces(
6881                  getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6882                  getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6883  }
6884  
6885  /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6886  /// both shall have the identically qualified version of a compatible type.
6887  /// C99 6.2.7p1: Two types have compatible types if their types are the
6888  /// same. See 6.7.[2,3,5] for additional rules.
typesAreCompatible(QualType LHS,QualType RHS,bool CompareUnqualified)6889  bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6890                                      bool CompareUnqualified) {
6891    if (getLangOpts().CPlusPlus)
6892      return hasSameType(LHS, RHS);
6893  
6894    return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6895  }
6896  
propertyTypesAreCompatible(QualType LHS,QualType RHS)6897  bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6898    return typesAreCompatible(LHS, RHS);
6899  }
6900  
typesAreBlockPointerCompatible(QualType LHS,QualType RHS)6901  bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6902    return !mergeTypes(LHS, RHS, true).isNull();
6903  }
6904  
6905  /// mergeTransparentUnionType - if T is a transparent union type and a member
6906  /// of T is compatible with SubType, return the merged type, else return
6907  /// QualType()
mergeTransparentUnionType(QualType T,QualType SubType,bool OfBlockPointer,bool Unqualified)6908  QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6909                                                 bool OfBlockPointer,
6910                                                 bool Unqualified) {
6911    if (const RecordType *UT = T->getAsUnionType()) {
6912      RecordDecl *UD = UT->getDecl();
6913      if (UD->hasAttr<TransparentUnionAttr>()) {
6914        for (const auto *I : UD->fields()) {
6915          QualType ET = I->getType().getUnqualifiedType();
6916          QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6917          if (!MT.isNull())
6918            return MT;
6919        }
6920      }
6921    }
6922  
6923    return QualType();
6924  }
6925  
6926  /// mergeFunctionParameterTypes - merge two types which appear as function
6927  /// parameter types
mergeFunctionParameterTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)6928  QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
6929                                                   bool OfBlockPointer,
6930                                                   bool Unqualified) {
6931    // GNU extension: two types are compatible if they appear as a function
6932    // argument, one of the types is a transparent union type and the other
6933    // type is compatible with a union member
6934    QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6935                                                Unqualified);
6936    if (!lmerge.isNull())
6937      return lmerge;
6938  
6939    QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6940                                                Unqualified);
6941    if (!rmerge.isNull())
6942      return rmerge;
6943  
6944    return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6945  }
6946  
mergeFunctionTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)6947  QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6948                                          bool OfBlockPointer,
6949                                          bool Unqualified) {
6950    const FunctionType *lbase = lhs->getAs<FunctionType>();
6951    const FunctionType *rbase = rhs->getAs<FunctionType>();
6952    const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6953    const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6954    bool allLTypes = true;
6955    bool allRTypes = true;
6956  
6957    // Check return type
6958    QualType retType;
6959    if (OfBlockPointer) {
6960      QualType RHS = rbase->getReturnType();
6961      QualType LHS = lbase->getReturnType();
6962      bool UnqualifiedResult = Unqualified;
6963      if (!UnqualifiedResult)
6964        UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6965      retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6966    }
6967    else
6968      retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
6969                           Unqualified);
6970    if (retType.isNull()) return QualType();
6971  
6972    if (Unqualified)
6973      retType = retType.getUnqualifiedType();
6974  
6975    CanQualType LRetType = getCanonicalType(lbase->getReturnType());
6976    CanQualType RRetType = getCanonicalType(rbase->getReturnType());
6977    if (Unqualified) {
6978      LRetType = LRetType.getUnqualifiedType();
6979      RRetType = RRetType.getUnqualifiedType();
6980    }
6981  
6982    if (getCanonicalType(retType) != LRetType)
6983      allLTypes = false;
6984    if (getCanonicalType(retType) != RRetType)
6985      allRTypes = false;
6986  
6987    // FIXME: double check this
6988    // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6989    //                           rbase->getRegParmAttr() != 0 &&
6990    //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6991    FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6992    FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6993  
6994    // Compatible functions must have compatible calling conventions
6995    if (lbaseInfo.getCC() != rbaseInfo.getCC())
6996      return QualType();
6997  
6998    // Regparm is part of the calling convention.
6999    if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
7000      return QualType();
7001    if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
7002      return QualType();
7003  
7004    if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
7005      return QualType();
7006  
7007    // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
7008    bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
7009  
7010    if (lbaseInfo.getNoReturn() != NoReturn)
7011      allLTypes = false;
7012    if (rbaseInfo.getNoReturn() != NoReturn)
7013      allRTypes = false;
7014  
7015    FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
7016  
7017    if (lproto && rproto) { // two C99 style function prototypes
7018      assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
7019             "C++ shouldn't be here");
7020      // Compatible functions must have the same number of parameters
7021      if (lproto->getNumParams() != rproto->getNumParams())
7022        return QualType();
7023  
7024      // Variadic and non-variadic functions aren't compatible
7025      if (lproto->isVariadic() != rproto->isVariadic())
7026        return QualType();
7027  
7028      if (lproto->getTypeQuals() != rproto->getTypeQuals())
7029        return QualType();
7030  
7031      if (LangOpts.ObjCAutoRefCount &&
7032          !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
7033        return QualType();
7034  
7035      // Check parameter type compatibility
7036      SmallVector<QualType, 10> types;
7037      for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
7038        QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
7039        QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
7040        QualType paramType = mergeFunctionParameterTypes(
7041            lParamType, rParamType, OfBlockPointer, Unqualified);
7042        if (paramType.isNull())
7043          return QualType();
7044  
7045        if (Unqualified)
7046          paramType = paramType.getUnqualifiedType();
7047  
7048        types.push_back(paramType);
7049        if (Unqualified) {
7050          lParamType = lParamType.getUnqualifiedType();
7051          rParamType = rParamType.getUnqualifiedType();
7052        }
7053  
7054        if (getCanonicalType(paramType) != getCanonicalType(lParamType))
7055          allLTypes = false;
7056        if (getCanonicalType(paramType) != getCanonicalType(rParamType))
7057          allRTypes = false;
7058      }
7059  
7060      if (allLTypes) return lhs;
7061      if (allRTypes) return rhs;
7062  
7063      FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
7064      EPI.ExtInfo = einfo;
7065      return getFunctionType(retType, types, EPI);
7066    }
7067  
7068    if (lproto) allRTypes = false;
7069    if (rproto) allLTypes = false;
7070  
7071    const FunctionProtoType *proto = lproto ? lproto : rproto;
7072    if (proto) {
7073      assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
7074      if (proto->isVariadic()) return QualType();
7075      // Check that the types are compatible with the types that
7076      // would result from default argument promotions (C99 6.7.5.3p15).
7077      // The only types actually affected are promotable integer
7078      // types and floats, which would be passed as a different
7079      // type depending on whether the prototype is visible.
7080      for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
7081        QualType paramTy = proto->getParamType(i);
7082  
7083        // Look at the converted type of enum types, since that is the type used
7084        // to pass enum values.
7085        if (const EnumType *Enum = paramTy->getAs<EnumType>()) {
7086          paramTy = Enum->getDecl()->getIntegerType();
7087          if (paramTy.isNull())
7088            return QualType();
7089        }
7090  
7091        if (paramTy->isPromotableIntegerType() ||
7092            getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
7093          return QualType();
7094      }
7095  
7096      if (allLTypes) return lhs;
7097      if (allRTypes) return rhs;
7098  
7099      FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7100      EPI.ExtInfo = einfo;
7101      return getFunctionType(retType, proto->getParamTypes(), EPI);
7102    }
7103  
7104    if (allLTypes) return lhs;
7105    if (allRTypes) return rhs;
7106    return getFunctionNoProtoType(retType, einfo);
7107  }
7108  
7109  /// Given that we have an enum type and a non-enum type, try to merge them.
mergeEnumWithInteger(ASTContext & Context,const EnumType * ET,QualType other,bool isBlockReturnType)7110  static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7111                                       QualType other, bool isBlockReturnType) {
7112    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7113    // a signed integer type, or an unsigned integer type.
7114    // Compatibility is based on the underlying type, not the promotion
7115    // type.
7116    QualType underlyingType = ET->getDecl()->getIntegerType();
7117    if (underlyingType.isNull()) return QualType();
7118    if (Context.hasSameType(underlyingType, other))
7119      return other;
7120  
7121    // In block return types, we're more permissive and accept any
7122    // integral type of the same size.
7123    if (isBlockReturnType && other->isIntegerType() &&
7124        Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7125      return other;
7126  
7127    return QualType();
7128  }
7129  
mergeTypes(QualType LHS,QualType RHS,bool OfBlockPointer,bool Unqualified,bool BlockReturnType)7130  QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7131                                  bool OfBlockPointer,
7132                                  bool Unqualified, bool BlockReturnType) {
7133    // C++ [expr]: If an expression initially has the type "reference to T", the
7134    // type is adjusted to "T" prior to any further analysis, the expression
7135    // designates the object or function denoted by the reference, and the
7136    // expression is an lvalue unless the reference is an rvalue reference and
7137    // the expression is a function call (possibly inside parentheses).
7138    assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7139    assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7140  
7141    if (Unqualified) {
7142      LHS = LHS.getUnqualifiedType();
7143      RHS = RHS.getUnqualifiedType();
7144    }
7145  
7146    QualType LHSCan = getCanonicalType(LHS),
7147             RHSCan = getCanonicalType(RHS);
7148  
7149    // If two types are identical, they are compatible.
7150    if (LHSCan == RHSCan)
7151      return LHS;
7152  
7153    // If the qualifiers are different, the types aren't compatible... mostly.
7154    Qualifiers LQuals = LHSCan.getLocalQualifiers();
7155    Qualifiers RQuals = RHSCan.getLocalQualifiers();
7156    if (LQuals != RQuals) {
7157      // If any of these qualifiers are different, we have a type
7158      // mismatch.
7159      if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7160          LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7161          LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7162        return QualType();
7163  
7164      // Exactly one GC qualifier difference is allowed: __strong is
7165      // okay if the other type has no GC qualifier but is an Objective
7166      // C object pointer (i.e. implicitly strong by default).  We fix
7167      // this by pretending that the unqualified type was actually
7168      // qualified __strong.
7169      Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7170      Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7171      assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7172  
7173      if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7174        return QualType();
7175  
7176      if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7177        return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7178      }
7179      if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7180        return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7181      }
7182      return QualType();
7183    }
7184  
7185    // Okay, qualifiers are equal.
7186  
7187    Type::TypeClass LHSClass = LHSCan->getTypeClass();
7188    Type::TypeClass RHSClass = RHSCan->getTypeClass();
7189  
7190    // We want to consider the two function types to be the same for these
7191    // comparisons, just force one to the other.
7192    if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7193    if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7194  
7195    // Same as above for arrays
7196    if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7197      LHSClass = Type::ConstantArray;
7198    if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7199      RHSClass = Type::ConstantArray;
7200  
7201    // ObjCInterfaces are just specialized ObjCObjects.
7202    if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7203    if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7204  
7205    // Canonicalize ExtVector -> Vector.
7206    if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7207    if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7208  
7209    // If the canonical type classes don't match.
7210    if (LHSClass != RHSClass) {
7211      // Note that we only have special rules for turning block enum
7212      // returns into block int returns, not vice-versa.
7213      if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7214        return mergeEnumWithInteger(*this, ETy, RHS, false);
7215      }
7216      if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7217        return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7218      }
7219      // allow block pointer type to match an 'id' type.
7220      if (OfBlockPointer && !BlockReturnType) {
7221         if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7222           return LHS;
7223        if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7224          return RHS;
7225      }
7226  
7227      return QualType();
7228    }
7229  
7230    // The canonical type classes match.
7231    switch (LHSClass) {
7232  #define TYPE(Class, Base)
7233  #define ABSTRACT_TYPE(Class, Base)
7234  #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7235  #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7236  #define DEPENDENT_TYPE(Class, Base) case Type::Class:
7237  #include "clang/AST/TypeNodes.def"
7238      llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7239  
7240    case Type::Auto:
7241    case Type::LValueReference:
7242    case Type::RValueReference:
7243    case Type::MemberPointer:
7244      llvm_unreachable("C++ should never be in mergeTypes");
7245  
7246    case Type::ObjCInterface:
7247    case Type::IncompleteArray:
7248    case Type::VariableArray:
7249    case Type::FunctionProto:
7250    case Type::ExtVector:
7251      llvm_unreachable("Types are eliminated above");
7252  
7253    case Type::Pointer:
7254    {
7255      // Merge two pointer types, while trying to preserve typedef info
7256      QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7257      QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7258      if (Unqualified) {
7259        LHSPointee = LHSPointee.getUnqualifiedType();
7260        RHSPointee = RHSPointee.getUnqualifiedType();
7261      }
7262      QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7263                                       Unqualified);
7264      if (ResultType.isNull()) return QualType();
7265      if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7266        return LHS;
7267      if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7268        return RHS;
7269      return getPointerType(ResultType);
7270    }
7271    case Type::BlockPointer:
7272    {
7273      // Merge two block pointer types, while trying to preserve typedef info
7274      QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7275      QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7276      if (Unqualified) {
7277        LHSPointee = LHSPointee.getUnqualifiedType();
7278        RHSPointee = RHSPointee.getUnqualifiedType();
7279      }
7280      QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7281                                       Unqualified);
7282      if (ResultType.isNull()) return QualType();
7283      if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7284        return LHS;
7285      if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7286        return RHS;
7287      return getBlockPointerType(ResultType);
7288    }
7289    case Type::Atomic:
7290    {
7291      // Merge two pointer types, while trying to preserve typedef info
7292      QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7293      QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7294      if (Unqualified) {
7295        LHSValue = LHSValue.getUnqualifiedType();
7296        RHSValue = RHSValue.getUnqualifiedType();
7297      }
7298      QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7299                                       Unqualified);
7300      if (ResultType.isNull()) return QualType();
7301      if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7302        return LHS;
7303      if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7304        return RHS;
7305      return getAtomicType(ResultType);
7306    }
7307    case Type::ConstantArray:
7308    {
7309      const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7310      const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7311      if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7312        return QualType();
7313  
7314      QualType LHSElem = getAsArrayType(LHS)->getElementType();
7315      QualType RHSElem = getAsArrayType(RHS)->getElementType();
7316      if (Unqualified) {
7317        LHSElem = LHSElem.getUnqualifiedType();
7318        RHSElem = RHSElem.getUnqualifiedType();
7319      }
7320  
7321      QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7322      if (ResultType.isNull()) return QualType();
7323      if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7324        return LHS;
7325      if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7326        return RHS;
7327      if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7328                                            ArrayType::ArraySizeModifier(), 0);
7329      if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7330                                            ArrayType::ArraySizeModifier(), 0);
7331      const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7332      const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7333      if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7334        return LHS;
7335      if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7336        return RHS;
7337      if (LVAT) {
7338        // FIXME: This isn't correct! But tricky to implement because
7339        // the array's size has to be the size of LHS, but the type
7340        // has to be different.
7341        return LHS;
7342      }
7343      if (RVAT) {
7344        // FIXME: This isn't correct! But tricky to implement because
7345        // the array's size has to be the size of RHS, but the type
7346        // has to be different.
7347        return RHS;
7348      }
7349      if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7350      if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7351      return getIncompleteArrayType(ResultType,
7352                                    ArrayType::ArraySizeModifier(), 0);
7353    }
7354    case Type::FunctionNoProto:
7355      return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7356    case Type::Record:
7357    case Type::Enum:
7358      return QualType();
7359    case Type::Builtin:
7360      // Only exactly equal builtin types are compatible, which is tested above.
7361      return QualType();
7362    case Type::Complex:
7363      // Distinct complex types are incompatible.
7364      return QualType();
7365    case Type::Vector:
7366      // FIXME: The merged type should be an ExtVector!
7367      if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7368                               RHSCan->getAs<VectorType>()))
7369        return LHS;
7370      return QualType();
7371    case Type::ObjCObject: {
7372      // Check if the types are assignment compatible.
7373      // FIXME: This should be type compatibility, e.g. whether
7374      // "LHS x; RHS x;" at global scope is legal.
7375      const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7376      const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7377      if (canAssignObjCInterfaces(LHSIface, RHSIface))
7378        return LHS;
7379  
7380      return QualType();
7381    }
7382    case Type::ObjCObjectPointer: {
7383      if (OfBlockPointer) {
7384        if (canAssignObjCInterfacesInBlockPointer(
7385                                            LHS->getAs<ObjCObjectPointerType>(),
7386                                            RHS->getAs<ObjCObjectPointerType>(),
7387                                            BlockReturnType))
7388          return LHS;
7389        return QualType();
7390      }
7391      if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7392                                  RHS->getAs<ObjCObjectPointerType>()))
7393        return LHS;
7394  
7395      return QualType();
7396    }
7397    }
7398  
7399    llvm_unreachable("Invalid Type::Class!");
7400  }
7401  
FunctionTypesMatchOnNSConsumedAttrs(const FunctionProtoType * FromFunctionType,const FunctionProtoType * ToFunctionType)7402  bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7403                     const FunctionProtoType *FromFunctionType,
7404                     const FunctionProtoType *ToFunctionType) {
7405    if (FromFunctionType->hasAnyConsumedParams() !=
7406        ToFunctionType->hasAnyConsumedParams())
7407      return false;
7408    FunctionProtoType::ExtProtoInfo FromEPI =
7409      FromFunctionType->getExtProtoInfo();
7410    FunctionProtoType::ExtProtoInfo ToEPI =
7411      ToFunctionType->getExtProtoInfo();
7412    if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters)
7413      for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) {
7414        if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i])
7415          return false;
7416      }
7417    return true;
7418  }
7419  
7420  /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7421  /// 'RHS' attributes and returns the merged version; including for function
7422  /// return types.
mergeObjCGCQualifiers(QualType LHS,QualType RHS)7423  QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7424    QualType LHSCan = getCanonicalType(LHS),
7425    RHSCan = getCanonicalType(RHS);
7426    // If two types are identical, they are compatible.
7427    if (LHSCan == RHSCan)
7428      return LHS;
7429    if (RHSCan->isFunctionType()) {
7430      if (!LHSCan->isFunctionType())
7431        return QualType();
7432      QualType OldReturnType =
7433          cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
7434      QualType NewReturnType =
7435          cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
7436      QualType ResReturnType =
7437        mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7438      if (ResReturnType.isNull())
7439        return QualType();
7440      if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7441        // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7442        // In either case, use OldReturnType to build the new function type.
7443        const FunctionType *F = LHS->getAs<FunctionType>();
7444        if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7445          FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7446          EPI.ExtInfo = getFunctionExtInfo(LHS);
7447          QualType ResultType =
7448              getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
7449          return ResultType;
7450        }
7451      }
7452      return QualType();
7453    }
7454  
7455    // If the qualifiers are different, the types can still be merged.
7456    Qualifiers LQuals = LHSCan.getLocalQualifiers();
7457    Qualifiers RQuals = RHSCan.getLocalQualifiers();
7458    if (LQuals != RQuals) {
7459      // If any of these qualifiers are different, we have a type mismatch.
7460      if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7461          LQuals.getAddressSpace() != RQuals.getAddressSpace())
7462        return QualType();
7463  
7464      // Exactly one GC qualifier difference is allowed: __strong is
7465      // okay if the other type has no GC qualifier but is an Objective
7466      // C object pointer (i.e. implicitly strong by default).  We fix
7467      // this by pretending that the unqualified type was actually
7468      // qualified __strong.
7469      Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7470      Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7471      assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7472  
7473      if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7474        return QualType();
7475  
7476      if (GC_L == Qualifiers::Strong)
7477        return LHS;
7478      if (GC_R == Qualifiers::Strong)
7479        return RHS;
7480      return QualType();
7481    }
7482  
7483    if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7484      QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7485      QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7486      QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7487      if (ResQT == LHSBaseQT)
7488        return LHS;
7489      if (ResQT == RHSBaseQT)
7490        return RHS;
7491    }
7492    return QualType();
7493  }
7494  
7495  //===----------------------------------------------------------------------===//
7496  //                         Integer Predicates
7497  //===----------------------------------------------------------------------===//
7498  
getIntWidth(QualType T) const7499  unsigned ASTContext::getIntWidth(QualType T) const {
7500    if (const EnumType *ET = T->getAs<EnumType>())
7501      T = ET->getDecl()->getIntegerType();
7502    if (T->isBooleanType())
7503      return 1;
7504    // For builtin types, just use the standard type sizing method
7505    return (unsigned)getTypeSize(T);
7506  }
7507  
getCorrespondingUnsignedType(QualType T) const7508  QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7509    assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7510  
7511    // Turn <4 x signed int> -> <4 x unsigned int>
7512    if (const VectorType *VTy = T->getAs<VectorType>())
7513      return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7514                           VTy->getNumElements(), VTy->getVectorKind());
7515  
7516    // For enums, we return the unsigned version of the base type.
7517    if (const EnumType *ETy = T->getAs<EnumType>())
7518      T = ETy->getDecl()->getIntegerType();
7519  
7520    const BuiltinType *BTy = T->getAs<BuiltinType>();
7521    assert(BTy && "Unexpected signed integer type");
7522    switch (BTy->getKind()) {
7523    case BuiltinType::Char_S:
7524    case BuiltinType::SChar:
7525      return UnsignedCharTy;
7526    case BuiltinType::Short:
7527      return UnsignedShortTy;
7528    case BuiltinType::Int:
7529      return UnsignedIntTy;
7530    case BuiltinType::Long:
7531      return UnsignedLongTy;
7532    case BuiltinType::LongLong:
7533      return UnsignedLongLongTy;
7534    case BuiltinType::Int128:
7535      return UnsignedInt128Ty;
7536    default:
7537      llvm_unreachable("Unexpected signed integer type");
7538    }
7539  }
7540  
~ASTMutationListener()7541  ASTMutationListener::~ASTMutationListener() { }
7542  
DeducedReturnType(const FunctionDecl * FD,QualType ReturnType)7543  void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7544                                              QualType ReturnType) {}
7545  
7546  //===----------------------------------------------------------------------===//
7547  //                          Builtin Type Computation
7548  //===----------------------------------------------------------------------===//
7549  
7550  /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7551  /// pointer over the consumed characters.  This returns the resultant type.  If
7552  /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7553  /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7554  /// a vector of "i*".
7555  ///
7556  /// RequiresICE is filled in on return to indicate whether the value is required
7557  /// to be an Integer Constant Expression.
DecodeTypeFromStr(const char * & Str,const ASTContext & Context,ASTContext::GetBuiltinTypeError & Error,bool & RequiresICE,bool AllowTypeModifiers)7558  static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7559                                    ASTContext::GetBuiltinTypeError &Error,
7560                                    bool &RequiresICE,
7561                                    bool AllowTypeModifiers) {
7562    // Modifiers.
7563    int HowLong = 0;
7564    bool Signed = false, Unsigned = false;
7565    RequiresICE = false;
7566  
7567    // Read the prefixed modifiers first.
7568    bool Done = false;
7569    while (!Done) {
7570      switch (*Str++) {
7571      default: Done = true; --Str; break;
7572      case 'I':
7573        RequiresICE = true;
7574        break;
7575      case 'S':
7576        assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7577        assert(!Signed && "Can't use 'S' modifier multiple times!");
7578        Signed = true;
7579        break;
7580      case 'U':
7581        assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7582        assert(!Unsigned && "Can't use 'U' modifier multiple times!");
7583        Unsigned = true;
7584        break;
7585      case 'L':
7586        assert(HowLong <= 2 && "Can't have LLLL modifier");
7587        ++HowLong;
7588        break;
7589      case 'W':
7590        // This modifier represents int64 type.
7591        assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
7592        switch (Context.getTargetInfo().getInt64Type()) {
7593        default:
7594          llvm_unreachable("Unexpected integer type");
7595        case TargetInfo::SignedLong:
7596          HowLong = 1;
7597          break;
7598        case TargetInfo::SignedLongLong:
7599          HowLong = 2;
7600          break;
7601        }
7602      }
7603    }
7604  
7605    QualType Type;
7606  
7607    // Read the base type.
7608    switch (*Str++) {
7609    default: llvm_unreachable("Unknown builtin type letter!");
7610    case 'v':
7611      assert(HowLong == 0 && !Signed && !Unsigned &&
7612             "Bad modifiers used with 'v'!");
7613      Type = Context.VoidTy;
7614      break;
7615    case 'h':
7616      assert(HowLong == 0 && !Signed && !Unsigned &&
7617             "Bad modifiers used with 'h'!");
7618      Type = Context.HalfTy;
7619      break;
7620    case 'f':
7621      assert(HowLong == 0 && !Signed && !Unsigned &&
7622             "Bad modifiers used with 'f'!");
7623      Type = Context.FloatTy;
7624      break;
7625    case 'd':
7626      assert(HowLong < 2 && !Signed && !Unsigned &&
7627             "Bad modifiers used with 'd'!");
7628      if (HowLong)
7629        Type = Context.LongDoubleTy;
7630      else
7631        Type = Context.DoubleTy;
7632      break;
7633    case 's':
7634      assert(HowLong == 0 && "Bad modifiers used with 's'!");
7635      if (Unsigned)
7636        Type = Context.UnsignedShortTy;
7637      else
7638        Type = Context.ShortTy;
7639      break;
7640    case 'i':
7641      if (HowLong == 3)
7642        Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7643      else if (HowLong == 2)
7644        Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7645      else if (HowLong == 1)
7646        Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7647      else
7648        Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7649      break;
7650    case 'c':
7651      assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7652      if (Signed)
7653        Type = Context.SignedCharTy;
7654      else if (Unsigned)
7655        Type = Context.UnsignedCharTy;
7656      else
7657        Type = Context.CharTy;
7658      break;
7659    case 'b': // boolean
7660      assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7661      Type = Context.BoolTy;
7662      break;
7663    case 'z':  // size_t.
7664      assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7665      Type = Context.getSizeType();
7666      break;
7667    case 'F':
7668      Type = Context.getCFConstantStringType();
7669      break;
7670    case 'G':
7671      Type = Context.getObjCIdType();
7672      break;
7673    case 'H':
7674      Type = Context.getObjCSelType();
7675      break;
7676    case 'M':
7677      Type = Context.getObjCSuperType();
7678      break;
7679    case 'a':
7680      Type = Context.getBuiltinVaListType();
7681      assert(!Type.isNull() && "builtin va list type not initialized!");
7682      break;
7683    case 'A':
7684      // This is a "reference" to a va_list; however, what exactly
7685      // this means depends on how va_list is defined. There are two
7686      // different kinds of va_list: ones passed by value, and ones
7687      // passed by reference.  An example of a by-value va_list is
7688      // x86, where va_list is a char*. An example of by-ref va_list
7689      // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7690      // we want this argument to be a char*&; for x86-64, we want
7691      // it to be a __va_list_tag*.
7692      Type = Context.getBuiltinVaListType();
7693      assert(!Type.isNull() && "builtin va list type not initialized!");
7694      if (Type->isArrayType())
7695        Type = Context.getArrayDecayedType(Type);
7696      else
7697        Type = Context.getLValueReferenceType(Type);
7698      break;
7699    case 'V': {
7700      char *End;
7701      unsigned NumElements = strtoul(Str, &End, 10);
7702      assert(End != Str && "Missing vector size");
7703      Str = End;
7704  
7705      QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7706                                               RequiresICE, false);
7707      assert(!RequiresICE && "Can't require vector ICE");
7708  
7709      // TODO: No way to make AltiVec vectors in builtins yet.
7710      Type = Context.getVectorType(ElementType, NumElements,
7711                                   VectorType::GenericVector);
7712      break;
7713    }
7714    case 'E': {
7715      char *End;
7716  
7717      unsigned NumElements = strtoul(Str, &End, 10);
7718      assert(End != Str && "Missing vector size");
7719  
7720      Str = End;
7721  
7722      QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7723                                               false);
7724      Type = Context.getExtVectorType(ElementType, NumElements);
7725      break;
7726    }
7727    case 'X': {
7728      QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7729                                               false);
7730      assert(!RequiresICE && "Can't require complex ICE");
7731      Type = Context.getComplexType(ElementType);
7732      break;
7733    }
7734    case 'Y' : {
7735      Type = Context.getPointerDiffType();
7736      break;
7737    }
7738    case 'P':
7739      Type = Context.getFILEType();
7740      if (Type.isNull()) {
7741        Error = ASTContext::GE_Missing_stdio;
7742        return QualType();
7743      }
7744      break;
7745    case 'J':
7746      if (Signed)
7747        Type = Context.getsigjmp_bufType();
7748      else
7749        Type = Context.getjmp_bufType();
7750  
7751      if (Type.isNull()) {
7752        Error = ASTContext::GE_Missing_setjmp;
7753        return QualType();
7754      }
7755      break;
7756    case 'K':
7757      assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7758      Type = Context.getucontext_tType();
7759  
7760      if (Type.isNull()) {
7761        Error = ASTContext::GE_Missing_ucontext;
7762        return QualType();
7763      }
7764      break;
7765    case 'p':
7766      Type = Context.getProcessIDType();
7767      break;
7768    }
7769  
7770    // If there are modifiers and if we're allowed to parse them, go for it.
7771    Done = !AllowTypeModifiers;
7772    while (!Done) {
7773      switch (char c = *Str++) {
7774      default: Done = true; --Str; break;
7775      case '*':
7776      case '&': {
7777        // Both pointers and references can have their pointee types
7778        // qualified with an address space.
7779        char *End;
7780        unsigned AddrSpace = strtoul(Str, &End, 10);
7781        if (End != Str && AddrSpace != 0) {
7782          Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7783          Str = End;
7784        }
7785        if (c == '*')
7786          Type = Context.getPointerType(Type);
7787        else
7788          Type = Context.getLValueReferenceType(Type);
7789        break;
7790      }
7791      // FIXME: There's no way to have a built-in with an rvalue ref arg.
7792      case 'C':
7793        Type = Type.withConst();
7794        break;
7795      case 'D':
7796        Type = Context.getVolatileType(Type);
7797        break;
7798      case 'R':
7799        Type = Type.withRestrict();
7800        break;
7801      }
7802    }
7803  
7804    assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7805           "Integer constant 'I' type must be an integer");
7806  
7807    return Type;
7808  }
7809  
7810  /// GetBuiltinType - Return the type for the specified builtin.
GetBuiltinType(unsigned Id,GetBuiltinTypeError & Error,unsigned * IntegerConstantArgs) const7811  QualType ASTContext::GetBuiltinType(unsigned Id,
7812                                      GetBuiltinTypeError &Error,
7813                                      unsigned *IntegerConstantArgs) const {
7814    const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7815  
7816    SmallVector<QualType, 8> ArgTypes;
7817  
7818    bool RequiresICE = false;
7819    Error = GE_None;
7820    QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7821                                         RequiresICE, true);
7822    if (Error != GE_None)
7823      return QualType();
7824  
7825    assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7826  
7827    while (TypeStr[0] && TypeStr[0] != '.') {
7828      QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7829      if (Error != GE_None)
7830        return QualType();
7831  
7832      // If this argument is required to be an IntegerConstantExpression and the
7833      // caller cares, fill in the bitmask we return.
7834      if (RequiresICE && IntegerConstantArgs)
7835        *IntegerConstantArgs |= 1 << ArgTypes.size();
7836  
7837      // Do array -> pointer decay.  The builtin should use the decayed type.
7838      if (Ty->isArrayType())
7839        Ty = getArrayDecayedType(Ty);
7840  
7841      ArgTypes.push_back(Ty);
7842    }
7843  
7844    if (Id == Builtin::BI__GetExceptionInfo)
7845      return QualType();
7846  
7847    assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7848           "'.' should only occur at end of builtin type list!");
7849  
7850    FunctionType::ExtInfo EI(CC_C);
7851    if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7852  
7853    bool Variadic = (TypeStr[0] == '.');
7854  
7855    // We really shouldn't be making a no-proto type here, especially in C++.
7856    if (ArgTypes.empty() && Variadic)
7857      return getFunctionNoProtoType(ResType, EI);
7858  
7859    FunctionProtoType::ExtProtoInfo EPI;
7860    EPI.ExtInfo = EI;
7861    EPI.Variadic = Variadic;
7862  
7863    return getFunctionType(ResType, ArgTypes, EPI);
7864  }
7865  
basicGVALinkageForFunction(const ASTContext & Context,const FunctionDecl * FD)7866  static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
7867                                               const FunctionDecl *FD) {
7868    if (!FD->isExternallyVisible())
7869      return GVA_Internal;
7870  
7871    GVALinkage External = GVA_StrongExternal;
7872    switch (FD->getTemplateSpecializationKind()) {
7873    case TSK_Undeclared:
7874    case TSK_ExplicitSpecialization:
7875      External = GVA_StrongExternal;
7876      break;
7877  
7878    case TSK_ExplicitInstantiationDefinition:
7879      return GVA_StrongODR;
7880  
7881    // C++11 [temp.explicit]p10:
7882    //   [ Note: The intent is that an inline function that is the subject of
7883    //   an explicit instantiation declaration will still be implicitly
7884    //   instantiated when used so that the body can be considered for
7885    //   inlining, but that no out-of-line copy of the inline function would be
7886    //   generated in the translation unit. -- end note ]
7887    case TSK_ExplicitInstantiationDeclaration:
7888      return GVA_AvailableExternally;
7889  
7890    case TSK_ImplicitInstantiation:
7891      External = GVA_DiscardableODR;
7892      break;
7893    }
7894  
7895    if (!FD->isInlined())
7896      return External;
7897  
7898    if ((!Context.getLangOpts().CPlusPlus && !Context.getLangOpts().MSVCCompat &&
7899         !FD->hasAttr<DLLExportAttr>()) ||
7900        FD->hasAttr<GNUInlineAttr>()) {
7901      // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
7902  
7903      // GNU or C99 inline semantics. Determine whether this symbol should be
7904      // externally visible.
7905      if (FD->isInlineDefinitionExternallyVisible())
7906        return External;
7907  
7908      // C99 inline semantics, where the symbol is not externally visible.
7909      return GVA_AvailableExternally;
7910    }
7911  
7912    // Functions specified with extern and inline in -fms-compatibility mode
7913    // forcibly get emitted.  While the body of the function cannot be later
7914    // replaced, the function definition cannot be discarded.
7915    if (FD->isMSExternInline())
7916      return GVA_StrongODR;
7917  
7918    return GVA_DiscardableODR;
7919  }
7920  
adjustGVALinkageForDLLAttribute(GVALinkage L,const Decl * D)7921  static GVALinkage adjustGVALinkageForDLLAttribute(GVALinkage L, const Decl *D) {
7922    // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
7923    // dllexport/dllimport on inline functions.
7924    if (D->hasAttr<DLLImportAttr>()) {
7925      if (L == GVA_DiscardableODR || L == GVA_StrongODR)
7926        return GVA_AvailableExternally;
7927    } else if (D->hasAttr<DLLExportAttr>()) {
7928      if (L == GVA_DiscardableODR)
7929        return GVA_StrongODR;
7930    }
7931    return L;
7932  }
7933  
GetGVALinkageForFunction(const FunctionDecl * FD) const7934  GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
7935    return adjustGVALinkageForDLLAttribute(basicGVALinkageForFunction(*this, FD),
7936                                           FD);
7937  }
7938  
basicGVALinkageForVariable(const ASTContext & Context,const VarDecl * VD)7939  static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
7940                                               const VarDecl *VD) {
7941    if (!VD->isExternallyVisible())
7942      return GVA_Internal;
7943  
7944    if (VD->isStaticLocal()) {
7945      GVALinkage StaticLocalLinkage = GVA_DiscardableODR;
7946      const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
7947      while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
7948        LexicalContext = LexicalContext->getLexicalParent();
7949  
7950      // Let the static local variable inherit its linkage from the nearest
7951      // enclosing function.
7952      if (LexicalContext)
7953        StaticLocalLinkage =
7954            Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
7955  
7956      // GVA_StrongODR function linkage is stronger than what we need,
7957      // downgrade to GVA_DiscardableODR.
7958      // This allows us to discard the variable if we never end up needing it.
7959      return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR
7960                                                 : StaticLocalLinkage;
7961    }
7962  
7963    // MSVC treats in-class initialized static data members as definitions.
7964    // By giving them non-strong linkage, out-of-line definitions won't
7965    // cause link errors.
7966    if (Context.isMSStaticDataMemberInlineDefinition(VD))
7967      return GVA_DiscardableODR;
7968  
7969    switch (VD->getTemplateSpecializationKind()) {
7970    case TSK_Undeclared:
7971    case TSK_ExplicitSpecialization:
7972      return GVA_StrongExternal;
7973  
7974    case TSK_ExplicitInstantiationDefinition:
7975      return GVA_StrongODR;
7976  
7977    case TSK_ExplicitInstantiationDeclaration:
7978      return GVA_AvailableExternally;
7979  
7980    case TSK_ImplicitInstantiation:
7981      return GVA_DiscardableODR;
7982    }
7983  
7984    llvm_unreachable("Invalid Linkage!");
7985  }
7986  
GetGVALinkageForVariable(const VarDecl * VD)7987  GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7988    return adjustGVALinkageForDLLAttribute(basicGVALinkageForVariable(*this, VD),
7989                                           VD);
7990  }
7991  
DeclMustBeEmitted(const Decl * D)7992  bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7993    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7994      if (!VD->isFileVarDecl())
7995        return false;
7996      // Global named register variables (GNU extension) are never emitted.
7997      if (VD->getStorageClass() == SC_Register)
7998        return false;
7999    } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8000      // We never need to emit an uninstantiated function template.
8001      if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
8002        return false;
8003    } else if (isa<OMPThreadPrivateDecl>(D))
8004      return true;
8005    else
8006      return false;
8007  
8008    // If this is a member of a class template, we do not need to emit it.
8009    if (D->getDeclContext()->isDependentContext())
8010      return false;
8011  
8012    // Weak references don't produce any output by themselves.
8013    if (D->hasAttr<WeakRefAttr>())
8014      return false;
8015  
8016    // Aliases and used decls are required.
8017    if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
8018      return true;
8019  
8020    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8021      // Forward declarations aren't required.
8022      if (!FD->doesThisDeclarationHaveABody())
8023        return FD->doesDeclarationForceExternallyVisibleDefinition();
8024  
8025      // Constructors and destructors are required.
8026      if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
8027        return true;
8028  
8029      // The key function for a class is required.  This rule only comes
8030      // into play when inline functions can be key functions, though.
8031      if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
8032        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
8033          const CXXRecordDecl *RD = MD->getParent();
8034          if (MD->isOutOfLine() && RD->isDynamicClass()) {
8035            const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
8036            if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
8037              return true;
8038          }
8039        }
8040      }
8041  
8042      GVALinkage Linkage = GetGVALinkageForFunction(FD);
8043  
8044      // static, static inline, always_inline, and extern inline functions can
8045      // always be deferred.  Normal inline functions can be deferred in C99/C++.
8046      // Implicit template instantiations can also be deferred in C++.
8047      if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally ||
8048          Linkage == GVA_DiscardableODR)
8049        return false;
8050      return true;
8051    }
8052  
8053    const VarDecl *VD = cast<VarDecl>(D);
8054    assert(VD->isFileVarDecl() && "Expected file scoped var");
8055  
8056    if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
8057        !isMSStaticDataMemberInlineDefinition(VD))
8058      return false;
8059  
8060    // Variables that can be needed in other TUs are required.
8061    GVALinkage L = GetGVALinkageForVariable(VD);
8062    if (L != GVA_Internal && L != GVA_AvailableExternally &&
8063        L != GVA_DiscardableODR)
8064      return true;
8065  
8066    // Variables that have destruction with side-effects are required.
8067    if (VD->getType().isDestructedType())
8068      return true;
8069  
8070    // Variables that have initialization with side-effects are required.
8071    if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
8072      return true;
8073  
8074    return false;
8075  }
8076  
getDefaultCallingConvention(bool IsVariadic,bool IsCXXMethod) const8077  CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
8078                                                      bool IsCXXMethod) const {
8079    // Pass through to the C++ ABI object
8080    if (IsCXXMethod)
8081      return ABI->getDefaultMethodCallConv(IsVariadic);
8082  
8083    if (LangOpts.MRTD && !IsVariadic) return CC_X86StdCall;
8084  
8085    return Target->getDefaultCallingConv(TargetInfo::CCMT_Unknown);
8086  }
8087  
isNearlyEmpty(const CXXRecordDecl * RD) const8088  bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
8089    // Pass through to the C++ ABI object
8090    return ABI->isNearlyEmpty(RD);
8091  }
8092  
getVTableContext()8093  VTableContextBase *ASTContext::getVTableContext() {
8094    if (!VTContext.get()) {
8095      if (Target->getCXXABI().isMicrosoft())
8096        VTContext.reset(new MicrosoftVTableContext(*this));
8097      else
8098        VTContext.reset(new ItaniumVTableContext(*this));
8099    }
8100    return VTContext.get();
8101  }
8102  
createMangleContext()8103  MangleContext *ASTContext::createMangleContext() {
8104    switch (Target->getCXXABI().getKind()) {
8105    case TargetCXXABI::GenericAArch64:
8106    case TargetCXXABI::GenericItanium:
8107    case TargetCXXABI::GenericARM:
8108    case TargetCXXABI::GenericMIPS:
8109    case TargetCXXABI::iOS:
8110    case TargetCXXABI::iOS64:
8111      return ItaniumMangleContext::create(*this, getDiagnostics());
8112    case TargetCXXABI::Microsoft:
8113      return MicrosoftMangleContext::create(*this, getDiagnostics());
8114    }
8115    llvm_unreachable("Unsupported ABI");
8116  }
8117  
~CXXABI()8118  CXXABI::~CXXABI() {}
8119  
getSideTableAllocatedMemory() const8120  size_t ASTContext::getSideTableAllocatedMemory() const {
8121    return ASTRecordLayouts.getMemorySize() +
8122           llvm::capacity_in_bytes(ObjCLayouts) +
8123           llvm::capacity_in_bytes(KeyFunctions) +
8124           llvm::capacity_in_bytes(ObjCImpls) +
8125           llvm::capacity_in_bytes(BlockVarCopyInits) +
8126           llvm::capacity_in_bytes(DeclAttrs) +
8127           llvm::capacity_in_bytes(TemplateOrInstantiation) +
8128           llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
8129           llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
8130           llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
8131           llvm::capacity_in_bytes(OverriddenMethods) +
8132           llvm::capacity_in_bytes(Types) +
8133           llvm::capacity_in_bytes(VariableArrayTypes) +
8134           llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
8135  }
8136  
8137  /// getIntTypeForBitwidth -
8138  /// sets integer QualTy according to specified details:
8139  /// bitwidth, signed/unsigned.
8140  /// Returns empty type if there is no appropriate target types.
getIntTypeForBitwidth(unsigned DestWidth,unsigned Signed) const8141  QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
8142                                             unsigned Signed) const {
8143    TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
8144    CanQualType QualTy = getFromTargetType(Ty);
8145    if (!QualTy && DestWidth == 128)
8146      return Signed ? Int128Ty : UnsignedInt128Ty;
8147    return QualTy;
8148  }
8149  
8150  /// getRealTypeForBitwidth -
8151  /// sets floating point QualTy according to specified bitwidth.
8152  /// Returns empty type if there is no appropriate target types.
getRealTypeForBitwidth(unsigned DestWidth) const8153  QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
8154    TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
8155    switch (Ty) {
8156    case TargetInfo::Float:
8157      return FloatTy;
8158    case TargetInfo::Double:
8159      return DoubleTy;
8160    case TargetInfo::LongDouble:
8161      return LongDoubleTy;
8162    case TargetInfo::NoFloat:
8163      return QualType();
8164    }
8165  
8166    llvm_unreachable("Unhandled TargetInfo::RealType value");
8167  }
8168  
setManglingNumber(const NamedDecl * ND,unsigned Number)8169  void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
8170    if (Number > 1)
8171      MangleNumbers[ND] = Number;
8172  }
8173  
getManglingNumber(const NamedDecl * ND) const8174  unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
8175    llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I =
8176      MangleNumbers.find(ND);
8177    return I != MangleNumbers.end() ? I->second : 1;
8178  }
8179  
setStaticLocalNumber(const VarDecl * VD,unsigned Number)8180  void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
8181    if (Number > 1)
8182      StaticLocalNumbers[VD] = Number;
8183  }
8184  
getStaticLocalNumber(const VarDecl * VD) const8185  unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
8186    llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I =
8187        StaticLocalNumbers.find(VD);
8188    return I != StaticLocalNumbers.end() ? I->second : 1;
8189  }
8190  
8191  MangleNumberingContext &
getManglingNumberContext(const DeclContext * DC)8192  ASTContext::getManglingNumberContext(const DeclContext *DC) {
8193    assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
8194    MangleNumberingContext *&MCtx = MangleNumberingContexts[DC];
8195    if (!MCtx)
8196      MCtx = createMangleNumberingContext();
8197    return *MCtx;
8198  }
8199  
createMangleNumberingContext() const8200  MangleNumberingContext *ASTContext::createMangleNumberingContext() const {
8201    return ABI->createMangleNumberingContext();
8202  }
8203  
8204  const CXXConstructorDecl *
getCopyConstructorForExceptionObject(CXXRecordDecl * RD)8205  ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
8206    return ABI->getCopyConstructorForExceptionObject(
8207        cast<CXXRecordDecl>(RD->getFirstDecl()));
8208  }
8209  
addCopyConstructorForExceptionObject(CXXRecordDecl * RD,CXXConstructorDecl * CD)8210  void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
8211                                                        CXXConstructorDecl *CD) {
8212    return ABI->addCopyConstructorForExceptionObject(
8213        cast<CXXRecordDecl>(RD->getFirstDecl()),
8214        cast<CXXConstructorDecl>(CD->getFirstDecl()));
8215  }
8216  
addDefaultArgExprForConstructor(const CXXConstructorDecl * CD,unsigned ParmIdx,Expr * DAE)8217  void ASTContext::addDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
8218                                                   unsigned ParmIdx, Expr *DAE) {
8219    ABI->addDefaultArgExprForConstructor(
8220        cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx, DAE);
8221  }
8222  
getDefaultArgExprForConstructor(const CXXConstructorDecl * CD,unsigned ParmIdx)8223  Expr *ASTContext::getDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
8224                                                    unsigned ParmIdx) {
8225    return ABI->getDefaultArgExprForConstructor(
8226        cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx);
8227  }
8228  
setParameterIndex(const ParmVarDecl * D,unsigned int index)8229  void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8230    ParamIndices[D] = index;
8231  }
8232  
getParameterIndex(const ParmVarDecl * D) const8233  unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8234    ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8235    assert(I != ParamIndices.end() &&
8236           "ParmIndices lacks entry set by ParmVarDecl");
8237    return I->second;
8238  }
8239  
8240  APValue *
getMaterializedTemporaryValue(const MaterializeTemporaryExpr * E,bool MayCreate)8241  ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
8242                                            bool MayCreate) {
8243    assert(E && E->getStorageDuration() == SD_Static &&
8244           "don't need to cache the computed value for this temporary");
8245    if (MayCreate)
8246      return &MaterializedTemporaryValues[E];
8247  
8248    llvm::DenseMap<const MaterializeTemporaryExpr *, APValue>::iterator I =
8249        MaterializedTemporaryValues.find(E);
8250    return I == MaterializedTemporaryValues.end() ? nullptr : &I->second;
8251  }
8252  
AtomicUsesUnsupportedLibcall(const AtomicExpr * E) const8253  bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
8254    const llvm::Triple &T = getTargetInfo().getTriple();
8255    if (!T.isOSDarwin())
8256      return false;
8257  
8258    if (!(T.isiOS() && T.isOSVersionLT(7)) &&
8259        !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
8260      return false;
8261  
8262    QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
8263    CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
8264    uint64_t Size = sizeChars.getQuantity();
8265    CharUnits alignChars = getTypeAlignInChars(AtomicTy);
8266    unsigned Align = alignChars.getQuantity();
8267    unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
8268    return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
8269  }
8270  
8271  namespace {
8272  
8273    /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
8274    /// parents as defined by the \c RecursiveASTVisitor.
8275    ///
8276    /// Note that the relationship described here is purely in terms of AST
8277    /// traversal - there are other relationships (for example declaration context)
8278    /// in the AST that are better modeled by special matchers.
8279    ///
8280    /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
8281    class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
8282  
8283    public:
8284      /// \brief Builds and returns the translation unit's parent map.
8285      ///
8286      ///  The caller takes ownership of the returned \c ParentMap.
buildMap(TranslationUnitDecl & TU)8287      static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) {
8288        ParentMapASTVisitor Visitor(new ASTContext::ParentMap);
8289        Visitor.TraverseDecl(&TU);
8290        return Visitor.Parents;
8291      }
8292  
8293    private:
8294      typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
8295  
ParentMapASTVisitor(ASTContext::ParentMap * Parents)8296      ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) {
8297      }
8298  
shouldVisitTemplateInstantiations() const8299      bool shouldVisitTemplateInstantiations() const {
8300        return true;
8301      }
shouldVisitImplicitCode() const8302      bool shouldVisitImplicitCode() const {
8303        return true;
8304      }
8305      // Disables data recursion. We intercept Traverse* methods in the RAV, which
8306      // are not triggered during data recursion.
shouldUseDataRecursionFor(clang::Stmt * S) const8307      bool shouldUseDataRecursionFor(clang::Stmt *S) const {
8308        return false;
8309      }
8310  
8311      template <typename T>
TraverseNode(T * Node,bool (VisitorBase::* traverse)(T *))8312      bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
8313        if (!Node)
8314          return true;
8315        if (ParentStack.size() > 0) {
8316          // FIXME: Currently we add the same parent multiple times, but only
8317          // when no memoization data is available for the type.
8318          // For example when we visit all subexpressions of template
8319          // instantiations; this is suboptimal, but benign: the only way to
8320          // visit those is with hasAncestor / hasParent, and those do not create
8321          // new matches.
8322          // The plan is to enable DynTypedNode to be storable in a map or hash
8323          // map. The main problem there is to implement hash functions /
8324          // comparison operators for all types that DynTypedNode supports that
8325          // do not have pointer identity.
8326          auto &NodeOrVector = (*Parents)[Node];
8327          if (NodeOrVector.isNull()) {
8328            NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back());
8329          } else {
8330            if (NodeOrVector.template is<ast_type_traits::DynTypedNode *>()) {
8331              auto *Node =
8332                  NodeOrVector.template get<ast_type_traits::DynTypedNode *>();
8333              auto *Vector = new ASTContext::ParentVector(1, *Node);
8334              NodeOrVector = Vector;
8335              delete Node;
8336            }
8337            assert(NodeOrVector.template is<ASTContext::ParentVector *>());
8338  
8339            auto *Vector =
8340                NodeOrVector.template get<ASTContext::ParentVector *>();
8341            // Skip duplicates for types that have memoization data.
8342            // We must check that the type has memoization data before calling
8343            // std::find() because DynTypedNode::operator== can't compare all
8344            // types.
8345            bool Found = ParentStack.back().getMemoizationData() &&
8346                         std::find(Vector->begin(), Vector->end(),
8347                                   ParentStack.back()) != Vector->end();
8348            if (!Found)
8349              Vector->push_back(ParentStack.back());
8350          }
8351        }
8352        ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
8353        bool Result = (this ->* traverse) (Node);
8354        ParentStack.pop_back();
8355        return Result;
8356      }
8357  
TraverseDecl(Decl * DeclNode)8358      bool TraverseDecl(Decl *DeclNode) {
8359        return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
8360      }
8361  
TraverseStmt(Stmt * StmtNode)8362      bool TraverseStmt(Stmt *StmtNode) {
8363        return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
8364      }
8365  
8366      ASTContext::ParentMap *Parents;
8367      llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
8368  
8369      friend class RecursiveASTVisitor<ParentMapASTVisitor>;
8370    };
8371  
8372  } // end namespace
8373  
8374  ArrayRef<ast_type_traits::DynTypedNode>
getParents(const ast_type_traits::DynTypedNode & Node)8375  ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
8376    assert(Node.getMemoizationData() &&
8377           "Invariant broken: only nodes that support memoization may be "
8378           "used in the parent map.");
8379    if (!AllParents) {
8380      // We always need to run over the whole translation unit, as
8381      // hasAncestor can escape any subtree.
8382      AllParents.reset(
8383          ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
8384    }
8385    ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
8386    if (I == AllParents->end()) {
8387      return None;
8388    }
8389    if (auto *N = I->second.dyn_cast<ast_type_traits::DynTypedNode *>()) {
8390      return llvm::makeArrayRef(N, 1);
8391    }
8392    return *I->second.get<ParentVector *>();
8393  }
8394  
8395  bool
ObjCMethodsAreEqual(const ObjCMethodDecl * MethodDecl,const ObjCMethodDecl * MethodImpl)8396  ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
8397                                  const ObjCMethodDecl *MethodImpl) {
8398    // No point trying to match an unavailable/deprecated mothod.
8399    if (MethodDecl->hasAttr<UnavailableAttr>()
8400        || MethodDecl->hasAttr<DeprecatedAttr>())
8401      return false;
8402    if (MethodDecl->getObjCDeclQualifier() !=
8403        MethodImpl->getObjCDeclQualifier())
8404      return false;
8405    if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
8406      return false;
8407  
8408    if (MethodDecl->param_size() != MethodImpl->param_size())
8409      return false;
8410  
8411    for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
8412         IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
8413         EF = MethodDecl->param_end();
8414         IM != EM && IF != EF; ++IM, ++IF) {
8415      const ParmVarDecl *DeclVar = (*IF);
8416      const ParmVarDecl *ImplVar = (*IM);
8417      if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
8418        return false;
8419      if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
8420        return false;
8421    }
8422    return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
8423  
8424  }
8425  
8426  // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
8427  // doesn't include ASTContext.h
8428  template
8429  clang::LazyGenerationalUpdatePtr<
8430      const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
8431  clang::LazyGenerationalUpdatePtr<
8432      const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
8433          const clang::ASTContext &Ctx, Decl *Value);
8434