• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 The Guava Authors
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package com.google.common.collect;
18 
19 import static com.google.common.base.Preconditions.checkNotNull;
20 import static com.google.common.collect.CollectPreconditions.checkNonnegative;
21 
22 import com.google.common.annotations.GwtCompatible;
23 import com.google.common.annotations.VisibleForTesting;
24 import com.google.common.base.Function;
25 
26 import java.util.ArrayList;
27 import java.util.Arrays;
28 import java.util.Collection;
29 import java.util.Collections;
30 import java.util.Comparator;
31 import java.util.HashSet;
32 import java.util.Iterator;
33 import java.util.List;
34 import java.util.Map;
35 import java.util.NoSuchElementException;
36 import java.util.SortedMap;
37 import java.util.SortedSet;
38 import java.util.TreeSet;
39 import java.util.concurrent.atomic.AtomicInteger;
40 
41 import javax.annotation.Nullable;
42 
43 /**
44  * A comparator, with additional methods to support common operations. This is
45  * an "enriched" version of {@code Comparator}, in the same sense that {@link
46  * FluentIterable} is an enriched {@link Iterable}.
47  *
48  * <p>The common ways to get an instance of {@code Ordering} are:
49  *
50  * <ul>
51  * <li>Subclass it and implement {@link #compare} instead of implementing
52  *     {@link Comparator} directly
53  * <li>Pass a <i>pre-existing</i> {@link Comparator} instance to {@link
54  *     #from(Comparator)}
55  * <li>Use the natural ordering, {@link Ordering#natural}
56  * </ul>
57  *
58  * <p>Then you can use the <i>chaining</i> methods to get an altered version of
59  * that {@code Ordering}, including:
60  *
61  * <ul>
62  * <li>{@link #reverse}
63  * <li>{@link #compound(Comparator)}
64  * <li>{@link #onResultOf(Function)}
65  * <li>{@link #nullsFirst} / {@link #nullsLast}
66  * </ul>
67  *
68  * <p>Finally, use the resulting {@code Ordering} anywhere a {@link Comparator}
69  * is required, or use any of its special operations, such as:</p>
70  *
71  * <ul>
72  * <li>{@link #immutableSortedCopy}
73  * <li>{@link #isOrdered} / {@link #isStrictlyOrdered}
74  * <li>{@link #min} / {@link #max}
75  * </ul>
76  *
77  * <p>Except as noted, the orderings returned by the factory methods of this
78  * class are serializable if and only if the provided instances that back them
79  * are. For example, if {@code ordering} and {@code function} can themselves be
80  * serialized, then {@code ordering.onResultOf(function)} can as well.
81  *
82  * <p>See the Guava User Guide article on <a href=
83  * "http://code.google.com/p/guava-libraries/wiki/OrderingExplained">
84  * {@code Ordering}</a>.
85  *
86  * @author Jesse Wilson
87  * @author Kevin Bourrillion
88  * @since 2.0 (imported from Google Collections Library)
89  */
90 @GwtCompatible
91 public abstract class Ordering<T> implements Comparator<T> {
92   // Natural order
93 
94   /**
95    * Returns a serializable ordering that uses the natural order of the values.
96    * The ordering throws a {@link NullPointerException} when passed a null
97    * parameter.
98    *
99    * <p>The type specification is {@code <C extends Comparable>}, instead of
100    * the technically correct {@code <C extends Comparable<? super C>>}, to
101    * support legacy types from before Java 5.
102    */
103   @GwtCompatible(serializable = true)
104   @SuppressWarnings("unchecked") // TODO(kevinb): right way to explain this??
natural()105   public static <C extends Comparable> Ordering<C> natural() {
106     return (Ordering<C>) NaturalOrdering.INSTANCE;
107   }
108 
109   // Static factories
110 
111   /**
112    * Returns an ordering based on an <i>existing</i> comparator instance. Note
113    * that it is unnecessary to create a <i>new</i> anonymous inner class
114    * implementing {@code Comparator} just to pass it in here. Instead, simply
115    * subclass {@code Ordering} and implement its {@code compare} method
116    * directly.
117    *
118    * @param comparator the comparator that defines the order
119    * @return comparator itself if it is already an {@code Ordering}; otherwise
120    *     an ordering that wraps that comparator
121    */
122   @GwtCompatible(serializable = true)
from(Comparator<T> comparator)123   public static <T> Ordering<T> from(Comparator<T> comparator) {
124     return (comparator instanceof Ordering)
125         ? (Ordering<T>) comparator
126         : new ComparatorOrdering<T>(comparator);
127   }
128 
129   /**
130    * Simply returns its argument.
131    *
132    * @deprecated no need to use this
133    */
134   @GwtCompatible(serializable = true)
from(Ordering<T> ordering)135   @Deprecated public static <T> Ordering<T> from(Ordering<T> ordering) {
136     return checkNotNull(ordering);
137   }
138 
139   /**
140    * Returns an ordering that compares objects according to the order in
141    * which they appear in the given list. Only objects present in the list
142    * (according to {@link Object#equals}) may be compared. This comparator
143    * imposes a "partial ordering" over the type {@code T}. Subsequent changes
144    * to the {@code valuesInOrder} list will have no effect on the returned
145    * comparator. Null values in the list are not supported.
146    *
147    * <p>The returned comparator throws an {@link ClassCastException} when it
148    * receives an input parameter that isn't among the provided values.
149    *
150    * <p>The generated comparator is serializable if all the provided values are
151    * serializable.
152    *
153    * @param valuesInOrder the values that the returned comparator will be able
154    *     to compare, in the order the comparator should induce
155    * @return the comparator described above
156    * @throws NullPointerException if any of the provided values is null
157    * @throws IllegalArgumentException if {@code valuesInOrder} contains any
158    *     duplicate values (according to {@link Object#equals})
159    */
160   @GwtCompatible(serializable = true)
explicit(List<T> valuesInOrder)161   public static <T> Ordering<T> explicit(List<T> valuesInOrder) {
162     return new ExplicitOrdering<T>(valuesInOrder);
163   }
164 
165   /**
166    * Returns an ordering that compares objects according to the order in
167    * which they are given to this method. Only objects present in the argument
168    * list (according to {@link Object#equals}) may be compared. This comparator
169    * imposes a "partial ordering" over the type {@code T}. Null values in the
170    * argument list are not supported.
171    *
172    * <p>The returned comparator throws a {@link ClassCastException} when it
173    * receives an input parameter that isn't among the provided values.
174    *
175    * <p>The generated comparator is serializable if all the provided values are
176    * serializable.
177    *
178    * @param leastValue the value which the returned comparator should consider
179    *     the "least" of all values
180    * @param remainingValuesInOrder the rest of the values that the returned
181    *     comparator will be able to compare, in the order the comparator should
182    *     follow
183    * @return the comparator described above
184    * @throws NullPointerException if any of the provided values is null
185    * @throws IllegalArgumentException if any duplicate values (according to
186    *     {@link Object#equals(Object)}) are present among the method arguments
187    */
188   @GwtCompatible(serializable = true)
explicit( T leastValue, T... remainingValuesInOrder)189   public static <T> Ordering<T> explicit(
190       T leastValue, T... remainingValuesInOrder) {
191     return explicit(Lists.asList(leastValue, remainingValuesInOrder));
192   }
193 
194   // Ordering<Object> singletons
195 
196   /**
197    * Returns an ordering which treats all values as equal, indicating "no
198    * ordering." Passing this ordering to any <i>stable</i> sort algorithm
199    * results in no change to the order of elements. Note especially that {@link
200    * #sortedCopy} and {@link #immutableSortedCopy} are stable, and in the
201    * returned instance these are implemented by simply copying the source list.
202    *
203    * <p>Example: <pre>   {@code
204    *
205    *   Ordering.allEqual().nullsLast().sortedCopy(
206    *       asList(t, null, e, s, null, t, null))}</pre>
207    *
208    * <p>Assuming {@code t}, {@code e} and {@code s} are non-null, this returns
209    * {@code [t, e, s, t, null, null, null]} regardlesss of the true comparison
210    * order of those three values (which might not even implement {@link
211    * Comparable} at all).
212    *
213    * <p><b>Warning:</b> by definition, this comparator is not <i>consistent with
214    * equals</i> (as defined {@linkplain Comparator here}). Avoid its use in
215    * APIs, such as {@link TreeSet#TreeSet(Comparator)}, where such consistency
216    * is expected.
217    *
218    * <p>The returned comparator is serializable.
219    */
220   @GwtCompatible(serializable = true)
221   @SuppressWarnings("unchecked")
allEqual()222   public static Ordering<Object> allEqual() {
223     return AllEqualOrdering.INSTANCE;
224   }
225 
226   /**
227    * Returns an ordering that compares objects by the natural ordering of their
228    * string representations as returned by {@code toString()}. It does not
229    * support null values.
230    *
231    * <p>The comparator is serializable.
232    */
233   @GwtCompatible(serializable = true)
usingToString()234   public static Ordering<Object> usingToString() {
235     return UsingToStringOrdering.INSTANCE;
236   }
237 
238   /**
239    * Returns an arbitrary ordering over all objects, for which {@code compare(a,
240    * b) == 0} implies {@code a == b} (identity equality). There is no meaning
241    * whatsoever to the order imposed, but it is constant for the life of the VM.
242    *
243    * <p>Because the ordering is identity-based, it is not "consistent with
244    * {@link Object#equals(Object)}" as defined by {@link Comparator}. Use
245    * caution when building a {@link SortedSet} or {@link SortedMap} from it, as
246    * the resulting collection will not behave exactly according to spec.
247    *
248    * <p>This ordering is not serializable, as its implementation relies on
249    * {@link System#identityHashCode(Object)}, so its behavior cannot be
250    * preserved across serialization.
251    *
252    * @since 2.0
253    */
arbitrary()254   public static Ordering<Object> arbitrary() {
255     return ArbitraryOrderingHolder.ARBITRARY_ORDERING;
256   }
257 
258   private static class ArbitraryOrderingHolder {
259     static final Ordering<Object> ARBITRARY_ORDERING = new ArbitraryOrdering();
260   }
261 
262   @VisibleForTesting static class ArbitraryOrdering extends Ordering<Object> {
263     @SuppressWarnings("deprecation") // TODO(kevinb): ?
264     private Map<Object, Integer> uids =
265         Platform.tryWeakKeys(new MapMaker()).makeComputingMap(
266             new Function<Object, Integer>() {
267               final AtomicInteger counter = new AtomicInteger(0);
268               @Override
269               public Integer apply(Object from) {
270                 return counter.getAndIncrement();
271               }
272             });
273 
compare(Object left, Object right)274     @Override public int compare(Object left, Object right) {
275       if (left == right) {
276         return 0;
277       } else if (left == null) {
278         return -1;
279       } else if (right == null) {
280         return 1;
281       }
282       int leftCode = identityHashCode(left);
283       int rightCode = identityHashCode(right);
284       if (leftCode != rightCode) {
285         return leftCode < rightCode ? -1 : 1;
286       }
287 
288       // identityHashCode collision (rare, but not as rare as you'd think)
289       int result = uids.get(left).compareTo(uids.get(right));
290       if (result == 0) {
291         throw new AssertionError(); // extremely, extremely unlikely.
292       }
293       return result;
294     }
295 
toString()296     @Override public String toString() {
297       return "Ordering.arbitrary()";
298     }
299 
300     /*
301      * We need to be able to mock identityHashCode() calls for tests, because it
302      * can take 1-10 seconds to find colliding objects. Mocking frameworks that
303      * can do magic to mock static method calls still can't do so for a system
304      * class, so we need the indirection. In production, Hotspot should still
305      * recognize that the call is 1-morphic and should still be willing to
306      * inline it if necessary.
307      */
identityHashCode(Object object)308     int identityHashCode(Object object) {
309       return System.identityHashCode(object);
310     }
311   }
312 
313   // Constructor
314 
315   /**
316    * Constructs a new instance of this class (only invokable by the subclass
317    * constructor, typically implicit).
318    */
Ordering()319   protected Ordering() {}
320 
321   // Instance-based factories (and any static equivalents)
322 
323   /**
324    * Returns the reverse of this ordering; the {@code Ordering} equivalent to
325    * {@link Collections#reverseOrder(Comparator)}.
326    */
327   // type parameter <S> lets us avoid the extra <String> in statements like:
328   // Ordering<String> o = Ordering.<String>natural().reverse();
329   @GwtCompatible(serializable = true)
reverse()330   public <S extends T> Ordering<S> reverse() {
331     return new ReverseOrdering<S>(this);
332   }
333 
334   /**
335    * Returns an ordering that treats {@code null} as less than all other values
336    * and uses {@code this} to compare non-null values.
337    */
338   // type parameter <S> lets us avoid the extra <String> in statements like:
339   // Ordering<String> o = Ordering.<String>natural().nullsFirst();
340   @GwtCompatible(serializable = true)
nullsFirst()341   public <S extends T> Ordering<S> nullsFirst() {
342     return new NullsFirstOrdering<S>(this);
343   }
344 
345   /**
346    * Returns an ordering that treats {@code null} as greater than all other
347    * values and uses this ordering to compare non-null values.
348    */
349   // type parameter <S> lets us avoid the extra <String> in statements like:
350   // Ordering<String> o = Ordering.<String>natural().nullsLast();
351   @GwtCompatible(serializable = true)
nullsLast()352   public <S extends T> Ordering<S> nullsLast() {
353     return new NullsLastOrdering<S>(this);
354   }
355 
356   /**
357    * Returns a new ordering on {@code F} which orders elements by first applying
358    * a function to them, then comparing those results using {@code this}. For
359    * example, to compare objects by their string forms, in a case-insensitive
360    * manner, use: <pre>   {@code
361    *
362    *   Ordering.from(String.CASE_INSENSITIVE_ORDER)
363    *       .onResultOf(Functions.toStringFunction())}</pre>
364    */
365   @GwtCompatible(serializable = true)
onResultOf(Function<F, ? extends T> function)366   public <F> Ordering<F> onResultOf(Function<F, ? extends T> function) {
367     return new ByFunctionOrdering<F, T>(function, this);
368   }
369 
onKeys()370   <T2 extends T> Ordering<Map.Entry<T2, ?>> onKeys() {
371     return onResultOf(Maps.<T2>keyFunction());
372   }
373 
374   /**
375    * Returns an ordering which first uses the ordering {@code this}, but which
376    * in the event of a "tie", then delegates to {@code secondaryComparator}.
377    * For example, to sort a bug list first by status and second by priority, you
378    * might use {@code byStatus.compound(byPriority)}. For a compound ordering
379    * with three or more components, simply chain multiple calls to this method.
380    *
381    * <p>An ordering produced by this method, or a chain of calls to this method,
382    * is equivalent to one created using {@link Ordering#compound(Iterable)} on
383    * the same component comparators.
384    */
385   @GwtCompatible(serializable = true)
compound( Comparator<? super U> secondaryComparator)386   public <U extends T> Ordering<U> compound(
387       Comparator<? super U> secondaryComparator) {
388     return new CompoundOrdering<U>(this, checkNotNull(secondaryComparator));
389   }
390 
391   /**
392    * Returns an ordering which tries each given comparator in order until a
393    * non-zero result is found, returning that result, and returning zero only if
394    * all comparators return zero. The returned ordering is based on the state of
395    * the {@code comparators} iterable at the time it was provided to this
396    * method.
397    *
398    * <p>The returned ordering is equivalent to that produced using {@code
399    * Ordering.from(comp1).compound(comp2).compound(comp3) . . .}.
400    *
401    * <p><b>Warning:</b> Supplying an argument with undefined iteration order,
402    * such as a {@link HashSet}, will produce non-deterministic results.
403    *
404    * @param comparators the comparators to try in order
405    */
406   @GwtCompatible(serializable = true)
compound( Iterable<? extends Comparator<? super T>> comparators)407   public static <T> Ordering<T> compound(
408       Iterable<? extends Comparator<? super T>> comparators) {
409     return new CompoundOrdering<T>(comparators);
410   }
411 
412   /**
413    * Returns a new ordering which sorts iterables by comparing corresponding
414    * elements pairwise until a nonzero result is found; imposes "dictionary
415    * order". If the end of one iterable is reached, but not the other, the
416    * shorter iterable is considered to be less than the longer one. For example,
417    * a lexicographical natural ordering over integers considers {@code
418    * [] < [1] < [1, 1] < [1, 2] < [2]}.
419    *
420    * <p>Note that {@code ordering.lexicographical().reverse()} is not
421    * equivalent to {@code ordering.reverse().lexicographical()} (consider how
422    * each would order {@code [1]} and {@code [1, 1]}).
423    *
424    * @since 2.0
425    */
426   @GwtCompatible(serializable = true)
427   // type parameter <S> lets us avoid the extra <String> in statements like:
428   // Ordering<Iterable<String>> o =
429   //     Ordering.<String>natural().lexicographical();
lexicographical()430   public <S extends T> Ordering<Iterable<S>> lexicographical() {
431     /*
432      * Note that technically the returned ordering should be capable of
433      * handling not just {@code Iterable<S>} instances, but also any {@code
434      * Iterable<? extends S>}. However, the need for this comes up so rarely
435      * that it doesn't justify making everyone else deal with the very ugly
436      * wildcard.
437      */
438     return new LexicographicalOrdering<S>(this);
439   }
440 
441   // Regular instance methods
442 
443   // Override to add @Nullable
compare(@ullable T left, @Nullable T right)444   @Override public abstract int compare(@Nullable T left, @Nullable T right);
445 
446   /**
447    * Returns the least of the specified values according to this ordering. If
448    * there are multiple least values, the first of those is returned. The
449    * iterator will be left exhausted: its {@code hasNext()} method will return
450    * {@code false}.
451    *
452    * @param iterator the iterator whose minimum element is to be determined
453    * @throws NoSuchElementException if {@code iterator} is empty
454    * @throws ClassCastException if the parameters are not <i>mutually
455    *     comparable</i> under this ordering.
456    *
457    * @since 11.0
458    */
min(Iterator<E> iterator)459   public <E extends T> E min(Iterator<E> iterator) {
460     // let this throw NoSuchElementException as necessary
461     E minSoFar = iterator.next();
462 
463     while (iterator.hasNext()) {
464       minSoFar = min(minSoFar, iterator.next());
465     }
466 
467     return minSoFar;
468   }
469 
470   /**
471    * Returns the least of the specified values according to this ordering. If
472    * there are multiple least values, the first of those is returned.
473    *
474    * @param iterable the iterable whose minimum element is to be determined
475    * @throws NoSuchElementException if {@code iterable} is empty
476    * @throws ClassCastException if the parameters are not <i>mutually
477    *     comparable</i> under this ordering.
478    */
min(Iterable<E> iterable)479   public <E extends T> E min(Iterable<E> iterable) {
480     return min(iterable.iterator());
481   }
482 
483   /**
484    * Returns the lesser of the two values according to this ordering. If the
485    * values compare as 0, the first is returned.
486    *
487    * <p><b>Implementation note:</b> this method is invoked by the default
488    * implementations of the other {@code min} overloads, so overriding it will
489    * affect their behavior.
490    *
491    * @param a value to compare, returned if less than or equal to b.
492    * @param b value to compare.
493    * @throws ClassCastException if the parameters are not <i>mutually
494    *     comparable</i> under this ordering.
495    */
min(@ullable E a, @Nullable E b)496   public <E extends T> E min(@Nullable E a, @Nullable E b) {
497     return (compare(a, b) <= 0) ? a : b;
498   }
499 
500   /**
501    * Returns the least of the specified values according to this ordering. If
502    * there are multiple least values, the first of those is returned.
503    *
504    * @param a value to compare, returned if less than or equal to the rest.
505    * @param b value to compare
506    * @param c value to compare
507    * @param rest values to compare
508    * @throws ClassCastException if the parameters are not <i>mutually
509    *     comparable</i> under this ordering.
510    */
min( @ullable E a, @Nullable E b, @Nullable E c, E... rest)511   public <E extends T> E min(
512       @Nullable E a, @Nullable E b, @Nullable E c, E... rest) {
513     E minSoFar = min(min(a, b), c);
514 
515     for (E r : rest) {
516       minSoFar = min(minSoFar, r);
517     }
518 
519     return minSoFar;
520   }
521 
522   /**
523    * Returns the greatest of the specified values according to this ordering. If
524    * there are multiple greatest values, the first of those is returned. The
525    * iterator will be left exhausted: its {@code hasNext()} method will return
526    * {@code false}.
527    *
528    * @param iterator the iterator whose maximum element is to be determined
529    * @throws NoSuchElementException if {@code iterator} is empty
530    * @throws ClassCastException if the parameters are not <i>mutually
531    *     comparable</i> under this ordering.
532    *
533    * @since 11.0
534    */
max(Iterator<E> iterator)535   public <E extends T> E max(Iterator<E> iterator) {
536     // let this throw NoSuchElementException as necessary
537     E maxSoFar = iterator.next();
538 
539     while (iterator.hasNext()) {
540       maxSoFar = max(maxSoFar, iterator.next());
541     }
542 
543     return maxSoFar;
544   }
545 
546   /**
547    * Returns the greatest of the specified values according to this ordering. If
548    * there are multiple greatest values, the first of those is returned.
549    *
550    * @param iterable the iterable whose maximum element is to be determined
551    * @throws NoSuchElementException if {@code iterable} is empty
552    * @throws ClassCastException if the parameters are not <i>mutually
553    *     comparable</i> under this ordering.
554    */
max(Iterable<E> iterable)555   public <E extends T> E max(Iterable<E> iterable) {
556     return max(iterable.iterator());
557   }
558 
559   /**
560    * Returns the greater of the two values according to this ordering. If the
561    * values compare as 0, the first is returned.
562    *
563    * <p><b>Implementation note:</b> this method is invoked by the default
564    * implementations of the other {@code max} overloads, so overriding it will
565    * affect their behavior.
566    *
567    * @param a value to compare, returned if greater than or equal to b.
568    * @param b value to compare.
569    * @throws ClassCastException if the parameters are not <i>mutually
570    *     comparable</i> under this ordering.
571    */
max(@ullable E a, @Nullable E b)572   public <E extends T> E max(@Nullable E a, @Nullable E b) {
573     return (compare(a, b) >= 0) ? a : b;
574   }
575 
576   /**
577    * Returns the greatest of the specified values according to this ordering. If
578    * there are multiple greatest values, the first of those is returned.
579    *
580    * @param a value to compare, returned if greater than or equal to the rest.
581    * @param b value to compare
582    * @param c value to compare
583    * @param rest values to compare
584    * @throws ClassCastException if the parameters are not <i>mutually
585    *     comparable</i> under this ordering.
586    */
max( @ullable E a, @Nullable E b, @Nullable E c, E... rest)587   public <E extends T> E max(
588       @Nullable E a, @Nullable E b, @Nullable E c, E... rest) {
589     E maxSoFar = max(max(a, b), c);
590 
591     for (E r : rest) {
592       maxSoFar = max(maxSoFar, r);
593     }
594 
595     return maxSoFar;
596   }
597 
598   /**
599    * Returns the {@code k} least elements of the given iterable according to
600    * this ordering, in order from least to greatest.  If there are fewer than
601    * {@code k} elements present, all will be included.
602    *
603    * <p>The implementation does not necessarily use a <i>stable</i> sorting
604    * algorithm; when multiple elements are equivalent, it is undefined which
605    * will come first.
606    *
607    * @return an immutable {@code RandomAccess} list of the {@code k} least
608    *     elements in ascending order
609    * @throws IllegalArgumentException if {@code k} is negative
610    * @since 8.0
611    */
leastOf(Iterable<E> iterable, int k)612   public <E extends T> List<E> leastOf(Iterable<E> iterable, int k) {
613     if (iterable instanceof Collection) {
614       Collection<E> collection = (Collection<E>) iterable;
615       if (collection.size() <= 2L * k) {
616         // In this case, just dumping the collection to an array and sorting is
617         // faster than using the implementation for Iterator, which is
618         // specialized for k much smaller than n.
619 
620         @SuppressWarnings("unchecked") // c only contains E's and doesn't escape
621         E[] array = (E[]) collection.toArray();
622         Arrays.sort(array, this);
623         if (array.length > k) {
624           array = ObjectArrays.arraysCopyOf(array, k);
625         }
626         return Collections.unmodifiableList(Arrays.asList(array));
627       }
628     }
629     return leastOf(iterable.iterator(), k);
630   }
631 
632   /**
633    * Returns the {@code k} least elements from the given iterator according to
634    * this ordering, in order from least to greatest.  If there are fewer than
635    * {@code k} elements present, all will be included.
636    *
637    * <p>The implementation does not necessarily use a <i>stable</i> sorting
638    * algorithm; when multiple elements are equivalent, it is undefined which
639    * will come first.
640    *
641    * @return an immutable {@code RandomAccess} list of the {@code k} least
642    *     elements in ascending order
643    * @throws IllegalArgumentException if {@code k} is negative
644    * @since 14.0
645    */
leastOf(Iterator<E> elements, int k)646   public <E extends T> List<E> leastOf(Iterator<E> elements, int k) {
647     checkNotNull(elements);
648     checkNonnegative(k, "k");
649 
650     if (k == 0 || !elements.hasNext()) {
651       return ImmutableList.of();
652     } else if (k >= Integer.MAX_VALUE / 2) {
653       // k is really large; just do a straightforward sorted-copy-and-sublist
654       ArrayList<E> list = Lists.newArrayList(elements);
655       Collections.sort(list, this);
656       if (list.size() > k) {
657         list.subList(k, list.size()).clear();
658       }
659       list.trimToSize();
660       return Collections.unmodifiableList(list);
661     }
662 
663     /*
664      * Our goal is an O(n) algorithm using only one pass and O(k) additional
665      * memory.
666      *
667      * We use the following algorithm: maintain a buffer of size 2*k. Every time
668      * the buffer gets full, find the median and partition around it, keeping
669      * only the lowest k elements.  This requires n/k find-median-and-partition
670      * steps, each of which take O(k) time with a traditional quickselect.
671      *
672      * After sorting the output, the whole algorithm is O(n + k log k). It
673      * degrades gracefully for worst-case input (descending order), performs
674      * competitively or wins outright for randomly ordered input, and doesn't
675      * require the whole collection to fit into memory.
676      */
677     int bufferCap = k * 2;
678     @SuppressWarnings("unchecked") // we'll only put E's in
679     E[] buffer = (E[]) new Object[bufferCap];
680     E threshold = elements.next();
681     buffer[0] = threshold;
682     int bufferSize = 1;
683     // threshold is the kth smallest element seen so far.  Once bufferSize >= k,
684     // anything larger than threshold can be ignored immediately.
685 
686     while (bufferSize < k && elements.hasNext()) {
687       E e = elements.next();
688       buffer[bufferSize++] = e;
689       threshold = max(threshold, e);
690     }
691 
692     while (elements.hasNext()) {
693       E e = elements.next();
694       if (compare(e, threshold) >= 0) {
695         continue;
696       }
697 
698       buffer[bufferSize++] = e;
699       if (bufferSize == bufferCap) {
700         // We apply the quickselect algorithm to partition about the median,
701         // and then ignore the last k elements.
702         int left = 0;
703         int right = bufferCap - 1;
704 
705         int minThresholdPosition = 0;
706         // The leftmost position at which the greatest of the k lower elements
707         // -- the new value of threshold -- might be found.
708 
709         while (left < right) {
710           int pivotIndex = (left + right + 1) >>> 1;
711           int pivotNewIndex = partition(buffer, left, right, pivotIndex);
712           if (pivotNewIndex > k) {
713             right = pivotNewIndex - 1;
714           } else if (pivotNewIndex < k) {
715             left = Math.max(pivotNewIndex, left + 1);
716             minThresholdPosition = pivotNewIndex;
717           } else {
718             break;
719           }
720         }
721         bufferSize = k;
722 
723         threshold = buffer[minThresholdPosition];
724         for (int i = minThresholdPosition + 1; i < bufferSize; i++) {
725           threshold = max(threshold, buffer[i]);
726         }
727       }
728     }
729 
730     Arrays.sort(buffer, 0, bufferSize, this);
731 
732     bufferSize = Math.min(bufferSize, k);
733     return Collections.unmodifiableList(
734         Arrays.asList(ObjectArrays.arraysCopyOf(buffer, bufferSize)));
735     // We can't use ImmutableList; we have to be null-friendly!
736   }
737 
partition( E[] values, int left, int right, int pivotIndex)738   private <E extends T> int partition(
739       E[] values, int left, int right, int pivotIndex) {
740     E pivotValue = values[pivotIndex];
741 
742     values[pivotIndex] = values[right];
743     values[right] = pivotValue;
744 
745     int storeIndex = left;
746     for (int i = left; i < right; i++) {
747       if (compare(values[i], pivotValue) < 0) {
748         ObjectArrays.swap(values, storeIndex, i);
749         storeIndex++;
750       }
751     }
752     ObjectArrays.swap(values, right, storeIndex);
753     return storeIndex;
754   }
755 
756   /**
757    * Returns the {@code k} greatest elements of the given iterable according to
758    * this ordering, in order from greatest to least. If there are fewer than
759    * {@code k} elements present, all will be included.
760    *
761    * <p>The implementation does not necessarily use a <i>stable</i> sorting
762    * algorithm; when multiple elements are equivalent, it is undefined which
763    * will come first.
764    *
765    * @return an immutable {@code RandomAccess} list of the {@code k} greatest
766    *     elements in <i>descending order</i>
767    * @throws IllegalArgumentException if {@code k} is negative
768    * @since 8.0
769    */
greatestOf(Iterable<E> iterable, int k)770   public <E extends T> List<E> greatestOf(Iterable<E> iterable, int k) {
771     // TODO(kevinb): see if delegation is hurting performance noticeably
772     // TODO(kevinb): if we change this implementation, add full unit tests.
773     return reverse().leastOf(iterable, k);
774   }
775 
776   /**
777    * Returns the {@code k} greatest elements from the given iterator according to
778    * this ordering, in order from greatest to least. If there are fewer than
779    * {@code k} elements present, all will be included.
780    *
781    * <p>The implementation does not necessarily use a <i>stable</i> sorting
782    * algorithm; when multiple elements are equivalent, it is undefined which
783    * will come first.
784    *
785    * @return an immutable {@code RandomAccess} list of the {@code k} greatest
786    *     elements in <i>descending order</i>
787    * @throws IllegalArgumentException if {@code k} is negative
788    * @since 14.0
789    */
greatestOf(Iterator<E> iterator, int k)790   public <E extends T> List<E> greatestOf(Iterator<E> iterator, int k) {
791     return reverse().leastOf(iterator, k);
792   }
793 
794   /**
795    * Returns a <b>mutable</b> list containing {@code elements} sorted by this
796    * ordering; use this only when the resulting list may need further
797    * modification, or may contain {@code null}. The input is not modified. The
798    * returned list is serializable and has random access.
799    *
800    * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard
801    * elements that are duplicates according to the comparator. The sort
802    * performed is <i>stable</i>, meaning that such elements will appear in the
803    * returned list in the same order they appeared in {@code elements}.
804    *
805    * <p><b>Performance note:</b> According to our
806    * benchmarking
807    * on Open JDK 7, {@link #immutableSortedCopy} generally performs better (in
808    * both time and space) than this method, and this method in turn generally
809    * performs better than copying the list and calling {@link
810    * Collections#sort(List)}.
811    */
sortedCopy(Iterable<E> elements)812   public <E extends T> List<E> sortedCopy(Iterable<E> elements) {
813     @SuppressWarnings("unchecked") // does not escape, and contains only E's
814     E[] array = (E[]) Iterables.toArray(elements);
815     Arrays.sort(array, this);
816     return Lists.newArrayList(Arrays.asList(array));
817   }
818 
819   /**
820    * Returns an <b>immutable</b> list containing {@code elements} sorted by this
821    * ordering. The input is not modified.
822    *
823    * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard
824    * elements that are duplicates according to the comparator. The sort
825    * performed is <i>stable</i>, meaning that such elements will appear in the
826    * returned list in the same order they appeared in {@code elements}.
827    *
828    * <p><b>Performance note:</b> According to our
829    * benchmarking
830    * on Open JDK 7, this method is the most efficient way to make a sorted copy
831    * of a collection.
832    *
833    * @throws NullPointerException if any of {@code elements} (or {@code
834    *     elements} itself) is null
835    * @since 3.0
836    */
immutableSortedCopy( Iterable<E> elements)837   public <E extends T> ImmutableList<E> immutableSortedCopy(
838       Iterable<E> elements) {
839     @SuppressWarnings("unchecked") // we'll only ever have E's in here
840     E[] array = (E[]) Iterables.toArray(elements);
841     for (E e : array) {
842       checkNotNull(e);
843     }
844     Arrays.sort(array, this);
845     return ImmutableList.asImmutableList(array);
846   }
847 
848   /**
849    * Returns {@code true} if each element in {@code iterable} after the first is
850    * greater than or equal to the element that preceded it, according to this
851    * ordering. Note that this is always true when the iterable has fewer than
852    * two elements.
853    */
isOrdered(Iterable<? extends T> iterable)854   public boolean isOrdered(Iterable<? extends T> iterable) {
855     Iterator<? extends T> it = iterable.iterator();
856     if (it.hasNext()) {
857       T prev = it.next();
858       while (it.hasNext()) {
859         T next = it.next();
860         if (compare(prev, next) > 0) {
861           return false;
862         }
863         prev = next;
864       }
865     }
866     return true;
867   }
868 
869   /**
870    * Returns {@code true} if each element in {@code iterable} after the first is
871    * <i>strictly</i> greater than the element that preceded it, according to
872    * this ordering. Note that this is always true when the iterable has fewer
873    * than two elements.
874    */
isStrictlyOrdered(Iterable<? extends T> iterable)875   public boolean isStrictlyOrdered(Iterable<? extends T> iterable) {
876     Iterator<? extends T> it = iterable.iterator();
877     if (it.hasNext()) {
878       T prev = it.next();
879       while (it.hasNext()) {
880         T next = it.next();
881         if (compare(prev, next) >= 0) {
882           return false;
883         }
884         prev = next;
885       }
886     }
887     return true;
888   }
889 
890   /**
891    * {@link Collections#binarySearch(List, Object, Comparator) Searches}
892    * {@code sortedList} for {@code key} using the binary search algorithm. The
893    * list must be sorted using this ordering.
894    *
895    * @param sortedList the list to be searched
896    * @param key the key to be searched for
897    */
binarySearch(List<? extends T> sortedList, @Nullable T key)898   public int binarySearch(List<? extends T> sortedList, @Nullable T key) {
899     return Collections.binarySearch(sortedList, key, this);
900   }
901 
902   /**
903    * Exception thrown by a {@link Ordering#explicit(List)} or {@link
904    * Ordering#explicit(Object, Object[])} comparator when comparing a value
905    * outside the set of values it can compare. Extending {@link
906    * ClassCastException} may seem odd, but it is required.
907    */
908   // TODO(kevinb): make this public, document it right
909   @VisibleForTesting
910   static class IncomparableValueException extends ClassCastException {
911     final Object value;
912 
IncomparableValueException(Object value)913     IncomparableValueException(Object value) {
914       super("Cannot compare value: " + value);
915       this.value = value;
916     }
917 
918     private static final long serialVersionUID = 0;
919   }
920 
921   // Never make these public
922   static final int LEFT_IS_GREATER = 1;
923   static final int RIGHT_IS_GREATER = -1;
924 }
925