• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <unistd.h>
2 #include <fcntl.h>
3 #include <string.h>
4 #include <signal.h>
5 #include <time.h>
6 #include <assert.h>
7 
8 #include "fio.h"
9 #include "hash.h"
10 #include "verify.h"
11 #include "trim.h"
12 #include "lib/rand.h"
13 #include "lib/axmap.h"
14 #include "err.h"
15 
16 struct io_completion_data {
17 	int nr;				/* input */
18 
19 	int error;			/* output */
20 	uint64_t bytes_done[DDIR_RWDIR_CNT];	/* output */
21 	struct timeval time;		/* output */
22 };
23 
24 /*
25  * The ->io_axmap contains a map of blocks we have or have not done io
26  * to yet. Used to make sure we cover the entire range in a fair fashion.
27  */
random_map_free(struct fio_file * f,const uint64_t block)28 static int random_map_free(struct fio_file *f, const uint64_t block)
29 {
30 	return !axmap_isset(f->io_axmap, block);
31 }
32 
33 /*
34  * Mark a given offset as used in the map.
35  */
mark_random_map(struct thread_data * td,struct io_u * io_u)36 static void mark_random_map(struct thread_data *td, struct io_u *io_u)
37 {
38 	unsigned int min_bs = td->o.rw_min_bs;
39 	struct fio_file *f = io_u->file;
40 	unsigned int nr_blocks;
41 	uint64_t block;
42 
43 	block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
44 	nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
45 
46 	if (!(io_u->flags & IO_U_F_BUSY_OK))
47 		nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
48 
49 	if ((nr_blocks * min_bs) < io_u->buflen)
50 		io_u->buflen = nr_blocks * min_bs;
51 }
52 
last_block(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir)53 static uint64_t last_block(struct thread_data *td, struct fio_file *f,
54 			   enum fio_ddir ddir)
55 {
56 	uint64_t max_blocks;
57 	uint64_t max_size;
58 
59 	assert(ddir_rw(ddir));
60 
61 	/*
62 	 * Hmm, should we make sure that ->io_size <= ->real_file_size?
63 	 */
64 	max_size = f->io_size;
65 	if (max_size > f->real_file_size)
66 		max_size = f->real_file_size;
67 
68 	if (td->o.zone_range)
69 		max_size = td->o.zone_range;
70 
71 	if (td->o.min_bs[ddir] > td->o.ba[ddir])
72 		max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
73 
74 	max_blocks = max_size / (uint64_t) td->o.ba[ddir];
75 	if (!max_blocks)
76 		return 0;
77 
78 	return max_blocks;
79 }
80 
81 struct rand_off {
82 	struct flist_head list;
83 	uint64_t off;
84 };
85 
__get_next_rand_offset(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir,uint64_t * b)86 static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
87 				  enum fio_ddir ddir, uint64_t *b)
88 {
89 	uint64_t r;
90 
91 	if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) {
92 		uint64_t lastb;
93 
94 		lastb = last_block(td, f, ddir);
95 		if (!lastb)
96 			return 1;
97 
98 		r = __rand(&td->random_state);
99 
100 		dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
101 
102 		*b = lastb * (r / ((uint64_t) FRAND_MAX + 1.0));
103 	} else {
104 		uint64_t off = 0;
105 
106 		assert(fio_file_lfsr(f));
107 
108 		if (lfsr_next(&f->lfsr, &off))
109 			return 1;
110 
111 		*b = off;
112 	}
113 
114 	/*
115 	 * if we are not maintaining a random map, we are done.
116 	 */
117 	if (!file_randommap(td, f))
118 		goto ret;
119 
120 	/*
121 	 * calculate map offset and check if it's free
122 	 */
123 	if (random_map_free(f, *b))
124 		goto ret;
125 
126 	dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
127 						(unsigned long long) *b);
128 
129 	*b = axmap_next_free(f->io_axmap, *b);
130 	if (*b == (uint64_t) -1ULL)
131 		return 1;
132 ret:
133 	return 0;
134 }
135 
__get_next_rand_offset_zipf(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir,uint64_t * b)136 static int __get_next_rand_offset_zipf(struct thread_data *td,
137 				       struct fio_file *f, enum fio_ddir ddir,
138 				       uint64_t *b)
139 {
140 	*b = zipf_next(&f->zipf);
141 	return 0;
142 }
143 
__get_next_rand_offset_pareto(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir,uint64_t * b)144 static int __get_next_rand_offset_pareto(struct thread_data *td,
145 					 struct fio_file *f, enum fio_ddir ddir,
146 					 uint64_t *b)
147 {
148 	*b = pareto_next(&f->zipf);
149 	return 0;
150 }
151 
flist_cmp(void * data,struct flist_head * a,struct flist_head * b)152 static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
153 {
154 	struct rand_off *r1 = flist_entry(a, struct rand_off, list);
155 	struct rand_off *r2 = flist_entry(b, struct rand_off, list);
156 
157 	return r1->off - r2->off;
158 }
159 
get_off_from_method(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir,uint64_t * b)160 static int get_off_from_method(struct thread_data *td, struct fio_file *f,
161 			       enum fio_ddir ddir, uint64_t *b)
162 {
163 	if (td->o.random_distribution == FIO_RAND_DIST_RANDOM)
164 		return __get_next_rand_offset(td, f, ddir, b);
165 	else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
166 		return __get_next_rand_offset_zipf(td, f, ddir, b);
167 	else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
168 		return __get_next_rand_offset_pareto(td, f, ddir, b);
169 
170 	log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
171 	return 1;
172 }
173 
174 /*
175  * Sort the reads for a verify phase in batches of verifysort_nr, if
176  * specified.
177  */
should_sort_io(struct thread_data * td)178 static inline int should_sort_io(struct thread_data *td)
179 {
180 	if (!td->o.verifysort_nr || !td->o.do_verify)
181 		return 0;
182 	if (!td_random(td))
183 		return 0;
184 	if (td->runstate != TD_VERIFYING)
185 		return 0;
186 	if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE)
187 		return 0;
188 
189 	return 1;
190 }
191 
should_do_random(struct thread_data * td,enum fio_ddir ddir)192 static int should_do_random(struct thread_data *td, enum fio_ddir ddir)
193 {
194 	unsigned int v;
195 	unsigned long r;
196 
197 	if (td->o.perc_rand[ddir] == 100)
198 		return 1;
199 
200 	r = __rand(&td->seq_rand_state[ddir]);
201 	v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
202 
203 	return v <= td->o.perc_rand[ddir];
204 }
205 
get_next_rand_offset(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir,uint64_t * b)206 static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
207 				enum fio_ddir ddir, uint64_t *b)
208 {
209 	struct rand_off *r;
210 	int i, ret = 1;
211 
212 	if (!should_sort_io(td))
213 		return get_off_from_method(td, f, ddir, b);
214 
215 	if (!flist_empty(&td->next_rand_list)) {
216 fetch:
217 		r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
218 		flist_del(&r->list);
219 		*b = r->off;
220 		free(r);
221 		return 0;
222 	}
223 
224 	for (i = 0; i < td->o.verifysort_nr; i++) {
225 		r = malloc(sizeof(*r));
226 
227 		ret = get_off_from_method(td, f, ddir, &r->off);
228 		if (ret) {
229 			free(r);
230 			break;
231 		}
232 
233 		flist_add(&r->list, &td->next_rand_list);
234 	}
235 
236 	if (ret && !i)
237 		return ret;
238 
239 	assert(!flist_empty(&td->next_rand_list));
240 	flist_sort(NULL, &td->next_rand_list, flist_cmp);
241 	goto fetch;
242 }
243 
get_next_rand_block(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir,uint64_t * b)244 static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
245 			       enum fio_ddir ddir, uint64_t *b)
246 {
247 	if (!get_next_rand_offset(td, f, ddir, b))
248 		return 0;
249 
250 	if (td->o.time_based) {
251 		fio_file_reset(td, f);
252 		if (!get_next_rand_offset(td, f, ddir, b))
253 			return 0;
254 	}
255 
256 	dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
257 			f->file_name, (unsigned long long) f->last_pos[ddir],
258 			(unsigned long long) f->real_file_size);
259 	return 1;
260 }
261 
get_next_seq_offset(struct thread_data * td,struct fio_file * f,enum fio_ddir ddir,uint64_t * offset)262 static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
263 			       enum fio_ddir ddir, uint64_t *offset)
264 {
265 	struct thread_options *o = &td->o;
266 
267 	assert(ddir_rw(ddir));
268 
269 	if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
270 	    o->time_based)
271 		f->last_pos[ddir] = f->last_pos[ddir] - f->io_size;
272 
273 	if (f->last_pos[ddir] < f->real_file_size) {
274 		uint64_t pos;
275 
276 		if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0)
277 			f->last_pos[ddir] = f->real_file_size;
278 
279 		pos = f->last_pos[ddir] - f->file_offset;
280 		if (pos && o->ddir_seq_add) {
281 			pos += o->ddir_seq_add;
282 
283 			/*
284 			 * If we reach beyond the end of the file
285 			 * with holed IO, wrap around to the
286 			 * beginning again.
287 			 */
288 			if (pos >= f->real_file_size)
289 				pos = f->file_offset;
290 		}
291 
292 		*offset = pos;
293 		return 0;
294 	}
295 
296 	return 1;
297 }
298 
get_next_block(struct thread_data * td,struct io_u * io_u,enum fio_ddir ddir,int rw_seq,unsigned int * is_random)299 static int get_next_block(struct thread_data *td, struct io_u *io_u,
300 			  enum fio_ddir ddir, int rw_seq,
301 			  unsigned int *is_random)
302 {
303 	struct fio_file *f = io_u->file;
304 	uint64_t b, offset;
305 	int ret;
306 
307 	assert(ddir_rw(ddir));
308 
309 	b = offset = -1ULL;
310 
311 	if (rw_seq) {
312 		if (td_random(td)) {
313 			if (should_do_random(td, ddir)) {
314 				ret = get_next_rand_block(td, f, ddir, &b);
315 				*is_random = 1;
316 			} else {
317 				*is_random = 0;
318 				io_u->flags |= IO_U_F_BUSY_OK;
319 				ret = get_next_seq_offset(td, f, ddir, &offset);
320 				if (ret)
321 					ret = get_next_rand_block(td, f, ddir, &b);
322 			}
323 		} else {
324 			*is_random = 0;
325 			ret = get_next_seq_offset(td, f, ddir, &offset);
326 		}
327 	} else {
328 		io_u->flags |= IO_U_F_BUSY_OK;
329 		*is_random = 0;
330 
331 		if (td->o.rw_seq == RW_SEQ_SEQ) {
332 			ret = get_next_seq_offset(td, f, ddir, &offset);
333 			if (ret) {
334 				ret = get_next_rand_block(td, f, ddir, &b);
335 				*is_random = 0;
336 			}
337 		} else if (td->o.rw_seq == RW_SEQ_IDENT) {
338 			if (f->last_start[ddir] != -1ULL)
339 				offset = f->last_start[ddir] - f->file_offset;
340 			else
341 				offset = 0;
342 			ret = 0;
343 		} else {
344 			log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
345 			ret = 1;
346 		}
347 	}
348 
349 	if (!ret) {
350 		if (offset != -1ULL)
351 			io_u->offset = offset;
352 		else if (b != -1ULL)
353 			io_u->offset = b * td->o.ba[ddir];
354 		else {
355 			log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
356 			ret = 1;
357 		}
358 	}
359 
360 	return ret;
361 }
362 
363 /*
364  * For random io, generate a random new block and see if it's used. Repeat
365  * until we find a free one. For sequential io, just return the end of
366  * the last io issued.
367  */
__get_next_offset(struct thread_data * td,struct io_u * io_u,unsigned int * is_random)368 static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
369 			     unsigned int *is_random)
370 {
371 	struct fio_file *f = io_u->file;
372 	enum fio_ddir ddir = io_u->ddir;
373 	int rw_seq_hit = 0;
374 
375 	assert(ddir_rw(ddir));
376 
377 	if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
378 		rw_seq_hit = 1;
379 		td->ddir_seq_nr = td->o.ddir_seq_nr;
380 	}
381 
382 	if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
383 		return 1;
384 
385 	if (io_u->offset >= f->io_size) {
386 		dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
387 					(unsigned long long) io_u->offset,
388 					(unsigned long long) f->io_size);
389 		return 1;
390 	}
391 
392 	io_u->offset += f->file_offset;
393 	if (io_u->offset >= f->real_file_size) {
394 		dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
395 					(unsigned long long) io_u->offset,
396 					(unsigned long long) f->real_file_size);
397 		return 1;
398 	}
399 
400 	return 0;
401 }
402 
get_next_offset(struct thread_data * td,struct io_u * io_u,unsigned int * is_random)403 static int get_next_offset(struct thread_data *td, struct io_u *io_u,
404 			   unsigned int *is_random)
405 {
406 	if (td->flags & TD_F_PROFILE_OPS) {
407 		struct prof_io_ops *ops = &td->prof_io_ops;
408 
409 		if (ops->fill_io_u_off)
410 			return ops->fill_io_u_off(td, io_u, is_random);
411 	}
412 
413 	return __get_next_offset(td, io_u, is_random);
414 }
415 
io_u_fits(struct thread_data * td,struct io_u * io_u,unsigned int buflen)416 static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
417 			    unsigned int buflen)
418 {
419 	struct fio_file *f = io_u->file;
420 
421 	return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
422 }
423 
__get_next_buflen(struct thread_data * td,struct io_u * io_u,unsigned int is_random)424 static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
425 				      unsigned int is_random)
426 {
427 	int ddir = io_u->ddir;
428 	unsigned int buflen = 0;
429 	unsigned int minbs, maxbs;
430 	unsigned long r;
431 
432 	assert(ddir_rw(ddir));
433 
434 	if (td->o.bs_is_seq_rand)
435 		ddir = is_random ? DDIR_WRITE: DDIR_READ;
436 
437 	minbs = td->o.min_bs[ddir];
438 	maxbs = td->o.max_bs[ddir];
439 
440 	if (minbs == maxbs)
441 		return minbs;
442 
443 	/*
444 	 * If we can't satisfy the min block size from here, then fail
445 	 */
446 	if (!io_u_fits(td, io_u, minbs))
447 		return 0;
448 
449 	do {
450 		r = __rand(&td->bsrange_state);
451 
452 		if (!td->o.bssplit_nr[ddir]) {
453 			buflen = 1 + (unsigned int) ((double) maxbs *
454 					(r / (FRAND_MAX + 1.0)));
455 			if (buflen < minbs)
456 				buflen = minbs;
457 		} else {
458 			long perc = 0;
459 			unsigned int i;
460 
461 			for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
462 				struct bssplit *bsp = &td->o.bssplit[ddir][i];
463 
464 				buflen = bsp->bs;
465 				perc += bsp->perc;
466 				if ((r <= ((FRAND_MAX / 100L) * perc)) &&
467 				    io_u_fits(td, io_u, buflen))
468 					break;
469 			}
470 		}
471 
472 		if (td->o.do_verify && td->o.verify != VERIFY_NONE)
473 			buflen = (buflen + td->o.verify_interval - 1) &
474 				~(td->o.verify_interval - 1);
475 
476 		if (!td->o.bs_unaligned && is_power_of_2(minbs))
477 			buflen = (buflen + minbs - 1) & ~(minbs - 1);
478 
479 	} while (!io_u_fits(td, io_u, buflen));
480 
481 	return buflen;
482 }
483 
get_next_buflen(struct thread_data * td,struct io_u * io_u,unsigned int is_random)484 static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
485 				    unsigned int is_random)
486 {
487 	if (td->flags & TD_F_PROFILE_OPS) {
488 		struct prof_io_ops *ops = &td->prof_io_ops;
489 
490 		if (ops->fill_io_u_size)
491 			return ops->fill_io_u_size(td, io_u, is_random);
492 	}
493 
494 	return __get_next_buflen(td, io_u, is_random);
495 }
496 
set_rwmix_bytes(struct thread_data * td)497 static void set_rwmix_bytes(struct thread_data *td)
498 {
499 	unsigned int diff;
500 
501 	/*
502 	 * we do time or byte based switch. this is needed because
503 	 * buffered writes may issue a lot quicker than they complete,
504 	 * whereas reads do not.
505 	 */
506 	diff = td->o.rwmix[td->rwmix_ddir ^ 1];
507 	td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
508 }
509 
get_rand_ddir(struct thread_data * td)510 static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
511 {
512 	unsigned int v;
513 	unsigned long r;
514 
515 	r = __rand(&td->rwmix_state);
516 	v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
517 
518 	if (v <= td->o.rwmix[DDIR_READ])
519 		return DDIR_READ;
520 
521 	return DDIR_WRITE;
522 }
523 
io_u_quiesce(struct thread_data * td)524 void io_u_quiesce(struct thread_data *td)
525 {
526 	/*
527 	 * We are going to sleep, ensure that we flush anything pending as
528 	 * not to skew our latency numbers.
529 	 *
530 	 * Changed to only monitor 'in flight' requests here instead of the
531 	 * td->cur_depth, b/c td->cur_depth does not accurately represent
532 	 * io's that have been actually submitted to an async engine,
533 	 * and cur_depth is meaningless for sync engines.
534 	 */
535 	if (td->io_u_queued || td->cur_depth) {
536 		int fio_unused ret;
537 
538 		ret = td_io_commit(td);
539 	}
540 
541 	while (td->io_u_in_flight) {
542 		int fio_unused ret;
543 
544 		ret = io_u_queued_complete(td, 1, NULL);
545 	}
546 }
547 
rate_ddir(struct thread_data * td,enum fio_ddir ddir)548 static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
549 {
550 	enum fio_ddir odir = ddir ^ 1;
551 	long usec;
552 
553 	assert(ddir_rw(ddir));
554 
555 	if (td->rate_pending_usleep[ddir] <= 0)
556 		return ddir;
557 
558 	/*
559 	 * We have too much pending sleep in this direction. See if we
560 	 * should switch.
561 	 */
562 	if (td_rw(td) && td->o.rwmix[odir]) {
563 		/*
564 		 * Other direction does not have too much pending, switch
565 		 */
566 		if (td->rate_pending_usleep[odir] < 100000)
567 			return odir;
568 
569 		/*
570 		 * Both directions have pending sleep. Sleep the minimum time
571 		 * and deduct from both.
572 		 */
573 		if (td->rate_pending_usleep[ddir] <=
574 			td->rate_pending_usleep[odir]) {
575 			usec = td->rate_pending_usleep[ddir];
576 		} else {
577 			usec = td->rate_pending_usleep[odir];
578 			ddir = odir;
579 		}
580 	} else
581 		usec = td->rate_pending_usleep[ddir];
582 
583 	io_u_quiesce(td);
584 
585 	usec = usec_sleep(td, usec);
586 
587 	td->rate_pending_usleep[ddir] -= usec;
588 
589 	odir = ddir ^ 1;
590 	if (td_rw(td) && __should_check_rate(td, odir))
591 		td->rate_pending_usleep[odir] -= usec;
592 
593 	if (ddir == DDIR_TRIM)
594 		return DDIR_TRIM;
595 
596 	return ddir;
597 }
598 
599 /*
600  * Return the data direction for the next io_u. If the job is a
601  * mixed read/write workload, check the rwmix cycle and switch if
602  * necessary.
603  */
get_rw_ddir(struct thread_data * td)604 static enum fio_ddir get_rw_ddir(struct thread_data *td)
605 {
606 	enum fio_ddir ddir;
607 
608 	/*
609 	 * see if it's time to fsync
610 	 */
611 	if (td->o.fsync_blocks &&
612 	   !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
613 	     td->io_issues[DDIR_WRITE] && should_fsync(td))
614 		return DDIR_SYNC;
615 
616 	/*
617 	 * see if it's time to fdatasync
618 	 */
619 	if (td->o.fdatasync_blocks &&
620 	   !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
621 	     td->io_issues[DDIR_WRITE] && should_fsync(td))
622 		return DDIR_DATASYNC;
623 
624 	/*
625 	 * see if it's time to sync_file_range
626 	 */
627 	if (td->sync_file_range_nr &&
628 	   !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
629 	     td->io_issues[DDIR_WRITE] && should_fsync(td))
630 		return DDIR_SYNC_FILE_RANGE;
631 
632 	if (td_rw(td)) {
633 		/*
634 		 * Check if it's time to seed a new data direction.
635 		 */
636 		if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
637 			/*
638 			 * Put a top limit on how many bytes we do for
639 			 * one data direction, to avoid overflowing the
640 			 * ranges too much
641 			 */
642 			ddir = get_rand_ddir(td);
643 
644 			if (ddir != td->rwmix_ddir)
645 				set_rwmix_bytes(td);
646 
647 			td->rwmix_ddir = ddir;
648 		}
649 		ddir = td->rwmix_ddir;
650 	} else if (td_read(td))
651 		ddir = DDIR_READ;
652 	else if (td_write(td))
653 		ddir = DDIR_WRITE;
654 	else
655 		ddir = DDIR_TRIM;
656 
657 	td->rwmix_ddir = rate_ddir(td, ddir);
658 	return td->rwmix_ddir;
659 }
660 
set_rw_ddir(struct thread_data * td,struct io_u * io_u)661 static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
662 {
663 	io_u->ddir = io_u->acct_ddir = get_rw_ddir(td);
664 
665 	if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
666 	    td->o.barrier_blocks &&
667 	   !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
668 	     td->io_issues[DDIR_WRITE])
669 		io_u->flags |= IO_U_F_BARRIER;
670 }
671 
put_file_log(struct thread_data * td,struct fio_file * f)672 void put_file_log(struct thread_data *td, struct fio_file *f)
673 {
674 	unsigned int ret = put_file(td, f);
675 
676 	if (ret)
677 		td_verror(td, ret, "file close");
678 }
679 
put_io_u(struct thread_data * td,struct io_u * io_u)680 void put_io_u(struct thread_data *td, struct io_u *io_u)
681 {
682 	td_io_u_lock(td);
683 
684 	if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
685 		put_file_log(td, io_u->file);
686 
687 	io_u->file = NULL;
688 	io_u->flags |= IO_U_F_FREE;
689 
690 	if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
691 		td->cur_depth--;
692 	io_u_qpush(&td->io_u_freelist, io_u);
693 	td_io_u_unlock(td);
694 	td_io_u_free_notify(td);
695 }
696 
clear_io_u(struct thread_data * td,struct io_u * io_u)697 void clear_io_u(struct thread_data *td, struct io_u *io_u)
698 {
699 	io_u->flags &= ~IO_U_F_FLIGHT;
700 	put_io_u(td, io_u);
701 }
702 
requeue_io_u(struct thread_data * td,struct io_u ** io_u)703 void requeue_io_u(struct thread_data *td, struct io_u **io_u)
704 {
705 	struct io_u *__io_u = *io_u;
706 	enum fio_ddir ddir = acct_ddir(__io_u);
707 
708 	dprint(FD_IO, "requeue %p\n", __io_u);
709 
710 	td_io_u_lock(td);
711 
712 	__io_u->flags |= IO_U_F_FREE;
713 	if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
714 		td->io_issues[ddir]--;
715 
716 	__io_u->flags &= ~IO_U_F_FLIGHT;
717 	if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
718 		td->cur_depth--;
719 
720 	io_u_rpush(&td->io_u_requeues, __io_u);
721 	td_io_u_unlock(td);
722 	*io_u = NULL;
723 }
724 
fill_io_u(struct thread_data * td,struct io_u * io_u)725 static int fill_io_u(struct thread_data *td, struct io_u *io_u)
726 {
727 	unsigned int is_random;
728 
729 	if (td->io_ops->flags & FIO_NOIO)
730 		goto out;
731 
732 	set_rw_ddir(td, io_u);
733 
734 	/*
735 	 * fsync() or fdatasync() or trim etc, we are done
736 	 */
737 	if (!ddir_rw(io_u->ddir))
738 		goto out;
739 
740 	/*
741 	 * See if it's time to switch to a new zone
742 	 */
743 	if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
744 		struct fio_file *f = io_u->file;
745 
746 		td->zone_bytes = 0;
747 		f->file_offset += td->o.zone_range + td->o.zone_skip;
748 
749 		/*
750 		 * Wrap from the beginning, if we exceed the file size
751 		 */
752 		if (f->file_offset >= f->real_file_size)
753 			f->file_offset = f->real_file_size - f->file_offset;
754 		f->last_pos[io_u->ddir] = f->file_offset;
755 		td->io_skip_bytes += td->o.zone_skip;
756 	}
757 
758 	/*
759 	 * No log, let the seq/rand engine retrieve the next buflen and
760 	 * position.
761 	 */
762 	if (get_next_offset(td, io_u, &is_random)) {
763 		dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
764 		return 1;
765 	}
766 
767 	io_u->buflen = get_next_buflen(td, io_u, is_random);
768 	if (!io_u->buflen) {
769 		dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
770 		return 1;
771 	}
772 
773 	if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
774 		dprint(FD_IO, "io_u %p, offset too large\n", io_u);
775 		dprint(FD_IO, "  off=%llu/%lu > %llu\n",
776 			(unsigned long long) io_u->offset, io_u->buflen,
777 			(unsigned long long) io_u->file->real_file_size);
778 		return 1;
779 	}
780 
781 	/*
782 	 * mark entry before potentially trimming io_u
783 	 */
784 	if (td_random(td) && file_randommap(td, io_u->file))
785 		mark_random_map(td, io_u);
786 
787 out:
788 	dprint_io_u(io_u, "fill_io_u");
789 	td->zone_bytes += io_u->buflen;
790 	return 0;
791 }
792 
__io_u_mark_map(unsigned int * map,unsigned int nr)793 static void __io_u_mark_map(unsigned int *map, unsigned int nr)
794 {
795 	int idx = 0;
796 
797 	switch (nr) {
798 	default:
799 		idx = 6;
800 		break;
801 	case 33 ... 64:
802 		idx = 5;
803 		break;
804 	case 17 ... 32:
805 		idx = 4;
806 		break;
807 	case 9 ... 16:
808 		idx = 3;
809 		break;
810 	case 5 ... 8:
811 		idx = 2;
812 		break;
813 	case 1 ... 4:
814 		idx = 1;
815 	case 0:
816 		break;
817 	}
818 
819 	map[idx]++;
820 }
821 
io_u_mark_submit(struct thread_data * td,unsigned int nr)822 void io_u_mark_submit(struct thread_data *td, unsigned int nr)
823 {
824 	__io_u_mark_map(td->ts.io_u_submit, nr);
825 	td->ts.total_submit++;
826 }
827 
io_u_mark_complete(struct thread_data * td,unsigned int nr)828 void io_u_mark_complete(struct thread_data *td, unsigned int nr)
829 {
830 	__io_u_mark_map(td->ts.io_u_complete, nr);
831 	td->ts.total_complete++;
832 }
833 
io_u_mark_depth(struct thread_data * td,unsigned int nr)834 void io_u_mark_depth(struct thread_data *td, unsigned int nr)
835 {
836 	int idx = 0;
837 
838 	switch (td->cur_depth) {
839 	default:
840 		idx = 6;
841 		break;
842 	case 32 ... 63:
843 		idx = 5;
844 		break;
845 	case 16 ... 31:
846 		idx = 4;
847 		break;
848 	case 8 ... 15:
849 		idx = 3;
850 		break;
851 	case 4 ... 7:
852 		idx = 2;
853 		break;
854 	case 2 ... 3:
855 		idx = 1;
856 	case 1:
857 		break;
858 	}
859 
860 	td->ts.io_u_map[idx] += nr;
861 }
862 
io_u_mark_lat_usec(struct thread_data * td,unsigned long usec)863 static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
864 {
865 	int idx = 0;
866 
867 	assert(usec < 1000);
868 
869 	switch (usec) {
870 	case 750 ... 999:
871 		idx = 9;
872 		break;
873 	case 500 ... 749:
874 		idx = 8;
875 		break;
876 	case 250 ... 499:
877 		idx = 7;
878 		break;
879 	case 100 ... 249:
880 		idx = 6;
881 		break;
882 	case 50 ... 99:
883 		idx = 5;
884 		break;
885 	case 20 ... 49:
886 		idx = 4;
887 		break;
888 	case 10 ... 19:
889 		idx = 3;
890 		break;
891 	case 4 ... 9:
892 		idx = 2;
893 		break;
894 	case 2 ... 3:
895 		idx = 1;
896 	case 0 ... 1:
897 		break;
898 	}
899 
900 	assert(idx < FIO_IO_U_LAT_U_NR);
901 	td->ts.io_u_lat_u[idx]++;
902 }
903 
io_u_mark_lat_msec(struct thread_data * td,unsigned long msec)904 static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
905 {
906 	int idx = 0;
907 
908 	switch (msec) {
909 	default:
910 		idx = 11;
911 		break;
912 	case 1000 ... 1999:
913 		idx = 10;
914 		break;
915 	case 750 ... 999:
916 		idx = 9;
917 		break;
918 	case 500 ... 749:
919 		idx = 8;
920 		break;
921 	case 250 ... 499:
922 		idx = 7;
923 		break;
924 	case 100 ... 249:
925 		idx = 6;
926 		break;
927 	case 50 ... 99:
928 		idx = 5;
929 		break;
930 	case 20 ... 49:
931 		idx = 4;
932 		break;
933 	case 10 ... 19:
934 		idx = 3;
935 		break;
936 	case 4 ... 9:
937 		idx = 2;
938 		break;
939 	case 2 ... 3:
940 		idx = 1;
941 	case 0 ... 1:
942 		break;
943 	}
944 
945 	assert(idx < FIO_IO_U_LAT_M_NR);
946 	td->ts.io_u_lat_m[idx]++;
947 }
948 
io_u_mark_latency(struct thread_data * td,unsigned long usec)949 static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
950 {
951 	if (usec < 1000)
952 		io_u_mark_lat_usec(td, usec);
953 	else
954 		io_u_mark_lat_msec(td, usec / 1000);
955 }
956 
957 /*
958  * Get next file to service by choosing one at random
959  */
get_next_file_rand(struct thread_data * td,enum fio_file_flags goodf,enum fio_file_flags badf)960 static struct fio_file *get_next_file_rand(struct thread_data *td,
961 					   enum fio_file_flags goodf,
962 					   enum fio_file_flags badf)
963 {
964 	struct fio_file *f;
965 	int fno;
966 
967 	do {
968 		int opened = 0;
969 		unsigned long r;
970 
971 		r = __rand(&td->next_file_state);
972 		fno = (unsigned int) ((double) td->o.nr_files
973 				* (r / (FRAND_MAX + 1.0)));
974 
975 		f = td->files[fno];
976 		if (fio_file_done(f))
977 			continue;
978 
979 		if (!fio_file_open(f)) {
980 			int err;
981 
982 			if (td->nr_open_files >= td->o.open_files)
983 				return ERR_PTR(-EBUSY);
984 
985 			err = td_io_open_file(td, f);
986 			if (err)
987 				continue;
988 			opened = 1;
989 		}
990 
991 		if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
992 			dprint(FD_FILE, "get_next_file_rand: %p\n", f);
993 			return f;
994 		}
995 		if (opened)
996 			td_io_close_file(td, f);
997 	} while (1);
998 }
999 
1000 /*
1001  * Get next file to service by doing round robin between all available ones
1002  */
get_next_file_rr(struct thread_data * td,int goodf,int badf)1003 static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1004 					 int badf)
1005 {
1006 	unsigned int old_next_file = td->next_file;
1007 	struct fio_file *f;
1008 
1009 	do {
1010 		int opened = 0;
1011 
1012 		f = td->files[td->next_file];
1013 
1014 		td->next_file++;
1015 		if (td->next_file >= td->o.nr_files)
1016 			td->next_file = 0;
1017 
1018 		dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1019 		if (fio_file_done(f)) {
1020 			f = NULL;
1021 			continue;
1022 		}
1023 
1024 		if (!fio_file_open(f)) {
1025 			int err;
1026 
1027 			if (td->nr_open_files >= td->o.open_files)
1028 				return ERR_PTR(-EBUSY);
1029 
1030 			err = td_io_open_file(td, f);
1031 			if (err) {
1032 				dprint(FD_FILE, "error %d on open of %s\n",
1033 					err, f->file_name);
1034 				f = NULL;
1035 				continue;
1036 			}
1037 			opened = 1;
1038 		}
1039 
1040 		dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1041 								f->flags);
1042 		if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1043 			break;
1044 
1045 		if (opened)
1046 			td_io_close_file(td, f);
1047 
1048 		f = NULL;
1049 	} while (td->next_file != old_next_file);
1050 
1051 	dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1052 	return f;
1053 }
1054 
__get_next_file(struct thread_data * td)1055 static struct fio_file *__get_next_file(struct thread_data *td)
1056 {
1057 	struct fio_file *f;
1058 
1059 	assert(td->o.nr_files <= td->files_index);
1060 
1061 	if (td->nr_done_files >= td->o.nr_files) {
1062 		dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1063 				" nr_files=%d\n", td->nr_open_files,
1064 						  td->nr_done_files,
1065 						  td->o.nr_files);
1066 		return NULL;
1067 	}
1068 
1069 	f = td->file_service_file;
1070 	if (f && fio_file_open(f) && !fio_file_closing(f)) {
1071 		if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1072 			goto out;
1073 		if (td->file_service_left--)
1074 			goto out;
1075 	}
1076 
1077 	if (td->o.file_service_type == FIO_FSERVICE_RR ||
1078 	    td->o.file_service_type == FIO_FSERVICE_SEQ)
1079 		f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1080 	else
1081 		f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1082 
1083 	if (IS_ERR(f))
1084 		return f;
1085 
1086 	td->file_service_file = f;
1087 	td->file_service_left = td->file_service_nr - 1;
1088 out:
1089 	if (f)
1090 		dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1091 	else
1092 		dprint(FD_FILE, "get_next_file: NULL\n");
1093 	return f;
1094 }
1095 
get_next_file(struct thread_data * td)1096 static struct fio_file *get_next_file(struct thread_data *td)
1097 {
1098 	if (td->flags & TD_F_PROFILE_OPS) {
1099 		struct prof_io_ops *ops = &td->prof_io_ops;
1100 
1101 		if (ops->get_next_file)
1102 			return ops->get_next_file(td);
1103 	}
1104 
1105 	return __get_next_file(td);
1106 }
1107 
set_io_u_file(struct thread_data * td,struct io_u * io_u)1108 static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1109 {
1110 	struct fio_file *f;
1111 
1112 	do {
1113 		f = get_next_file(td);
1114 		if (IS_ERR_OR_NULL(f))
1115 			return PTR_ERR(f);
1116 
1117 		io_u->file = f;
1118 		get_file(f);
1119 
1120 		if (!fill_io_u(td, io_u))
1121 			break;
1122 
1123 		put_file_log(td, f);
1124 		td_io_close_file(td, f);
1125 		io_u->file = NULL;
1126 		fio_file_set_done(f);
1127 		td->nr_done_files++;
1128 		dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1129 					td->nr_done_files, td->o.nr_files);
1130 	} while (1);
1131 
1132 	return 0;
1133 }
1134 
lat_fatal(struct thread_data * td,struct io_completion_data * icd,unsigned long tusec,unsigned long max_usec)1135 static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1136 		      unsigned long tusec, unsigned long max_usec)
1137 {
1138 	if (!td->error)
1139 		log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1140 	td_verror(td, ETIMEDOUT, "max latency exceeded");
1141 	icd->error = ETIMEDOUT;
1142 }
1143 
lat_new_cycle(struct thread_data * td)1144 static void lat_new_cycle(struct thread_data *td)
1145 {
1146 	fio_gettime(&td->latency_ts, NULL);
1147 	td->latency_ios = ddir_rw_sum(td->io_blocks);
1148 	td->latency_failed = 0;
1149 }
1150 
1151 /*
1152  * We had an IO outside the latency target. Reduce the queue depth. If we
1153  * are at QD=1, then it's time to give up.
1154  */
__lat_target_failed(struct thread_data * td)1155 static int __lat_target_failed(struct thread_data *td)
1156 {
1157 	if (td->latency_qd == 1)
1158 		return 1;
1159 
1160 	td->latency_qd_high = td->latency_qd;
1161 
1162 	if (td->latency_qd == td->latency_qd_low)
1163 		td->latency_qd_low--;
1164 
1165 	td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1166 
1167 	dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1168 
1169 	/*
1170 	 * When we ramp QD down, quiesce existing IO to prevent
1171 	 * a storm of ramp downs due to pending higher depth.
1172 	 */
1173 	io_u_quiesce(td);
1174 	lat_new_cycle(td);
1175 	return 0;
1176 }
1177 
lat_target_failed(struct thread_data * td)1178 static int lat_target_failed(struct thread_data *td)
1179 {
1180 	if (td->o.latency_percentile.u.f == 100.0)
1181 		return __lat_target_failed(td);
1182 
1183 	td->latency_failed++;
1184 	return 0;
1185 }
1186 
lat_target_init(struct thread_data * td)1187 void lat_target_init(struct thread_data *td)
1188 {
1189 	td->latency_end_run = 0;
1190 
1191 	if (td->o.latency_target) {
1192 		dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1193 		fio_gettime(&td->latency_ts, NULL);
1194 		td->latency_qd = 1;
1195 		td->latency_qd_high = td->o.iodepth;
1196 		td->latency_qd_low = 1;
1197 		td->latency_ios = ddir_rw_sum(td->io_blocks);
1198 	} else
1199 		td->latency_qd = td->o.iodepth;
1200 }
1201 
lat_target_reset(struct thread_data * td)1202 void lat_target_reset(struct thread_data *td)
1203 {
1204 	if (!td->latency_end_run)
1205 		lat_target_init(td);
1206 }
1207 
lat_target_success(struct thread_data * td)1208 static void lat_target_success(struct thread_data *td)
1209 {
1210 	const unsigned int qd = td->latency_qd;
1211 	struct thread_options *o = &td->o;
1212 
1213 	td->latency_qd_low = td->latency_qd;
1214 
1215 	/*
1216 	 * If we haven't failed yet, we double up to a failing value instead
1217 	 * of bisecting from highest possible queue depth. If we have set
1218 	 * a limit other than td->o.iodepth, bisect between that.
1219 	 */
1220 	if (td->latency_qd_high != o->iodepth)
1221 		td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1222 	else
1223 		td->latency_qd *= 2;
1224 
1225 	if (td->latency_qd > o->iodepth)
1226 		td->latency_qd = o->iodepth;
1227 
1228 	dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1229 
1230 	/*
1231 	 * Same as last one, we are done. Let it run a latency cycle, so
1232 	 * we get only the results from the targeted depth.
1233 	 */
1234 	if (td->latency_qd == qd) {
1235 		if (td->latency_end_run) {
1236 			dprint(FD_RATE, "We are done\n");
1237 			td->done = 1;
1238 		} else {
1239 			dprint(FD_RATE, "Quiesce and final run\n");
1240 			io_u_quiesce(td);
1241 			td->latency_end_run = 1;
1242 			reset_all_stats(td);
1243 			reset_io_stats(td);
1244 		}
1245 	}
1246 
1247 	lat_new_cycle(td);
1248 }
1249 
1250 /*
1251  * Check if we can bump the queue depth
1252  */
lat_target_check(struct thread_data * td)1253 void lat_target_check(struct thread_data *td)
1254 {
1255 	uint64_t usec_window;
1256 	uint64_t ios;
1257 	double success_ios;
1258 
1259 	usec_window = utime_since_now(&td->latency_ts);
1260 	if (usec_window < td->o.latency_window)
1261 		return;
1262 
1263 	ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1264 	success_ios = (double) (ios - td->latency_failed) / (double) ios;
1265 	success_ios *= 100.0;
1266 
1267 	dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1268 
1269 	if (success_ios >= td->o.latency_percentile.u.f)
1270 		lat_target_success(td);
1271 	else
1272 		__lat_target_failed(td);
1273 }
1274 
1275 /*
1276  * If latency target is enabled, we might be ramping up or down and not
1277  * using the full queue depth available.
1278  */
queue_full(const struct thread_data * td)1279 int queue_full(const struct thread_data *td)
1280 {
1281 	const int qempty = io_u_qempty(&td->io_u_freelist);
1282 
1283 	if (qempty)
1284 		return 1;
1285 	if (!td->o.latency_target)
1286 		return 0;
1287 
1288 	return td->cur_depth >= td->latency_qd;
1289 }
1290 
__get_io_u(struct thread_data * td)1291 struct io_u *__get_io_u(struct thread_data *td)
1292 {
1293 	struct io_u *io_u = NULL;
1294 
1295 	if (td->stop_io)
1296 		return NULL;
1297 
1298 	td_io_u_lock(td);
1299 
1300 again:
1301 	if (!io_u_rempty(&td->io_u_requeues))
1302 		io_u = io_u_rpop(&td->io_u_requeues);
1303 	else if (!queue_full(td)) {
1304 		io_u = io_u_qpop(&td->io_u_freelist);
1305 
1306 		io_u->file = NULL;
1307 		io_u->buflen = 0;
1308 		io_u->resid = 0;
1309 		io_u->end_io = NULL;
1310 	}
1311 
1312 	if (io_u) {
1313 		assert(io_u->flags & IO_U_F_FREE);
1314 		io_u->flags &= ~(IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1315 				 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1316 				 IO_U_F_VER_LIST);
1317 
1318 		io_u->error = 0;
1319 		io_u->acct_ddir = -1;
1320 		td->cur_depth++;
1321 		io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1322 		io_u->ipo = NULL;
1323 	} else if (td->o.verify_async) {
1324 		/*
1325 		 * We ran out, wait for async verify threads to finish and
1326 		 * return one
1327 		 */
1328 		pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1329 		goto again;
1330 	}
1331 
1332 	td_io_u_unlock(td);
1333 	return io_u;
1334 }
1335 
check_get_trim(struct thread_data * td,struct io_u * io_u)1336 static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1337 {
1338 	if (!(td->flags & TD_F_TRIM_BACKLOG))
1339 		return 0;
1340 
1341 	if (td->trim_entries) {
1342 		int get_trim = 0;
1343 
1344 		if (td->trim_batch) {
1345 			td->trim_batch--;
1346 			get_trim = 1;
1347 		} else if (!(td->io_hist_len % td->o.trim_backlog) &&
1348 			 td->last_ddir != DDIR_READ) {
1349 			td->trim_batch = td->o.trim_batch;
1350 			if (!td->trim_batch)
1351 				td->trim_batch = td->o.trim_backlog;
1352 			get_trim = 1;
1353 		}
1354 
1355 		if (get_trim && !get_next_trim(td, io_u))
1356 			return 1;
1357 	}
1358 
1359 	return 0;
1360 }
1361 
check_get_verify(struct thread_data * td,struct io_u * io_u)1362 static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1363 {
1364 	if (!(td->flags & TD_F_VER_BACKLOG))
1365 		return 0;
1366 
1367 	if (td->io_hist_len) {
1368 		int get_verify = 0;
1369 
1370 		if (td->verify_batch)
1371 			get_verify = 1;
1372 		else if (!(td->io_hist_len % td->o.verify_backlog) &&
1373 			 td->last_ddir != DDIR_READ) {
1374 			td->verify_batch = td->o.verify_batch;
1375 			if (!td->verify_batch)
1376 				td->verify_batch = td->o.verify_backlog;
1377 			get_verify = 1;
1378 		}
1379 
1380 		if (get_verify && !get_next_verify(td, io_u)) {
1381 			td->verify_batch--;
1382 			return 1;
1383 		}
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 /*
1390  * Fill offset and start time into the buffer content, to prevent too
1391  * easy compressible data for simple de-dupe attempts. Do this for every
1392  * 512b block in the range, since that should be the smallest block size
1393  * we can expect from a device.
1394  */
small_content_scramble(struct io_u * io_u)1395 static void small_content_scramble(struct io_u *io_u)
1396 {
1397 	unsigned int i, nr_blocks = io_u->buflen / 512;
1398 	uint64_t boffset;
1399 	unsigned int offset;
1400 	void *p, *end;
1401 
1402 	if (!nr_blocks)
1403 		return;
1404 
1405 	p = io_u->xfer_buf;
1406 	boffset = io_u->offset;
1407 	io_u->buf_filled_len = 0;
1408 
1409 	for (i = 0; i < nr_blocks; i++) {
1410 		/*
1411 		 * Fill the byte offset into a "random" start offset of
1412 		 * the buffer, given by the product of the usec time
1413 		 * and the actual offset.
1414 		 */
1415 		offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1416 		offset &= ~(sizeof(uint64_t) - 1);
1417 		if (offset >= 512 - sizeof(uint64_t))
1418 			offset -= sizeof(uint64_t);
1419 		memcpy(p + offset, &boffset, sizeof(boffset));
1420 
1421 		end = p + 512 - sizeof(io_u->start_time);
1422 		memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1423 		p += 512;
1424 		boffset += 512;
1425 	}
1426 }
1427 
1428 /*
1429  * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1430  * etc. The returned io_u is fully ready to be prepped and submitted.
1431  */
get_io_u(struct thread_data * td)1432 struct io_u *get_io_u(struct thread_data *td)
1433 {
1434 	struct fio_file *f;
1435 	struct io_u *io_u;
1436 	int do_scramble = 0;
1437 	long ret = 0;
1438 
1439 	io_u = __get_io_u(td);
1440 	if (!io_u) {
1441 		dprint(FD_IO, "__get_io_u failed\n");
1442 		return NULL;
1443 	}
1444 
1445 	if (check_get_verify(td, io_u))
1446 		goto out;
1447 	if (check_get_trim(td, io_u))
1448 		goto out;
1449 
1450 	/*
1451 	 * from a requeue, io_u already setup
1452 	 */
1453 	if (io_u->file)
1454 		goto out;
1455 
1456 	/*
1457 	 * If using an iolog, grab next piece if any available.
1458 	 */
1459 	if (td->flags & TD_F_READ_IOLOG) {
1460 		if (read_iolog_get(td, io_u))
1461 			goto err_put;
1462 	} else if (set_io_u_file(td, io_u)) {
1463 		ret = -EBUSY;
1464 		dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1465 		goto err_put;
1466 	}
1467 
1468 	f = io_u->file;
1469 	if (!f) {
1470 		dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1471 		goto err_put;
1472 	}
1473 
1474 	assert(fio_file_open(f));
1475 
1476 	if (ddir_rw(io_u->ddir)) {
1477 		if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1478 			dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1479 			goto err_put;
1480 		}
1481 
1482 		f->last_start[io_u->ddir] = io_u->offset;
1483 		f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1484 
1485 		if (io_u->ddir == DDIR_WRITE) {
1486 			if (td->flags & TD_F_REFILL_BUFFERS) {
1487 				io_u_fill_buffer(td, io_u,
1488 					td->o.min_bs[DDIR_WRITE],
1489 					io_u->xfer_buflen);
1490 			} else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1491 				   !(td->flags & TD_F_COMPRESS))
1492 				do_scramble = 1;
1493 			if (td->flags & TD_F_VER_NONE) {
1494 				populate_verify_io_u(td, io_u);
1495 				do_scramble = 0;
1496 			}
1497 		} else if (io_u->ddir == DDIR_READ) {
1498 			/*
1499 			 * Reset the buf_filled parameters so next time if the
1500 			 * buffer is used for writes it is refilled.
1501 			 */
1502 			io_u->buf_filled_len = 0;
1503 		}
1504 	}
1505 
1506 	/*
1507 	 * Set io data pointers.
1508 	 */
1509 	io_u->xfer_buf = io_u->buf;
1510 	io_u->xfer_buflen = io_u->buflen;
1511 
1512 out:
1513 	assert(io_u->file);
1514 	if (!td_io_prep(td, io_u)) {
1515 		if (!td->o.disable_slat)
1516 			fio_gettime(&io_u->start_time, NULL);
1517 		if (do_scramble)
1518 			small_content_scramble(io_u);
1519 		return io_u;
1520 	}
1521 err_put:
1522 	dprint(FD_IO, "get_io_u failed\n");
1523 	put_io_u(td, io_u);
1524 	return ERR_PTR(ret);
1525 }
1526 
io_u_log_error(struct thread_data * td,struct io_u * io_u)1527 void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1528 {
1529 	enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1530 
1531 	if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1532 		return;
1533 
1534 	log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1535 		io_u->file ? " on file " : "",
1536 		io_u->file ? io_u->file->file_name : "",
1537 		strerror(io_u->error),
1538 		io_ddir_name(io_u->ddir),
1539 		io_u->offset, io_u->xfer_buflen);
1540 
1541 	if (!td->error)
1542 		td_verror(td, io_u->error, "io_u error");
1543 }
1544 
gtod_reduce(struct thread_data * td)1545 static inline int gtod_reduce(struct thread_data *td)
1546 {
1547 	return td->o.disable_clat && td->o.disable_lat && td->o.disable_slat
1548 		&& td->o.disable_bw;
1549 }
1550 
account_io_completion(struct thread_data * td,struct io_u * io_u,struct io_completion_data * icd,const enum fio_ddir idx,unsigned int bytes)1551 static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1552 				  struct io_completion_data *icd,
1553 				  const enum fio_ddir idx, unsigned int bytes)
1554 {
1555 	unsigned long lusec = 0;
1556 
1557 	if (!gtod_reduce(td))
1558 		lusec = utime_since(&io_u->issue_time, &icd->time);
1559 
1560 	if (!td->o.disable_lat) {
1561 		unsigned long tusec;
1562 
1563 		tusec = utime_since(&io_u->start_time, &icd->time);
1564 		add_lat_sample(td, idx, tusec, bytes, io_u->offset);
1565 
1566 		if (td->flags & TD_F_PROFILE_OPS) {
1567 			struct prof_io_ops *ops = &td->prof_io_ops;
1568 
1569 			if (ops->io_u_lat)
1570 				icd->error = ops->io_u_lat(td, tusec);
1571 		}
1572 
1573 		if (td->o.max_latency && tusec > td->o.max_latency)
1574 			lat_fatal(td, icd, tusec, td->o.max_latency);
1575 		if (td->o.latency_target && tusec > td->o.latency_target) {
1576 			if (lat_target_failed(td))
1577 				lat_fatal(td, icd, tusec, td->o.latency_target);
1578 		}
1579 	}
1580 
1581 	if (!td->o.disable_clat) {
1582 		add_clat_sample(td, idx, lusec, bytes, io_u->offset);
1583 		io_u_mark_latency(td, lusec);
1584 	}
1585 
1586 	if (!td->o.disable_bw)
1587 		add_bw_sample(td, idx, bytes, &icd->time);
1588 
1589 	if (!gtod_reduce(td))
1590 		add_iops_sample(td, idx, bytes, &icd->time);
1591 }
1592 
usec_for_io(struct thread_data * td,enum fio_ddir ddir)1593 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1594 {
1595 	uint64_t secs, remainder, bps, bytes;
1596 
1597 	bytes = td->this_io_bytes[ddir];
1598 	bps = td->rate_bps[ddir];
1599 	secs = bytes / bps;
1600 	remainder = bytes % bps;
1601 	return remainder * 1000000 / bps + secs * 1000000;
1602 }
1603 
io_completed(struct thread_data * td,struct io_u ** io_u_ptr,struct io_completion_data * icd)1604 static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1605 			 struct io_completion_data *icd)
1606 {
1607 	struct io_u *io_u = *io_u_ptr;
1608 	enum fio_ddir ddir = io_u->ddir;
1609 	struct fio_file *f = io_u->file;
1610 
1611 	dprint_io_u(io_u, "io complete");
1612 
1613 	td_io_u_lock(td);
1614 	assert(io_u->flags & IO_U_F_FLIGHT);
1615 	io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1616 
1617 	/*
1618 	 * Mark IO ok to verify
1619 	 */
1620 	if (io_u->ipo) {
1621 		/*
1622 		 * Remove errored entry from the verification list
1623 		 */
1624 		if (io_u->error)
1625 			unlog_io_piece(td, io_u);
1626 		else {
1627 			io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1628 			write_barrier();
1629 		}
1630 	}
1631 
1632 	td_io_u_unlock(td);
1633 
1634 	if (ddir_sync(ddir)) {
1635 		td->last_was_sync = 1;
1636 		if (f) {
1637 			f->first_write = -1ULL;
1638 			f->last_write = -1ULL;
1639 		}
1640 		return;
1641 	}
1642 
1643 	td->last_was_sync = 0;
1644 	td->last_ddir = ddir;
1645 
1646 	if (!io_u->error && ddir_rw(ddir)) {
1647 		unsigned int bytes = io_u->buflen - io_u->resid;
1648 		const enum fio_ddir oddir = ddir ^ 1;
1649 		int ret;
1650 
1651 		td->io_blocks[ddir]++;
1652 		td->this_io_blocks[ddir]++;
1653 		td->io_bytes[ddir] += bytes;
1654 
1655 		if (!(io_u->flags & IO_U_F_VER_LIST))
1656 			td->this_io_bytes[ddir] += bytes;
1657 
1658 		if (ddir == DDIR_WRITE) {
1659 			if (f) {
1660 				if (f->first_write == -1ULL ||
1661 				    io_u->offset < f->first_write)
1662 					f->first_write = io_u->offset;
1663 				if (f->last_write == -1ULL ||
1664 				    ((io_u->offset + bytes) > f->last_write))
1665 					f->last_write = io_u->offset + bytes;
1666 			}
1667 			if (td->last_write_comp) {
1668 				int idx = td->last_write_idx++;
1669 
1670 				td->last_write_comp[idx] = io_u->offset;
1671 				if (td->last_write_idx == td->o.iodepth)
1672 					td->last_write_idx = 0;
1673 			}
1674 		}
1675 
1676 		if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1677 					   td->runstate == TD_VERIFYING)) {
1678 			account_io_completion(td, io_u, icd, ddir, bytes);
1679 
1680 			if (__should_check_rate(td, ddir)) {
1681 				td->rate_pending_usleep[ddir] =
1682 					(usec_for_io(td, ddir) -
1683 					 utime_since_now(&td->start));
1684 			}
1685 			if (ddir != DDIR_TRIM &&
1686 			    __should_check_rate(td, oddir)) {
1687 				td->rate_pending_usleep[oddir] =
1688 					(usec_for_io(td, oddir) -
1689 					 utime_since_now(&td->start));
1690 			}
1691 		}
1692 
1693 		icd->bytes_done[ddir] += bytes;
1694 
1695 		if (io_u->end_io) {
1696 			ret = io_u->end_io(td, io_u_ptr);
1697 			io_u = *io_u_ptr;
1698 			if (ret && !icd->error)
1699 				icd->error = ret;
1700 		}
1701 	} else if (io_u->error) {
1702 		icd->error = io_u->error;
1703 		io_u_log_error(td, io_u);
1704 	}
1705 	if (icd->error) {
1706 		enum error_type_bit eb = td_error_type(ddir, icd->error);
1707 
1708 		if (!td_non_fatal_error(td, eb, icd->error))
1709 			return;
1710 
1711 		/*
1712 		 * If there is a non_fatal error, then add to the error count
1713 		 * and clear all the errors.
1714 		 */
1715 		update_error_count(td, icd->error);
1716 		td_clear_error(td);
1717 		icd->error = 0;
1718 		if (io_u)
1719 			io_u->error = 0;
1720 	}
1721 }
1722 
init_icd(struct thread_data * td,struct io_completion_data * icd,int nr)1723 static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1724 		     int nr)
1725 {
1726 	int ddir;
1727 
1728 	if (!gtod_reduce(td))
1729 		fio_gettime(&icd->time, NULL);
1730 
1731 	icd->nr = nr;
1732 
1733 	icd->error = 0;
1734 	for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1735 		icd->bytes_done[ddir] = 0;
1736 }
1737 
ios_completed(struct thread_data * td,struct io_completion_data * icd)1738 static void ios_completed(struct thread_data *td,
1739 			  struct io_completion_data *icd)
1740 {
1741 	struct io_u *io_u;
1742 	int i;
1743 
1744 	for (i = 0; i < icd->nr; i++) {
1745 		io_u = td->io_ops->event(td, i);
1746 
1747 		io_completed(td, &io_u, icd);
1748 
1749 		if (io_u)
1750 			put_io_u(td, io_u);
1751 	}
1752 }
1753 
1754 /*
1755  * Complete a single io_u for the sync engines.
1756  */
io_u_sync_complete(struct thread_data * td,struct io_u * io_u,uint64_t * bytes)1757 int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1758 		       uint64_t *bytes)
1759 {
1760 	struct io_completion_data icd;
1761 
1762 	init_icd(td, &icd, 1);
1763 	io_completed(td, &io_u, &icd);
1764 
1765 	if (io_u)
1766 		put_io_u(td, io_u);
1767 
1768 	if (icd.error) {
1769 		td_verror(td, icd.error, "io_u_sync_complete");
1770 		return -1;
1771 	}
1772 
1773 	if (bytes) {
1774 		int ddir;
1775 
1776 		for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1777 			bytes[ddir] += icd.bytes_done[ddir];
1778 	}
1779 
1780 	return 0;
1781 }
1782 
1783 /*
1784  * Called to complete min_events number of io for the async engines.
1785  */
io_u_queued_complete(struct thread_data * td,int min_evts,uint64_t * bytes)1786 int io_u_queued_complete(struct thread_data *td, int min_evts,
1787 			 uint64_t *bytes)
1788 {
1789 	struct io_completion_data icd;
1790 	struct timespec *tvp = NULL;
1791 	int ret;
1792 	struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1793 
1794 	dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1795 
1796 	if (!min_evts)
1797 		tvp = &ts;
1798 	else if (min_evts > td->cur_depth)
1799 		min_evts = td->cur_depth;
1800 
1801 	ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1802 	if (ret < 0) {
1803 		td_verror(td, -ret, "td_io_getevents");
1804 		return ret;
1805 	} else if (!ret)
1806 		return ret;
1807 
1808 	init_icd(td, &icd, ret);
1809 	ios_completed(td, &icd);
1810 	if (icd.error) {
1811 		td_verror(td, icd.error, "io_u_queued_complete");
1812 		return -1;
1813 	}
1814 
1815 	if (bytes) {
1816 		int ddir;
1817 
1818 		for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1819 			bytes[ddir] += icd.bytes_done[ddir];
1820 	}
1821 
1822 	return 0;
1823 }
1824 
1825 /*
1826  * Call when io_u is really queued, to update the submission latency.
1827  */
io_u_queued(struct thread_data * td,struct io_u * io_u)1828 void io_u_queued(struct thread_data *td, struct io_u *io_u)
1829 {
1830 	if (!td->o.disable_slat) {
1831 		unsigned long slat_time;
1832 
1833 		slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1834 		add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
1835 				io_u->offset);
1836 	}
1837 }
1838 
1839 /*
1840  * See if we should reuse the last seed, if dedupe is enabled
1841  */
get_buf_state(struct thread_data * td)1842 static struct frand_state *get_buf_state(struct thread_data *td)
1843 {
1844 	unsigned int v;
1845 	unsigned long r;
1846 
1847 	if (!td->o.dedupe_percentage)
1848 		return &td->buf_state;
1849 	else if (td->o.dedupe_percentage == 100)
1850 		return &td->buf_state_prev;
1851 
1852 	r = __rand(&td->dedupe_state);
1853 	v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
1854 
1855 	if (v <= td->o.dedupe_percentage)
1856 		return &td->buf_state_prev;
1857 
1858 	return &td->buf_state;
1859 }
1860 
save_buf_state(struct thread_data * td,struct frand_state * rs)1861 static void save_buf_state(struct thread_data *td, struct frand_state *rs)
1862 {
1863 	if (rs == &td->buf_state)
1864 		frand_copy(&td->buf_state_prev, rs);
1865 }
1866 
fill_io_buffer(struct thread_data * td,void * buf,unsigned int min_write,unsigned int max_bs)1867 void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
1868 		    unsigned int max_bs)
1869 {
1870 	struct thread_options *o = &td->o;
1871 
1872 	if (o->compress_percentage || o->dedupe_percentage) {
1873 		unsigned int perc = td->o.compress_percentage;
1874 		struct frand_state *rs;
1875 		unsigned int left = max_bs;
1876 
1877 		do {
1878 			rs = get_buf_state(td);
1879 
1880 			min_write = min(min_write, left);
1881 
1882 			if (perc) {
1883 				unsigned int seg = min_write;
1884 
1885 				seg = min(min_write, td->o.compress_chunk);
1886 				if (!seg)
1887 					seg = min_write;
1888 
1889 				fill_random_buf_percentage(rs, buf, perc, seg,
1890 					min_write, o->buffer_pattern,
1891 						   o->buffer_pattern_bytes);
1892 			} else
1893 				fill_random_buf(rs, buf, min_write);
1894 
1895 			buf += min_write;
1896 			left -= min_write;
1897 			save_buf_state(td, rs);
1898 		} while (left);
1899 	} else if (o->buffer_pattern_bytes)
1900 		fill_buffer_pattern(td, buf, max_bs);
1901 	else
1902 		memset(buf, 0, max_bs);
1903 }
1904 
1905 /*
1906  * "randomly" fill the buffer contents
1907  */
io_u_fill_buffer(struct thread_data * td,struct io_u * io_u,unsigned int min_write,unsigned int max_bs)1908 void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1909 		      unsigned int min_write, unsigned int max_bs)
1910 {
1911 	io_u->buf_filled_len = 0;
1912 	fill_io_buffer(td, io_u->buf, min_write, max_bs);
1913 }
1914