1 //===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MachineRegisterInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/IndexedMap.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBundle.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23 #include "llvm/Target/TargetSubtargetInfo.h"
24 #include <vector>
25
26 namespace llvm {
27 class PSetIterator;
28
29 /// MachineRegisterInfo - Keep track of information for virtual and physical
30 /// registers, including vreg register classes, use/def chains for registers,
31 /// etc.
32 class MachineRegisterInfo {
33 public:
34 class Delegate {
35 virtual void anchor();
36 public:
37 virtual void MRI_NoteNewVirtualRegister(unsigned Reg) = 0;
38
~Delegate()39 virtual ~Delegate() {}
40 };
41
42 private:
43 const MachineFunction *MF;
44 Delegate *TheDelegate;
45
46 /// IsSSA - True when the machine function is in SSA form and virtual
47 /// registers have a single def.
48 bool IsSSA;
49
50 /// TracksLiveness - True while register liveness is being tracked accurately.
51 /// Basic block live-in lists, kill flags, and implicit defs may not be
52 /// accurate when after this flag is cleared.
53 bool TracksLiveness;
54
55 /// True if subregister liveness is tracked.
56 bool TracksSubRegLiveness;
57
58 /// VRegInfo - Information we keep for each virtual register.
59 ///
60 /// Each element in this list contains the register class of the vreg and the
61 /// start of the use/def list for the register.
62 IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
63 VirtReg2IndexFunctor> VRegInfo;
64
65 /// RegAllocHints - This vector records register allocation hints for virtual
66 /// registers. For each virtual register, it keeps a register and hint type
67 /// pair making up the allocation hint. Hint type is target specific except
68 /// for the value 0 which means the second value of the pair is the preferred
69 /// register for allocation. For example, if the hint is <0, 1024>, it means
70 /// the allocator should prefer the physical register allocated to the virtual
71 /// register of the hint.
72 IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
73
74 /// PhysRegUseDefLists - This is an array of the head of the use/def list for
75 /// physical registers.
76 std::vector<MachineOperand *> PhysRegUseDefLists;
77
78 /// getRegUseDefListHead - Return the head pointer for the register use/def
79 /// list for the specified virtual or physical register.
getRegUseDefListHead(unsigned RegNo)80 MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
81 if (TargetRegisterInfo::isVirtualRegister(RegNo))
82 return VRegInfo[RegNo].second;
83 return PhysRegUseDefLists[RegNo];
84 }
85
getRegUseDefListHead(unsigned RegNo)86 MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
87 if (TargetRegisterInfo::isVirtualRegister(RegNo))
88 return VRegInfo[RegNo].second;
89 return PhysRegUseDefLists[RegNo];
90 }
91
92 /// Get the next element in the use-def chain.
getNextOperandForReg(const MachineOperand * MO)93 static MachineOperand *getNextOperandForReg(const MachineOperand *MO) {
94 assert(MO && MO->isReg() && "This is not a register operand!");
95 return MO->Contents.Reg.Next;
96 }
97
98 /// UsedRegUnits - This is a bit vector that is computed and set by the
99 /// register allocator, and must be kept up to date by passes that run after
100 /// register allocation (though most don't modify this). This is used
101 /// so that the code generator knows which callee save registers to save and
102 /// for other target specific uses.
103 /// This vector has bits set for register units that are modified in the
104 /// current function. It doesn't include registers clobbered by function
105 /// calls with register mask operands.
106 BitVector UsedRegUnits;
107
108 /// UsedPhysRegMask - Additional used physregs including aliases.
109 /// This bit vector represents all the registers clobbered by function calls.
110 /// It can model things that UsedRegUnits can't, such as function calls that
111 /// clobber ymm7 but preserve the low half in xmm7.
112 BitVector UsedPhysRegMask;
113
114 /// ReservedRegs - This is a bit vector of reserved registers. The target
115 /// may change its mind about which registers should be reserved. This
116 /// vector is the frozen set of reserved registers when register allocation
117 /// started.
118 BitVector ReservedRegs;
119
120 /// Keep track of the physical registers that are live in to the function.
121 /// Live in values are typically arguments in registers. LiveIn values are
122 /// allowed to have virtual registers associated with them, stored in the
123 /// second element.
124 std::vector<std::pair<unsigned, unsigned> > LiveIns;
125
126 MachineRegisterInfo(const MachineRegisterInfo&) = delete;
127 void operator=(const MachineRegisterInfo&) = delete;
128 public:
129 explicit MachineRegisterInfo(const MachineFunction *MF);
130
getTargetRegisterInfo()131 const TargetRegisterInfo *getTargetRegisterInfo() const {
132 return MF->getSubtarget().getRegisterInfo();
133 }
134
resetDelegate(Delegate * delegate)135 void resetDelegate(Delegate *delegate) {
136 // Ensure another delegate does not take over unless the current
137 // delegate first unattaches itself. If we ever need to multicast
138 // notifications, we will need to change to using a list.
139 assert(TheDelegate == delegate &&
140 "Only the current delegate can perform reset!");
141 TheDelegate = nullptr;
142 }
143
setDelegate(Delegate * delegate)144 void setDelegate(Delegate *delegate) {
145 assert(delegate && !TheDelegate &&
146 "Attempted to set delegate to null, or to change it without "
147 "first resetting it!");
148
149 TheDelegate = delegate;
150 }
151
152 //===--------------------------------------------------------------------===//
153 // Function State
154 //===--------------------------------------------------------------------===//
155
156 // isSSA - Returns true when the machine function is in SSA form. Early
157 // passes require the machine function to be in SSA form where every virtual
158 // register has a single defining instruction.
159 //
160 // The TwoAddressInstructionPass and PHIElimination passes take the machine
161 // function out of SSA form when they introduce multiple defs per virtual
162 // register.
isSSA()163 bool isSSA() const { return IsSSA; }
164
165 // leaveSSA - Indicates that the machine function is no longer in SSA form.
leaveSSA()166 void leaveSSA() { IsSSA = false; }
167
168 /// tracksLiveness - Returns true when tracking register liveness accurately.
169 ///
170 /// While this flag is true, register liveness information in basic block
171 /// live-in lists and machine instruction operands is accurate. This means it
172 /// can be used to change the code in ways that affect the values in
173 /// registers, for example by the register scavenger.
174 ///
175 /// When this flag is false, liveness is no longer reliable.
tracksLiveness()176 bool tracksLiveness() const { return TracksLiveness; }
177
178 /// invalidateLiveness - Indicates that register liveness is no longer being
179 /// tracked accurately.
180 ///
181 /// This should be called by late passes that invalidate the liveness
182 /// information.
invalidateLiveness()183 void invalidateLiveness() { TracksLiveness = false; }
184
185 /// Returns true if liveness for register class @p RC should be tracked at
186 /// the subregister level.
shouldTrackSubRegLiveness(const TargetRegisterClass & RC)187 bool shouldTrackSubRegLiveness(const TargetRegisterClass &RC) const {
188 return subRegLivenessEnabled() && RC.HasDisjunctSubRegs;
189 }
shouldTrackSubRegLiveness(unsigned VReg)190 bool shouldTrackSubRegLiveness(unsigned VReg) const {
191 assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Must pass a VReg");
192 return shouldTrackSubRegLiveness(*getRegClass(VReg));
193 }
subRegLivenessEnabled()194 bool subRegLivenessEnabled() const {
195 return TracksSubRegLiveness;
196 }
197
198 void enableSubRegLiveness(bool Enable = true) {
199 TracksSubRegLiveness = Enable;
200 }
201
202 //===--------------------------------------------------------------------===//
203 // Register Info
204 //===--------------------------------------------------------------------===//
205
206 // Strictly for use by MachineInstr.cpp.
207 void addRegOperandToUseList(MachineOperand *MO);
208
209 // Strictly for use by MachineInstr.cpp.
210 void removeRegOperandFromUseList(MachineOperand *MO);
211
212 // Strictly for use by MachineInstr.cpp.
213 void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps);
214
215 /// Verify the sanity of the use list for Reg.
216 void verifyUseList(unsigned Reg) const;
217
218 /// Verify the use list of all registers.
219 void verifyUseLists() const;
220
221 /// reg_begin/reg_end - Provide iteration support to walk over all definitions
222 /// and uses of a register within the MachineFunction that corresponds to this
223 /// MachineRegisterInfo object.
224 template<bool Uses, bool Defs, bool SkipDebug,
225 bool ByOperand, bool ByInstr, bool ByBundle>
226 class defusechain_iterator;
227 template<bool Uses, bool Defs, bool SkipDebug,
228 bool ByOperand, bool ByInstr, bool ByBundle>
229 class defusechain_instr_iterator;
230
231 // Make it a friend so it can access getNextOperandForReg().
232 template<bool, bool, bool, bool, bool, bool>
233 friend class defusechain_iterator;
234 template<bool, bool, bool, bool, bool, bool>
235 friend class defusechain_instr_iterator;
236
237
238
239 /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
240 /// register.
241 typedef defusechain_iterator<true,true,false,true,false,false>
242 reg_iterator;
reg_begin(unsigned RegNo)243 reg_iterator reg_begin(unsigned RegNo) const {
244 return reg_iterator(getRegUseDefListHead(RegNo));
245 }
reg_end()246 static reg_iterator reg_end() { return reg_iterator(nullptr); }
247
reg_operands(unsigned Reg)248 inline iterator_range<reg_iterator> reg_operands(unsigned Reg) const {
249 return iterator_range<reg_iterator>(reg_begin(Reg), reg_end());
250 }
251
252 /// reg_instr_iterator/reg_instr_begin/reg_instr_end - Walk all defs and uses
253 /// of the specified register, stepping by MachineInstr.
254 typedef defusechain_instr_iterator<true,true,false,false,true,false>
255 reg_instr_iterator;
reg_instr_begin(unsigned RegNo)256 reg_instr_iterator reg_instr_begin(unsigned RegNo) const {
257 return reg_instr_iterator(getRegUseDefListHead(RegNo));
258 }
reg_instr_end()259 static reg_instr_iterator reg_instr_end() {
260 return reg_instr_iterator(nullptr);
261 }
262
263 inline iterator_range<reg_instr_iterator>
reg_instructions(unsigned Reg)264 reg_instructions(unsigned Reg) const {
265 return iterator_range<reg_instr_iterator>(reg_instr_begin(Reg),
266 reg_instr_end());
267 }
268
269 /// reg_bundle_iterator/reg_bundle_begin/reg_bundle_end - Walk all defs and uses
270 /// of the specified register, stepping by bundle.
271 typedef defusechain_instr_iterator<true,true,false,false,false,true>
272 reg_bundle_iterator;
reg_bundle_begin(unsigned RegNo)273 reg_bundle_iterator reg_bundle_begin(unsigned RegNo) const {
274 return reg_bundle_iterator(getRegUseDefListHead(RegNo));
275 }
reg_bundle_end()276 static reg_bundle_iterator reg_bundle_end() {
277 return reg_bundle_iterator(nullptr);
278 }
279
reg_bundles(unsigned Reg)280 inline iterator_range<reg_bundle_iterator> reg_bundles(unsigned Reg) const {
281 return iterator_range<reg_bundle_iterator>(reg_bundle_begin(Reg),
282 reg_bundle_end());
283 }
284
285 /// reg_empty - Return true if there are no instructions using or defining the
286 /// specified register (it may be live-in).
reg_empty(unsigned RegNo)287 bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
288
289 /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
290 /// of the specified register, skipping those marked as Debug.
291 typedef defusechain_iterator<true,true,true,true,false,false>
292 reg_nodbg_iterator;
reg_nodbg_begin(unsigned RegNo)293 reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
294 return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
295 }
reg_nodbg_end()296 static reg_nodbg_iterator reg_nodbg_end() {
297 return reg_nodbg_iterator(nullptr);
298 }
299
300 inline iterator_range<reg_nodbg_iterator>
reg_nodbg_operands(unsigned Reg)301 reg_nodbg_operands(unsigned Reg) const {
302 return iterator_range<reg_nodbg_iterator>(reg_nodbg_begin(Reg),
303 reg_nodbg_end());
304 }
305
306 /// reg_instr_nodbg_iterator/reg_instr_nodbg_begin/reg_instr_nodbg_end - Walk
307 /// all defs and uses of the specified register, stepping by MachineInstr,
308 /// skipping those marked as Debug.
309 typedef defusechain_instr_iterator<true,true,true,false,true,false>
310 reg_instr_nodbg_iterator;
reg_instr_nodbg_begin(unsigned RegNo)311 reg_instr_nodbg_iterator reg_instr_nodbg_begin(unsigned RegNo) const {
312 return reg_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
313 }
reg_instr_nodbg_end()314 static reg_instr_nodbg_iterator reg_instr_nodbg_end() {
315 return reg_instr_nodbg_iterator(nullptr);
316 }
317
318 inline iterator_range<reg_instr_nodbg_iterator>
reg_nodbg_instructions(unsigned Reg)319 reg_nodbg_instructions(unsigned Reg) const {
320 return iterator_range<reg_instr_nodbg_iterator>(reg_instr_nodbg_begin(Reg),
321 reg_instr_nodbg_end());
322 }
323
324 /// reg_bundle_nodbg_iterator/reg_bundle_nodbg_begin/reg_bundle_nodbg_end - Walk
325 /// all defs and uses of the specified register, stepping by bundle,
326 /// skipping those marked as Debug.
327 typedef defusechain_instr_iterator<true,true,true,false,false,true>
328 reg_bundle_nodbg_iterator;
reg_bundle_nodbg_begin(unsigned RegNo)329 reg_bundle_nodbg_iterator reg_bundle_nodbg_begin(unsigned RegNo) const {
330 return reg_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
331 }
reg_bundle_nodbg_end()332 static reg_bundle_nodbg_iterator reg_bundle_nodbg_end() {
333 return reg_bundle_nodbg_iterator(nullptr);
334 }
335
336 inline iterator_range<reg_bundle_nodbg_iterator>
reg_nodbg_bundles(unsigned Reg)337 reg_nodbg_bundles(unsigned Reg) const {
338 return iterator_range<reg_bundle_nodbg_iterator>(reg_bundle_nodbg_begin(Reg),
339 reg_bundle_nodbg_end());
340 }
341
342 /// reg_nodbg_empty - Return true if the only instructions using or defining
343 /// Reg are Debug instructions.
reg_nodbg_empty(unsigned RegNo)344 bool reg_nodbg_empty(unsigned RegNo) const {
345 return reg_nodbg_begin(RegNo) == reg_nodbg_end();
346 }
347
348 /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
349 typedef defusechain_iterator<false,true,false,true,false,false>
350 def_iterator;
def_begin(unsigned RegNo)351 def_iterator def_begin(unsigned RegNo) const {
352 return def_iterator(getRegUseDefListHead(RegNo));
353 }
def_end()354 static def_iterator def_end() { return def_iterator(nullptr); }
355
def_operands(unsigned Reg)356 inline iterator_range<def_iterator> def_operands(unsigned Reg) const {
357 return iterator_range<def_iterator>(def_begin(Reg), def_end());
358 }
359
360 /// def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the
361 /// specified register, stepping by MachineInst.
362 typedef defusechain_instr_iterator<false,true,false,false,true,false>
363 def_instr_iterator;
def_instr_begin(unsigned RegNo)364 def_instr_iterator def_instr_begin(unsigned RegNo) const {
365 return def_instr_iterator(getRegUseDefListHead(RegNo));
366 }
def_instr_end()367 static def_instr_iterator def_instr_end() {
368 return def_instr_iterator(nullptr);
369 }
370
371 inline iterator_range<def_instr_iterator>
def_instructions(unsigned Reg)372 def_instructions(unsigned Reg) const {
373 return iterator_range<def_instr_iterator>(def_instr_begin(Reg),
374 def_instr_end());
375 }
376
377 /// def_bundle_iterator/def_bundle_begin/def_bundle_end - Walk all defs of the
378 /// specified register, stepping by bundle.
379 typedef defusechain_instr_iterator<false,true,false,false,false,true>
380 def_bundle_iterator;
def_bundle_begin(unsigned RegNo)381 def_bundle_iterator def_bundle_begin(unsigned RegNo) const {
382 return def_bundle_iterator(getRegUseDefListHead(RegNo));
383 }
def_bundle_end()384 static def_bundle_iterator def_bundle_end() {
385 return def_bundle_iterator(nullptr);
386 }
387
def_bundles(unsigned Reg)388 inline iterator_range<def_bundle_iterator> def_bundles(unsigned Reg) const {
389 return iterator_range<def_bundle_iterator>(def_bundle_begin(Reg),
390 def_bundle_end());
391 }
392
393 /// def_empty - Return true if there are no instructions defining the
394 /// specified register (it may be live-in).
def_empty(unsigned RegNo)395 bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
396
397 /// hasOneDef - Return true if there is exactly one instruction defining the
398 /// specified register.
hasOneDef(unsigned RegNo)399 bool hasOneDef(unsigned RegNo) const {
400 def_iterator DI = def_begin(RegNo);
401 if (DI == def_end())
402 return false;
403 return ++DI == def_end();
404 }
405
406 /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
407 typedef defusechain_iterator<true,false,false,true,false,false>
408 use_iterator;
use_begin(unsigned RegNo)409 use_iterator use_begin(unsigned RegNo) const {
410 return use_iterator(getRegUseDefListHead(RegNo));
411 }
use_end()412 static use_iterator use_end() { return use_iterator(nullptr); }
413
use_operands(unsigned Reg)414 inline iterator_range<use_iterator> use_operands(unsigned Reg) const {
415 return iterator_range<use_iterator>(use_begin(Reg), use_end());
416 }
417
418 /// use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the
419 /// specified register, stepping by MachineInstr.
420 typedef defusechain_instr_iterator<true,false,false,false,true,false>
421 use_instr_iterator;
use_instr_begin(unsigned RegNo)422 use_instr_iterator use_instr_begin(unsigned RegNo) const {
423 return use_instr_iterator(getRegUseDefListHead(RegNo));
424 }
use_instr_end()425 static use_instr_iterator use_instr_end() {
426 return use_instr_iterator(nullptr);
427 }
428
429 inline iterator_range<use_instr_iterator>
use_instructions(unsigned Reg)430 use_instructions(unsigned Reg) const {
431 return iterator_range<use_instr_iterator>(use_instr_begin(Reg),
432 use_instr_end());
433 }
434
435 /// use_bundle_iterator/use_bundle_begin/use_bundle_end - Walk all uses of the
436 /// specified register, stepping by bundle.
437 typedef defusechain_instr_iterator<true,false,false,false,false,true>
438 use_bundle_iterator;
use_bundle_begin(unsigned RegNo)439 use_bundle_iterator use_bundle_begin(unsigned RegNo) const {
440 return use_bundle_iterator(getRegUseDefListHead(RegNo));
441 }
use_bundle_end()442 static use_bundle_iterator use_bundle_end() {
443 return use_bundle_iterator(nullptr);
444 }
445
use_bundles(unsigned Reg)446 inline iterator_range<use_bundle_iterator> use_bundles(unsigned Reg) const {
447 return iterator_range<use_bundle_iterator>(use_bundle_begin(Reg),
448 use_bundle_end());
449 }
450
451 /// use_empty - Return true if there are no instructions using the specified
452 /// register.
use_empty(unsigned RegNo)453 bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
454
455 /// hasOneUse - Return true if there is exactly one instruction using the
456 /// specified register.
hasOneUse(unsigned RegNo)457 bool hasOneUse(unsigned RegNo) const {
458 use_iterator UI = use_begin(RegNo);
459 if (UI == use_end())
460 return false;
461 return ++UI == use_end();
462 }
463
464 /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
465 /// specified register, skipping those marked as Debug.
466 typedef defusechain_iterator<true,false,true,true,false,false>
467 use_nodbg_iterator;
use_nodbg_begin(unsigned RegNo)468 use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
469 return use_nodbg_iterator(getRegUseDefListHead(RegNo));
470 }
use_nodbg_end()471 static use_nodbg_iterator use_nodbg_end() {
472 return use_nodbg_iterator(nullptr);
473 }
474
475 inline iterator_range<use_nodbg_iterator>
use_nodbg_operands(unsigned Reg)476 use_nodbg_operands(unsigned Reg) const {
477 return iterator_range<use_nodbg_iterator>(use_nodbg_begin(Reg),
478 use_nodbg_end());
479 }
480
481 /// use_instr_nodbg_iterator/use_instr_nodbg_begin/use_instr_nodbg_end - Walk
482 /// all uses of the specified register, stepping by MachineInstr, skipping
483 /// those marked as Debug.
484 typedef defusechain_instr_iterator<true,false,true,false,true,false>
485 use_instr_nodbg_iterator;
use_instr_nodbg_begin(unsigned RegNo)486 use_instr_nodbg_iterator use_instr_nodbg_begin(unsigned RegNo) const {
487 return use_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
488 }
use_instr_nodbg_end()489 static use_instr_nodbg_iterator use_instr_nodbg_end() {
490 return use_instr_nodbg_iterator(nullptr);
491 }
492
493 inline iterator_range<use_instr_nodbg_iterator>
use_nodbg_instructions(unsigned Reg)494 use_nodbg_instructions(unsigned Reg) const {
495 return iterator_range<use_instr_nodbg_iterator>(use_instr_nodbg_begin(Reg),
496 use_instr_nodbg_end());
497 }
498
499 /// use_bundle_nodbg_iterator/use_bundle_nodbg_begin/use_bundle_nodbg_end - Walk
500 /// all uses of the specified register, stepping by bundle, skipping
501 /// those marked as Debug.
502 typedef defusechain_instr_iterator<true,false,true,false,false,true>
503 use_bundle_nodbg_iterator;
use_bundle_nodbg_begin(unsigned RegNo)504 use_bundle_nodbg_iterator use_bundle_nodbg_begin(unsigned RegNo) const {
505 return use_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
506 }
use_bundle_nodbg_end()507 static use_bundle_nodbg_iterator use_bundle_nodbg_end() {
508 return use_bundle_nodbg_iterator(nullptr);
509 }
510
511 inline iterator_range<use_bundle_nodbg_iterator>
use_nodbg_bundles(unsigned Reg)512 use_nodbg_bundles(unsigned Reg) const {
513 return iterator_range<use_bundle_nodbg_iterator>(use_bundle_nodbg_begin(Reg),
514 use_bundle_nodbg_end());
515 }
516
517 /// use_nodbg_empty - Return true if there are no non-Debug instructions
518 /// using the specified register.
use_nodbg_empty(unsigned RegNo)519 bool use_nodbg_empty(unsigned RegNo) const {
520 return use_nodbg_begin(RegNo) == use_nodbg_end();
521 }
522
523 /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
524 /// instruction using the specified register.
525 bool hasOneNonDBGUse(unsigned RegNo) const;
526
527 /// replaceRegWith - Replace all instances of FromReg with ToReg in the
528 /// machine function. This is like llvm-level X->replaceAllUsesWith(Y),
529 /// except that it also changes any definitions of the register as well.
530 ///
531 /// Note that it is usually necessary to first constrain ToReg's register
532 /// class to match the FromReg constraints using:
533 ///
534 /// constrainRegClass(ToReg, getRegClass(FromReg))
535 ///
536 /// That function will return NULL if the virtual registers have incompatible
537 /// constraints.
538 ///
539 /// Note that if ToReg is a physical register the function will replace and
540 /// apply sub registers to ToReg in order to obtain a final/proper physical
541 /// register.
542 void replaceRegWith(unsigned FromReg, unsigned ToReg);
543
544 /// getVRegDef - Return the machine instr that defines the specified virtual
545 /// register or null if none is found. This assumes that the code is in SSA
546 /// form, so there should only be one definition.
547 MachineInstr *getVRegDef(unsigned Reg) const;
548
549 /// getUniqueVRegDef - Return the unique machine instr that defines the
550 /// specified virtual register or null if none is found. If there are
551 /// multiple definitions or no definition, return null.
552 MachineInstr *getUniqueVRegDef(unsigned Reg) const;
553
554 /// clearKillFlags - Iterate over all the uses of the given register and
555 /// clear the kill flag from the MachineOperand. This function is used by
556 /// optimization passes which extend register lifetimes and need only
557 /// preserve conservative kill flag information.
558 void clearKillFlags(unsigned Reg) const;
559
560 #ifndef NDEBUG
561 void dumpUses(unsigned RegNo) const;
562 #endif
563
564 /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
565 /// throughout the function. It is safe to move instructions that read such
566 /// a physreg.
567 bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
568
569 /// Get an iterator over the pressure sets affected by the given physical or
570 /// virtual register. If RegUnit is physical, it must be a register unit (from
571 /// MCRegUnitIterator).
572 PSetIterator getPressureSets(unsigned RegUnit) const;
573
574 //===--------------------------------------------------------------------===//
575 // Virtual Register Info
576 //===--------------------------------------------------------------------===//
577
578 /// getRegClass - Return the register class of the specified virtual register.
579 ///
getRegClass(unsigned Reg)580 const TargetRegisterClass *getRegClass(unsigned Reg) const {
581 return VRegInfo[Reg].first;
582 }
583
584 /// setRegClass - Set the register class of the specified virtual register.
585 ///
586 void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
587
588 /// constrainRegClass - Constrain the register class of the specified virtual
589 /// register to be a common subclass of RC and the current register class,
590 /// but only if the new class has at least MinNumRegs registers. Return the
591 /// new register class, or NULL if no such class exists.
592 /// This should only be used when the constraint is known to be trivial, like
593 /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
594 ///
595 const TargetRegisterClass *constrainRegClass(unsigned Reg,
596 const TargetRegisterClass *RC,
597 unsigned MinNumRegs = 0);
598
599 /// recomputeRegClass - Try to find a legal super-class of Reg's register
600 /// class that still satisfies the constraints from the instructions using
601 /// Reg. Returns true if Reg was upgraded.
602 ///
603 /// This method can be used after constraints have been removed from a
604 /// virtual register, for example after removing instructions or splitting
605 /// the live range.
606 ///
607 bool recomputeRegClass(unsigned Reg);
608
609 /// createVirtualRegister - Create and return a new virtual register in the
610 /// function with the specified register class.
611 ///
612 unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
613
614 /// getNumVirtRegs - Return the number of virtual registers created.
615 ///
getNumVirtRegs()616 unsigned getNumVirtRegs() const { return VRegInfo.size(); }
617
618 /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
619 void clearVirtRegs();
620
621 /// setRegAllocationHint - Specify a register allocation hint for the
622 /// specified virtual register.
setRegAllocationHint(unsigned VReg,unsigned Type,unsigned PrefReg)623 void setRegAllocationHint(unsigned VReg, unsigned Type, unsigned PrefReg) {
624 assert(TargetRegisterInfo::isVirtualRegister(VReg));
625 RegAllocHints[VReg].first = Type;
626 RegAllocHints[VReg].second = PrefReg;
627 }
628
629 /// getRegAllocationHint - Return the register allocation hint for the
630 /// specified virtual register.
631 std::pair<unsigned, unsigned>
getRegAllocationHint(unsigned VReg)632 getRegAllocationHint(unsigned VReg) const {
633 assert(TargetRegisterInfo::isVirtualRegister(VReg));
634 return RegAllocHints[VReg];
635 }
636
637 /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
638 /// standard simple hint (Type == 0) is not set.
getSimpleHint(unsigned VReg)639 unsigned getSimpleHint(unsigned VReg) const {
640 assert(TargetRegisterInfo::isVirtualRegister(VReg));
641 std::pair<unsigned, unsigned> Hint = getRegAllocationHint(VReg);
642 return Hint.first ? 0 : Hint.second;
643 }
644
645 /// markUsesInDebugValueAsUndef - Mark every DBG_VALUE referencing the
646 /// specified register as undefined which causes the DBG_VALUE to be
647 /// deleted during LiveDebugVariables analysis.
648 void markUsesInDebugValueAsUndef(unsigned Reg) const;
649
650 //===--------------------------------------------------------------------===//
651 // Physical Register Use Info
652 //===--------------------------------------------------------------------===//
653
654 /// isPhysRegUsed - Return true if the specified register is used in this
655 /// function. Also check for clobbered aliases and registers clobbered by
656 /// function calls with register mask operands.
657 ///
658 /// This only works after register allocation. It is primarily used by
659 /// PrologEpilogInserter to determine which callee-saved registers need
660 /// spilling.
isPhysRegUsed(unsigned Reg)661 bool isPhysRegUsed(unsigned Reg) const {
662 if (UsedPhysRegMask.test(Reg))
663 return true;
664 for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
665 Units.isValid(); ++Units)
666 if (UsedRegUnits.test(*Units))
667 return true;
668 return false;
669 }
670
671 /// Mark the specified register unit as used in this function.
672 /// This should only be called during and after register allocation.
setRegUnitUsed(unsigned RegUnit)673 void setRegUnitUsed(unsigned RegUnit) {
674 UsedRegUnits.set(RegUnit);
675 }
676
677 /// setPhysRegUsed - Mark the specified register used in this function.
678 /// This should only be called during and after register allocation.
setPhysRegUsed(unsigned Reg)679 void setPhysRegUsed(unsigned Reg) {
680 for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
681 Units.isValid(); ++Units)
682 UsedRegUnits.set(*Units);
683 }
684
685 /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
686 /// This corresponds to the bit mask attached to register mask operands.
addPhysRegsUsedFromRegMask(const uint32_t * RegMask)687 void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
688 UsedPhysRegMask.setBitsNotInMask(RegMask);
689 }
690
691 /// setPhysRegUnused - Mark the specified register unused in this function.
692 /// This should only be called during and after register allocation.
setPhysRegUnused(unsigned Reg)693 void setPhysRegUnused(unsigned Reg) {
694 UsedPhysRegMask.reset(Reg);
695 for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
696 Units.isValid(); ++Units)
697 UsedRegUnits.reset(*Units);
698 }
699
700
701 //===--------------------------------------------------------------------===//
702 // Reserved Register Info
703 //===--------------------------------------------------------------------===//
704 //
705 // The set of reserved registers must be invariant during register
706 // allocation. For example, the target cannot suddenly decide it needs a
707 // frame pointer when the register allocator has already used the frame
708 // pointer register for something else.
709 //
710 // These methods can be used by target hooks like hasFP() to avoid changing
711 // the reserved register set during register allocation.
712
713 /// freezeReservedRegs - Called by the register allocator to freeze the set
714 /// of reserved registers before allocation begins.
715 void freezeReservedRegs(const MachineFunction&);
716
717 /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
718 /// to ensure the set of reserved registers stays constant.
reservedRegsFrozen()719 bool reservedRegsFrozen() const {
720 return !ReservedRegs.empty();
721 }
722
723 /// canReserveReg - Returns true if PhysReg can be used as a reserved
724 /// register. Any register can be reserved before freezeReservedRegs() is
725 /// called.
canReserveReg(unsigned PhysReg)726 bool canReserveReg(unsigned PhysReg) const {
727 return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
728 }
729
730 /// getReservedRegs - Returns a reference to the frozen set of reserved
731 /// registers. This method should always be preferred to calling
732 /// TRI::getReservedRegs() when possible.
getReservedRegs()733 const BitVector &getReservedRegs() const {
734 assert(reservedRegsFrozen() &&
735 "Reserved registers haven't been frozen yet. "
736 "Use TRI::getReservedRegs().");
737 return ReservedRegs;
738 }
739
740 /// isReserved - Returns true when PhysReg is a reserved register.
741 ///
742 /// Reserved registers may belong to an allocatable register class, but the
743 /// target has explicitly requested that they are not used.
744 ///
isReserved(unsigned PhysReg)745 bool isReserved(unsigned PhysReg) const {
746 return getReservedRegs().test(PhysReg);
747 }
748
749 /// isAllocatable - Returns true when PhysReg belongs to an allocatable
750 /// register class and it hasn't been reserved.
751 ///
752 /// Allocatable registers may show up in the allocation order of some virtual
753 /// register, so a register allocator needs to track its liveness and
754 /// availability.
isAllocatable(unsigned PhysReg)755 bool isAllocatable(unsigned PhysReg) const {
756 return getTargetRegisterInfo()->isInAllocatableClass(PhysReg) &&
757 !isReserved(PhysReg);
758 }
759
760 //===--------------------------------------------------------------------===//
761 // LiveIn Management
762 //===--------------------------------------------------------------------===//
763
764 /// addLiveIn - Add the specified register as a live-in. Note that it
765 /// is an error to add the same register to the same set more than once.
766 void addLiveIn(unsigned Reg, unsigned vreg = 0) {
767 LiveIns.push_back(std::make_pair(Reg, vreg));
768 }
769
770 // Iteration support for the live-ins set. It's kept in sorted order
771 // by register number.
772 typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
773 livein_iterator;
livein_begin()774 livein_iterator livein_begin() const { return LiveIns.begin(); }
livein_end()775 livein_iterator livein_end() const { return LiveIns.end(); }
livein_empty()776 bool livein_empty() const { return LiveIns.empty(); }
777
778 bool isLiveIn(unsigned Reg) const;
779
780 /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
781 /// corresponding live-in physical register.
782 unsigned getLiveInPhysReg(unsigned VReg) const;
783
784 /// getLiveInVirtReg - If PReg is a live-in physical register, return the
785 /// corresponding live-in physical register.
786 unsigned getLiveInVirtReg(unsigned PReg) const;
787
788 /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
789 /// into the given entry block.
790 void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
791 const TargetRegisterInfo &TRI,
792 const TargetInstrInfo &TII);
793
794 /// Returns a mask covering all bits that can appear in lane masks of
795 /// subregisters of the virtual register @p Reg.
796 unsigned getMaxLaneMaskForVReg(unsigned Reg) const;
797
798 /// defusechain_iterator - This class provides iterator support for machine
799 /// operands in the function that use or define a specific register. If
800 /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
801 /// returns defs. If neither are true then you are silly and it always
802 /// returns end(). If SkipDebug is true it skips uses marked Debug
803 /// when incrementing.
804 template<bool ReturnUses, bool ReturnDefs, bool SkipDebug,
805 bool ByOperand, bool ByInstr, bool ByBundle>
806 class defusechain_iterator
807 : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
808 MachineOperand *Op;
defusechain_iterator(MachineOperand * op)809 explicit defusechain_iterator(MachineOperand *op) : Op(op) {
810 // If the first node isn't one we're interested in, advance to one that
811 // we are interested in.
812 if (op) {
813 if ((!ReturnUses && op->isUse()) ||
814 (!ReturnDefs && op->isDef()) ||
815 (SkipDebug && op->isDebug()))
816 advance();
817 }
818 }
819 friend class MachineRegisterInfo;
820
advance()821 void advance() {
822 assert(Op && "Cannot increment end iterator!");
823 Op = getNextOperandForReg(Op);
824
825 // All defs come before the uses, so stop def_iterator early.
826 if (!ReturnUses) {
827 if (Op) {
828 if (Op->isUse())
829 Op = nullptr;
830 else
831 assert(!Op->isDebug() && "Can't have debug defs");
832 }
833 } else {
834 // If this is an operand we don't care about, skip it.
835 while (Op && ((!ReturnDefs && Op->isDef()) ||
836 (SkipDebug && Op->isDebug())))
837 Op = getNextOperandForReg(Op);
838 }
839 }
840 public:
841 typedef std::iterator<std::forward_iterator_tag,
842 MachineInstr, ptrdiff_t>::reference reference;
843 typedef std::iterator<std::forward_iterator_tag,
844 MachineInstr, ptrdiff_t>::pointer pointer;
845
defusechain_iterator()846 defusechain_iterator() : Op(nullptr) {}
847
848 bool operator==(const defusechain_iterator &x) const {
849 return Op == x.Op;
850 }
851 bool operator!=(const defusechain_iterator &x) const {
852 return !operator==(x);
853 }
854
855 /// atEnd - return true if this iterator is equal to reg_end() on the value.
atEnd()856 bool atEnd() const { return Op == nullptr; }
857
858 // Iterator traversal: forward iteration only
859 defusechain_iterator &operator++() { // Preincrement
860 assert(Op && "Cannot increment end iterator!");
861 if (ByOperand)
862 advance();
863 else if (ByInstr) {
864 MachineInstr *P = Op->getParent();
865 do {
866 advance();
867 } while (Op && Op->getParent() == P);
868 } else if (ByBundle) {
869 MachineInstr *P = getBundleStart(Op->getParent());
870 do {
871 advance();
872 } while (Op && getBundleStart(Op->getParent()) == P);
873 }
874
875 return *this;
876 }
877 defusechain_iterator operator++(int) { // Postincrement
878 defusechain_iterator tmp = *this; ++*this; return tmp;
879 }
880
881 /// getOperandNo - Return the operand # of this MachineOperand in its
882 /// MachineInstr.
getOperandNo()883 unsigned getOperandNo() const {
884 assert(Op && "Cannot dereference end iterator!");
885 return Op - &Op->getParent()->getOperand(0);
886 }
887
888 // Retrieve a reference to the current operand.
889 MachineOperand &operator*() const {
890 assert(Op && "Cannot dereference end iterator!");
891 return *Op;
892 }
893
894 MachineOperand *operator->() const {
895 assert(Op && "Cannot dereference end iterator!");
896 return Op;
897 }
898 };
899
900 /// defusechain_iterator - This class provides iterator support for machine
901 /// operands in the function that use or define a specific register. If
902 /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
903 /// returns defs. If neither are true then you are silly and it always
904 /// returns end(). If SkipDebug is true it skips uses marked Debug
905 /// when incrementing.
906 template<bool ReturnUses, bool ReturnDefs, bool SkipDebug,
907 bool ByOperand, bool ByInstr, bool ByBundle>
908 class defusechain_instr_iterator
909 : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
910 MachineOperand *Op;
defusechain_instr_iterator(MachineOperand * op)911 explicit defusechain_instr_iterator(MachineOperand *op) : Op(op) {
912 // If the first node isn't one we're interested in, advance to one that
913 // we are interested in.
914 if (op) {
915 if ((!ReturnUses && op->isUse()) ||
916 (!ReturnDefs && op->isDef()) ||
917 (SkipDebug && op->isDebug()))
918 advance();
919 }
920 }
921 friend class MachineRegisterInfo;
922
advance()923 void advance() {
924 assert(Op && "Cannot increment end iterator!");
925 Op = getNextOperandForReg(Op);
926
927 // All defs come before the uses, so stop def_iterator early.
928 if (!ReturnUses) {
929 if (Op) {
930 if (Op->isUse())
931 Op = nullptr;
932 else
933 assert(!Op->isDebug() && "Can't have debug defs");
934 }
935 } else {
936 // If this is an operand we don't care about, skip it.
937 while (Op && ((!ReturnDefs && Op->isDef()) ||
938 (SkipDebug && Op->isDebug())))
939 Op = getNextOperandForReg(Op);
940 }
941 }
942 public:
943 typedef std::iterator<std::forward_iterator_tag,
944 MachineInstr, ptrdiff_t>::reference reference;
945 typedef std::iterator<std::forward_iterator_tag,
946 MachineInstr, ptrdiff_t>::pointer pointer;
947
defusechain_instr_iterator()948 defusechain_instr_iterator() : Op(nullptr) {}
949
950 bool operator==(const defusechain_instr_iterator &x) const {
951 return Op == x.Op;
952 }
953 bool operator!=(const defusechain_instr_iterator &x) const {
954 return !operator==(x);
955 }
956
957 /// atEnd - return true if this iterator is equal to reg_end() on the value.
atEnd()958 bool atEnd() const { return Op == nullptr; }
959
960 // Iterator traversal: forward iteration only
961 defusechain_instr_iterator &operator++() { // Preincrement
962 assert(Op && "Cannot increment end iterator!");
963 if (ByOperand)
964 advance();
965 else if (ByInstr) {
966 MachineInstr *P = Op->getParent();
967 do {
968 advance();
969 } while (Op && Op->getParent() == P);
970 } else if (ByBundle) {
971 MachineInstr *P = getBundleStart(Op->getParent());
972 do {
973 advance();
974 } while (Op && getBundleStart(Op->getParent()) == P);
975 }
976
977 return *this;
978 }
979 defusechain_instr_iterator operator++(int) { // Postincrement
980 defusechain_instr_iterator tmp = *this; ++*this; return tmp;
981 }
982
983 // Retrieve a reference to the current operand.
984 MachineInstr &operator*() const {
985 assert(Op && "Cannot dereference end iterator!");
986 if (ByBundle) return *(getBundleStart(Op->getParent()));
987 return *Op->getParent();
988 }
989
990 MachineInstr *operator->() const {
991 assert(Op && "Cannot dereference end iterator!");
992 if (ByBundle) return getBundleStart(Op->getParent());
993 return Op->getParent();
994 }
995 };
996 };
997
998 /// Iterate over the pressure sets affected by the given physical or virtual
999 /// register. If Reg is physical, it must be a register unit (from
1000 /// MCRegUnitIterator).
1001 class PSetIterator {
1002 const int *PSet;
1003 unsigned Weight;
1004 public:
PSetIterator()1005 PSetIterator(): PSet(nullptr), Weight(0) {}
PSetIterator(unsigned RegUnit,const MachineRegisterInfo * MRI)1006 PSetIterator(unsigned RegUnit, const MachineRegisterInfo *MRI) {
1007 const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
1008 if (TargetRegisterInfo::isVirtualRegister(RegUnit)) {
1009 const TargetRegisterClass *RC = MRI->getRegClass(RegUnit);
1010 PSet = TRI->getRegClassPressureSets(RC);
1011 Weight = TRI->getRegClassWeight(RC).RegWeight;
1012 }
1013 else {
1014 PSet = TRI->getRegUnitPressureSets(RegUnit);
1015 Weight = TRI->getRegUnitWeight(RegUnit);
1016 }
1017 if (*PSet == -1)
1018 PSet = nullptr;
1019 }
isValid()1020 bool isValid() const { return PSet; }
1021
getWeight()1022 unsigned getWeight() const { return Weight; }
1023
1024 unsigned operator*() const { return *PSet; }
1025
1026 void operator++() {
1027 assert(isValid() && "Invalid PSetIterator.");
1028 ++PSet;
1029 if (*PSet == -1)
1030 PSet = nullptr;
1031 }
1032 };
1033
1034 inline PSetIterator MachineRegisterInfo::
getPressureSets(unsigned RegUnit)1035 getPressureSets(unsigned RegUnit) const {
1036 return PSetIterator(RegUnit, this);
1037 }
1038
1039 } // End llvm namespace
1040
1041 #endif
1042