• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_BASE_MUTEX_H_
18 #define ART_RUNTIME_BASE_MUTEX_H_
19 
20 #include <pthread.h>
21 #include <stdint.h>
22 
23 #include <iosfwd>
24 #include <string>
25 
26 #include "atomic.h"
27 #include "base/logging.h"
28 #include "base/macros.h"
29 #include "globals.h"
30 
31 #if defined(__APPLE__)
32 #define ART_USE_FUTEXES 0
33 #else
34 #define ART_USE_FUTEXES 1
35 #endif
36 
37 // Currently Darwin doesn't support locks with timeouts.
38 #if !defined(__APPLE__)
39 #define HAVE_TIMED_RWLOCK 1
40 #else
41 #define HAVE_TIMED_RWLOCK 0
42 #endif
43 
44 namespace art {
45 
46 class LOCKABLE ReaderWriterMutex;
47 class ScopedContentionRecorder;
48 class Thread;
49 
50 // LockLevel is used to impose a lock hierarchy [1] where acquisition of a Mutex at a higher or
51 // equal level to a lock a thread holds is invalid. The lock hierarchy achieves a cycle free
52 // partial ordering and thereby cause deadlock situations to fail checks.
53 //
54 // [1] http://www.drdobbs.com/parallel/use-lock-hierarchies-to-avoid-deadlock/204801163
55 enum LockLevel {
56   kLoggingLock = 0,
57   kMemMapsLock,
58   kSwapMutexesLock,
59   kUnexpectedSignalLock,
60   kThreadSuspendCountLock,
61   kAbortLock,
62   kJdwpSocketLock,
63   kRegionSpaceRegionLock,
64   kTransactionLogLock,
65   kReferenceQueueSoftReferencesLock,
66   kReferenceQueuePhantomReferencesLock,
67   kReferenceQueueFinalizerReferencesLock,
68   kReferenceQueueWeakReferencesLock,
69   kReferenceQueueClearedReferencesLock,
70   kReferenceProcessorLock,
71   kJitCodeCacheLock,
72   kRosAllocGlobalLock,
73   kRosAllocBracketLock,
74   kRosAllocBulkFreeLock,
75   kAllocSpaceLock,
76   kBumpPointerSpaceBlockLock,
77   kArenaPoolLock,
78   kDexFileMethodInlinerLock,
79   kDexFileToMethodInlinerMapLock,
80   kMarkSweepMarkStackLock,
81   kInternTableLock,
82   kOatFileSecondaryLookupLock,
83   kTracingUniqueMethodsLock,
84   kTracingStreamingLock,
85   kDefaultMutexLevel,
86   kMarkSweepLargeObjectLock,
87   kPinTableLock,
88   kJdwpObjectRegistryLock,
89   kModifyLdtLock,
90   kAllocatedThreadIdsLock,
91   kMonitorPoolLock,
92   kMethodVerifiersLock,
93   kClassLinkerClassesLock,
94   kBreakpointLock,
95   kMonitorLock,
96   kMonitorListLock,
97   kJniLoadLibraryLock,
98   kThreadListLock,
99   kAllocTrackerLock,
100   kDeoptimizationLock,
101   kProfilerLock,
102   kJdwpShutdownLock,
103   kJdwpEventListLock,
104   kJdwpAttachLock,
105   kJdwpStartLock,
106   kRuntimeShutdownLock,
107   kTraceLock,
108   kHeapBitmapLock,
109   kMutatorLock,
110   kInstrumentEntrypointsLock,
111   kZygoteCreationLock,
112 
113   kLockLevelCount  // Must come last.
114 };
115 std::ostream& operator<<(std::ostream& os, const LockLevel& rhs);
116 
117 const bool kDebugLocking = kIsDebugBuild;
118 
119 // Record Log contention information, dumpable via SIGQUIT.
120 #ifdef ART_USE_FUTEXES
121 // To enable lock contention logging, set this to true.
122 const bool kLogLockContentions = false;
123 #else
124 // Keep this false as lock contention logging is supported only with
125 // futex.
126 const bool kLogLockContentions = false;
127 #endif
128 const size_t kContentionLogSize = 4;
129 const size_t kContentionLogDataSize = kLogLockContentions ? 1 : 0;
130 const size_t kAllMutexDataSize = kLogLockContentions ? 1 : 0;
131 
132 // Base class for all Mutex implementations
133 class BaseMutex {
134  public:
GetName()135   const char* GetName() const {
136     return name_;
137   }
138 
IsMutex()139   virtual bool IsMutex() const { return false; }
IsReaderWriterMutex()140   virtual bool IsReaderWriterMutex() const { return false; }
141 
142   virtual void Dump(std::ostream& os) const = 0;
143 
144   static void DumpAll(std::ostream& os);
145 
146  protected:
147   friend class ConditionVariable;
148 
149   BaseMutex(const char* name, LockLevel level);
150   virtual ~BaseMutex();
151   void RegisterAsLocked(Thread* self);
152   void RegisterAsUnlocked(Thread* self);
153   void CheckSafeToWait(Thread* self);
154 
155   friend class ScopedContentionRecorder;
156 
157   void RecordContention(uint64_t blocked_tid, uint64_t owner_tid, uint64_t nano_time_blocked);
158   void DumpContention(std::ostream& os) const;
159 
160   const LockLevel level_;  // Support for lock hierarchy.
161   const char* const name_;
162 
163   // A log entry that records contention but makes no guarantee that either tid will be held live.
164   struct ContentionLogEntry {
ContentionLogEntryContentionLogEntry165     ContentionLogEntry() : blocked_tid(0), owner_tid(0) {}
166     uint64_t blocked_tid;
167     uint64_t owner_tid;
168     AtomicInteger count;
169   };
170   struct ContentionLogData {
171     ContentionLogEntry contention_log[kContentionLogSize];
172     // The next entry in the contention log to be updated. Value ranges from 0 to
173     // kContentionLogSize - 1.
174     AtomicInteger cur_content_log_entry;
175     // Number of times the Mutex has been contended.
176     AtomicInteger contention_count;
177     // Sum of time waited by all contenders in ns.
178     Atomic<uint64_t> wait_time;
179     void AddToWaitTime(uint64_t value);
ContentionLogDataContentionLogData180     ContentionLogData() : wait_time(0) {}
181   };
182   ContentionLogData contention_log_data_[kContentionLogDataSize];
183 
184  public:
HasEverContended()185   bool HasEverContended() const {
186     if (kLogLockContentions) {
187       return contention_log_data_->contention_count.LoadSequentiallyConsistent() > 0;
188     }
189     return false;
190   }
191 };
192 
193 // A Mutex is used to achieve mutual exclusion between threads. A Mutex can be used to gain
194 // exclusive access to what it guards. A Mutex can be in one of two states:
195 // - Free - not owned by any thread,
196 // - Exclusive - owned by a single thread.
197 //
198 // The effect of locking and unlocking operations on the state is:
199 // State     | ExclusiveLock | ExclusiveUnlock
200 // -------------------------------------------
201 // Free      | Exclusive     | error
202 // Exclusive | Block*        | Free
203 // * Mutex is not reentrant and so an attempt to ExclusiveLock on the same thread will result in
204 //   an error. Being non-reentrant simplifies Waiting on ConditionVariables.
205 std::ostream& operator<<(std::ostream& os, const Mutex& mu);
206 class LOCKABLE Mutex : public BaseMutex {
207  public:
208   explicit Mutex(const char* name, LockLevel level = kDefaultMutexLevel, bool recursive = false);
209   ~Mutex();
210 
IsMutex()211   virtual bool IsMutex() const { return true; }
212 
213   // Block until mutex is free then acquire exclusive access.
214   void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
Lock(Thread * self)215   void Lock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
216 
217   // Returns true if acquires exclusive access, false otherwise.
218   bool ExclusiveTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
TryLock(Thread * self)219   bool TryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true) { return ExclusiveTryLock(self); }
220 
221   // Release exclusive access.
222   void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
Unlock(Thread * self)223   void Unlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
224 
225   // Is the current thread the exclusive holder of the Mutex.
226   bool IsExclusiveHeld(const Thread* self) const;
227 
228   // Assert that the Mutex is exclusively held by the current thread.
AssertExclusiveHeld(const Thread * self)229   void AssertExclusiveHeld(const Thread* self) {
230     if (kDebugLocking && (gAborting == 0)) {
231       CHECK(IsExclusiveHeld(self)) << *this;
232     }
233   }
AssertHeld(const Thread * self)234   void AssertHeld(const Thread* self) { AssertExclusiveHeld(self); }
235 
236   // Assert that the Mutex is not held by the current thread.
AssertNotHeldExclusive(const Thread * self)237   void AssertNotHeldExclusive(const Thread* self) {
238     if (kDebugLocking && (gAborting == 0)) {
239       CHECK(!IsExclusiveHeld(self)) << *this;
240     }
241   }
AssertNotHeld(const Thread * self)242   void AssertNotHeld(const Thread* self) { AssertNotHeldExclusive(self); }
243 
244   // Id associated with exclusive owner. No memory ordering semantics if called from a thread other
245   // than the owner.
246   uint64_t GetExclusiveOwnerTid() const;
247 
248   // Returns how many times this Mutex has been locked, it is better to use AssertHeld/NotHeld.
GetDepth()249   unsigned int GetDepth() const {
250     return recursion_count_;
251   }
252 
253   virtual void Dump(std::ostream& os) const;
254 
255  private:
256 #if ART_USE_FUTEXES
257   // 0 is unheld, 1 is held.
258   AtomicInteger state_;
259   // Exclusive owner.
260   volatile uint64_t exclusive_owner_;
261   // Number of waiting contenders.
262   AtomicInteger num_contenders_;
263 #else
264   pthread_mutex_t mutex_;
265   volatile uint64_t exclusive_owner_;  // Guarded by mutex_.
266 #endif
267   const bool recursive_;  // Can the lock be recursively held?
268   unsigned int recursion_count_;
269   friend class ConditionVariable;
270   DISALLOW_COPY_AND_ASSIGN(Mutex);
271 };
272 
273 // A ReaderWriterMutex is used to achieve mutual exclusion between threads, similar to a Mutex.
274 // Unlike a Mutex a ReaderWriterMutex can be used to gain exclusive (writer) or shared (reader)
275 // access to what it guards. A flaw in relation to a Mutex is that it cannot be used with a
276 // condition variable. A ReaderWriterMutex can be in one of three states:
277 // - Free - not owned by any thread,
278 // - Exclusive - owned by a single thread,
279 // - Shared(n) - shared amongst n threads.
280 //
281 // The effect of locking and unlocking operations on the state is:
282 //
283 // State     | ExclusiveLock | ExclusiveUnlock | SharedLock       | SharedUnlock
284 // ----------------------------------------------------------------------------
285 // Free      | Exclusive     | error           | SharedLock(1)    | error
286 // Exclusive | Block         | Free            | Block            | error
287 // Shared(n) | Block         | error           | SharedLock(n+1)* | Shared(n-1) or Free
288 // * for large values of n the SharedLock may block.
289 std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu);
290 class LOCKABLE ReaderWriterMutex : public BaseMutex {
291  public:
292   explicit ReaderWriterMutex(const char* name, LockLevel level = kDefaultMutexLevel);
293   ~ReaderWriterMutex();
294 
IsReaderWriterMutex()295   virtual bool IsReaderWriterMutex() const { return true; }
296 
297   // Block until ReaderWriterMutex is free then acquire exclusive access.
298   void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
WriterLock(Thread * self)299   void WriterLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
300 
301   // Release exclusive access.
302   void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
WriterUnlock(Thread * self)303   void WriterUnlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
304 
305   // Block until ReaderWriterMutex is free and acquire exclusive access. Returns true on success
306   // or false if timeout is reached.
307 #if HAVE_TIMED_RWLOCK
308   bool ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns)
309       EXCLUSIVE_TRYLOCK_FUNCTION(true);
310 #endif
311 
312   // Block until ReaderWriterMutex is shared or free then acquire a share on the access.
313   void SharedLock(Thread* self) SHARED_LOCK_FUNCTION() ALWAYS_INLINE;
ReaderLock(Thread * self)314   void ReaderLock(Thread* self) SHARED_LOCK_FUNCTION() { SharedLock(self); }
315 
316   // Try to acquire share of ReaderWriterMutex.
317   bool SharedTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
318 
319   // Release a share of the access.
320   void SharedUnlock(Thread* self) UNLOCK_FUNCTION() ALWAYS_INLINE;
ReaderUnlock(Thread * self)321   void ReaderUnlock(Thread* self) UNLOCK_FUNCTION() { SharedUnlock(self); }
322 
323   // Is the current thread the exclusive holder of the ReaderWriterMutex.
324   bool IsExclusiveHeld(const Thread* self) const;
325 
326   // Assert the current thread has exclusive access to the ReaderWriterMutex.
AssertExclusiveHeld(const Thread * self)327   void AssertExclusiveHeld(const Thread* self) {
328     if (kDebugLocking && (gAborting == 0)) {
329       CHECK(IsExclusiveHeld(self)) << *this;
330     }
331   }
AssertWriterHeld(const Thread * self)332   void AssertWriterHeld(const Thread* self) { AssertExclusiveHeld(self); }
333 
334   // Assert the current thread doesn't have exclusive access to the ReaderWriterMutex.
AssertNotExclusiveHeld(const Thread * self)335   void AssertNotExclusiveHeld(const Thread* self) {
336     if (kDebugLocking && (gAborting == 0)) {
337       CHECK(!IsExclusiveHeld(self)) << *this;
338     }
339   }
AssertNotWriterHeld(const Thread * self)340   void AssertNotWriterHeld(const Thread* self) { AssertNotExclusiveHeld(self); }
341 
342   // Is the current thread a shared holder of the ReaderWriterMutex.
343   bool IsSharedHeld(const Thread* self) const;
344 
345   // Assert the current thread has shared access to the ReaderWriterMutex.
AssertSharedHeld(const Thread * self)346   void AssertSharedHeld(const Thread* self) {
347     if (kDebugLocking && (gAborting == 0)) {
348       // TODO: we can only assert this well when self != null.
349       CHECK(IsSharedHeld(self) || self == nullptr) << *this;
350     }
351   }
AssertReaderHeld(const Thread * self)352   void AssertReaderHeld(const Thread* self) { AssertSharedHeld(self); }
353 
354   // Assert the current thread doesn't hold this ReaderWriterMutex either in shared or exclusive
355   // mode.
AssertNotHeld(const Thread * self)356   void AssertNotHeld(const Thread* self) {
357     if (kDebugLocking && (gAborting == 0)) {
358       CHECK(!IsSharedHeld(self)) << *this;
359     }
360   }
361 
362   // Id associated with exclusive owner. No memory ordering semantics if called from a thread other
363   // than the owner.
364   uint64_t GetExclusiveOwnerTid() const;
365 
366   virtual void Dump(std::ostream& os) const;
367 
368  private:
369 #if ART_USE_FUTEXES
370   // Out-of-inline path for handling contention for a SharedLock.
371   void HandleSharedLockContention(Thread* self, int32_t cur_state);
372 
373   // -1 implies held exclusive, +ve shared held by state_ many owners.
374   AtomicInteger state_;
375   // Exclusive owner. Modification guarded by this mutex.
376   volatile uint64_t exclusive_owner_;
377   // Number of contenders waiting for a reader share.
378   AtomicInteger num_pending_readers_;
379   // Number of contenders waiting to be the writer.
380   AtomicInteger num_pending_writers_;
381 #else
382   pthread_rwlock_t rwlock_;
383   volatile uint64_t exclusive_owner_;  // Guarded by rwlock_.
384 #endif
385   DISALLOW_COPY_AND_ASSIGN(ReaderWriterMutex);
386 };
387 
388 // ConditionVariables allow threads to queue and sleep. Threads may then be resumed individually
389 // (Signal) or all at once (Broadcast).
390 class ConditionVariable {
391  public:
392   explicit ConditionVariable(const char* name, Mutex& mutex);
393   ~ConditionVariable();
394 
395   void Broadcast(Thread* self);
396   void Signal(Thread* self);
397   // TODO: No thread safety analysis on Wait and TimedWait as they call mutex operations via their
398   //       pointer copy, thereby defeating annotalysis.
399   void Wait(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
400   bool TimedWait(Thread* self, int64_t ms, int32_t ns) NO_THREAD_SAFETY_ANALYSIS;
401   // Variant of Wait that should be used with caution. Doesn't validate that no mutexes are held
402   // when waiting.
403   // TODO: remove this.
404   void WaitHoldingLocks(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
405 
406  private:
407   const char* const name_;
408   // The Mutex being used by waiters. It is an error to mix condition variables between different
409   // Mutexes.
410   Mutex& guard_;
411 #if ART_USE_FUTEXES
412   // A counter that is modified by signals and broadcasts. This ensures that when a waiter gives up
413   // their Mutex and another thread takes it and signals, the waiting thread observes that sequence_
414   // changed and doesn't enter the wait. Modified while holding guard_, but is read by futex wait
415   // without guard_ held.
416   AtomicInteger sequence_;
417   // Number of threads that have come into to wait, not the length of the waiters on the futex as
418   // waiters may have been requeued onto guard_. Guarded by guard_.
419   volatile int32_t num_waiters_;
420 #else
421   pthread_cond_t cond_;
422 #endif
423   DISALLOW_COPY_AND_ASSIGN(ConditionVariable);
424 };
425 
426 // Scoped locker/unlocker for a regular Mutex that acquires mu upon construction and releases it
427 // upon destruction.
428 class SCOPED_LOCKABLE MutexLock {
429  public:
MutexLock(Thread * self,Mutex & mu)430   explicit MutexLock(Thread* self, Mutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : self_(self), mu_(mu) {
431     mu_.ExclusiveLock(self_);
432   }
433 
UNLOCK_FUNCTION()434   ~MutexLock() UNLOCK_FUNCTION() {
435     mu_.ExclusiveUnlock(self_);
436   }
437 
438  private:
439   Thread* const self_;
440   Mutex& mu_;
441   DISALLOW_COPY_AND_ASSIGN(MutexLock);
442 };
443 // Catch bug where variable name is omitted. "MutexLock (lock);" instead of "MutexLock mu(lock)".
444 #define MutexLock(x) static_assert(0, "MutexLock declaration missing variable name")
445 
446 // Scoped locker/unlocker for a ReaderWriterMutex that acquires read access to mu upon
447 // construction and releases it upon destruction.
448 class SCOPED_LOCKABLE ReaderMutexLock {
449  public:
ReaderMutexLock(Thread * self,ReaderWriterMutex & mu)450   explicit ReaderMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
451       self_(self), mu_(mu) {
452     mu_.SharedLock(self_);
453   }
454 
UNLOCK_FUNCTION()455   ~ReaderMutexLock() UNLOCK_FUNCTION() {
456     mu_.SharedUnlock(self_);
457   }
458 
459  private:
460   Thread* const self_;
461   ReaderWriterMutex& mu_;
462   DISALLOW_COPY_AND_ASSIGN(ReaderMutexLock);
463 };
464 // Catch bug where variable name is omitted. "ReaderMutexLock (lock);" instead of
465 // "ReaderMutexLock mu(lock)".
466 #define ReaderMutexLock(x) static_assert(0, "ReaderMutexLock declaration missing variable name")
467 
468 // Scoped locker/unlocker for a ReaderWriterMutex that acquires write access to mu upon
469 // construction and releases it upon destruction.
470 class SCOPED_LOCKABLE WriterMutexLock {
471  public:
WriterMutexLock(Thread * self,ReaderWriterMutex & mu)472   explicit WriterMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
473       self_(self), mu_(mu) {
474     mu_.ExclusiveLock(self_);
475   }
476 
UNLOCK_FUNCTION()477   ~WriterMutexLock() UNLOCK_FUNCTION() {
478     mu_.ExclusiveUnlock(self_);
479   }
480 
481  private:
482   Thread* const self_;
483   ReaderWriterMutex& mu_;
484   DISALLOW_COPY_AND_ASSIGN(WriterMutexLock);
485 };
486 // Catch bug where variable name is omitted. "WriterMutexLock (lock);" instead of
487 // "WriterMutexLock mu(lock)".
488 #define WriterMutexLock(x) static_assert(0, "WriterMutexLock declaration missing variable name")
489 
490 // Global mutexes corresponding to the levels above.
491 class Locks {
492  public:
493   static void Init();
494   static void InitConditions() NO_THREAD_SAFETY_ANALYSIS;  // Condition variables.
495   // Guards allocation entrypoint instrumenting.
496   static Mutex* instrument_entrypoints_lock_;
497 
498   // The mutator_lock_ is used to allow mutators to execute in a shared (reader) mode or to block
499   // mutators by having an exclusive (writer) owner. In normal execution each mutator thread holds
500   // a share on the mutator_lock_. The garbage collector may also execute with shared access but
501   // at times requires exclusive access to the heap (not to be confused with the heap meta-data
502   // guarded by the heap_lock_ below). When the garbage collector requires exclusive access it asks
503   // the mutators to suspend themselves which also involves usage of the thread_suspend_count_lock_
504   // to cover weaknesses in using ReaderWriterMutexes with ConditionVariables. We use a condition
505   // variable to wait upon in the suspension logic as releasing and then re-acquiring a share on
506   // the mutator lock doesn't necessarily allow the exclusive user (e.g the garbage collector)
507   // chance to acquire the lock.
508   //
509   // Thread suspension:
510   // Shared users                                  | Exclusive user
511   // (holding mutator lock and in kRunnable state) |   .. running ..
512   //   .. running ..                               | Request thread suspension by:
513   //   .. running ..                               |   - acquiring thread_suspend_count_lock_
514   //   .. running ..                               |   - incrementing Thread::suspend_count_ on
515   //   .. running ..                               |     all mutator threads
516   //   .. running ..                               |   - releasing thread_suspend_count_lock_
517   //   .. running ..                               | Block trying to acquire exclusive mutator lock
518   // Poll Thread::suspend_count_ and enter full    |   .. blocked ..
519   // suspend code.                                 |   .. blocked ..
520   // Change state to kSuspended                    |   .. blocked ..
521   // x: Release share on mutator_lock_             | Carry out exclusive access
522   // Acquire thread_suspend_count_lock_            |   .. exclusive ..
523   // while Thread::suspend_count_ > 0              |   .. exclusive ..
524   //   - wait on Thread::resume_cond_              |   .. exclusive ..
525   //     (releases thread_suspend_count_lock_)     |   .. exclusive ..
526   //   .. waiting ..                               | Release mutator_lock_
527   //   .. waiting ..                               | Request thread resumption by:
528   //   .. waiting ..                               |   - acquiring thread_suspend_count_lock_
529   //   .. waiting ..                               |   - decrementing Thread::suspend_count_ on
530   //   .. waiting ..                               |     all mutator threads
531   //   .. waiting ..                               |   - notifying on Thread::resume_cond_
532   //    - re-acquire thread_suspend_count_lock_    |   - releasing thread_suspend_count_lock_
533   // Release thread_suspend_count_lock_            |  .. running ..
534   // Acquire share on mutator_lock_                |  .. running ..
535   //  - This could block but the thread still      |  .. running ..
536   //    has a state of kSuspended and so this      |  .. running ..
537   //    isn't an issue.                            |  .. running ..
538   // Acquire thread_suspend_count_lock_            |  .. running ..
539   //  - we poll here as we're transitioning into   |  .. running ..
540   //    kRunnable and an individual thread suspend |  .. running ..
541   //    request (e.g for debugging) won't try      |  .. running ..
542   //    to acquire the mutator lock (which would   |  .. running ..
543   //    block as we hold the mutator lock). This   |  .. running ..
544   //    poll ensures that if the suspender thought |  .. running ..
545   //    we were suspended by incrementing our      |  .. running ..
546   //    Thread::suspend_count_ and then reading    |  .. running ..
547   //    our state we go back to waiting on         |  .. running ..
548   //    Thread::resume_cond_.                      |  .. running ..
549   // can_go_runnable = Thread::suspend_count_ == 0 |  .. running ..
550   // Release thread_suspend_count_lock_            |  .. running ..
551   // if can_go_runnable                            |  .. running ..
552   //   Change state to kRunnable                   |  .. running ..
553   // else                                          |  .. running ..
554   //   Goto x                                      |  .. running ..
555   //  .. running ..                                |  .. running ..
556   static ReaderWriterMutex* mutator_lock_ ACQUIRED_AFTER(instrument_entrypoints_lock_);
557 
558   // Allow reader-writer mutual exclusion on the mark and live bitmaps of the heap.
559   static ReaderWriterMutex* heap_bitmap_lock_ ACQUIRED_AFTER(mutator_lock_);
560 
561   // Guards shutdown of the runtime.
562   static Mutex* runtime_shutdown_lock_ ACQUIRED_AFTER(heap_bitmap_lock_);
563 
564   // Guards background profiler global state.
565   static Mutex* profiler_lock_ ACQUIRED_AFTER(runtime_shutdown_lock_);
566 
567   // Guards trace (ie traceview) requests.
568   static Mutex* trace_lock_ ACQUIRED_AFTER(profiler_lock_);
569 
570   // Guards debugger recent allocation records.
571   static Mutex* alloc_tracker_lock_ ACQUIRED_AFTER(trace_lock_);
572 
573   // Guards updates to instrumentation to ensure mutual exclusion of
574   // events like deoptimization requests.
575   // TODO: improve name, perhaps instrumentation_update_lock_.
576   static Mutex* deoptimization_lock_ ACQUIRED_AFTER(alloc_tracker_lock_);
577 
578   // The thread_list_lock_ guards ThreadList::list_. It is also commonly held to stop threads
579   // attaching and detaching.
580   static Mutex* thread_list_lock_ ACQUIRED_AFTER(deoptimization_lock_);
581 
582   // Signaled when threads terminate. Used to determine when all non-daemons have terminated.
583   static ConditionVariable* thread_exit_cond_ GUARDED_BY(Locks::thread_list_lock_);
584 
585   // Guards maintaining loading library data structures.
586   static Mutex* jni_libraries_lock_ ACQUIRED_AFTER(thread_list_lock_);
587 
588   // Guards breakpoints.
589   static ReaderWriterMutex* breakpoint_lock_ ACQUIRED_AFTER(jni_libraries_lock_);
590 
591   // Guards lists of classes within the class linker.
592   static ReaderWriterMutex* classlinker_classes_lock_ ACQUIRED_AFTER(breakpoint_lock_);
593 
594   // When declaring any Mutex add DEFAULT_MUTEX_ACQUIRED_AFTER to use annotalysis to check the code
595   // doesn't try to hold a higher level Mutex.
596   #define DEFAULT_MUTEX_ACQUIRED_AFTER ACQUIRED_AFTER(Locks::classlinker_classes_lock_)
597 
598   static Mutex* allocated_monitor_ids_lock_ ACQUIRED_AFTER(classlinker_classes_lock_);
599 
600   // Guard the allocation/deallocation of thread ids.
601   static Mutex* allocated_thread_ids_lock_ ACQUIRED_AFTER(allocated_monitor_ids_lock_);
602 
603   // Guards modification of the LDT on x86.
604   static Mutex* modify_ldt_lock_ ACQUIRED_AFTER(allocated_thread_ids_lock_);
605 
606   // Guards intern table.
607   static Mutex* intern_table_lock_ ACQUIRED_AFTER(modify_ldt_lock_);
608 
609   // Guards reference processor.
610   static Mutex* reference_processor_lock_ ACQUIRED_AFTER(intern_table_lock_);
611 
612   // Guards cleared references queue.
613   static Mutex* reference_queue_cleared_references_lock_ ACQUIRED_AFTER(reference_processor_lock_);
614 
615   // Guards weak references queue.
616   static Mutex* reference_queue_weak_references_lock_ ACQUIRED_AFTER(reference_queue_cleared_references_lock_);
617 
618   // Guards finalizer references queue.
619   static Mutex* reference_queue_finalizer_references_lock_ ACQUIRED_AFTER(reference_queue_weak_references_lock_);
620 
621   // Guards phantom references queue.
622   static Mutex* reference_queue_phantom_references_lock_ ACQUIRED_AFTER(reference_queue_finalizer_references_lock_);
623 
624   // Guards soft references queue.
625   static Mutex* reference_queue_soft_references_lock_ ACQUIRED_AFTER(reference_queue_phantom_references_lock_);
626 
627   // Have an exclusive aborting thread.
628   static Mutex* abort_lock_ ACQUIRED_AFTER(reference_queue_soft_references_lock_);
629 
630   // Allow mutual exclusion when manipulating Thread::suspend_count_.
631   // TODO: Does the trade-off of a per-thread lock make sense?
632   static Mutex* thread_suspend_count_lock_ ACQUIRED_AFTER(abort_lock_);
633 
634   // One unexpected signal at a time lock.
635   static Mutex* unexpected_signal_lock_ ACQUIRED_AFTER(thread_suspend_count_lock_);
636 
637   // Guards the maps in mem_map.
638   static Mutex* mem_maps_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
639 
640   // Have an exclusive logging thread.
641   static Mutex* logging_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
642 };
643 
644 }  // namespace art
645 
646 #endif  // ART_RUNTIME_BASE_MUTEX_H_
647