• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Main internal TSan header file.
13 //
14 // Ground rules:
15 //   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
16 //     function-scope locals)
17 //   - All functions/classes/etc reside in namespace __tsan, except for those
18 //     declared in tsan_interface.h.
19 //   - Platform-specific files should be used instead of ifdefs (*).
20 //   - No system headers included in header files (*).
21 //   - Platform specific headres included only into platform-specific files (*).
22 //
23 //  (*) Except when inlining is critical for performance.
24 //===----------------------------------------------------------------------===//
25 
26 #ifndef TSAN_RTL_H
27 #define TSAN_RTL_H
28 
29 #include "sanitizer_common/sanitizer_allocator.h"
30 #include "sanitizer_common/sanitizer_allocator_internal.h"
31 #include "sanitizer_common/sanitizer_asm.h"
32 #include "sanitizer_common/sanitizer_common.h"
33 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
34 #include "sanitizer_common/sanitizer_libignore.h"
35 #include "sanitizer_common/sanitizer_suppressions.h"
36 #include "sanitizer_common/sanitizer_thread_registry.h"
37 #include "tsan_clock.h"
38 #include "tsan_defs.h"
39 #include "tsan_flags.h"
40 #include "tsan_sync.h"
41 #include "tsan_trace.h"
42 #include "tsan_vector.h"
43 #include "tsan_report.h"
44 #include "tsan_platform.h"
45 #include "tsan_mutexset.h"
46 #include "tsan_ignoreset.h"
47 #include "tsan_stack_trace.h"
48 
49 #if SANITIZER_WORDSIZE != 64
50 # error "ThreadSanitizer is supported only on 64-bit platforms"
51 #endif
52 
53 namespace __tsan {
54 
55 #ifndef SANITIZER_GO
56 struct MapUnmapCallback;
57 #ifdef __mips64
58 static const uptr kAllocatorSpace = 0;
59 static const uptr kAllocatorSize = SANITIZER_MMAP_RANGE_SIZE;
60 static const uptr kAllocatorRegionSizeLog = 20;
61 static const uptr kAllocatorNumRegions =
62     kAllocatorSize >> kAllocatorRegionSizeLog;
63 typedef TwoLevelByteMap<(kAllocatorNumRegions >> 12), 1 << 12,
64     MapUnmapCallback> ByteMap;
65 typedef SizeClassAllocator32<kAllocatorSpace, kAllocatorSize, 0,
66     CompactSizeClassMap, kAllocatorRegionSizeLog, ByteMap,
67     MapUnmapCallback> PrimaryAllocator;
68 #else
69 typedef SizeClassAllocator64<kHeapMemBeg, kHeapMemEnd - kHeapMemBeg, 0,
70     DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator;
71 #endif
72 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
73 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
74 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
75     SecondaryAllocator> Allocator;
76 Allocator *allocator();
77 #endif
78 
79 void TsanCheckFailed(const char *file, int line, const char *cond,
80                      u64 v1, u64 v2);
81 
82 const u64 kShadowRodata = (u64)-1;  // .rodata shadow marker
83 
84 // FastState (from most significant bit):
85 //   ignore          : 1
86 //   tid             : kTidBits
87 //   unused          : -
88 //   history_size    : 3
89 //   epoch           : kClkBits
90 class FastState {
91  public:
FastState(u64 tid,u64 epoch)92   FastState(u64 tid, u64 epoch) {
93     x_ = tid << kTidShift;
94     x_ |= epoch;
95     DCHECK_EQ(tid, this->tid());
96     DCHECK_EQ(epoch, this->epoch());
97     DCHECK_EQ(GetIgnoreBit(), false);
98   }
99 
FastState(u64 x)100   explicit FastState(u64 x)
101       : x_(x) {
102   }
103 
raw()104   u64 raw() const {
105     return x_;
106   }
107 
tid()108   u64 tid() const {
109     u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
110     return res;
111   }
112 
TidWithIgnore()113   u64 TidWithIgnore() const {
114     u64 res = x_ >> kTidShift;
115     return res;
116   }
117 
epoch()118   u64 epoch() const {
119     u64 res = x_ & ((1ull << kClkBits) - 1);
120     return res;
121   }
122 
IncrementEpoch()123   void IncrementEpoch() {
124     u64 old_epoch = epoch();
125     x_ += 1;
126     DCHECK_EQ(old_epoch + 1, epoch());
127     (void)old_epoch;
128   }
129 
SetIgnoreBit()130   void SetIgnoreBit() { x_ |= kIgnoreBit; }
ClearIgnoreBit()131   void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
GetIgnoreBit()132   bool GetIgnoreBit() const { return (s64)x_ < 0; }
133 
SetHistorySize(int hs)134   void SetHistorySize(int hs) {
135     CHECK_GE(hs, 0);
136     CHECK_LE(hs, 7);
137     x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift);
138   }
139 
140   ALWAYS_INLINE
GetHistorySize()141   int GetHistorySize() const {
142     return (int)((x_ >> kHistoryShift) & kHistoryMask);
143   }
144 
ClearHistorySize()145   void ClearHistorySize() {
146     SetHistorySize(0);
147   }
148 
149   ALWAYS_INLINE
GetTracePos()150   u64 GetTracePos() const {
151     const int hs = GetHistorySize();
152     // When hs == 0, the trace consists of 2 parts.
153     const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
154     return epoch() & mask;
155   }
156 
157  private:
158   friend class Shadow;
159   static const int kTidShift = 64 - kTidBits - 1;
160   static const u64 kIgnoreBit = 1ull << 63;
161   static const u64 kFreedBit = 1ull << 63;
162   static const u64 kHistoryShift = kClkBits;
163   static const u64 kHistoryMask = 7;
164   u64 x_;
165 };
166 
167 // Shadow (from most significant bit):
168 //   freed           : 1
169 //   tid             : kTidBits
170 //   is_atomic       : 1
171 //   is_read         : 1
172 //   size_log        : 2
173 //   addr0           : 3
174 //   epoch           : kClkBits
175 class Shadow : public FastState {
176  public:
Shadow(u64 x)177   explicit Shadow(u64 x)
178       : FastState(x) {
179   }
180 
Shadow(const FastState & s)181   explicit Shadow(const FastState &s)
182       : FastState(s.x_) {
183     ClearHistorySize();
184   }
185 
SetAddr0AndSizeLog(u64 addr0,unsigned kAccessSizeLog)186   void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
187     DCHECK_EQ((x_ >> kClkBits) & 31, 0);
188     DCHECK_LE(addr0, 7);
189     DCHECK_LE(kAccessSizeLog, 3);
190     x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits;
191     DCHECK_EQ(kAccessSizeLog, size_log());
192     DCHECK_EQ(addr0, this->addr0());
193   }
194 
SetWrite(unsigned kAccessIsWrite)195   void SetWrite(unsigned kAccessIsWrite) {
196     DCHECK_EQ(x_ & kReadBit, 0);
197     if (!kAccessIsWrite)
198       x_ |= kReadBit;
199     DCHECK_EQ(kAccessIsWrite, IsWrite());
200   }
201 
SetAtomic(bool kIsAtomic)202   void SetAtomic(bool kIsAtomic) {
203     DCHECK(!IsAtomic());
204     if (kIsAtomic)
205       x_ |= kAtomicBit;
206     DCHECK_EQ(IsAtomic(), kIsAtomic);
207   }
208 
IsAtomic()209   bool IsAtomic() const {
210     return x_ & kAtomicBit;
211   }
212 
IsZero()213   bool IsZero() const {
214     return x_ == 0;
215   }
216 
TidsAreEqual(const Shadow s1,const Shadow s2)217   static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
218     u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
219     DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
220     return shifted_xor == 0;
221   }
222 
223   static ALWAYS_INLINE
Addr0AndSizeAreEqual(const Shadow s1,const Shadow s2)224   bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
225     u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31;
226     return masked_xor == 0;
227   }
228 
TwoRangesIntersect(Shadow s1,Shadow s2,unsigned kS2AccessSize)229   static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2,
230       unsigned kS2AccessSize) {
231     bool res = false;
232     u64 diff = s1.addr0() - s2.addr0();
233     if ((s64)diff < 0) {  // s1.addr0 < s2.addr0  // NOLINT
234       // if (s1.addr0() + size1) > s2.addr0()) return true;
235       if (s1.size() > -diff)
236         res = true;
237     } else {
238       // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
239       if (kS2AccessSize > diff)
240         res = true;
241     }
242     DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2));
243     DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1));
244     return res;
245   }
246 
addr0()247   u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; }
size()248   u64 ALWAYS_INLINE size() const { return 1ull << size_log(); }
IsWrite()249   bool ALWAYS_INLINE IsWrite() const { return !IsRead(); }
IsRead()250   bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; }
251 
252   // The idea behind the freed bit is as follows.
253   // When the memory is freed (or otherwise unaccessible) we write to the shadow
254   // values with tid/epoch related to the free and the freed bit set.
255   // During memory accesses processing the freed bit is considered
256   // as msb of tid. So any access races with shadow with freed bit set
257   // (it is as if write from a thread with which we never synchronized before).
258   // This allows us to detect accesses to freed memory w/o additional
259   // overheads in memory access processing and at the same time restore
260   // tid/epoch of free.
MarkAsFreed()261   void MarkAsFreed() {
262      x_ |= kFreedBit;
263   }
264 
IsFreed()265   bool IsFreed() const {
266     return x_ & kFreedBit;
267   }
268 
GetFreedAndReset()269   bool GetFreedAndReset() {
270     bool res = x_ & kFreedBit;
271     x_ &= ~kFreedBit;
272     return res;
273   }
274 
IsBothReadsOrAtomic(bool kIsWrite,bool kIsAtomic)275   bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
276     bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift)
277         | (u64(kIsAtomic) << kAtomicShift));
278     DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
279     return v;
280   }
281 
IsRWNotWeaker(bool kIsWrite,bool kIsAtomic)282   bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
283     bool v = ((x_ >> kReadShift) & 3)
284         <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
285     DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
286         (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
287     return v;
288   }
289 
IsRWWeakerOrEqual(bool kIsWrite,bool kIsAtomic)290   bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
291     bool v = ((x_ >> kReadShift) & 3)
292         >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
293     DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
294         (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
295     return v;
296   }
297 
298  private:
299   static const u64 kReadShift   = 5 + kClkBits;
300   static const u64 kReadBit     = 1ull << kReadShift;
301   static const u64 kAtomicShift = 6 + kClkBits;
302   static const u64 kAtomicBit   = 1ull << kAtomicShift;
303 
size_log()304   u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; }
305 
TwoRangesIntersectSlow(const Shadow s1,const Shadow s2)306   static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) {
307     if (s1.addr0() == s2.addr0()) return true;
308     if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
309       return true;
310     if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
311       return true;
312     return false;
313   }
314 };
315 
316 struct ThreadSignalContext;
317 
318 struct JmpBuf {
319   uptr sp;
320   uptr mangled_sp;
321   int int_signal_send;
322   bool in_blocking_func;
323   uptr in_signal_handler;
324   uptr *shadow_stack_pos;
325 };
326 
327 // This struct is stored in TLS.
328 struct ThreadState {
329   FastState fast_state;
330   // Synch epoch represents the threads's epoch before the last synchronization
331   // action. It allows to reduce number of shadow state updates.
332   // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
333   // if we are processing write to X from the same thread at epoch=200,
334   // we do nothing, because both writes happen in the same 'synch epoch'.
335   // That is, if another memory access does not race with the former write,
336   // it does not race with the latter as well.
337   // QUESTION: can we can squeeze this into ThreadState::Fast?
338   // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
339   // taken by epoch between synchs.
340   // This way we can save one load from tls.
341   u64 fast_synch_epoch;
342   // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
343   // We do not distinguish beteween ignoring reads and writes
344   // for better performance.
345   int ignore_reads_and_writes;
346   int ignore_sync;
347   // Go does not support ignores.
348 #ifndef SANITIZER_GO
349   IgnoreSet mop_ignore_set;
350   IgnoreSet sync_ignore_set;
351 #endif
352   // C/C++ uses fixed size shadow stack embed into Trace.
353   // Go uses malloc-allocated shadow stack with dynamic size.
354   uptr *shadow_stack;
355   uptr *shadow_stack_end;
356   uptr *shadow_stack_pos;
357   u64 *racy_shadow_addr;
358   u64 racy_state[2];
359   MutexSet mset;
360   ThreadClock clock;
361 #ifndef SANITIZER_GO
362   AllocatorCache alloc_cache;
363   InternalAllocatorCache internal_alloc_cache;
364   Vector<JmpBuf> jmp_bufs;
365   int ignore_interceptors;
366 #endif
367 #if TSAN_COLLECT_STATS
368   u64 stat[StatCnt];
369 #endif
370   const int tid;
371   const int unique_id;
372   bool in_symbolizer;
373   bool in_ignored_lib;
374   bool is_inited;
375   bool is_dead;
376   bool is_freeing;
377   bool is_vptr_access;
378   const uptr stk_addr;
379   const uptr stk_size;
380   const uptr tls_addr;
381   const uptr tls_size;
382   ThreadContext *tctx;
383 
384 #if SANITIZER_DEBUG && !SANITIZER_GO
385   InternalDeadlockDetector internal_deadlock_detector;
386 #endif
387   DDPhysicalThread *dd_pt;
388   DDLogicalThread *dd_lt;
389 
390   atomic_uintptr_t in_signal_handler;
391   ThreadSignalContext *signal_ctx;
392 
393   DenseSlabAllocCache block_cache;
394   DenseSlabAllocCache sync_cache;
395   DenseSlabAllocCache clock_cache;
396 
397 #ifndef SANITIZER_GO
398   u32 last_sleep_stack_id;
399   ThreadClock last_sleep_clock;
400 #endif
401 
402   // Set in regions of runtime that must be signal-safe and fork-safe.
403   // If set, malloc must not be called.
404   int nomalloc;
405 
406   explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
407                        unsigned reuse_count,
408                        uptr stk_addr, uptr stk_size,
409                        uptr tls_addr, uptr tls_size);
410 };
411 
412 #ifndef SANITIZER_GO
413 __attribute__((tls_model("initial-exec")))
414 extern THREADLOCAL char cur_thread_placeholder[];
cur_thread()415 INLINE ThreadState *cur_thread() {
416   return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
417 }
418 #endif
419 
420 class ThreadContext : public ThreadContextBase {
421  public:
422   explicit ThreadContext(int tid);
423   ~ThreadContext();
424   ThreadState *thr;
425   u32 creation_stack_id;
426   SyncClock sync;
427   // Epoch at which the thread had started.
428   // If we see an event from the thread stamped by an older epoch,
429   // the event is from a dead thread that shared tid with this thread.
430   u64 epoch0;
431   u64 epoch1;
432 
433   // Override superclass callbacks.
434   void OnDead() override;
435   void OnJoined(void *arg) override;
436   void OnFinished() override;
437   void OnStarted(void *arg) override;
438   void OnCreated(void *arg) override;
439   void OnReset() override;
440   void OnDetached(void *arg) override;
441 };
442 
443 struct RacyStacks {
444   MD5Hash hash[2];
445   bool operator==(const RacyStacks &other) const {
446     if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
447       return true;
448     if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
449       return true;
450     return false;
451   }
452 };
453 
454 struct RacyAddress {
455   uptr addr_min;
456   uptr addr_max;
457 };
458 
459 struct FiredSuppression {
460   ReportType type;
461   uptr pc;
462   Suppression *supp;
463 };
464 
465 struct Context {
466   Context();
467 
468   bool initialized;
469   bool after_multithreaded_fork;
470 
471   MetaMap metamap;
472 
473   Mutex report_mtx;
474   int nreported;
475   int nmissed_expected;
476   atomic_uint64_t last_symbolize_time_ns;
477 
478   void *background_thread;
479   atomic_uint32_t stop_background_thread;
480 
481   ThreadRegistry *thread_registry;
482 
483   Vector<RacyStacks> racy_stacks;
484   Vector<RacyAddress> racy_addresses;
485   // Number of fired suppressions may be large enough.
486   InternalMmapVector<FiredSuppression> fired_suppressions;
487   DDetector *dd;
488 
489   ClockAlloc clock_alloc;
490 
491   Flags flags;
492 
493   u64 stat[StatCnt];
494   u64 int_alloc_cnt[MBlockTypeCount];
495   u64 int_alloc_siz[MBlockTypeCount];
496 };
497 
498 extern Context *ctx;  // The one and the only global runtime context.
499 
500 struct ScopedIgnoreInterceptors {
ScopedIgnoreInterceptorsScopedIgnoreInterceptors501   ScopedIgnoreInterceptors() {
502 #ifndef SANITIZER_GO
503     cur_thread()->ignore_interceptors++;
504 #endif
505   }
506 
~ScopedIgnoreInterceptorsScopedIgnoreInterceptors507   ~ScopedIgnoreInterceptors() {
508 #ifndef SANITIZER_GO
509     cur_thread()->ignore_interceptors--;
510 #endif
511   }
512 };
513 
514 class ScopedReport {
515  public:
516   explicit ScopedReport(ReportType typ);
517   ~ScopedReport();
518 
519   void AddMemoryAccess(uptr addr, Shadow s, StackTrace stack,
520                        const MutexSet *mset);
521   void AddStack(StackTrace stack, bool suppressable = false);
522   void AddThread(const ThreadContext *tctx, bool suppressable = false);
523   void AddThread(int unique_tid, bool suppressable = false);
524   void AddUniqueTid(int unique_tid);
525   void AddMutex(const SyncVar *s);
526   u64 AddMutex(u64 id);
527   void AddLocation(uptr addr, uptr size);
528   void AddSleep(u32 stack_id);
529   void SetCount(int count);
530 
531   const ReportDesc *GetReport() const;
532 
533  private:
534   ReportDesc *rep_;
535   // Symbolizer makes lots of intercepted calls. If we try to process them,
536   // at best it will cause deadlocks on internal mutexes.
537   ScopedIgnoreInterceptors ignore_interceptors_;
538 
539   void AddDeadMutex(u64 id);
540 
541   ScopedReport(const ScopedReport&);
542   void operator = (const ScopedReport&);
543 };
544 
545 void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk,
546                   MutexSet *mset);
547 
548 template<typename StackTraceTy>
ObtainCurrentStack(ThreadState * thr,uptr toppc,StackTraceTy * stack)549 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack) {
550   uptr size = thr->shadow_stack_pos - thr->shadow_stack;
551   uptr start = 0;
552   if (size + !!toppc > kStackTraceMax) {
553     start = size + !!toppc - kStackTraceMax;
554     size = kStackTraceMax - !!toppc;
555   }
556   stack->Init(&thr->shadow_stack[start], size, toppc);
557 }
558 
559 
560 #if TSAN_COLLECT_STATS
561 void StatAggregate(u64 *dst, u64 *src);
562 void StatOutput(u64 *stat);
563 #endif
564 
565 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
566 #if TSAN_COLLECT_STATS
567   thr->stat[typ] += n;
568 #endif
569 }
StatSet(ThreadState * thr,StatType typ,u64 n)570 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
571 #if TSAN_COLLECT_STATS
572   thr->stat[typ] = n;
573 #endif
574 }
575 
576 void MapShadow(uptr addr, uptr size);
577 void MapThreadTrace(uptr addr, uptr size);
578 void DontNeedShadowFor(uptr addr, uptr size);
579 void InitializeShadowMemory();
580 void InitializeInterceptors();
581 void InitializeLibIgnore();
582 void InitializeDynamicAnnotations();
583 
584 void ForkBefore(ThreadState *thr, uptr pc);
585 void ForkParentAfter(ThreadState *thr, uptr pc);
586 void ForkChildAfter(ThreadState *thr, uptr pc);
587 
588 void ReportRace(ThreadState *thr);
589 bool OutputReport(ThreadState *thr, const ScopedReport &srep);
590 bool IsFiredSuppression(Context *ctx, const ScopedReport &srep,
591                         StackTrace trace);
592 bool IsExpectedReport(uptr addr, uptr size);
593 void PrintMatchedBenignRaces();
594 
595 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
596 # define DPrintf Printf
597 #else
598 # define DPrintf(...)
599 #endif
600 
601 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
602 # define DPrintf2 Printf
603 #else
604 # define DPrintf2(...)
605 #endif
606 
607 u32 CurrentStackId(ThreadState *thr, uptr pc);
608 ReportStack *SymbolizeStackId(u32 stack_id);
609 void PrintCurrentStack(ThreadState *thr, uptr pc);
610 void PrintCurrentStackSlow(uptr pc);  // uses libunwind
611 
612 void Initialize(ThreadState *thr);
613 int Finalize(ThreadState *thr);
614 
615 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
616 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
617 
618 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
619     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
620 void MemoryAccessImpl(ThreadState *thr, uptr addr,
621     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
622     u64 *shadow_mem, Shadow cur);
623 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
624     uptr size, bool is_write);
625 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
626     uptr size, uptr step, bool is_write);
627 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
628     int size, bool kAccessIsWrite, bool kIsAtomic);
629 
630 const int kSizeLog1 = 0;
631 const int kSizeLog2 = 1;
632 const int kSizeLog4 = 2;
633 const int kSizeLog8 = 3;
634 
MemoryRead(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)635 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
636                                      uptr addr, int kAccessSizeLog) {
637   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
638 }
639 
MemoryWrite(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)640 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
641                                       uptr addr, int kAccessSizeLog) {
642   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
643 }
644 
MemoryReadAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)645 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
646                                            uptr addr, int kAccessSizeLog) {
647   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
648 }
649 
MemoryWriteAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)650 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
651                                             uptr addr, int kAccessSizeLog) {
652   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
653 }
654 
655 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
656 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
657 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
658 
659 void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
660 void ThreadIgnoreEnd(ThreadState *thr, uptr pc);
661 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
662 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc);
663 
664 void FuncEntry(ThreadState *thr, uptr pc);
665 void FuncExit(ThreadState *thr);
666 
667 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
668 void ThreadStart(ThreadState *thr, int tid, uptr os_id);
669 void ThreadFinish(ThreadState *thr);
670 int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
671 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
672 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
673 void ThreadFinalize(ThreadState *thr);
674 void ThreadSetName(ThreadState *thr, const char *name);
675 int ThreadCount(ThreadState *thr);
676 void ProcessPendingSignals(ThreadState *thr);
677 
678 void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
679                  bool rw, bool recursive, bool linker_init);
680 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
681 void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1,
682                bool try_lock = false);
683 int  MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false);
684 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr, bool try_lock = false);
685 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
686 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
687 void MutexRepair(ThreadState *thr, uptr pc, uptr addr);  // call on EOWNERDEAD
688 
689 void Acquire(ThreadState *thr, uptr pc, uptr addr);
690 // AcquireGlobal synchronizes the current thread with all other threads.
691 // In terms of happens-before relation, it draws a HB edge from all threads
692 // (where they happen to execute right now) to the current thread. We use it to
693 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
694 // right before executing finalizers. This provides a coarse, but simple
695 // approximation of the actual required synchronization.
696 void AcquireGlobal(ThreadState *thr, uptr pc);
697 void Release(ThreadState *thr, uptr pc, uptr addr);
698 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
699 void AfterSleep(ThreadState *thr, uptr pc);
700 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
701 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
702 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
703 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
704 
705 // The hacky call uses custom calling convention and an assembly thunk.
706 // It is considerably faster that a normal call for the caller
707 // if it is not executed (it is intended for slow paths from hot functions).
708 // The trick is that the call preserves all registers and the compiler
709 // does not treat it as a call.
710 // If it does not work for you, use normal call.
711 #if !SANITIZER_DEBUG && defined(__x86_64__)
712 // The caller may not create the stack frame for itself at all,
713 // so we create a reserve stack frame for it (1024b must be enough).
714 #define HACKY_CALL(f) \
715   __asm__ __volatile__("sub $1024, %%rsp;" \
716                        CFI_INL_ADJUST_CFA_OFFSET(1024) \
717                        ".hidden " #f "_thunk;" \
718                        "call " #f "_thunk;" \
719                        "add $1024, %%rsp;" \
720                        CFI_INL_ADJUST_CFA_OFFSET(-1024) \
721                        ::: "memory", "cc");
722 #else
723 #define HACKY_CALL(f) f()
724 #endif
725 
726 void TraceSwitch(ThreadState *thr);
727 uptr TraceTopPC(ThreadState *thr);
728 uptr TraceSize();
729 uptr TraceParts();
730 Trace *ThreadTrace(int tid);
731 
732 extern "C" void __tsan_trace_switch();
TraceAddEvent(ThreadState * thr,FastState fs,EventType typ,u64 addr)733 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
734                                         EventType typ, u64 addr) {
735   if (!kCollectHistory)
736     return;
737   DCHECK_GE((int)typ, 0);
738   DCHECK_LE((int)typ, 7);
739   DCHECK_EQ(GetLsb(addr, 61), addr);
740   StatInc(thr, StatEvents);
741   u64 pos = fs.GetTracePos();
742   if (UNLIKELY((pos % kTracePartSize) == 0)) {
743 #ifndef SANITIZER_GO
744     HACKY_CALL(__tsan_trace_switch);
745 #else
746     TraceSwitch(thr);
747 #endif
748   }
749   Event *trace = (Event*)GetThreadTrace(fs.tid());
750   Event *evp = &trace[pos];
751   Event ev = (u64)addr | ((u64)typ << 61);
752   *evp = ev;
753 }
754 
755 #ifndef SANITIZER_GO
HeapEnd()756 uptr ALWAYS_INLINE HeapEnd() {
757 #if SANITIZER_CAN_USE_ALLOCATOR64
758   return kHeapMemEnd + PrimaryAllocator::AdditionalSize();
759 #else
760   return kHeapMemEnd;
761 #endif
762 }
763 #endif
764 
765 }  // namespace __tsan
766 
767 #endif  // TSAN_RTL_H
768