• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkRRect_DEFINED
9 #define SkRRect_DEFINED
10 
11 #include "SkRect.h"
12 #include "SkPoint.h"
13 
14 class SkPath;
15 class SkMatrix;
16 
17 // Path forward:
18 //   core work
19 //      add validate method (all radii positive, all radii sums < rect size, etc.)
20 //      add contains(SkRect&)  - for clip stack
21 //      add contains(SkRRect&) - for clip stack
22 //      add heart rect computation (max rect inside RR)
23 //      add 9patch rect computation
24 //      add growToInclude(SkPath&)
25 //   analysis
26 //      use growToInclude to fit skp round rects & generate stats (RRs vs. real paths)
27 //      check on # of rectorus's the RRs could handle
28 //   rendering work
29 //      update SkPath.addRRect() to only use quads
30 //      add GM and bench
31 //   further out
32 //      detect and triangulate RRectorii rather than falling back to SW in Ganesh
33 //
34 
35 /** \class SkRRect
36 
37     The SkRRect class represents a rounded rect with a potentially different
38     radii for each corner. It does not have a constructor so must be
39     initialized with one of the initialization functions (e.g., setEmpty,
40     setRectRadii, etc.)
41 
42     This class is intended to roughly match CSS' border-*-*-radius capabilities.
43     This means:
44         If either of a corner's radii are 0 the corner will be square.
45         Negative radii are not allowed (they are clamped to zero).
46         If the corner curves overlap they will be proportionally reduced to fit.
47 */
48 class SK_API SkRRect {
49 public:
50     /**
51      * Enum to capture the various possible subtypes of RR. Accessed
52      * by type(). The subtypes become progressively less restrictive.
53      */
54     enum Type {
55         // !< The RR is empty
56         kEmpty_Type,
57 
58         //!< The RR is actually a (non-empty) rect (i.e., at least one radius
59         //!< at each corner is zero)
60         kRect_Type,
61 
62         //!< The RR is actually a (non-empty) oval (i.e., all x radii are equal
63         //!< and >= width/2 and all the y radii are equal and >= height/2
64         kOval_Type,
65 
66         //!< The RR is non-empty and all the x radii are equal & all y radii
67         //!< are equal but it is not an oval (i.e., there are lines between
68         //!< the curves) nor a rect (i.e., both radii are non-zero)
69         kSimple_Type,
70 
71         //!< The RR is non-empty and the two left x radii are equal, the two top
72         //!< y radii are equal, and the same for the right and bottom but it is
73         //!< neither an rect, oval, nor a simple RR. It is called "nine patch"
74         //!< because the centers of the corner ellipses form an axis aligned
75         //!< rect with edges that divide the RR into an 9 rectangular patches:
76         //!< an interior patch, four edge patches, and four corner patches.
77         kNinePatch_Type,
78 
79         //!< A fully general (non-empty) RR. Some of the x and/or y radii are
80         //!< different from the others and there must be one corner where
81         //!< both radii are non-zero.
82         kComplex_Type,
83     };
84 
85     /**
86      * Returns the RR's sub type.
87      */
getType()88     Type getType() const {
89         SkDEBUGCODE(this->validate();)
90         return static_cast<Type>(fType);
91     }
92 
type()93     Type type() const { return this->getType(); }
94 
isEmpty()95     inline bool isEmpty() const { return kEmpty_Type == this->getType(); }
isRect()96     inline bool isRect() const { return kRect_Type == this->getType(); }
isOval()97     inline bool isOval() const { return kOval_Type == this->getType(); }
isSimple()98     inline bool isSimple() const { return kSimple_Type == this->getType(); }
isSimpleCircular()99     inline bool isSimpleCircular() const {
100         return this->isSimple() && fRadii[0].fX == fRadii[0].fY;
101     }
isNinePatch()102     inline bool isNinePatch() const { return kNinePatch_Type == this->getType(); }
isComplex()103     inline bool isComplex() const { return kComplex_Type == this->getType(); }
104 
105     bool allCornersCircular() const;
106 
width()107     SkScalar width() const { return fRect.width(); }
height()108     SkScalar height() const { return fRect.height(); }
109 
110     /**
111      * Set this RR to the empty rectangle (0,0,0,0) with 0 x & y radii.
112      */
setEmpty()113     void setEmpty() {
114         fRect.setEmpty();
115         memset(fRadii, 0, sizeof(fRadii));
116         fType = kEmpty_Type;
117 
118         SkDEBUGCODE(this->validate();)
119     }
120 
121     /**
122      * Set this RR to match the supplied rect. All radii will be 0.
123      */
setRect(const SkRect & rect)124     void setRect(const SkRect& rect) {
125         if (rect.isEmpty()) {
126             this->setEmpty();
127             return;
128         }
129 
130         fRect = rect;
131         memset(fRadii, 0, sizeof(fRadii));
132         fType = kRect_Type;
133 
134         SkDEBUGCODE(this->validate();)
135     }
136 
137     /**
138      * Set this RR to match the supplied oval. All x radii will equal half the
139      * width and all y radii will equal half the height.
140      */
setOval(const SkRect & oval)141     void setOval(const SkRect& oval) {
142         if (oval.isEmpty()) {
143             this->setEmpty();
144             return;
145         }
146 
147         SkScalar xRad = SkScalarHalf(oval.width());
148         SkScalar yRad = SkScalarHalf(oval.height());
149 
150         fRect = oval;
151         for (int i = 0; i < 4; ++i) {
152             fRadii[i].set(xRad, yRad);
153         }
154         fType = kOval_Type;
155 
156         SkDEBUGCODE(this->validate();)
157     }
158 
159     /**
160      * Initialize the RR with the same radii for all four corners.
161      */
162     void setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad);
163 
164     /**
165      * Initialize the rr with one radius per-side.
166      */
167     void setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad,
168                       SkScalar rightRad, SkScalar bottomRad);
169 
170     /**
171      * Initialize the RR with potentially different radii for all four corners.
172      */
173     void setRectRadii(const SkRect& rect, const SkVector radii[4]);
174 
175     // The radii are stored in UL, UR, LR, LL order.
176     enum Corner {
177         kUpperLeft_Corner,
178         kUpperRight_Corner,
179         kLowerRight_Corner,
180         kLowerLeft_Corner
181     };
182 
rect()183     const SkRect& rect() const { return fRect; }
radii(Corner corner)184     const SkVector& radii(Corner corner) const { return fRadii[corner]; }
getBounds()185     const SkRect& getBounds() const { return fRect; }
186 
187     /**
188      *  When a rrect is simple, all of its radii are equal. This returns one
189      *  of those radii. This call requires the rrect to be non-complex.
190      */
getSimpleRadii()191     const SkVector& getSimpleRadii() const {
192         SkASSERT(!this->isComplex());
193         return fRadii[0];
194     }
195 
196     friend bool operator==(const SkRRect& a, const SkRRect& b) {
197         return a.fRect == b.fRect &&
198                SkScalarsEqual(a.fRadii[0].asScalars(),
199                               b.fRadii[0].asScalars(), 8);
200     }
201 
202     friend bool operator!=(const SkRRect& a, const SkRRect& b) {
203         return a.fRect != b.fRect ||
204                !SkScalarsEqual(a.fRadii[0].asScalars(),
205                                b.fRadii[0].asScalars(), 8);
206     }
207 
208     /**
209      *  Call inset on the bounds, and adjust the radii to reflect what happens
210      *  in stroking: If the corner is sharp (no curvature), leave it alone,
211      *  otherwise we grow/shrink the radii by the amount of the inset. If a
212      *  given radius becomes negative, it is pinned to 0.
213      *
214      *  It is valid for dst == this.
215      */
216     void inset(SkScalar dx, SkScalar dy, SkRRect* dst) const;
217 
inset(SkScalar dx,SkScalar dy)218     void inset(SkScalar dx, SkScalar dy) {
219         this->inset(dx, dy, this);
220     }
221 
222     /**
223      *  Call outset on the bounds, and adjust the radii to reflect what happens
224      *  in stroking: If the corner is sharp (no curvature), leave it alone,
225      *  otherwise we grow/shrink the radii by the amount of the inset. If a
226      *  given radius becomes negative, it is pinned to 0.
227      *
228      *  It is valid for dst == this.
229      */
outset(SkScalar dx,SkScalar dy,SkRRect * dst)230     void outset(SkScalar dx, SkScalar dy, SkRRect* dst) const {
231         this->inset(-dx, -dy, dst);
232     }
outset(SkScalar dx,SkScalar dy)233     void outset(SkScalar dx, SkScalar dy) {
234         this->inset(-dx, -dy, this);
235     }
236 
237     /**
238      * Translate the rrect by (dx, dy).
239      */
offset(SkScalar dx,SkScalar dy)240     void offset(SkScalar dx, SkScalar dy) {
241         fRect.offset(dx, dy);
242     }
243 
244     /**
245      *  Returns true if 'rect' is wholy inside the RR, and both
246      *  are not empty.
247      */
248     bool contains(const SkRect& rect) const;
249 
250     SkDEBUGCODE(void validate() const;)
251 
252     enum {
253         kSizeInMemory = 12 * sizeof(SkScalar)
254     };
255 
256     /**
257      *  Write the rrect into the specified buffer. This is guaranteed to always
258      *  write kSizeInMemory bytes, and that value is guaranteed to always be
259      *  a multiple of 4. Return kSizeInMemory.
260      */
261     size_t writeToMemory(void* buffer) const;
262 
263     /**
264      * Reads the rrect from the specified buffer
265      *
266      * If the specified buffer is large enough, this will read kSizeInMemory bytes,
267      * and that value is guaranteed to always be a multiple of 4.
268      *
269      * @param buffer Memory to read from
270      * @param length Amount of memory available in the buffer
271      * @return number of bytes read (must be a multiple of 4) or
272      *         0 if there was not enough memory available
273      */
274     size_t readFromMemory(const void* buffer, size_t length);
275 
276     /**
277      *  Transform by the specified matrix, and put the result in dst.
278      *
279      *  @param matrix SkMatrix specifying the transform. Must only contain
280      *      scale and/or translate, or this call will fail.
281      *  @param dst SkRRect to store the result. It is an error to use this,
282      *      which would make this function no longer const.
283      *  @return true on success, false on failure. If false, dst is unmodified.
284      */
285     bool transform(const SkMatrix& matrix, SkRRect* dst) const;
286 
287     void dump(bool asHex) const;
dump()288     void dump() const { this->dump(false); }
dumpHex()289     void dumpHex() const { this->dump(true); }
290 
291 private:
292     SkRect fRect;
293     // Radii order is UL, UR, LR, LL. Use Corner enum to index into fRadii[]
294     SkVector fRadii[4];
295     // use an explicitly sized type so we're sure the class is dense (no uninitialized bytes)
296     int32_t fType;
297     // TODO: add padding so we can use memcpy for flattening and not copy
298     // uninitialized data
299 
300     void computeType();
301     bool checkCornerContainment(SkScalar x, SkScalar y) const;
302 
303     // to access fRadii directly
304     friend class SkPath;
305 };
306 
307 #endif
308