• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_AMBIVECTOR_H
11 #define EIGEN_AMBIVECTOR_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 /** \internal
18   * Hybrid sparse/dense vector class designed for intensive read-write operations.
19   *
20   * See BasicSparseLLT and SparseProduct for usage examples.
21   */
22 template<typename _Scalar, typename _Index>
23 class AmbiVector
24 {
25   public:
26     typedef _Scalar Scalar;
27     typedef _Index Index;
28     typedef typename NumTraits<Scalar>::Real RealScalar;
29 
AmbiVector(Index size)30     AmbiVector(Index size)
31       : m_buffer(0), m_zero(0), m_size(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1)
32     {
33       resize(size);
34     }
35 
36     void init(double estimatedDensity);
37     void init(int mode);
38 
39     Index nonZeros() const;
40 
41     /** Specifies a sub-vector to work on */
setBounds(Index start,Index end)42     void setBounds(Index start, Index end) { m_start = start; m_end = end; }
43 
44     void setZero();
45 
46     void restart();
47     Scalar& coeffRef(Index i);
48     Scalar& coeff(Index i);
49 
50     class Iterator;
51 
~AmbiVector()52     ~AmbiVector() { delete[] m_buffer; }
53 
resize(Index size)54     void resize(Index size)
55     {
56       if (m_allocatedSize < size)
57         reallocate(size);
58       m_size = size;
59     }
60 
size()61     Index size() const { return m_size; }
62 
63   protected:
64 
reallocate(Index size)65     void reallocate(Index size)
66     {
67       // if the size of the matrix is not too large, let's allocate a bit more than needed such
68       // that we can handle dense vector even in sparse mode.
69       delete[] m_buffer;
70       if (size<1000)
71       {
72         Index allocSize = (size * sizeof(ListEl) + sizeof(Scalar) - 1)/sizeof(Scalar);
73         m_allocatedElements = (allocSize*sizeof(Scalar))/sizeof(ListEl);
74         m_buffer = new Scalar[allocSize];
75       }
76       else
77       {
78         m_allocatedElements = (size*sizeof(Scalar))/sizeof(ListEl);
79         m_buffer = new Scalar[size];
80       }
81       m_size = size;
82       m_start = 0;
83       m_end = m_size;
84     }
85 
reallocateSparse()86     void reallocateSparse()
87     {
88       Index copyElements = m_allocatedElements;
89       m_allocatedElements = (std::min)(Index(m_allocatedElements*1.5),m_size);
90       Index allocSize = m_allocatedElements * sizeof(ListEl);
91       allocSize = (allocSize + sizeof(Scalar) - 1)/sizeof(Scalar);
92       Scalar* newBuffer = new Scalar[allocSize];
93       memcpy(newBuffer,  m_buffer,  copyElements * sizeof(ListEl));
94       delete[] m_buffer;
95       m_buffer = newBuffer;
96     }
97 
98   protected:
99     // element type of the linked list
100     struct ListEl
101     {
102       Index next;
103       Index index;
104       Scalar value;
105     };
106 
107     // used to store data in both mode
108     Scalar* m_buffer;
109     Scalar m_zero;
110     Index m_size;
111     Index m_start;
112     Index m_end;
113     Index m_allocatedSize;
114     Index m_allocatedElements;
115     Index m_mode;
116 
117     // linked list mode
118     Index m_llStart;
119     Index m_llCurrent;
120     Index m_llSize;
121 };
122 
123 /** \returns the number of non zeros in the current sub vector */
124 template<typename _Scalar,typename _Index>
nonZeros()125 _Index AmbiVector<_Scalar,_Index>::nonZeros() const
126 {
127   if (m_mode==IsSparse)
128     return m_llSize;
129   else
130     return m_end - m_start;
131 }
132 
133 template<typename _Scalar,typename _Index>
init(double estimatedDensity)134 void AmbiVector<_Scalar,_Index>::init(double estimatedDensity)
135 {
136   if (estimatedDensity>0.1)
137     init(IsDense);
138   else
139     init(IsSparse);
140 }
141 
142 template<typename _Scalar,typename _Index>
init(int mode)143 void AmbiVector<_Scalar,_Index>::init(int mode)
144 {
145   m_mode = mode;
146   if (m_mode==IsSparse)
147   {
148     m_llSize = 0;
149     m_llStart = -1;
150   }
151 }
152 
153 /** Must be called whenever we might perform a write access
154   * with an index smaller than the previous one.
155   *
156   * Don't worry, this function is extremely cheap.
157   */
158 template<typename _Scalar,typename _Index>
restart()159 void AmbiVector<_Scalar,_Index>::restart()
160 {
161   m_llCurrent = m_llStart;
162 }
163 
164 /** Set all coefficients of current subvector to zero */
165 template<typename _Scalar,typename _Index>
setZero()166 void AmbiVector<_Scalar,_Index>::setZero()
167 {
168   if (m_mode==IsDense)
169   {
170     for (Index i=m_start; i<m_end; ++i)
171       m_buffer[i] = Scalar(0);
172   }
173   else
174   {
175     eigen_assert(m_mode==IsSparse);
176     m_llSize = 0;
177     m_llStart = -1;
178   }
179 }
180 
181 template<typename _Scalar,typename _Index>
coeffRef(_Index i)182 _Scalar& AmbiVector<_Scalar,_Index>::coeffRef(_Index i)
183 {
184   if (m_mode==IsDense)
185     return m_buffer[i];
186   else
187   {
188     ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
189     // TODO factorize the following code to reduce code generation
190     eigen_assert(m_mode==IsSparse);
191     if (m_llSize==0)
192     {
193       // this is the first element
194       m_llStart = 0;
195       m_llCurrent = 0;
196       ++m_llSize;
197       llElements[0].value = Scalar(0);
198       llElements[0].index = i;
199       llElements[0].next = -1;
200       return llElements[0].value;
201     }
202     else if (i<llElements[m_llStart].index)
203     {
204       // this is going to be the new first element of the list
205       ListEl& el = llElements[m_llSize];
206       el.value = Scalar(0);
207       el.index = i;
208       el.next = m_llStart;
209       m_llStart = m_llSize;
210       ++m_llSize;
211       m_llCurrent = m_llStart;
212       return el.value;
213     }
214     else
215     {
216       Index nextel = llElements[m_llCurrent].next;
217       eigen_assert(i>=llElements[m_llCurrent].index && "you must call restart() before inserting an element with lower or equal index");
218       while (nextel >= 0 && llElements[nextel].index<=i)
219       {
220         m_llCurrent = nextel;
221         nextel = llElements[nextel].next;
222       }
223 
224       if (llElements[m_llCurrent].index==i)
225       {
226         // the coefficient already exists and we found it !
227         return llElements[m_llCurrent].value;
228       }
229       else
230       {
231         if (m_llSize>=m_allocatedElements)
232         {
233           reallocateSparse();
234           llElements = reinterpret_cast<ListEl*>(m_buffer);
235         }
236         eigen_internal_assert(m_llSize<m_allocatedElements && "internal error: overflow in sparse mode");
237         // let's insert a new coefficient
238         ListEl& el = llElements[m_llSize];
239         el.value = Scalar(0);
240         el.index = i;
241         el.next = llElements[m_llCurrent].next;
242         llElements[m_llCurrent].next = m_llSize;
243         ++m_llSize;
244         return el.value;
245       }
246     }
247   }
248 }
249 
250 template<typename _Scalar,typename _Index>
coeff(_Index i)251 _Scalar& AmbiVector<_Scalar,_Index>::coeff(_Index i)
252 {
253   if (m_mode==IsDense)
254     return m_buffer[i];
255   else
256   {
257     ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
258     eigen_assert(m_mode==IsSparse);
259     if ((m_llSize==0) || (i<llElements[m_llStart].index))
260     {
261       return m_zero;
262     }
263     else
264     {
265       Index elid = m_llStart;
266       while (elid >= 0 && llElements[elid].index<i)
267         elid = llElements[elid].next;
268 
269       if (llElements[elid].index==i)
270         return llElements[m_llCurrent].value;
271       else
272         return m_zero;
273     }
274   }
275 }
276 
277 /** Iterator over the nonzero coefficients */
278 template<typename _Scalar,typename _Index>
279 class AmbiVector<_Scalar,_Index>::Iterator
280 {
281   public:
282     typedef _Scalar Scalar;
283     typedef typename NumTraits<Scalar>::Real RealScalar;
284 
285     /** Default constructor
286       * \param vec the vector on which we iterate
287       * \param epsilon the minimal value used to prune zero coefficients.
288       * In practice, all coefficients having a magnitude smaller than \a epsilon
289       * are skipped.
290       */
291     Iterator(const AmbiVector& vec, const RealScalar& epsilon = 0)
m_vector(vec)292       : m_vector(vec)
293     {
294       using std::abs;
295       m_epsilon = epsilon;
296       m_isDense = m_vector.m_mode==IsDense;
297       if (m_isDense)
298       {
299         m_currentEl = 0;   // this is to avoid a compilation warning
300         m_cachedValue = 0; // this is to avoid a compilation warning
301         m_cachedIndex = m_vector.m_start-1;
302         ++(*this);
303       }
304       else
305       {
306         ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
307         m_currentEl = m_vector.m_llStart;
308         while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<=m_epsilon)
309           m_currentEl = llElements[m_currentEl].next;
310         if (m_currentEl<0)
311         {
312           m_cachedValue = 0; // this is to avoid a compilation warning
313           m_cachedIndex = -1;
314         }
315         else
316         {
317           m_cachedIndex = llElements[m_currentEl].index;
318           m_cachedValue = llElements[m_currentEl].value;
319         }
320       }
321     }
322 
index()323     Index index() const { return m_cachedIndex; }
value()324     Scalar value() const { return m_cachedValue; }
325 
326     operator bool() const { return m_cachedIndex>=0; }
327 
328     Iterator& operator++()
329     {
330       using std::abs;
331       if (m_isDense)
332       {
333         do {
334           ++m_cachedIndex;
335         } while (m_cachedIndex<m_vector.m_end && abs(m_vector.m_buffer[m_cachedIndex])<m_epsilon);
336         if (m_cachedIndex<m_vector.m_end)
337           m_cachedValue = m_vector.m_buffer[m_cachedIndex];
338         else
339           m_cachedIndex=-1;
340       }
341       else
342       {
343         ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
344         do {
345           m_currentEl = llElements[m_currentEl].next;
346         } while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<m_epsilon);
347         if (m_currentEl<0)
348         {
349           m_cachedIndex = -1;
350         }
351         else
352         {
353           m_cachedIndex = llElements[m_currentEl].index;
354           m_cachedValue = llElements[m_currentEl].value;
355         }
356       }
357       return *this;
358     }
359 
360   protected:
361     const AmbiVector& m_vector; // the target vector
362     Index m_currentEl;            // the current element in sparse/linked-list mode
363     RealScalar m_epsilon;       // epsilon used to prune zero coefficients
364     Index m_cachedIndex;          // current coordinate
365     Scalar m_cachedValue;       // current value
366     bool m_isDense;             // mode of the vector
367 };
368 
369 } // end namespace internal
370 
371 } // end namespace Eigen
372 
373 #endif // EIGEN_AMBIVECTOR_H
374