• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "OpenGLRenderer"
18 
19 #include <math.h>
20 #include <stdlib.h>
21 #include <string.h>
22 
23 #include <utils/Log.h>
24 
25 #include <SkMatrix.h>
26 
27 #include "Matrix.h"
28 
29 namespace android {
30 namespace uirenderer {
31 
32 ///////////////////////////////////////////////////////////////////////////////
33 // Defines
34 ///////////////////////////////////////////////////////////////////////////////
35 
36 static const float EPSILON = 0.0000001f;
37 
38 ///////////////////////////////////////////////////////////////////////////////
39 // Matrix
40 ///////////////////////////////////////////////////////////////////////////////
41 
identity()42 const Matrix4& Matrix4::identity() {
43     static Matrix4 sIdentity;
44     return sIdentity;
45 }
46 
loadIdentity()47 void Matrix4::loadIdentity() {
48     data[kScaleX]       = 1.0f;
49     data[kSkewY]        = 0.0f;
50     data[2]             = 0.0f;
51     data[kPerspective0] = 0.0f;
52 
53     data[kSkewX]        = 0.0f;
54     data[kScaleY]       = 1.0f;
55     data[6]             = 0.0f;
56     data[kPerspective1] = 0.0f;
57 
58     data[8]             = 0.0f;
59     data[9]             = 0.0f;
60     data[kScaleZ]       = 1.0f;
61     data[11]            = 0.0f;
62 
63     data[kTranslateX]   = 0.0f;
64     data[kTranslateY]   = 0.0f;
65     data[kTranslateZ]   = 0.0f;
66     data[kPerspective2] = 1.0f;
67 
68     mType = kTypeIdentity | kTypeRectToRect;
69 }
70 
isZero(float f)71 static bool isZero(float f) {
72     return fabs(f) <= EPSILON;
73 }
74 
getType() const75 uint8_t Matrix4::getType() const {
76     if (mType & kTypeUnknown) {
77         mType = kTypeIdentity;
78 
79         if (data[kPerspective0] != 0.0f || data[kPerspective1] != 0.0f ||
80                 data[kPerspective2] != 1.0f) {
81             mType |= kTypePerspective;
82         }
83 
84         if (data[kTranslateX] != 0.0f || data[kTranslateY] != 0.0f) {
85             mType |= kTypeTranslate;
86         }
87 
88         float m00 = data[kScaleX];
89         float m01 = data[kSkewX];
90         float m10 = data[kSkewY];
91         float m11 = data[kScaleY];
92         float m32 = data[kTranslateZ];
93 
94         if (m01 != 0.0f || m10 != 0.0f || m32 != 0.0f) {
95             mType |= kTypeAffine;
96         }
97 
98         if (m00 != 1.0f || m11 != 1.0f) {
99             mType |= kTypeScale;
100         }
101 
102         // The following section determines whether the matrix will preserve
103         // rectangles. For instance, a rectangle transformed by a pure
104         // translation matrix will result in a rectangle. A rectangle
105         // transformed by a 45 degrees rotation matrix is not a rectangle.
106         // If the matrix has a perspective component then we already know
107         // it doesn't preserve rectangles.
108         if (!(mType & kTypePerspective)) {
109             if ((isZero(m00) && isZero(m11) && !isZero(m01) && !isZero(m10)) ||
110                     (isZero(m01) && isZero(m10) && !isZero(m00) && !isZero(m11))) {
111                 mType |= kTypeRectToRect;
112             }
113         }
114     }
115     return mType;
116 }
117 
getGeometryType() const118 uint8_t Matrix4::getGeometryType() const {
119     return getType() & sGeometryMask;
120 }
121 
rectToRect() const122 bool Matrix4::rectToRect() const {
123     return getType() & kTypeRectToRect;
124 }
125 
positiveScale() const126 bool Matrix4::positiveScale() const {
127     return (data[kScaleX] > 0.0f && data[kScaleY] > 0.0f);
128 }
129 
changesBounds() const130 bool Matrix4::changesBounds() const {
131     return getType() & (kTypeScale | kTypeAffine | kTypePerspective);
132 }
133 
isPureTranslate() const134 bool Matrix4::isPureTranslate() const {
135     // NOTE: temporary hack to workaround ignoreTransform behavior with Z values
136     // TODO: separate this into isPure2dTranslate vs isPure3dTranslate
137     return getGeometryType() <= kTypeTranslate && (data[kTranslateZ] == 0.0f);
138 }
139 
isSimple() const140 bool Matrix4::isSimple() const {
141     return getGeometryType() <= (kTypeScale | kTypeTranslate) && (data[kTranslateZ] == 0.0f);
142 }
143 
isIdentity() const144 bool Matrix4::isIdentity() const {
145     return getGeometryType() == kTypeIdentity;
146 }
147 
isPerspective() const148 bool Matrix4::isPerspective() const {
149     return getType() & kTypePerspective;
150 }
151 
load(const float * v)152 void Matrix4::load(const float* v) {
153     memcpy(data, v, sizeof(data));
154     mType = kTypeUnknown;
155 }
156 
load(const Matrix4 & v)157 void Matrix4::load(const Matrix4& v) {
158     *this = v;
159 }
160 
load(const SkMatrix & v)161 void Matrix4::load(const SkMatrix& v) {
162     memset(data, 0, sizeof(data));
163 
164     data[kScaleX]     = v[SkMatrix::kMScaleX];
165     data[kSkewX]      = v[SkMatrix::kMSkewX];
166     data[kTranslateX] = v[SkMatrix::kMTransX];
167 
168     data[kSkewY]      = v[SkMatrix::kMSkewY];
169     data[kScaleY]     = v[SkMatrix::kMScaleY];
170     data[kTranslateY] = v[SkMatrix::kMTransY];
171 
172     data[kPerspective0]  = v[SkMatrix::kMPersp0];
173     data[kPerspective1]  = v[SkMatrix::kMPersp1];
174     data[kPerspective2]  = v[SkMatrix::kMPersp2];
175 
176     data[kScaleZ] = 1.0f;
177 
178     // NOTE: The flags are compatible between SkMatrix and this class.
179     //       However, SkMatrix::getType() does not return the flag
180     //       kRectStaysRect. The return value is masked with 0xF
181     //       so we need the extra rectStaysRect() check
182     mType = v.getType();
183     if (v.rectStaysRect()) {
184         mType |= kTypeRectToRect;
185     }
186 }
187 
copyTo(SkMatrix & v) const188 void Matrix4::copyTo(SkMatrix& v) const {
189     v.reset();
190 
191     v.set(SkMatrix::kMScaleX, data[kScaleX]);
192     v.set(SkMatrix::kMSkewX,  data[kSkewX]);
193     v.set(SkMatrix::kMTransX, data[kTranslateX]);
194 
195     v.set(SkMatrix::kMSkewY,  data[kSkewY]);
196     v.set(SkMatrix::kMScaleY, data[kScaleY]);
197     v.set(SkMatrix::kMTransY, data[kTranslateY]);
198 
199     v.set(SkMatrix::kMPersp0, data[kPerspective0]);
200     v.set(SkMatrix::kMPersp1, data[kPerspective1]);
201     v.set(SkMatrix::kMPersp2, data[kPerspective2]);
202 }
203 
loadInverse(const Matrix4 & v)204 void Matrix4::loadInverse(const Matrix4& v) {
205     // Fast case for common translation matrices
206     if (v.isPureTranslate()) {
207         // Reset the matrix
208         // Unnamed fields are never written to except by
209         // loadIdentity(), they don't need to be reset
210         data[kScaleX]       = 1.0f;
211         data[kSkewX]        = 0.0f;
212 
213         data[kScaleY]       = 1.0f;
214         data[kSkewY]        = 0.0f;
215 
216         data[kScaleZ]       = 1.0f;
217 
218         data[kPerspective0] = 0.0f;
219         data[kPerspective1] = 0.0f;
220         data[kPerspective2] = 1.0f;
221 
222         // No need to deal with kTranslateZ because isPureTranslate()
223         // only returns true when the kTranslateZ component is 0
224         data[kTranslateX]   = -v.data[kTranslateX];
225         data[kTranslateY]   = -v.data[kTranslateY];
226         data[kTranslateZ]   = 0.0f;
227 
228         // A "pure translate" matrix can be identity or translation
229         mType = v.getType();
230         return;
231     }
232 
233     double scale = 1.0 /
234             (v.data[kScaleX] * ((double) v.data[kScaleY]  * v.data[kPerspective2] -
235                     (double) v.data[kTranslateY] * v.data[kPerspective1]) +
236              v.data[kSkewX] * ((double) v.data[kTranslateY] * v.data[kPerspective0] -
237                      (double) v.data[kSkewY] * v.data[kPerspective2]) +
238              v.data[kTranslateX] * ((double) v.data[kSkewY] * v.data[kPerspective1] -
239                      (double) v.data[kScaleY] * v.data[kPerspective0]));
240 
241     data[kScaleX] = (v.data[kScaleY] * v.data[kPerspective2] -
242             v.data[kTranslateY] * v.data[kPerspective1]) * scale;
243     data[kSkewX] = (v.data[kTranslateX] * v.data[kPerspective1] -
244             v.data[kSkewX]  * v.data[kPerspective2]) * scale;
245     data[kTranslateX] = (v.data[kSkewX] * v.data[kTranslateY] -
246             v.data[kTranslateX] * v.data[kScaleY]) * scale;
247 
248     data[kSkewY] = (v.data[kTranslateY] * v.data[kPerspective0] -
249             v.data[kSkewY]  * v.data[kPerspective2]) * scale;
250     data[kScaleY] = (v.data[kScaleX] * v.data[kPerspective2] -
251             v.data[kTranslateX] * v.data[kPerspective0]) * scale;
252     data[kTranslateY] = (v.data[kTranslateX] * v.data[kSkewY] -
253             v.data[kScaleX] * v.data[kTranslateY]) * scale;
254 
255     data[kPerspective0] = (v.data[kSkewY] * v.data[kPerspective1] -
256             v.data[kScaleY] * v.data[kPerspective0]) * scale;
257     data[kPerspective1] = (v.data[kSkewX] * v.data[kPerspective0] -
258             v.data[kScaleX] * v.data[kPerspective1]) * scale;
259     data[kPerspective2] = (v.data[kScaleX] * v.data[kScaleY] -
260             v.data[kSkewX] * v.data[kSkewY]) * scale;
261 
262     mType = kTypeUnknown;
263 }
264 
copyTo(float * v) const265 void Matrix4::copyTo(float* v) const {
266     memcpy(v, data, sizeof(data));
267 }
268 
getTranslateX() const269 float Matrix4::getTranslateX() const {
270     return data[kTranslateX];
271 }
272 
getTranslateY() const273 float Matrix4::getTranslateY() const {
274     return data[kTranslateY];
275 }
276 
multiply(float v)277 void Matrix4::multiply(float v) {
278     for (int i = 0; i < 16; i++) {
279         data[i] *= v;
280     }
281     mType = kTypeUnknown;
282 }
283 
loadTranslate(float x,float y,float z)284 void Matrix4::loadTranslate(float x, float y, float z) {
285     loadIdentity();
286 
287     data[kTranslateX] = x;
288     data[kTranslateY] = y;
289     data[kTranslateZ] = z;
290 
291     mType = kTypeTranslate | kTypeRectToRect;
292 }
293 
loadScale(float sx,float sy,float sz)294 void Matrix4::loadScale(float sx, float sy, float sz) {
295     loadIdentity();
296 
297     data[kScaleX] = sx;
298     data[kScaleY] = sy;
299     data[kScaleZ] = sz;
300 
301     mType = kTypeScale | kTypeRectToRect;
302 }
303 
loadSkew(float sx,float sy)304 void Matrix4::loadSkew(float sx, float sy) {
305     loadIdentity();
306 
307     data[kScaleX]       = 1.0f;
308     data[kSkewX]        = sx;
309     data[kTranslateX]   = 0.0f;
310 
311     data[kSkewY]        = sy;
312     data[kScaleY]       = 1.0f;
313     data[kTranslateY]   = 0.0f;
314 
315     data[kPerspective0] = 0.0f;
316     data[kPerspective1] = 0.0f;
317     data[kPerspective2] = 1.0f;
318 
319     mType = kTypeUnknown;
320 }
321 
loadRotate(float angle)322 void Matrix4::loadRotate(float angle) {
323     angle *= float(M_PI / 180.0f);
324     float c = cosf(angle);
325     float s = sinf(angle);
326 
327     loadIdentity();
328 
329     data[kScaleX]     = c;
330     data[kSkewX]      = -s;
331 
332     data[kSkewY]      = s;
333     data[kScaleY]     = c;
334 
335     mType = kTypeUnknown;
336 }
337 
loadRotate(float angle,float x,float y,float z)338 void Matrix4::loadRotate(float angle, float x, float y, float z) {
339     data[kPerspective0]  = 0.0f;
340     data[kPerspective1]  = 0.0f;
341     data[11]             = 0.0f;
342     data[kTranslateX]    = 0.0f;
343     data[kTranslateY]    = 0.0f;
344     data[kTranslateZ]    = 0.0f;
345     data[kPerspective2]  = 1.0f;
346 
347     angle *= float(M_PI / 180.0f);
348     float c = cosf(angle);
349     float s = sinf(angle);
350 
351     const float length = sqrtf(x * x + y * y + z * z);
352     float recipLen = 1.0f / length;
353     x *= recipLen;
354     y *= recipLen;
355     z *= recipLen;
356 
357     const float nc = 1.0f - c;
358     const float xy = x * y;
359     const float yz = y * z;
360     const float zx = z * x;
361     const float xs = x * s;
362     const float ys = y * s;
363     const float zs = z * s;
364 
365     data[kScaleX] = x * x * nc +  c;
366     data[kSkewX]  =    xy * nc - zs;
367     data[8]       =    zx * nc + ys;
368     data[kSkewY]  =    xy * nc + zs;
369     data[kScaleY] = y * y * nc +  c;
370     data[9]       =    yz * nc - xs;
371     data[2]       =    zx * nc - ys;
372     data[6]       =    yz * nc + xs;
373     data[kScaleZ] = z * z * nc +  c;
374 
375     mType = kTypeUnknown;
376 }
377 
loadMultiply(const Matrix4 & u,const Matrix4 & v)378 void Matrix4::loadMultiply(const Matrix4& u, const Matrix4& v) {
379     for (int i = 0 ; i < 4 ; i++) {
380         float x = 0;
381         float y = 0;
382         float z = 0;
383         float w = 0;
384 
385         for (int j = 0 ; j < 4 ; j++) {
386             const float e = v.get(i, j);
387             x += u.get(j, 0) * e;
388             y += u.get(j, 1) * e;
389             z += u.get(j, 2) * e;
390             w += u.get(j, 3) * e;
391         }
392 
393         set(i, 0, x);
394         set(i, 1, y);
395         set(i, 2, z);
396         set(i, 3, w);
397     }
398 
399     mType = kTypeUnknown;
400 }
401 
loadOrtho(float left,float right,float bottom,float top,float near,float far)402 void Matrix4::loadOrtho(float left, float right, float bottom, float top, float near, float far) {
403     loadIdentity();
404 
405     data[kScaleX] = 2.0f / (right - left);
406     data[kScaleY] = 2.0f / (top - bottom);
407     data[kScaleZ] = -2.0f / (far - near);
408     data[kTranslateX] = -(right + left) / (right - left);
409     data[kTranslateY] = -(top + bottom) / (top - bottom);
410     data[kTranslateZ] = -(far + near) / (far - near);
411 
412     mType = kTypeTranslate | kTypeScale | kTypeRectToRect;
413 }
414 
mapZ(const Vector3 & orig) const415 float Matrix4::mapZ(const Vector3& orig) const {
416     // duplicates logic for mapPoint3d's z coordinate
417     return orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
418 }
419 
mapPoint3d(Vector3 & vec) const420 void Matrix4::mapPoint3d(Vector3& vec) const {
421     //TODO: optimize simple case
422     const Vector3 orig(vec);
423     vec.x = orig.x * data[kScaleX] + orig.y * data[kSkewX] + orig.z * data[8] + data[kTranslateX];
424     vec.y = orig.x * data[kSkewY] + orig.y * data[kScaleY] + orig.z * data[9] + data[kTranslateY];
425     vec.z = orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
426 }
427 
428 #define MUL_ADD_STORE(a, b, c) a = (a) * (b) + (c)
429 
mapPoint(float & x,float & y) const430 void Matrix4::mapPoint(float& x, float& y) const {
431     if (isSimple()) {
432         MUL_ADD_STORE(x, data[kScaleX], data[kTranslateX]);
433         MUL_ADD_STORE(y, data[kScaleY], data[kTranslateY]);
434         return;
435     }
436 
437     float dx = x * data[kScaleX] + y * data[kSkewX] + data[kTranslateX];
438     float dy = x * data[kSkewY] + y * data[kScaleY] + data[kTranslateY];
439     float dz = x * data[kPerspective0] + y * data[kPerspective1] + data[kPerspective2];
440     if (dz) dz = 1.0f / dz;
441 
442     x = dx * dz;
443     y = dy * dz;
444 }
445 
mapRect(Rect & r) const446 void Matrix4::mapRect(Rect& r) const {
447     if (isIdentity()) return;
448 
449     if (isSimple()) {
450         MUL_ADD_STORE(r.left, data[kScaleX], data[kTranslateX]);
451         MUL_ADD_STORE(r.right, data[kScaleX], data[kTranslateX]);
452         MUL_ADD_STORE(r.top, data[kScaleY], data[kTranslateY]);
453         MUL_ADD_STORE(r.bottom, data[kScaleY], data[kTranslateY]);
454 
455         if (r.left > r.right) {
456             float x = r.left;
457             r.left = r.right;
458             r.right = x;
459         }
460 
461         if (r.top > r.bottom) {
462             float y = r.top;
463             r.top = r.bottom;
464             r.bottom = y;
465         }
466 
467         return;
468     }
469 
470     float vertices[] = {
471         r.left, r.top,
472         r.right, r.top,
473         r.right, r.bottom,
474         r.left, r.bottom
475     };
476 
477     float x, y, z;
478 
479     for (int i = 0; i < 8; i+= 2) {
480         float px = vertices[i];
481         float py = vertices[i + 1];
482 
483         x = px * data[kScaleX] + py * data[kSkewX] + data[kTranslateX];
484         y = px * data[kSkewY] + py * data[kScaleY] + data[kTranslateY];
485         z = px * data[kPerspective0] + py * data[kPerspective1] + data[kPerspective2];
486         if (z) z = 1.0f / z;
487 
488         vertices[i] = x * z;
489         vertices[i + 1] = y * z;
490     }
491 
492     r.left = r.right = vertices[0];
493     r.top = r.bottom = vertices[1];
494 
495     for (int i = 2; i < 8; i += 2) {
496         x = vertices[i];
497         y = vertices[i + 1];
498 
499         if (x < r.left) r.left = x;
500         else if (x > r.right) r.right = x;
501         if (y < r.top) r.top = y;
502         else if (y > r.bottom) r.bottom = y;
503     }
504 }
505 
decomposeScale(float & sx,float & sy) const506 void Matrix4::decomposeScale(float& sx, float& sy) const {
507     float len;
508     len = data[mat4::kScaleX] * data[mat4::kScaleX] + data[mat4::kSkewX] * data[mat4::kSkewX];
509     sx = copysignf(sqrtf(len), data[mat4::kScaleX]);
510     len = data[mat4::kScaleY] * data[mat4::kScaleY] + data[mat4::kSkewY] * data[mat4::kSkewY];
511     sy = copysignf(sqrtf(len), data[mat4::kScaleY]);
512 }
513 
dump(const char * label) const514 void Matrix4::dump(const char* label) const {
515     ALOGD("%s[simple=%d, type=0x%x", label ? label : "Matrix4", isSimple(), getType());
516     ALOGD("  %f %f %f %f", data[kScaleX], data[kSkewX], data[8], data[kTranslateX]);
517     ALOGD("  %f %f %f %f", data[kSkewY], data[kScaleY], data[9], data[kTranslateY]);
518     ALOGD("  %f %f %f %f", data[2], data[6], data[kScaleZ], data[kTranslateZ]);
519     ALOGD("  %f %f %f %f", data[kPerspective0], data[kPerspective1], data[11], data[kPerspective2]);
520     ALOGD("]");
521 }
522 
523 }; // namespace uirenderer
524 }; // namespace android
525