• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com). */
108 
109 #include <assert.h>
110 #include <stdio.h>
111 #include <stdlib.h>
112 #include <string.h>
113 
114 #include <openssl/bytestring.h>
115 #include <openssl/err.h>
116 #include <openssl/evp.h>
117 #include <openssl/hmac.h>
118 #include <openssl/mem.h>
119 #include <openssl/obj.h>
120 #include <openssl/rand.h>
121 
122 #include "internal.h"
123 
124 
125 static int tls_decrypt_ticket(SSL *s, const uint8_t *tick, int ticklen,
126                               const uint8_t *sess_id, int sesslen,
127                               SSL_SESSION **psess);
128 static int ssl_check_clienthello_tlsext(SSL *s);
129 static int ssl_check_serverhello_tlsext(SSL *s);
130 
131 const SSL3_ENC_METHOD TLSv1_enc_data = {
132     tls1_prf,
133     tls1_setup_key_block,
134     tls1_generate_master_secret,
135     tls1_change_cipher_state,
136     tls1_final_finish_mac,
137     tls1_cert_verify_mac,
138     TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
139     TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
140     tls1_alert_code,
141     tls1_export_keying_material,
142     0,
143 };
144 
145 const SSL3_ENC_METHOD TLSv1_1_enc_data = {
146     tls1_prf,
147     tls1_setup_key_block,
148     tls1_generate_master_secret,
149     tls1_change_cipher_state,
150     tls1_final_finish_mac,
151     tls1_cert_verify_mac,
152     TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
153     TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
154     tls1_alert_code,
155     tls1_export_keying_material,
156     SSL_ENC_FLAG_EXPLICIT_IV,
157 };
158 
159 const SSL3_ENC_METHOD TLSv1_2_enc_data = {
160     tls1_prf,
161     tls1_setup_key_block,
162     tls1_generate_master_secret,
163     tls1_change_cipher_state,
164     tls1_final_finish_mac,
165     tls1_cert_verify_mac,
166     TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
167     TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
168     tls1_alert_code,
169     tls1_export_keying_material,
170     SSL_ENC_FLAG_EXPLICIT_IV|SSL_ENC_FLAG_SIGALGS|SSL_ENC_FLAG_SHA256_PRF
171             |SSL_ENC_FLAG_TLS1_2_CIPHERS,
172 };
173 
compare_uint16_t(const void * p1,const void * p2)174 static int compare_uint16_t(const void *p1, const void *p2) {
175   uint16_t u1 = *((const uint16_t *)p1);
176   uint16_t u2 = *((const uint16_t *)p2);
177   if (u1 < u2) {
178     return -1;
179   } else if (u1 > u2) {
180     return 1;
181   } else {
182     return 0;
183   }
184 }
185 
186 /* Per http://tools.ietf.org/html/rfc5246#section-7.4.1.4, there may not be
187  * more than one extension of the same type in a ClientHello or ServerHello.
188  * This function does an initial scan over the extensions block to filter those
189  * out. */
tls1_check_duplicate_extensions(const CBS * cbs)190 static int tls1_check_duplicate_extensions(const CBS *cbs) {
191   CBS extensions = *cbs;
192   size_t num_extensions = 0, i = 0;
193   uint16_t *extension_types = NULL;
194   int ret = 0;
195 
196   /* First pass: count the extensions. */
197   while (CBS_len(&extensions) > 0) {
198     uint16_t type;
199     CBS extension;
200 
201     if (!CBS_get_u16(&extensions, &type) ||
202         !CBS_get_u16_length_prefixed(&extensions, &extension)) {
203       goto done;
204     }
205 
206     num_extensions++;
207   }
208 
209   if (num_extensions == 0) {
210     return 1;
211   }
212 
213   extension_types =
214       (uint16_t *)OPENSSL_malloc(sizeof(uint16_t) * num_extensions);
215   if (extension_types == NULL) {
216     OPENSSL_PUT_ERROR(SSL, tls1_check_duplicate_extensions,
217                       ERR_R_MALLOC_FAILURE);
218     goto done;
219   }
220 
221   /* Second pass: gather the extension types. */
222   extensions = *cbs;
223   for (i = 0; i < num_extensions; i++) {
224     CBS extension;
225 
226     if (!CBS_get_u16(&extensions, &extension_types[i]) ||
227         !CBS_get_u16_length_prefixed(&extensions, &extension)) {
228       /* This should not happen. */
229       goto done;
230     }
231   }
232   assert(CBS_len(&extensions) == 0);
233 
234   /* Sort the extensions and make sure there are no duplicates. */
235   qsort(extension_types, num_extensions, sizeof(uint16_t), compare_uint16_t);
236   for (i = 1; i < num_extensions; i++) {
237     if (extension_types[i - 1] == extension_types[i]) {
238       goto done;
239     }
240   }
241 
242   ret = 1;
243 
244 done:
245   OPENSSL_free(extension_types);
246   return ret;
247 }
248 
ssl_early_callback_init(struct ssl_early_callback_ctx * ctx)249 char ssl_early_callback_init(struct ssl_early_callback_ctx *ctx) {
250   CBS client_hello, session_id, cipher_suites, compression_methods, extensions;
251 
252   CBS_init(&client_hello, ctx->client_hello, ctx->client_hello_len);
253 
254   if (/* Skip client version. */
255       !CBS_skip(&client_hello, 2) ||
256       /* Skip client nonce. */
257       !CBS_skip(&client_hello, 32) ||
258       /* Extract session_id. */
259       !CBS_get_u8_length_prefixed(&client_hello, &session_id)) {
260     return 0;
261   }
262 
263   ctx->session_id = CBS_data(&session_id);
264   ctx->session_id_len = CBS_len(&session_id);
265 
266   /* Skip past DTLS cookie */
267   if (SSL_IS_DTLS(ctx->ssl)) {
268     CBS cookie;
269 
270     if (!CBS_get_u8_length_prefixed(&client_hello, &cookie)) {
271       return 0;
272     }
273   }
274 
275   /* Extract cipher_suites. */
276   if (!CBS_get_u16_length_prefixed(&client_hello, &cipher_suites) ||
277       CBS_len(&cipher_suites) < 2 || (CBS_len(&cipher_suites) & 1) != 0) {
278     return 0;
279   }
280   ctx->cipher_suites = CBS_data(&cipher_suites);
281   ctx->cipher_suites_len = CBS_len(&cipher_suites);
282 
283   /* Extract compression_methods. */
284   if (!CBS_get_u8_length_prefixed(&client_hello, &compression_methods) ||
285       CBS_len(&compression_methods) < 1) {
286     return 0;
287   }
288   ctx->compression_methods = CBS_data(&compression_methods);
289   ctx->compression_methods_len = CBS_len(&compression_methods);
290 
291   /* If the ClientHello ends here then it's valid, but doesn't have any
292    * extensions. (E.g. SSLv3.) */
293   if (CBS_len(&client_hello) == 0) {
294     ctx->extensions = NULL;
295     ctx->extensions_len = 0;
296     return 1;
297   }
298 
299   /* Extract extensions and check it is valid. */
300   if (!CBS_get_u16_length_prefixed(&client_hello, &extensions) ||
301       !tls1_check_duplicate_extensions(&extensions) ||
302       CBS_len(&client_hello) != 0) {
303     return 0;
304   }
305   ctx->extensions = CBS_data(&extensions);
306   ctx->extensions_len = CBS_len(&extensions);
307 
308   return 1;
309 }
310 
SSL_early_callback_ctx_extension_get(const struct ssl_early_callback_ctx * ctx,uint16_t extension_type,const uint8_t ** out_data,size_t * out_len)311 char SSL_early_callback_ctx_extension_get(
312     const struct ssl_early_callback_ctx *ctx, uint16_t extension_type,
313     const uint8_t **out_data, size_t *out_len) {
314   CBS extensions;
315 
316   CBS_init(&extensions, ctx->extensions, ctx->extensions_len);
317 
318   while (CBS_len(&extensions) != 0) {
319     uint16_t type;
320     CBS extension;
321 
322     /* Decode the next extension. */
323     if (!CBS_get_u16(&extensions, &type) ||
324         !CBS_get_u16_length_prefixed(&extensions, &extension)) {
325       return 0;
326     }
327 
328     if (type == extension_type) {
329       *out_data = CBS_data(&extension);
330       *out_len = CBS_len(&extension);
331       return 1;
332     }
333   }
334 
335   return 0;
336 }
337 
338 struct tls_curve {
339   uint16_t curve_id;
340   int nid;
341 };
342 
343 /* ECC curves from RFC4492. */
344 static const struct tls_curve tls_curves[] = {
345     {21, NID_secp224r1},
346     {23, NID_X9_62_prime256v1},
347     {24, NID_secp384r1},
348     {25, NID_secp521r1},
349 };
350 
351 static const uint8_t ecformats_default[] = {
352     TLSEXT_ECPOINTFORMAT_uncompressed,
353 };
354 
355 static const uint16_t eccurves_default[] = {
356     23, /* X9_62_prime256v1 */
357     24, /* secp384r1 */
358 #if defined(ANDROID)
359     25, /* secp521r1 */
360 #endif
361 };
362 
tls1_ec_curve_id2nid(uint16_t curve_id)363 int tls1_ec_curve_id2nid(uint16_t curve_id) {
364   size_t i;
365   for (i = 0; i < sizeof(tls_curves) / sizeof(tls_curves[0]); i++) {
366     if (curve_id == tls_curves[i].curve_id) {
367       return tls_curves[i].nid;
368     }
369   }
370   return NID_undef;
371 }
372 
tls1_ec_nid2curve_id(uint16_t * out_curve_id,int nid)373 int tls1_ec_nid2curve_id(uint16_t *out_curve_id, int nid) {
374   size_t i;
375   for (i = 0; i < sizeof(tls_curves) / sizeof(tls_curves[0]); i++) {
376     if (nid == tls_curves[i].nid) {
377       *out_curve_id = tls_curves[i].curve_id;
378       return 1;
379     }
380   }
381   return 0;
382 }
383 
384 /* tls1_get_curvelist sets |*out_curve_ids| and |*out_curve_ids_len| to the
385  * list of allowed curve IDs. If |get_peer_curves| is non-zero, return the
386  * peer's curve list. Otherwise, return the preferred list. */
tls1_get_curvelist(SSL * s,int get_peer_curves,const uint16_t ** out_curve_ids,size_t * out_curve_ids_len)387 static void tls1_get_curvelist(SSL *s, int get_peer_curves,
388                                const uint16_t **out_curve_ids,
389                                size_t *out_curve_ids_len) {
390   if (get_peer_curves) {
391     /* Only clients send a curve list, so this function is only called
392      * on the server. */
393     assert(s->server);
394     *out_curve_ids = s->s3->tmp.peer_ellipticcurvelist;
395     *out_curve_ids_len = s->s3->tmp.peer_ellipticcurvelist_length;
396     return;
397   }
398 
399   *out_curve_ids = s->tlsext_ellipticcurvelist;
400   *out_curve_ids_len = s->tlsext_ellipticcurvelist_length;
401   if (!*out_curve_ids) {
402     *out_curve_ids = eccurves_default;
403     *out_curve_ids_len = sizeof(eccurves_default) / sizeof(eccurves_default[0]);
404   }
405 }
406 
tls1_check_curve(SSL * s,CBS * cbs,uint16_t * out_curve_id)407 int tls1_check_curve(SSL *s, CBS *cbs, uint16_t *out_curve_id) {
408   uint8_t curve_type;
409   uint16_t curve_id;
410   const uint16_t *curves;
411   size_t curves_len, i;
412 
413   /* Only support named curves. */
414   if (!CBS_get_u8(cbs, &curve_type) ||
415       curve_type != NAMED_CURVE_TYPE ||
416       !CBS_get_u16(cbs, &curve_id)) {
417     return 0;
418   }
419 
420   tls1_get_curvelist(s, 0, &curves, &curves_len);
421   for (i = 0; i < curves_len; i++) {
422     if (curve_id == curves[i]) {
423       *out_curve_id = curve_id;
424       return 1;
425     }
426   }
427 
428   return 0;
429 }
430 
tls1_get_shared_curve(SSL * s)431 int tls1_get_shared_curve(SSL *s) {
432   const uint16_t *curves, *peer_curves, *pref, *supp;
433   size_t curves_len, peer_curves_len, pref_len, supp_len, i, j;
434 
435   /* Can't do anything on client side */
436   if (s->server == 0) {
437     return NID_undef;
438   }
439 
440   tls1_get_curvelist(s, 0 /* local curves */, &curves, &curves_len);
441   tls1_get_curvelist(s, 1 /* peer curves */, &peer_curves, &peer_curves_len);
442 
443   if (peer_curves_len == 0) {
444     /* Clients are not required to send a supported_curves extension. In this
445      * case, the server is free to pick any curve it likes. See RFC 4492,
446      * section 4, paragraph 3. */
447     return (curves_len == 0) ? NID_undef : tls1_ec_curve_id2nid(curves[0]);
448   }
449 
450   if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
451     pref = curves;
452     pref_len = curves_len;
453     supp = peer_curves;
454     supp_len = peer_curves_len;
455   } else {
456     pref = peer_curves;
457     pref_len = peer_curves_len;
458     supp = curves;
459     supp_len = curves_len;
460   }
461 
462   for (i = 0; i < pref_len; i++) {
463     for (j = 0; j < supp_len; j++) {
464       if (pref[i] == supp[j]) {
465         return tls1_ec_curve_id2nid(pref[i]);
466       }
467     }
468   }
469 
470   return NID_undef;
471 }
472 
tls1_set_curves(uint16_t ** out_curve_ids,size_t * out_curve_ids_len,const int * curves,size_t ncurves)473 int tls1_set_curves(uint16_t **out_curve_ids, size_t *out_curve_ids_len,
474                     const int *curves, size_t ncurves) {
475   uint16_t *curve_ids;
476   size_t i;
477 
478   curve_ids = (uint16_t *)OPENSSL_malloc(ncurves * sizeof(uint16_t));
479   if (curve_ids == NULL) {
480     return 0;
481   }
482 
483   for (i = 0; i < ncurves; i++) {
484     if (!tls1_ec_nid2curve_id(&curve_ids[i], curves[i])) {
485       OPENSSL_free(curve_ids);
486       return 0;
487     }
488   }
489 
490   OPENSSL_free(*out_curve_ids);
491   *out_curve_ids = curve_ids;
492   *out_curve_ids_len = ncurves;
493 
494   return 1;
495 }
496 
497 /* tls1_curve_params_from_ec_key sets |*out_curve_id| and |*out_comp_id| to the
498  * TLS curve ID and point format, respectively, for |ec|. It returns one on
499  * success and zero on failure. */
tls1_curve_params_from_ec_key(uint16_t * out_curve_id,uint8_t * out_comp_id,EC_KEY * ec)500 static int tls1_curve_params_from_ec_key(uint16_t *out_curve_id,
501                                          uint8_t *out_comp_id, EC_KEY *ec) {
502   int nid;
503   uint16_t id;
504   const EC_GROUP *grp;
505 
506   if (ec == NULL) {
507     return 0;
508   }
509 
510   grp = EC_KEY_get0_group(ec);
511   if (grp == NULL) {
512     return 0;
513   }
514 
515   /* Determine curve ID */
516   nid = EC_GROUP_get_curve_name(grp);
517   if (!tls1_ec_nid2curve_id(&id, nid)) {
518     return 0;
519   }
520 
521   /* Set the named curve ID. Arbitrary explicit curves are not supported. */
522   *out_curve_id = id;
523 
524   if (out_comp_id) {
525     if (EC_KEY_get0_public_key(ec) == NULL) {
526       return 0;
527     }
528     if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_COMPRESSED) {
529       *out_comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
530     } else {
531       *out_comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
532     }
533   }
534 
535   return 1;
536 }
537 
538 /* tls1_check_point_format returns one if |comp_id| is consistent with the
539  * peer's point format preferences. */
tls1_check_point_format(SSL * s,uint8_t comp_id)540 static int tls1_check_point_format(SSL *s, uint8_t comp_id) {
541   uint8_t *p = s->s3->tmp.peer_ecpointformatlist;
542   size_t plen = s->s3->tmp.peer_ecpointformatlist_length;
543   size_t i;
544 
545   /* If point formats extension present check it, otherwise everything is
546    * supported (see RFC4492). */
547   if (p == NULL) {
548     return 1;
549   }
550 
551   for (i = 0; i < plen; i++) {
552     if (comp_id == p[i]) {
553       return 1;
554     }
555   }
556 
557   return 0;
558 }
559 
560 /* tls1_check_curve_id returns one if |curve_id| is consistent with both our
561  * and the peer's curve preferences. Note: if called as the client, only our
562  * preferences are checked; the peer (the server) does not send preferences. */
tls1_check_curve_id(SSL * s,uint16_t curve_id)563 static int tls1_check_curve_id(SSL *s, uint16_t curve_id) {
564   const uint16_t *curves;
565   size_t curves_len, i, get_peer_curves;
566 
567   /* Check against our list, then the peer's list. */
568   for (get_peer_curves = 0; get_peer_curves <= 1; get_peer_curves++) {
569     if (get_peer_curves && !s->server) {
570       /* Servers do not present a preference list so, if we are a client, only
571        * check our list. */
572       continue;
573     }
574 
575     tls1_get_curvelist(s, get_peer_curves, &curves, &curves_len);
576     if (get_peer_curves && curves_len == 0) {
577       /* Clients are not required to send a supported_curves extension. In this
578        * case, the server is free to pick any curve it likes. See RFC 4492,
579        * section 4, paragraph 3. */
580       continue;
581     }
582     for (i = 0; i < curves_len; i++) {
583       if (curves[i] == curve_id) {
584         break;
585       }
586     }
587 
588     if (i == curves_len) {
589       return 0;
590     }
591   }
592 
593   return 1;
594 }
595 
tls1_get_formatlist(SSL * s,const uint8_t ** pformats,size_t * pformatslen)596 static void tls1_get_formatlist(SSL *s, const uint8_t **pformats,
597                                 size_t *pformatslen) {
598   /* If we have a custom point format list use it otherwise use default */
599   if (s->tlsext_ecpointformatlist) {
600     *pformats = s->tlsext_ecpointformatlist;
601     *pformatslen = s->tlsext_ecpointformatlist_length;
602   } else {
603     *pformats = ecformats_default;
604     *pformatslen = sizeof(ecformats_default);
605   }
606 }
607 
tls1_check_ec_cert(SSL * s,X509 * x)608 int tls1_check_ec_cert(SSL *s, X509 *x) {
609   int ret = 0;
610   EVP_PKEY *pkey = X509_get_pubkey(x);
611   uint16_t curve_id;
612   uint8_t comp_id;
613 
614   if (!pkey ||
615       pkey->type != EVP_PKEY_EC ||
616       !tls1_curve_params_from_ec_key(&curve_id, &comp_id, pkey->pkey.ec) ||
617       !tls1_check_curve_id(s, curve_id) ||
618       !tls1_check_point_format(s, comp_id)) {
619     goto done;
620   }
621 
622   ret = 1;
623 
624 done:
625   EVP_PKEY_free(pkey);
626   return ret;
627 }
628 
tls1_check_ec_tmp_key(SSL * s)629 int tls1_check_ec_tmp_key(SSL *s) {
630   if (s->cert->ecdh_nid != NID_undef) {
631     /* If the curve is preconfigured, ECDH is acceptable iff the peer supports
632      * the curve. */
633     uint16_t curve_id;
634     return tls1_ec_nid2curve_id(&curve_id, s->cert->ecdh_nid) &&
635            tls1_check_curve_id(s, curve_id);
636   }
637 
638   if (s->cert->ecdh_tmp_cb != NULL) {
639     /* Assume the callback will provide an acceptable curve. */
640     return 1;
641   }
642 
643   /* Otherwise, the curve gets selected automatically. ECDH is acceptable iff
644    * there is a shared curve. */
645   return tls1_get_shared_curve(s) != NID_undef;
646 }
647 
648 /* List of supported signature algorithms and hashes. Should make this
649  * customisable at some point, for now include everything we support. */
650 
651 #define tlsext_sigalg_rsa(md) md, TLSEXT_signature_rsa,
652 
653 #define tlsext_sigalg_ecdsa(md) md, TLSEXT_signature_ecdsa,
654 
655 #define tlsext_sigalg(md) tlsext_sigalg_rsa(md) tlsext_sigalg_ecdsa(md)
656 
657 static const uint8_t tls12_sigalgs[] = {
658     tlsext_sigalg(TLSEXT_hash_sha512)
659     tlsext_sigalg(TLSEXT_hash_sha384)
660     tlsext_sigalg(TLSEXT_hash_sha256)
661     tlsext_sigalg(TLSEXT_hash_sha224)
662     tlsext_sigalg(TLSEXT_hash_sha1)
663 };
664 
tls12_get_psigalgs(SSL * s,const uint8_t ** psigs)665 size_t tls12_get_psigalgs(SSL *s, const uint8_t **psigs) {
666   /* If server use client authentication sigalgs if not NULL */
667   if (s->server && s->cert->client_sigalgs) {
668     *psigs = s->cert->client_sigalgs;
669     return s->cert->client_sigalgslen;
670   } else if (s->cert->conf_sigalgs) {
671     *psigs = s->cert->conf_sigalgs;
672     return s->cert->conf_sigalgslen;
673   } else {
674     *psigs = tls12_sigalgs;
675     return sizeof(tls12_sigalgs);
676   }
677 }
678 
679 /* tls12_check_peer_sigalg parses a SignatureAndHashAlgorithm out of |cbs|. It
680  * checks it is consistent with |s|'s sent supported signature algorithms and,
681  * if so, writes the relevant digest into |*out_md| and returns 1. Otherwise it
682  * returns 0 and writes an alert into |*out_alert|. */
tls12_check_peer_sigalg(const EVP_MD ** out_md,int * out_alert,SSL * s,CBS * cbs,EVP_PKEY * pkey)683 int tls12_check_peer_sigalg(const EVP_MD **out_md, int *out_alert, SSL *s,
684                             CBS *cbs, EVP_PKEY *pkey) {
685   const uint8_t *sent_sigs;
686   size_t sent_sigslen, i;
687   int sigalg = tls12_get_sigid(pkey);
688   uint8_t hash, signature;
689 
690   /* Should never happen */
691   if (sigalg == -1) {
692     OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, ERR_R_INTERNAL_ERROR);
693     *out_alert = SSL_AD_INTERNAL_ERROR;
694     return 0;
695   }
696 
697   if (!CBS_get_u8(cbs, &hash) ||
698       !CBS_get_u8(cbs, &signature)) {
699     OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_DECODE_ERROR);
700     *out_alert = SSL_AD_DECODE_ERROR;
701     return 0;
702   }
703 
704   /* Check key type is consistent with signature */
705   if (sigalg != signature) {
706     OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_WRONG_SIGNATURE_TYPE);
707     *out_alert = SSL_AD_ILLEGAL_PARAMETER;
708     return 0;
709   }
710 
711   if (pkey->type == EVP_PKEY_EC) {
712     uint16_t curve_id;
713     uint8_t comp_id;
714     /* Check compression and curve matches extensions */
715     if (!tls1_curve_params_from_ec_key(&curve_id, &comp_id, pkey->pkey.ec)) {
716       *out_alert = SSL_AD_INTERNAL_ERROR;
717       return 0;
718     }
719 
720     if (s->server && (!tls1_check_curve_id(s, curve_id) ||
721                       !tls1_check_point_format(s, comp_id))) {
722       OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_WRONG_CURVE);
723       *out_alert = SSL_AD_ILLEGAL_PARAMETER;
724       return 0;
725     }
726   }
727 
728   /* Check signature matches a type we sent */
729   sent_sigslen = tls12_get_psigalgs(s, &sent_sigs);
730   for (i = 0; i < sent_sigslen; i += 2, sent_sigs += 2) {
731     if (hash == sent_sigs[0] && signature == sent_sigs[1]) {
732       break;
733     }
734   }
735 
736   /* Allow fallback to SHA-1. */
737   if (i == sent_sigslen && hash != TLSEXT_hash_sha1) {
738     OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_WRONG_SIGNATURE_TYPE);
739     *out_alert = SSL_AD_ILLEGAL_PARAMETER;
740     return 0;
741   }
742 
743   *out_md = tls12_get_hash(hash);
744   if (*out_md == NULL) {
745     OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_UNKNOWN_DIGEST);
746     *out_alert = SSL_AD_ILLEGAL_PARAMETER;
747     return 0;
748   }
749 
750   return 1;
751 }
752 
753 /* Get a mask of disabled algorithms: an algorithm is disabled if it isn't
754  * supported or doesn't appear in supported signature algorithms. Unlike
755  * ssl_cipher_get_disabled this applies to a specific session and not global
756  * settings. */
ssl_set_client_disabled(SSL * s)757 void ssl_set_client_disabled(SSL *s) {
758   CERT *c = s->cert;
759   const uint8_t *sigalgs;
760   size_t i, sigalgslen;
761   int have_rsa = 0, have_ecdsa = 0;
762   c->mask_a = 0;
763   c->mask_k = 0;
764 
765   /* Don't allow TLS 1.2 only ciphers if we don't suppport them */
766   if (!SSL_CLIENT_USE_TLS1_2_CIPHERS(s)) {
767     c->mask_ssl = SSL_TLSV1_2;
768   } else {
769     c->mask_ssl = 0;
770   }
771 
772   /* Now go through all signature algorithms seeing if we support any for RSA,
773    * DSA, ECDSA. Do this for all versions not just TLS 1.2. */
774   sigalgslen = tls12_get_psigalgs(s, &sigalgs);
775   for (i = 0; i < sigalgslen; i += 2, sigalgs += 2) {
776     switch (sigalgs[1]) {
777       case TLSEXT_signature_rsa:
778         have_rsa = 1;
779         break;
780 
781       case TLSEXT_signature_ecdsa:
782         have_ecdsa = 1;
783         break;
784     }
785   }
786 
787   /* Disable auth if we don't include any appropriate signature algorithms. */
788   if (!have_rsa) {
789     c->mask_a |= SSL_aRSA;
790   }
791   if (!have_ecdsa) {
792     c->mask_a |= SSL_aECDSA;
793   }
794 
795   /* with PSK there must be client callback set */
796   if (!s->psk_client_callback) {
797     c->mask_a |= SSL_aPSK;
798     c->mask_k |= SSL_kPSK;
799   }
800 }
801 
802 /* header_len is the length of the ClientHello header written so far, used to
803  * compute padding. It does not include the record header. Pass 0 if no padding
804  * is to be done. */
ssl_add_clienthello_tlsext(SSL * s,uint8_t * buf,uint8_t * limit,size_t header_len)805 uint8_t *ssl_add_clienthello_tlsext(SSL *s, uint8_t *buf, uint8_t *limit,
806                                     size_t header_len) {
807   int extdatalen = 0;
808   uint8_t *ret = buf;
809   uint8_t *orig = buf;
810   /* See if we support any ECC ciphersuites */
811   int using_ecc = 0;
812 
813   if (s->version >= TLS1_VERSION || SSL_IS_DTLS(s)) {
814     size_t i;
815     uint32_t alg_k, alg_a;
816     STACK_OF(SSL_CIPHER) *cipher_stack = SSL_get_ciphers(s);
817 
818     for (i = 0; i < sk_SSL_CIPHER_num(cipher_stack); i++) {
819       const SSL_CIPHER *c = sk_SSL_CIPHER_value(cipher_stack, i);
820 
821       alg_k = c->algorithm_mkey;
822       alg_a = c->algorithm_auth;
823       if ((alg_k & SSL_kECDHE) || (alg_a & SSL_aECDSA)) {
824         using_ecc = 1;
825         break;
826       }
827     }
828   }
829 
830   /* don't add extensions for SSLv3 unless doing secure renegotiation */
831   if (s->client_version == SSL3_VERSION && !s->s3->send_connection_binding) {
832     return orig;
833   }
834 
835   ret += 2;
836 
837   if (ret >= limit) {
838     return NULL; /* should never occur. */
839   }
840 
841   if (s->tlsext_hostname != NULL) {
842     /* Add TLS extension servername to the Client Hello message */
843     unsigned long size_str;
844     long lenmax;
845 
846     /* check for enough space.
847        4 for the servername type and entension length
848        2 for servernamelist length
849        1 for the hostname type
850        2 for hostname length
851        + hostname length */
852 
853     lenmax = limit - ret - 9;
854     size_str = strlen(s->tlsext_hostname);
855     if (lenmax < 0 || size_str > (unsigned long)lenmax) {
856       return NULL;
857     }
858 
859     /* extension type and length */
860     s2n(TLSEXT_TYPE_server_name, ret);
861     s2n(size_str + 5, ret);
862 
863     /* length of servername list */
864     s2n(size_str + 3, ret);
865 
866     /* hostname type, length and hostname */
867     *(ret++) = (uint8_t)TLSEXT_NAMETYPE_host_name;
868     s2n(size_str, ret);
869     memcpy(ret, s->tlsext_hostname, size_str);
870     ret += size_str;
871   }
872 
873   /* Add RI if renegotiating */
874   if (s->s3->initial_handshake_complete) {
875     int el;
876 
877     if (!ssl_add_clienthello_renegotiate_ext(s, 0, &el, 0)) {
878       OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR);
879       return NULL;
880     }
881 
882     if ((limit - ret - 4 - el) < 0) {
883       return NULL;
884     }
885 
886     s2n(TLSEXT_TYPE_renegotiate, ret);
887     s2n(el, ret);
888 
889     if (!ssl_add_clienthello_renegotiate_ext(s, ret, &el, el)) {
890       OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR);
891       return NULL;
892     }
893 
894     ret += el;
895   }
896 
897   /* Add extended master secret. */
898   if (s->version != SSL3_VERSION) {
899     if (limit - ret - 4 < 0) {
900       return NULL;
901     }
902     s2n(TLSEXT_TYPE_extended_master_secret, ret);
903     s2n(0, ret);
904   }
905 
906   if (!(SSL_get_options(s) & SSL_OP_NO_TICKET)) {
907     int ticklen = 0;
908     /* Renegotiation does not participate in session resumption. However, still
909      * advertise the extension to avoid potentially breaking servers which carry
910      * over the state from the previous handshake, such as OpenSSL servers
911      * without upstream's 3c3f0259238594d77264a78944d409f2127642c4. */
912     if (!s->s3->initial_handshake_complete && s->session != NULL &&
913         s->session->tlsext_tick != NULL) {
914       ticklen = s->session->tlsext_ticklen;
915     }
916 
917     /* Check for enough room 2 for extension type, 2 for len rest for
918      * ticket. */
919     if ((long)(limit - ret - 4 - ticklen) < 0) {
920       return NULL;
921     }
922     s2n(TLSEXT_TYPE_session_ticket, ret);
923     s2n(ticklen, ret);
924     if (ticklen) {
925       memcpy(ret, s->session->tlsext_tick, ticklen);
926       ret += ticklen;
927     }
928   }
929 
930   if (ssl3_version_from_wire(s, s->client_version) >= TLS1_2_VERSION) {
931     size_t salglen;
932     const uint8_t *salg;
933     salglen = tls12_get_psigalgs(s, &salg);
934     if ((size_t)(limit - ret) < salglen + 6) {
935       return NULL;
936     }
937     s2n(TLSEXT_TYPE_signature_algorithms, ret);
938     s2n(salglen + 2, ret);
939     s2n(salglen, ret);
940     memcpy(ret, salg, salglen);
941     ret += salglen;
942   }
943 
944   if (s->ocsp_stapling_enabled) {
945     /* The status_request extension is excessively extensible at every layer.
946      * On the client, only support requesting OCSP responses with an empty
947      * responder_id_list and no extensions. */
948     if (limit - ret - 4 - 1 - 2 - 2 < 0) {
949       return NULL;
950     }
951 
952     s2n(TLSEXT_TYPE_status_request, ret);
953     s2n(1 + 2 + 2, ret);
954     /* status_type */
955     *(ret++) = TLSEXT_STATUSTYPE_ocsp;
956     /* responder_id_list - empty */
957     s2n(0, ret);
958     /* request_extensions - empty */
959     s2n(0, ret);
960   }
961 
962   if (s->ctx->next_proto_select_cb && !s->s3->initial_handshake_complete &&
963       !SSL_IS_DTLS(s)) {
964     /* The client advertises an emtpy extension to indicate its support for
965      * Next Protocol Negotiation */
966     if (limit - ret - 4 < 0) {
967       return NULL;
968     }
969     s2n(TLSEXT_TYPE_next_proto_neg, ret);
970     s2n(0, ret);
971   }
972 
973   if (s->signed_cert_timestamps_enabled) {
974     /* The client advertises an empty extension to indicate its support for
975      * certificate timestamps. */
976     if (limit - ret - 4 < 0) {
977       return NULL;
978     }
979     s2n(TLSEXT_TYPE_certificate_timestamp, ret);
980     s2n(0, ret);
981   }
982 
983   if (s->alpn_client_proto_list && !s->s3->initial_handshake_complete) {
984     if ((size_t)(limit - ret) < 6 + s->alpn_client_proto_list_len) {
985       return NULL;
986     }
987     s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret);
988     s2n(2 + s->alpn_client_proto_list_len, ret);
989     s2n(s->alpn_client_proto_list_len, ret);
990     memcpy(ret, s->alpn_client_proto_list, s->alpn_client_proto_list_len);
991     ret += s->alpn_client_proto_list_len;
992   }
993 
994   if (s->tlsext_channel_id_enabled && !SSL_IS_DTLS(s)) {
995     /* The client advertises an emtpy extension to indicate its support for
996      * Channel ID. */
997     if (limit - ret - 4 < 0) {
998       return NULL;
999     }
1000     if (s->ctx->tlsext_channel_id_enabled_new) {
1001       s2n(TLSEXT_TYPE_channel_id_new, ret);
1002     } else {
1003       s2n(TLSEXT_TYPE_channel_id, ret);
1004     }
1005     s2n(0, ret);
1006   }
1007 
1008   if (SSL_get_srtp_profiles(s)) {
1009     int el;
1010 
1011     ssl_add_clienthello_use_srtp_ext(s, 0, &el, 0);
1012 
1013     if ((limit - ret - 4 - el) < 0) {
1014       return NULL;
1015     }
1016 
1017     s2n(TLSEXT_TYPE_use_srtp, ret);
1018     s2n(el, ret);
1019 
1020     if (!ssl_add_clienthello_use_srtp_ext(s, ret, &el, el)) {
1021       OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR);
1022       return NULL;
1023     }
1024     ret += el;
1025   }
1026 
1027   if (using_ecc) {
1028     /* Add TLS extension ECPointFormats to the ClientHello message */
1029     long lenmax;
1030     const uint8_t *formats;
1031     const uint16_t *curves;
1032     size_t formats_len, curves_len, i;
1033 
1034     tls1_get_formatlist(s, &formats, &formats_len);
1035 
1036     lenmax = limit - ret - 5;
1037     if (lenmax < 0) {
1038       return NULL;
1039     }
1040     if (formats_len > (size_t)lenmax) {
1041       return NULL;
1042     }
1043     if (formats_len > 255) {
1044       OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR);
1045       return NULL;
1046     }
1047 
1048     s2n(TLSEXT_TYPE_ec_point_formats, ret);
1049     s2n(formats_len + 1, ret);
1050     *(ret++) = (uint8_t)formats_len;
1051     memcpy(ret, formats, formats_len);
1052     ret += formats_len;
1053 
1054     /* Add TLS extension EllipticCurves to the ClientHello message */
1055     tls1_get_curvelist(s, 0, &curves, &curves_len);
1056 
1057     lenmax = limit - ret - 6;
1058     if (lenmax < 0) {
1059       return NULL;
1060     }
1061     if (curves_len * 2 > (size_t)lenmax) {
1062       return NULL;
1063     }
1064     if (curves_len * 2 > 65532) {
1065       OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR);
1066       return NULL;
1067     }
1068 
1069     s2n(TLSEXT_TYPE_elliptic_curves, ret);
1070     s2n((curves_len * 2) + 2, ret);
1071 
1072     s2n(curves_len * 2, ret);
1073     for (i = 0; i < curves_len; i++) {
1074       s2n(curves[i], ret);
1075     }
1076   }
1077 
1078   if (header_len > 0) {
1079     size_t clienthello_minsize = 0;
1080     header_len += ret - orig;
1081     if (header_len > 0xff && header_len < 0x200) {
1082       /* Add padding to workaround bugs in F5 terminators. See
1083        * https://tools.ietf.org/html/draft-agl-tls-padding-03
1084        *
1085        * NB: because this code works out the length of all existing extensions
1086        * it MUST always appear last. */
1087       clienthello_minsize = 0x200;
1088     }
1089     if (s->fastradio_padding) {
1090       /* Pad the ClientHello record to 1024 bytes to fast forward the radio
1091        * into DCH (high data rate) state in 3G networks. Note that when
1092        * fastradio_padding is enabled, even if the header_len is less than 255
1093        * bytes, the padding will be applied regardless. This is slightly
1094        * different from the TLS padding extension suggested in
1095        * https://tools.ietf.org/html/draft-agl-tls-padding-03 */
1096       clienthello_minsize = 0x400;
1097     }
1098     if (header_len < clienthello_minsize) {
1099       size_t padding_len = clienthello_minsize - header_len;
1100       /* Extensions take at least four bytes to encode. Always include least
1101        * one byte of data if including the extension. WebSphere Application
1102        * Server 7.0 is intolerant to the last extension being zero-length. */
1103       if (padding_len >= 4 + 1) {
1104         padding_len -= 4;
1105       } else {
1106         padding_len = 1;
1107       }
1108 
1109       if (limit - ret - 4 - (long)padding_len < 0) {
1110         return NULL;
1111       }
1112 
1113       s2n(TLSEXT_TYPE_padding, ret);
1114       s2n(padding_len, ret);
1115       memset(ret, 0, padding_len);
1116       ret += padding_len;
1117     }
1118   }
1119 
1120   extdatalen = ret - orig - 2;
1121   if (extdatalen == 0) {
1122     return orig;
1123   }
1124 
1125   s2n(extdatalen, orig);
1126   return ret;
1127 }
1128 
ssl_add_serverhello_tlsext(SSL * s,uint8_t * buf,uint8_t * limit)1129 uint8_t *ssl_add_serverhello_tlsext(SSL *s, uint8_t *buf, uint8_t *limit) {
1130   int extdatalen = 0;
1131   uint8_t *orig = buf;
1132   uint8_t *ret = buf;
1133   int next_proto_neg_seen;
1134   uint32_t alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
1135   uint32_t alg_a = s->s3->tmp.new_cipher->algorithm_auth;
1136   int using_ecc = (alg_k & SSL_kECDHE) || (alg_a & SSL_aECDSA);
1137   using_ecc = using_ecc && (s->s3->tmp.peer_ecpointformatlist != NULL);
1138 
1139   /* don't add extensions for SSLv3, unless doing secure renegotiation */
1140   if (s->version == SSL3_VERSION && !s->s3->send_connection_binding) {
1141     return orig;
1142   }
1143 
1144   ret += 2;
1145   if (ret >= limit) {
1146     return NULL; /* should never happen. */
1147   }
1148 
1149   if (!s->hit && s->should_ack_sni && s->session->tlsext_hostname != NULL) {
1150     if ((long)(limit - ret - 4) < 0) {
1151       return NULL;
1152     }
1153 
1154     s2n(TLSEXT_TYPE_server_name, ret);
1155     s2n(0, ret);
1156   }
1157 
1158   if (s->s3->send_connection_binding) {
1159     int el;
1160 
1161     if (!ssl_add_serverhello_renegotiate_ext(s, 0, &el, 0)) {
1162       OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, ERR_R_INTERNAL_ERROR);
1163       return NULL;
1164     }
1165 
1166     if ((limit - ret - 4 - el) < 0) {
1167       return NULL;
1168     }
1169 
1170     s2n(TLSEXT_TYPE_renegotiate, ret);
1171     s2n(el, ret);
1172 
1173     if (!ssl_add_serverhello_renegotiate_ext(s, ret, &el, el)) {
1174       OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, ERR_R_INTERNAL_ERROR);
1175       return NULL;
1176     }
1177 
1178     ret += el;
1179   }
1180 
1181   if (s->s3->tmp.extended_master_secret) {
1182     if ((long)(limit - ret - 4) < 0) {
1183       return NULL;
1184     }
1185 
1186     s2n(TLSEXT_TYPE_extended_master_secret, ret);
1187     s2n(0, ret);
1188   }
1189 
1190   if (using_ecc) {
1191     const uint8_t *plist;
1192     size_t plistlen;
1193     /* Add TLS extension ECPointFormats to the ServerHello message */
1194     long lenmax;
1195 
1196     tls1_get_formatlist(s, &plist, &plistlen);
1197 
1198     lenmax = limit - ret - 5;
1199     if (lenmax < 0) {
1200       return NULL;
1201     }
1202     if (plistlen > (size_t)lenmax) {
1203       return NULL;
1204     }
1205     if (plistlen > 255) {
1206       OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, ERR_R_INTERNAL_ERROR);
1207       return NULL;
1208     }
1209 
1210     s2n(TLSEXT_TYPE_ec_point_formats, ret);
1211     s2n(plistlen + 1, ret);
1212     *(ret++) = (uint8_t)plistlen;
1213     memcpy(ret, plist, plistlen);
1214     ret += plistlen;
1215   }
1216   /* Currently the server should not respond with a SupportedCurves extension */
1217 
1218   if (s->tlsext_ticket_expected && !(SSL_get_options(s) & SSL_OP_NO_TICKET)) {
1219     if ((long)(limit - ret - 4) < 0) {
1220       return NULL;
1221     }
1222     s2n(TLSEXT_TYPE_session_ticket, ret);
1223     s2n(0, ret);
1224   }
1225 
1226   if (s->s3->tmp.certificate_status_expected) {
1227     if ((long)(limit - ret - 4) < 0) {
1228       return NULL;
1229     }
1230     s2n(TLSEXT_TYPE_status_request, ret);
1231     s2n(0, ret);
1232   }
1233 
1234   if (s->srtp_profile) {
1235     int el;
1236 
1237     ssl_add_serverhello_use_srtp_ext(s, 0, &el, 0);
1238 
1239     if ((limit - ret - 4 - el) < 0) {
1240       return NULL;
1241     }
1242 
1243     s2n(TLSEXT_TYPE_use_srtp, ret);
1244     s2n(el, ret);
1245 
1246     if (!ssl_add_serverhello_use_srtp_ext(s, ret, &el, el)) {
1247       OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, ERR_R_INTERNAL_ERROR);
1248       return NULL;
1249     }
1250     ret += el;
1251   }
1252 
1253   next_proto_neg_seen = s->s3->next_proto_neg_seen;
1254   s->s3->next_proto_neg_seen = 0;
1255   if (next_proto_neg_seen && s->ctx->next_protos_advertised_cb) {
1256     const uint8_t *npa;
1257     unsigned int npalen;
1258     int r;
1259 
1260     r = s->ctx->next_protos_advertised_cb(
1261         s, &npa, &npalen, s->ctx->next_protos_advertised_cb_arg);
1262     if (r == SSL_TLSEXT_ERR_OK) {
1263       if ((long)(limit - ret - 4 - npalen) < 0) {
1264         return NULL;
1265       }
1266       s2n(TLSEXT_TYPE_next_proto_neg, ret);
1267       s2n(npalen, ret);
1268       memcpy(ret, npa, npalen);
1269       ret += npalen;
1270       s->s3->next_proto_neg_seen = 1;
1271     }
1272   }
1273 
1274   if (s->s3->alpn_selected) {
1275     const uint8_t *selected = s->s3->alpn_selected;
1276     size_t len = s->s3->alpn_selected_len;
1277 
1278     if ((long)(limit - ret - 4 - 2 - 1 - len) < 0) {
1279       return NULL;
1280     }
1281     s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret);
1282     s2n(3 + len, ret);
1283     s2n(1 + len, ret);
1284     *ret++ = len;
1285     memcpy(ret, selected, len);
1286     ret += len;
1287   }
1288 
1289   /* If the client advertised support for Channel ID, and we have it
1290    * enabled, then we want to echo it back. */
1291   if (s->s3->tlsext_channel_id_valid) {
1292     if (limit - ret - 4 < 0) {
1293       return NULL;
1294     }
1295     if (s->s3->tlsext_channel_id_new) {
1296       s2n(TLSEXT_TYPE_channel_id_new, ret);
1297     } else {
1298       s2n(TLSEXT_TYPE_channel_id, ret);
1299     }
1300     s2n(0, ret);
1301   }
1302 
1303   extdatalen = ret - orig - 2;
1304   if (extdatalen == 0) {
1305     return orig;
1306   }
1307 
1308   s2n(extdatalen, orig);
1309   return ret;
1310 }
1311 
1312 /* tls1_alpn_handle_client_hello is called to process the ALPN extension in a
1313  * ClientHello.
1314  *   cbs: the contents of the extension, not including the type and length.
1315  *   out_alert: a pointer to the alert value to send in the event of a zero
1316  *       return.
1317  *
1318  *   returns: 1 on success. */
tls1_alpn_handle_client_hello(SSL * s,CBS * cbs,int * out_alert)1319 static int tls1_alpn_handle_client_hello(SSL *s, CBS *cbs, int *out_alert) {
1320   CBS protocol_name_list, protocol_name_list_copy;
1321   const uint8_t *selected;
1322   uint8_t selected_len;
1323   int r;
1324 
1325   if (s->ctx->alpn_select_cb == NULL) {
1326     return 1;
1327   }
1328 
1329   if (!CBS_get_u16_length_prefixed(cbs, &protocol_name_list) ||
1330       CBS_len(cbs) != 0 || CBS_len(&protocol_name_list) < 2) {
1331     goto parse_error;
1332   }
1333 
1334   /* Validate the protocol list. */
1335   protocol_name_list_copy = protocol_name_list;
1336   while (CBS_len(&protocol_name_list_copy) > 0) {
1337     CBS protocol_name;
1338 
1339     if (!CBS_get_u8_length_prefixed(&protocol_name_list_copy, &protocol_name)) {
1340       goto parse_error;
1341     }
1342   }
1343 
1344   r = s->ctx->alpn_select_cb(
1345       s, &selected, &selected_len, CBS_data(&protocol_name_list),
1346       CBS_len(&protocol_name_list), s->ctx->alpn_select_cb_arg);
1347   if (r == SSL_TLSEXT_ERR_OK) {
1348     OPENSSL_free(s->s3->alpn_selected);
1349     s->s3->alpn_selected = BUF_memdup(selected, selected_len);
1350     if (!s->s3->alpn_selected) {
1351       *out_alert = SSL_AD_INTERNAL_ERROR;
1352       return 0;
1353     }
1354     s->s3->alpn_selected_len = selected_len;
1355   }
1356 
1357   return 1;
1358 
1359 parse_error:
1360   *out_alert = SSL_AD_DECODE_ERROR;
1361   return 0;
1362 }
1363 
ssl_scan_clienthello_tlsext(SSL * s,CBS * cbs,int * out_alert)1364 static int ssl_scan_clienthello_tlsext(SSL *s, CBS *cbs, int *out_alert) {
1365   int renegotiate_seen = 0;
1366   CBS extensions;
1367 
1368   s->should_ack_sni = 0;
1369   s->srtp_profile = NULL;
1370   s->s3->next_proto_neg_seen = 0;
1371   s->s3->tmp.certificate_status_expected = 0;
1372   s->s3->tmp.extended_master_secret = 0;
1373 
1374   OPENSSL_free(s->s3->alpn_selected);
1375   s->s3->alpn_selected = NULL;
1376 
1377   /* Clear any signature algorithms extension received */
1378   OPENSSL_free(s->cert->peer_sigalgs);
1379   s->cert->peer_sigalgs = NULL;
1380   s->cert->peer_sigalgslen = 0;
1381 
1382   /* Clear any shared signature algorithms */
1383   OPENSSL_free(s->cert->shared_sigalgs);
1384   s->cert->shared_sigalgs = NULL;
1385   s->cert->shared_sigalgslen = 0;
1386 
1387   /* Clear ECC extensions */
1388   OPENSSL_free(s->s3->tmp.peer_ecpointformatlist);
1389   s->s3->tmp.peer_ecpointformatlist = NULL;
1390   s->s3->tmp.peer_ecpointformatlist_length = 0;
1391 
1392   OPENSSL_free(s->s3->tmp.peer_ellipticcurvelist);
1393   s->s3->tmp.peer_ellipticcurvelist = NULL;
1394   s->s3->tmp.peer_ellipticcurvelist_length = 0;
1395 
1396   /* There may be no extensions. */
1397   if (CBS_len(cbs) == 0) {
1398     goto ri_check;
1399   }
1400 
1401   /* Decode the extensions block and check it is valid. */
1402   if (!CBS_get_u16_length_prefixed(cbs, &extensions) ||
1403       !tls1_check_duplicate_extensions(&extensions)) {
1404     *out_alert = SSL_AD_DECODE_ERROR;
1405     return 0;
1406   }
1407 
1408   while (CBS_len(&extensions) != 0) {
1409     uint16_t type;
1410     CBS extension;
1411 
1412     /* Decode the next extension. */
1413     if (!CBS_get_u16(&extensions, &type) ||
1414         !CBS_get_u16_length_prefixed(&extensions, &extension)) {
1415       *out_alert = SSL_AD_DECODE_ERROR;
1416       return 0;
1417     }
1418 
1419     /* The servername extension is treated as follows:
1420 
1421        - Only the hostname type is supported with a maximum length of 255.
1422        - The servername is rejected if too long or if it contains zeros, in
1423          which case an fatal alert is generated.
1424        - The servername field is maintained together with the session cache.
1425        - When a session is resumed, the servername call back invoked in order
1426          to allow the application to position itself to the right context.
1427        - The servername is acknowledged if it is new for a session or when
1428          it is identical to a previously used for the same session.
1429          Applications can control the behaviour.  They can at any time
1430          set a 'desirable' servername for a new SSL object. This can be the
1431          case for example with HTTPS when a Host: header field is received and
1432          a renegotiation is requested. In this case, a possible servername
1433          presented in the new client hello is only acknowledged if it matches
1434          the value of the Host: field.
1435        - Applications must  use SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
1436          if they provide for changing an explicit servername context for the
1437        session,
1438          i.e. when the session has been established with a servername extension.
1439        - On session reconnect, the servername extension may be absent. */
1440 
1441     if (type == TLSEXT_TYPE_server_name) {
1442       CBS server_name_list;
1443       char have_seen_host_name = 0;
1444 
1445       if (!CBS_get_u16_length_prefixed(&extension, &server_name_list) ||
1446           CBS_len(&server_name_list) < 1 || CBS_len(&extension) != 0) {
1447         *out_alert = SSL_AD_DECODE_ERROR;
1448         return 0;
1449       }
1450 
1451       /* Decode each ServerName in the extension. */
1452       while (CBS_len(&server_name_list) > 0) {
1453         uint8_t name_type;
1454         CBS host_name;
1455 
1456         /* Decode the NameType. */
1457         if (!CBS_get_u8(&server_name_list, &name_type)) {
1458           *out_alert = SSL_AD_DECODE_ERROR;
1459           return 0;
1460         }
1461 
1462         /* Only host_name is supported. */
1463         if (name_type != TLSEXT_NAMETYPE_host_name) {
1464           continue;
1465         }
1466 
1467         if (have_seen_host_name) {
1468           /* The ServerNameList MUST NOT contain more than one name of the same
1469            * name_type. */
1470           *out_alert = SSL_AD_DECODE_ERROR;
1471           return 0;
1472         }
1473 
1474         have_seen_host_name = 1;
1475 
1476         if (!CBS_get_u16_length_prefixed(&server_name_list, &host_name) ||
1477             CBS_len(&host_name) < 1) {
1478           *out_alert = SSL_AD_DECODE_ERROR;
1479           return 0;
1480         }
1481 
1482         if (CBS_len(&host_name) > TLSEXT_MAXLEN_host_name ||
1483             CBS_contains_zero_byte(&host_name)) {
1484           *out_alert = SSL_AD_UNRECOGNIZED_NAME;
1485           return 0;
1486         }
1487 
1488         if (!s->hit) {
1489           assert(s->session->tlsext_hostname == NULL);
1490           if (s->session->tlsext_hostname) {
1491             /* This should be impossible. */
1492             *out_alert = SSL_AD_DECODE_ERROR;
1493             return 0;
1494           }
1495 
1496           /* Copy the hostname as a string. */
1497           if (!CBS_strdup(&host_name, &s->session->tlsext_hostname)) {
1498             *out_alert = SSL_AD_INTERNAL_ERROR;
1499             return 0;
1500           }
1501 
1502           s->should_ack_sni = 1;
1503         }
1504       }
1505     } else if (type == TLSEXT_TYPE_ec_point_formats) {
1506       CBS ec_point_format_list;
1507 
1508       if (!CBS_get_u8_length_prefixed(&extension, &ec_point_format_list) ||
1509           CBS_len(&extension) != 0) {
1510         *out_alert = SSL_AD_DECODE_ERROR;
1511         return 0;
1512       }
1513 
1514       if (!CBS_stow(&ec_point_format_list, &s->s3->tmp.peer_ecpointformatlist,
1515                     &s->s3->tmp.peer_ecpointformatlist_length)) {
1516         *out_alert = SSL_AD_INTERNAL_ERROR;
1517         return 0;
1518       }
1519     } else if (type == TLSEXT_TYPE_elliptic_curves) {
1520       CBS elliptic_curve_list;
1521       size_t i, num_curves;
1522 
1523       if (!CBS_get_u16_length_prefixed(&extension, &elliptic_curve_list) ||
1524           CBS_len(&elliptic_curve_list) == 0 ||
1525           (CBS_len(&elliptic_curve_list) & 1) != 0 ||
1526           CBS_len(&extension) != 0) {
1527         *out_alert = SSL_AD_DECODE_ERROR;
1528         return 0;
1529       }
1530 
1531       OPENSSL_free(s->s3->tmp.peer_ellipticcurvelist);
1532       s->s3->tmp.peer_ellipticcurvelist_length = 0;
1533 
1534       s->s3->tmp.peer_ellipticcurvelist =
1535           (uint16_t *)OPENSSL_malloc(CBS_len(&elliptic_curve_list));
1536 
1537       if (s->s3->tmp.peer_ellipticcurvelist == NULL) {
1538         *out_alert = SSL_AD_INTERNAL_ERROR;
1539         return 0;
1540       }
1541 
1542       num_curves = CBS_len(&elliptic_curve_list) / 2;
1543       for (i = 0; i < num_curves; i++) {
1544         if (!CBS_get_u16(&elliptic_curve_list,
1545                          &s->s3->tmp.peer_ellipticcurvelist[i])) {
1546           *out_alert = SSL_AD_INTERNAL_ERROR;
1547           return 0;
1548         }
1549       }
1550 
1551       if (CBS_len(&elliptic_curve_list) != 0) {
1552         *out_alert = SSL_AD_INTERNAL_ERROR;
1553         return 0;
1554       }
1555 
1556       s->s3->tmp.peer_ellipticcurvelist_length = num_curves;
1557     } else if (type == TLSEXT_TYPE_renegotiate) {
1558       if (!ssl_parse_clienthello_renegotiate_ext(s, &extension, out_alert)) {
1559         return 0;
1560       }
1561       renegotiate_seen = 1;
1562     } else if (type == TLSEXT_TYPE_signature_algorithms) {
1563       CBS supported_signature_algorithms;
1564 
1565       if (!CBS_get_u16_length_prefixed(&extension,
1566                                        &supported_signature_algorithms) ||
1567           CBS_len(&extension) != 0) {
1568         *out_alert = SSL_AD_DECODE_ERROR;
1569         return 0;
1570       }
1571 
1572       /* Ensure the signature algorithms are non-empty. It contains a list of
1573        * SignatureAndHashAlgorithms which are two bytes each. */
1574       if (CBS_len(&supported_signature_algorithms) == 0 ||
1575           (CBS_len(&supported_signature_algorithms) % 2) != 0) {
1576         *out_alert = SSL_AD_DECODE_ERROR;
1577         return 0;
1578       }
1579 
1580       if (!tls1_process_sigalgs(s, &supported_signature_algorithms)) {
1581         *out_alert = SSL_AD_DECODE_ERROR;
1582         return 0;
1583       }
1584       /* If sigalgs received and no shared algorithms fatal error. */
1585       if (s->cert->peer_sigalgs && !s->cert->shared_sigalgs) {
1586         OPENSSL_PUT_ERROR(SSL, ssl_scan_clienthello_tlsext,
1587                           SSL_R_NO_SHARED_SIGATURE_ALGORITHMS);
1588         *out_alert = SSL_AD_ILLEGAL_PARAMETER;
1589         return 0;
1590       }
1591     } else if (type == TLSEXT_TYPE_next_proto_neg &&
1592                !s->s3->initial_handshake_complete &&
1593                s->s3->alpn_selected == NULL && !SSL_IS_DTLS(s)) {
1594       /* The extension must be empty. */
1595       if (CBS_len(&extension) != 0) {
1596         *out_alert = SSL_AD_DECODE_ERROR;
1597         return 0;
1598       }
1599       s->s3->next_proto_neg_seen = 1;
1600     } else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation &&
1601                s->ctx->alpn_select_cb && !s->s3->initial_handshake_complete) {
1602       if (!tls1_alpn_handle_client_hello(s, &extension, out_alert)) {
1603         return 0;
1604       }
1605       /* ALPN takes precedence over NPN. */
1606       s->s3->next_proto_neg_seen = 0;
1607     } else if (type == TLSEXT_TYPE_channel_id && s->tlsext_channel_id_enabled &&
1608                !SSL_IS_DTLS(s)) {
1609       /* The extension must be empty. */
1610       if (CBS_len(&extension) != 0) {
1611         *out_alert = SSL_AD_DECODE_ERROR;
1612         return 0;
1613       }
1614 
1615       s->s3->tlsext_channel_id_valid = 1;
1616     } else if (type == TLSEXT_TYPE_channel_id_new &&
1617                s->tlsext_channel_id_enabled && !SSL_IS_DTLS(s)) {
1618       /* The extension must be empty. */
1619       if (CBS_len(&extension) != 0) {
1620         *out_alert = SSL_AD_DECODE_ERROR;
1621         return 0;
1622       }
1623 
1624       s->s3->tlsext_channel_id_valid = 1;
1625       s->s3->tlsext_channel_id_new = 1;
1626     } else if (type == TLSEXT_TYPE_use_srtp) {
1627       if (!ssl_parse_clienthello_use_srtp_ext(s, &extension, out_alert)) {
1628         return 0;
1629       }
1630     } else if (type == TLSEXT_TYPE_extended_master_secret &&
1631                s->version != SSL3_VERSION) {
1632       if (CBS_len(&extension) != 0) {
1633         *out_alert = SSL_AD_DECODE_ERROR;
1634         return 0;
1635       }
1636 
1637       s->s3->tmp.extended_master_secret = 1;
1638     }
1639   }
1640 
1641 ri_check:
1642   /* Need RI if renegotiating */
1643 
1644   if (!renegotiate_seen && s->s3->initial_handshake_complete &&
1645       !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) {
1646     *out_alert = SSL_AD_HANDSHAKE_FAILURE;
1647     OPENSSL_PUT_ERROR(SSL, ssl_scan_clienthello_tlsext,
1648                       SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
1649     return 0;
1650   }
1651 
1652   return 1;
1653 }
1654 
ssl_parse_clienthello_tlsext(SSL * s,CBS * cbs)1655 int ssl_parse_clienthello_tlsext(SSL *s, CBS *cbs) {
1656   int alert = -1;
1657   if (ssl_scan_clienthello_tlsext(s, cbs, &alert) <= 0) {
1658     ssl3_send_alert(s, SSL3_AL_FATAL, alert);
1659     return 0;
1660   }
1661 
1662   if (ssl_check_clienthello_tlsext(s) <= 0) {
1663     OPENSSL_PUT_ERROR(SSL, ssl_parse_clienthello_tlsext,
1664                       SSL_R_CLIENTHELLO_TLSEXT);
1665     return 0;
1666   }
1667 
1668   return 1;
1669 }
1670 
1671 /* ssl_next_proto_validate validates a Next Protocol Negotiation block. No
1672  * elements of zero length are allowed and the set of elements must exactly
1673  * fill the length of the block. */
ssl_next_proto_validate(const CBS * cbs)1674 static char ssl_next_proto_validate(const CBS *cbs) {
1675   CBS copy = *cbs;
1676 
1677   while (CBS_len(&copy) != 0) {
1678     CBS proto;
1679     if (!CBS_get_u8_length_prefixed(&copy, &proto) || CBS_len(&proto) == 0) {
1680       return 0;
1681     }
1682   }
1683 
1684   return 1;
1685 }
1686 
ssl_scan_serverhello_tlsext(SSL * s,CBS * cbs,int * out_alert)1687 static int ssl_scan_serverhello_tlsext(SSL *s, CBS *cbs, int *out_alert) {
1688   int tlsext_servername = 0;
1689   int renegotiate_seen = 0;
1690   CBS extensions;
1691 
1692   /* TODO(davidben): Move all of these to some per-handshake state that gets
1693    * systematically reset on a new handshake; perhaps allocate it fresh each
1694    * time so it's not even kept around post-handshake. */
1695   s->s3->next_proto_neg_seen = 0;
1696   s->tlsext_ticket_expected = 0;
1697   s->s3->tmp.certificate_status_expected = 0;
1698   s->s3->tmp.extended_master_secret = 0;
1699   s->srtp_profile = NULL;
1700 
1701   OPENSSL_free(s->s3->alpn_selected);
1702   s->s3->alpn_selected = NULL;
1703 
1704   /* Clear ECC extensions */
1705   OPENSSL_free(s->s3->tmp.peer_ecpointformatlist);
1706   s->s3->tmp.peer_ecpointformatlist = NULL;
1707   s->s3->tmp.peer_ecpointformatlist_length = 0;
1708 
1709   /* There may be no extensions. */
1710   if (CBS_len(cbs) == 0) {
1711     goto ri_check;
1712   }
1713 
1714   /* Decode the extensions block and check it is valid. */
1715   if (!CBS_get_u16_length_prefixed(cbs, &extensions) ||
1716       !tls1_check_duplicate_extensions(&extensions)) {
1717     *out_alert = SSL_AD_DECODE_ERROR;
1718     return 0;
1719   }
1720 
1721   while (CBS_len(&extensions) != 0) {
1722     uint16_t type;
1723     CBS extension;
1724 
1725     /* Decode the next extension. */
1726     if (!CBS_get_u16(&extensions, &type) ||
1727         !CBS_get_u16_length_prefixed(&extensions, &extension)) {
1728       *out_alert = SSL_AD_DECODE_ERROR;
1729       return 0;
1730     }
1731 
1732     if (type == TLSEXT_TYPE_server_name) {
1733       /* The extension must be empty. */
1734       if (CBS_len(&extension) != 0) {
1735         *out_alert = SSL_AD_DECODE_ERROR;
1736         return 0;
1737       }
1738 
1739       /* We must have sent it in ClientHello. */
1740       if (s->tlsext_hostname == NULL) {
1741         *out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
1742         return 0;
1743       }
1744 
1745       tlsext_servername = 1;
1746     } else if (type == TLSEXT_TYPE_ec_point_formats) {
1747       CBS ec_point_format_list;
1748 
1749       if (!CBS_get_u8_length_prefixed(&extension, &ec_point_format_list) ||
1750           CBS_len(&extension) != 0) {
1751         *out_alert = SSL_AD_DECODE_ERROR;
1752         return 0;
1753       }
1754 
1755       if (!CBS_stow(&ec_point_format_list, &s->s3->tmp.peer_ecpointformatlist,
1756                     &s->s3->tmp.peer_ecpointformatlist_length)) {
1757         *out_alert = SSL_AD_INTERNAL_ERROR;
1758         return 0;
1759       }
1760     } else if (type == TLSEXT_TYPE_session_ticket) {
1761       if ((SSL_get_options(s) & SSL_OP_NO_TICKET) || CBS_len(&extension) > 0) {
1762         *out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
1763         return 0;
1764       }
1765 
1766       s->tlsext_ticket_expected = 1;
1767     } else if (type == TLSEXT_TYPE_status_request) {
1768       /* The extension MUST be empty and may only sent if we've requested a
1769        * status request message. */
1770       if (CBS_len(&extension) != 0) {
1771         *out_alert = SSL_AD_DECODE_ERROR;
1772         return 0;
1773       }
1774 
1775       if (!s->ocsp_stapling_enabled) {
1776         *out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
1777         return 0;
1778       }
1779 
1780       /* Set a flag to expect a CertificateStatus message */
1781       s->s3->tmp.certificate_status_expected = 1;
1782     } else if (type == TLSEXT_TYPE_next_proto_neg &&
1783                !s->s3->initial_handshake_complete && !SSL_IS_DTLS(s)) {
1784       uint8_t *selected;
1785       uint8_t selected_len;
1786 
1787       /* We must have requested it. */
1788       if (s->ctx->next_proto_select_cb == NULL) {
1789         *out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
1790         return 0;
1791       }
1792 
1793       /* The data must be valid. */
1794       if (!ssl_next_proto_validate(&extension)) {
1795         *out_alert = SSL_AD_DECODE_ERROR;
1796         return 0;
1797       }
1798 
1799       if (s->ctx->next_proto_select_cb(
1800               s, &selected, &selected_len, CBS_data(&extension),
1801               CBS_len(&extension),
1802               s->ctx->next_proto_select_cb_arg) != SSL_TLSEXT_ERR_OK) {
1803         *out_alert = SSL_AD_INTERNAL_ERROR;
1804         return 0;
1805       }
1806 
1807       s->next_proto_negotiated = BUF_memdup(selected, selected_len);
1808       if (s->next_proto_negotiated == NULL) {
1809         *out_alert = SSL_AD_INTERNAL_ERROR;
1810         return 0;
1811       }
1812 
1813       s->next_proto_negotiated_len = selected_len;
1814       s->s3->next_proto_neg_seen = 1;
1815     } else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation &&
1816                !s->s3->initial_handshake_complete) {
1817       CBS protocol_name_list, protocol_name;
1818 
1819       /* We must have requested it. */
1820       if (s->alpn_client_proto_list == NULL) {
1821         *out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
1822         return 0;
1823       }
1824 
1825       /* The extension data consists of a ProtocolNameList which must have
1826        * exactly one ProtocolName. Each of these is length-prefixed. */
1827       if (!CBS_get_u16_length_prefixed(&extension, &protocol_name_list) ||
1828           CBS_len(&extension) != 0 ||
1829           !CBS_get_u8_length_prefixed(&protocol_name_list, &protocol_name) ||
1830           CBS_len(&protocol_name_list) != 0) {
1831         *out_alert = SSL_AD_DECODE_ERROR;
1832         return 0;
1833       }
1834 
1835       if (!CBS_stow(&protocol_name, &s->s3->alpn_selected,
1836                     &s->s3->alpn_selected_len)) {
1837         *out_alert = SSL_AD_INTERNAL_ERROR;
1838         return 0;
1839       }
1840     } else if (type == TLSEXT_TYPE_channel_id && !SSL_IS_DTLS(s)) {
1841       if (CBS_len(&extension) != 0) {
1842         *out_alert = SSL_AD_DECODE_ERROR;
1843         return 0;
1844       }
1845 
1846       s->s3->tlsext_channel_id_valid = 1;
1847     } else if (type == TLSEXT_TYPE_channel_id_new && !SSL_IS_DTLS(s)) {
1848       if (CBS_len(&extension) != 0) {
1849         *out_alert = SSL_AD_DECODE_ERROR;
1850         return 0;
1851       }
1852 
1853       s->s3->tlsext_channel_id_valid = 1;
1854       s->s3->tlsext_channel_id_new = 1;
1855     } else if (type == TLSEXT_TYPE_certificate_timestamp) {
1856       if (CBS_len(&extension) == 0) {
1857         *out_alert = SSL_AD_DECODE_ERROR;
1858         return 0;
1859       }
1860 
1861       /* Session resumption uses the original session information. */
1862       if (!s->hit &&
1863           !CBS_stow(&extension, &s->session->tlsext_signed_cert_timestamp_list,
1864                     &s->session->tlsext_signed_cert_timestamp_list_length)) {
1865         *out_alert = SSL_AD_INTERNAL_ERROR;
1866         return 0;
1867       }
1868     } else if (type == TLSEXT_TYPE_renegotiate) {
1869       if (!ssl_parse_serverhello_renegotiate_ext(s, &extension, out_alert)) {
1870         return 0;
1871       }
1872 
1873       renegotiate_seen = 1;
1874     } else if (type == TLSEXT_TYPE_use_srtp) {
1875       if (!ssl_parse_serverhello_use_srtp_ext(s, &extension, out_alert)) {
1876         return 0;
1877       }
1878     } else if (type == TLSEXT_TYPE_extended_master_secret) {
1879       if (/* It is invalid for the server to select EMS and
1880              SSLv3. */
1881           s->version == SSL3_VERSION || CBS_len(&extension) != 0) {
1882         *out_alert = SSL_AD_DECODE_ERROR;
1883         return 0;
1884       }
1885 
1886       s->s3->tmp.extended_master_secret = 1;
1887     }
1888   }
1889 
1890   if (!s->hit && tlsext_servername == 1 && s->tlsext_hostname) {
1891     if (s->session->tlsext_hostname == NULL) {
1892       s->session->tlsext_hostname = BUF_strdup(s->tlsext_hostname);
1893       if (!s->session->tlsext_hostname) {
1894         *out_alert = SSL_AD_UNRECOGNIZED_NAME;
1895         return 0;
1896       }
1897     } else {
1898       *out_alert = SSL_AD_DECODE_ERROR;
1899       return 0;
1900     }
1901   }
1902 
1903 ri_check:
1904   /* Determine if we need to see RI. Strictly speaking if we want to avoid an
1905    * attack we should *always* see RI even on initial server hello because the
1906    * client doesn't see any renegotiation during an attack. However this would
1907    * mean we could not connect to any server which doesn't support RI so for
1908    * the immediate future tolerate RI absence on initial connect only. */
1909   if (!renegotiate_seen && !(s->options & SSL_OP_LEGACY_SERVER_CONNECT) &&
1910       !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) {
1911     *out_alert = SSL_AD_HANDSHAKE_FAILURE;
1912     OPENSSL_PUT_ERROR(SSL, ssl_scan_serverhello_tlsext,
1913                       SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
1914     return 0;
1915   }
1916 
1917   return 1;
1918 }
1919 
ssl_prepare_clienthello_tlsext(SSL * s)1920 int ssl_prepare_clienthello_tlsext(SSL *s) { return 1; }
1921 
ssl_prepare_serverhello_tlsext(SSL * s)1922 int ssl_prepare_serverhello_tlsext(SSL *s) { return 1; }
1923 
ssl_check_clienthello_tlsext(SSL * s)1924 static int ssl_check_clienthello_tlsext(SSL *s) {
1925   int ret = SSL_TLSEXT_ERR_NOACK;
1926   int al = SSL_AD_UNRECOGNIZED_NAME;
1927 
1928   /* The handling of the ECPointFormats extension is done elsewhere, namely in
1929    * ssl3_choose_cipher in s3_lib.c. */
1930 
1931   if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0) {
1932     ret = s->ctx->tlsext_servername_callback(s, &al,
1933                                              s->ctx->tlsext_servername_arg);
1934   } else if (s->initial_ctx != NULL &&
1935              s->initial_ctx->tlsext_servername_callback != 0) {
1936     ret = s->initial_ctx->tlsext_servername_callback(
1937         s, &al, s->initial_ctx->tlsext_servername_arg);
1938   }
1939 
1940   switch (ret) {
1941     case SSL_TLSEXT_ERR_ALERT_FATAL:
1942       ssl3_send_alert(s, SSL3_AL_FATAL, al);
1943       return -1;
1944 
1945     case SSL_TLSEXT_ERR_ALERT_WARNING:
1946       ssl3_send_alert(s, SSL3_AL_WARNING, al);
1947       return 1;
1948 
1949     case SSL_TLSEXT_ERR_NOACK:
1950       s->should_ack_sni = 0;
1951       return 1;
1952 
1953     default:
1954       return 1;
1955   }
1956 }
1957 
ssl_check_serverhello_tlsext(SSL * s)1958 static int ssl_check_serverhello_tlsext(SSL *s) {
1959   int ret = SSL_TLSEXT_ERR_NOACK;
1960   int al = SSL_AD_UNRECOGNIZED_NAME;
1961 
1962   /* If we are client and using an elliptic curve cryptography cipher suite,
1963    * then if server returns an EC point formats lists extension it must contain
1964    * uncompressed. */
1965   uint32_t alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
1966   uint32_t alg_a = s->s3->tmp.new_cipher->algorithm_auth;
1967   if (((alg_k & SSL_kECDHE) || (alg_a & SSL_aECDSA)) &&
1968       !tls1_check_point_format(s, TLSEXT_ECPOINTFORMAT_uncompressed)) {
1969     OPENSSL_PUT_ERROR(SSL, ssl_check_serverhello_tlsext,
1970                       SSL_R_TLS_INVALID_ECPOINTFORMAT_LIST);
1971     return -1;
1972   }
1973   ret = SSL_TLSEXT_ERR_OK;
1974 
1975   if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0) {
1976     ret = s->ctx->tlsext_servername_callback(s, &al,
1977                                              s->ctx->tlsext_servername_arg);
1978   } else if (s->initial_ctx != NULL &&
1979              s->initial_ctx->tlsext_servername_callback != 0) {
1980     ret = s->initial_ctx->tlsext_servername_callback(
1981         s, &al, s->initial_ctx->tlsext_servername_arg);
1982   }
1983 
1984   switch (ret) {
1985     case SSL_TLSEXT_ERR_ALERT_FATAL:
1986       ssl3_send_alert(s, SSL3_AL_FATAL, al);
1987       return -1;
1988 
1989     case SSL_TLSEXT_ERR_ALERT_WARNING:
1990       ssl3_send_alert(s, SSL3_AL_WARNING, al);
1991       return 1;
1992 
1993     default:
1994       return 1;
1995   }
1996 }
1997 
ssl_parse_serverhello_tlsext(SSL * s,CBS * cbs)1998 int ssl_parse_serverhello_tlsext(SSL *s, CBS *cbs) {
1999   int alert = -1;
2000   if (s->version < SSL3_VERSION) {
2001     return 1;
2002   }
2003 
2004   if (ssl_scan_serverhello_tlsext(s, cbs, &alert) <= 0) {
2005     ssl3_send_alert(s, SSL3_AL_FATAL, alert);
2006     return 0;
2007   }
2008 
2009   if (ssl_check_serverhello_tlsext(s) <= 0) {
2010     OPENSSL_PUT_ERROR(SSL, ssl_parse_serverhello_tlsext,
2011                       SSL_R_SERVERHELLO_TLSEXT);
2012     return 0;
2013   }
2014 
2015   return 1;
2016 }
2017 
2018 /* Since the server cache lookup is done early on in the processing of the
2019  * ClientHello, and other operations depend on the result, we need to handle
2020  * any TLS session ticket extension at the same time.
2021  *
2022  *   ctx: contains the early callback context, which is the result of a
2023  *       shallow parse of the ClientHello.
2024  *   ret: (output) on return, if a ticket was decrypted, then this is set to
2025  *       point to the resulting session.
2026  *
2027  * Returns:
2028  *   -1: fatal error, either from parsing or decrypting the ticket.
2029  *    0: no ticket was found (or was ignored, based on settings).
2030  *    1: a zero length extension was found, indicating that the client supports
2031  *       session tickets but doesn't currently have one to offer.
2032  *    2: a ticket was offered but couldn't be decrypted because of a non-fatal
2033  *       error.
2034  *    3: a ticket was successfully decrypted and *ret was set.
2035  *
2036  * Side effects:
2037  *   Sets s->tlsext_ticket_expected to 1 if the server will have to issue
2038  *   a new session ticket to the client because the client indicated support
2039  *   but the client either doesn't have a session ticket or we couldn't use
2040  *   the one it gave us, or if s->ctx->tlsext_ticket_key_cb asked to renew
2041  *   the client's ticket.  Otherwise, s->tlsext_ticket_expected is set to 0.
2042  */
tls1_process_ticket(SSL * s,const struct ssl_early_callback_ctx * ctx,SSL_SESSION ** ret)2043 int tls1_process_ticket(SSL *s, const struct ssl_early_callback_ctx *ctx,
2044                         SSL_SESSION **ret) {
2045   *ret = NULL;
2046   s->tlsext_ticket_expected = 0;
2047   const uint8_t *data;
2048   size_t len;
2049   int r;
2050 
2051   /* If tickets disabled behave as if no ticket present to permit stateful
2052    * resumption. */
2053   if ((SSL_get_options(s) & SSL_OP_NO_TICKET) ||
2054       (s->version <= SSL3_VERSION && !ctx->extensions) ||
2055       !SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_session_ticket,
2056                                             &data, &len)) {
2057     return 0;
2058   }
2059 
2060   if (len == 0) {
2061     /* The client will accept a ticket but doesn't currently have one. */
2062     s->tlsext_ticket_expected = 1;
2063     return 1;
2064   }
2065 
2066   r = tls_decrypt_ticket(s, data, len, ctx->session_id, ctx->session_id_len,
2067                          ret);
2068   switch (r) {
2069     case 2: /* ticket couldn't be decrypted */
2070       s->tlsext_ticket_expected = 1;
2071       return 2;
2072 
2073     case 3: /* ticket was decrypted */
2074       return r;
2075 
2076     case 4: /* ticket decrypted but need to renew */
2077       s->tlsext_ticket_expected = 1;
2078       return 3;
2079 
2080     default: /* fatal error */
2081       return -1;
2082   }
2083 }
2084 
2085 /* tls_decrypt_ticket attempts to decrypt a session ticket.
2086  *
2087  *   etick: points to the body of the session ticket extension.
2088  *   eticklen: the length of the session tickets extenion.
2089  *   sess_id: points at the session ID.
2090  *   sesslen: the length of the session ID.
2091  *   psess: (output) on return, if a ticket was decrypted, then this is set to
2092  *       point to the resulting session.
2093  *
2094  * Returns:
2095  *   -1: fatal error, either from parsing or decrypting the ticket.
2096  *    2: the ticket couldn't be decrypted.
2097  *    3: a ticket was successfully decrypted and *psess was set.
2098  *    4: same as 3, but the ticket needs to be renewed. */
tls_decrypt_ticket(SSL * s,const uint8_t * etick,int eticklen,const uint8_t * sess_id,int sesslen,SSL_SESSION ** psess)2099 static int tls_decrypt_ticket(SSL *s, const uint8_t *etick, int eticklen,
2100                               const uint8_t *sess_id, int sesslen,
2101                               SSL_SESSION **psess) {
2102   SSL_SESSION *sess;
2103   uint8_t *sdec;
2104   const uint8_t *p;
2105   int slen, mlen, renew_ticket = 0;
2106   uint8_t tick_hmac[EVP_MAX_MD_SIZE];
2107   HMAC_CTX hctx;
2108   EVP_CIPHER_CTX ctx;
2109   SSL_CTX *tctx = s->initial_ctx;
2110 
2111   /* Ensure there is room for the key name and the largest IV
2112    * |tlsext_ticket_key_cb| may try to consume. The real limit may be lower, but
2113    * the maximum IV length should be well under the minimum size for the
2114    * session material and HMAC. */
2115   if (eticklen < 16 + EVP_MAX_IV_LENGTH) {
2116     return 2;
2117   }
2118 
2119   /* Initialize session ticket encryption and HMAC contexts */
2120   HMAC_CTX_init(&hctx);
2121   EVP_CIPHER_CTX_init(&ctx);
2122   if (tctx->tlsext_ticket_key_cb) {
2123     uint8_t *nctick = (uint8_t *)etick;
2124     int rv = tctx->tlsext_ticket_key_cb(s, nctick, nctick + 16, &ctx, &hctx,
2125                                         0 /* decrypt */);
2126     if (rv < 0) {
2127       return -1;
2128     }
2129     if (rv == 0) {
2130       return 2;
2131     }
2132     if (rv == 2) {
2133       renew_ticket = 1;
2134     }
2135   } else {
2136     /* Check key name matches */
2137     if (memcmp(etick, tctx->tlsext_tick_key_name, 16)) {
2138       return 2;
2139     }
2140     if (!HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16, tlsext_tick_md(),
2141                       NULL) ||
2142         !EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL,
2143                             tctx->tlsext_tick_aes_key, etick + 16)) {
2144       HMAC_CTX_cleanup(&hctx);
2145       EVP_CIPHER_CTX_cleanup(&ctx);
2146       return -1;
2147     }
2148   }
2149 
2150   /* First, check the MAC. The MAC is at the end of the ticket. */
2151   mlen = HMAC_size(&hctx);
2152   if ((size_t) eticklen < 16 + EVP_CIPHER_CTX_iv_length(&ctx) + 1 + mlen) {
2153     /* The ticket must be large enough for key name, IV, data, and MAC. */
2154     HMAC_CTX_cleanup(&hctx);
2155     EVP_CIPHER_CTX_cleanup(&ctx);
2156     return 2;
2157   }
2158   eticklen -= mlen;
2159   /* Check HMAC of encrypted ticket */
2160   HMAC_Update(&hctx, etick, eticklen);
2161   HMAC_Final(&hctx, tick_hmac, NULL);
2162   HMAC_CTX_cleanup(&hctx);
2163   if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
2164     EVP_CIPHER_CTX_cleanup(&ctx);
2165     return 2;
2166   }
2167 
2168   /* Attempt to decrypt session data */
2169   /* Move p after IV to start of encrypted ticket, update length */
2170   p = etick + 16 + EVP_CIPHER_CTX_iv_length(&ctx);
2171   eticklen -= 16 + EVP_CIPHER_CTX_iv_length(&ctx);
2172   sdec = OPENSSL_malloc(eticklen);
2173   if (!sdec) {
2174     EVP_CIPHER_CTX_cleanup(&ctx);
2175     return -1;
2176   }
2177   EVP_DecryptUpdate(&ctx, sdec, &slen, p, eticklen);
2178   if (EVP_DecryptFinal_ex(&ctx, sdec + slen, &mlen) <= 0) {
2179     EVP_CIPHER_CTX_cleanup(&ctx);
2180     OPENSSL_free(sdec);
2181     return 2;
2182   }
2183   slen += mlen;
2184   EVP_CIPHER_CTX_cleanup(&ctx);
2185   p = sdec;
2186 
2187   sess = d2i_SSL_SESSION(NULL, &p, slen);
2188   OPENSSL_free(sdec);
2189   if (sess) {
2190     /* The session ID, if non-empty, is used by some clients to detect that the
2191      * ticket has been accepted. So we copy it to the session structure. If it
2192      * is empty set length to zero as required by standard. */
2193     if (sesslen) {
2194       memcpy(sess->session_id, sess_id, sesslen);
2195     }
2196     sess->session_id_length = sesslen;
2197     *psess = sess;
2198     if (renew_ticket) {
2199       return 4;
2200     }
2201     return 3;
2202   }
2203 
2204   ERR_clear_error();
2205   /* For session parse failure, indicate that we need to send a new ticket. */
2206   return 2;
2207 }
2208 
2209 /* Tables to translate from NIDs to TLS v1.2 ids */
2210 typedef struct {
2211   int nid;
2212   int id;
2213 } tls12_lookup;
2214 
2215 static const tls12_lookup tls12_md[] = {{NID_md5, TLSEXT_hash_md5},
2216                                         {NID_sha1, TLSEXT_hash_sha1},
2217                                         {NID_sha224, TLSEXT_hash_sha224},
2218                                         {NID_sha256, TLSEXT_hash_sha256},
2219                                         {NID_sha384, TLSEXT_hash_sha384},
2220                                         {NID_sha512, TLSEXT_hash_sha512}};
2221 
2222 static const tls12_lookup tls12_sig[] = {{EVP_PKEY_RSA, TLSEXT_signature_rsa},
2223                                          {EVP_PKEY_EC, TLSEXT_signature_ecdsa}};
2224 
tls12_find_id(int nid,const tls12_lookup * table,size_t tlen)2225 static int tls12_find_id(int nid, const tls12_lookup *table, size_t tlen) {
2226   size_t i;
2227   for (i = 0; i < tlen; i++) {
2228     if (table[i].nid == nid) {
2229       return table[i].id;
2230     }
2231   }
2232 
2233   return -1;
2234 }
2235 
tls12_find_nid(int id,const tls12_lookup * table,size_t tlen)2236 static int tls12_find_nid(int id, const tls12_lookup *table, size_t tlen) {
2237   size_t i;
2238   for (i = 0; i < tlen; i++) {
2239     if (table[i].id == id) {
2240       return table[i].nid;
2241     }
2242   }
2243 
2244   return NID_undef;
2245 }
2246 
tls12_get_sigandhash(uint8_t * p,const EVP_PKEY * pk,const EVP_MD * md)2247 int tls12_get_sigandhash(uint8_t *p, const EVP_PKEY *pk, const EVP_MD *md) {
2248   int sig_id, md_id;
2249 
2250   if (!md) {
2251     return 0;
2252   }
2253 
2254   md_id = tls12_find_id(EVP_MD_type(md), tls12_md,
2255                         sizeof(tls12_md) / sizeof(tls12_lookup));
2256   if (md_id == -1) {
2257     return 0;
2258   }
2259 
2260   sig_id = tls12_get_sigid(pk);
2261   if (sig_id == -1) {
2262     return 0;
2263   }
2264 
2265   p[0] = (uint8_t)md_id;
2266   p[1] = (uint8_t)sig_id;
2267   return 1;
2268 }
2269 
tls12_get_sigid(const EVP_PKEY * pk)2270 int tls12_get_sigid(const EVP_PKEY *pk) {
2271   return tls12_find_id(pk->type, tls12_sig,
2272                        sizeof(tls12_sig) / sizeof(tls12_lookup));
2273 }
2274 
tls12_get_hash(uint8_t hash_alg)2275 const EVP_MD *tls12_get_hash(uint8_t hash_alg) {
2276   switch (hash_alg) {
2277     case TLSEXT_hash_md5:
2278       return EVP_md5();
2279 
2280     case TLSEXT_hash_sha1:
2281       return EVP_sha1();
2282 
2283     case TLSEXT_hash_sha224:
2284       return EVP_sha224();
2285 
2286     case TLSEXT_hash_sha256:
2287       return EVP_sha256();
2288 
2289     case TLSEXT_hash_sha384:
2290       return EVP_sha384();
2291 
2292     case TLSEXT_hash_sha512:
2293       return EVP_sha512();
2294 
2295     default:
2296       return NULL;
2297   }
2298 }
2299 
2300 /* tls12_get_pkey_type returns the EVP_PKEY type corresponding to TLS signature
2301  * algorithm |sig_alg|. It returns -1 if the type is unknown. */
tls12_get_pkey_type(uint8_t sig_alg)2302 static int tls12_get_pkey_type(uint8_t sig_alg) {
2303   switch (sig_alg) {
2304     case TLSEXT_signature_rsa:
2305       return EVP_PKEY_RSA;
2306 
2307     case TLSEXT_signature_ecdsa:
2308       return EVP_PKEY_EC;
2309 
2310     default:
2311       return -1;
2312   }
2313 }
2314 
2315 /* Convert TLS 1.2 signature algorithm extension values into NIDs */
tls1_lookup_sigalg(int * phash_nid,int * psign_nid,int * psignhash_nid,const uint8_t * data)2316 static void tls1_lookup_sigalg(int *phash_nid, int *psign_nid,
2317                                int *psignhash_nid, const uint8_t *data) {
2318   int sign_nid = 0, hash_nid = 0;
2319   if (!phash_nid && !psign_nid && !psignhash_nid) {
2320     return;
2321   }
2322 
2323   if (phash_nid || psignhash_nid) {
2324     hash_nid = tls12_find_nid(data[0], tls12_md,
2325                               sizeof(tls12_md) / sizeof(tls12_lookup));
2326     if (phash_nid) {
2327       *phash_nid = hash_nid;
2328     }
2329   }
2330 
2331   if (psign_nid || psignhash_nid) {
2332     sign_nid = tls12_find_nid(data[1], tls12_sig,
2333                               sizeof(tls12_sig) / sizeof(tls12_lookup));
2334     if (psign_nid) {
2335       *psign_nid = sign_nid;
2336     }
2337   }
2338 
2339   if (psignhash_nid) {
2340     if (sign_nid && hash_nid) {
2341       OBJ_find_sigid_by_algs(psignhash_nid, hash_nid, sign_nid);
2342     } else {
2343       *psignhash_nid = NID_undef;
2344     }
2345   }
2346 }
2347 
2348 /* Given preference and allowed sigalgs set shared sigalgs */
tls12_do_shared_sigalgs(TLS_SIGALGS * shsig,const uint8_t * pref,size_t preflen,const uint8_t * allow,size_t allowlen)2349 static int tls12_do_shared_sigalgs(TLS_SIGALGS *shsig, const uint8_t *pref,
2350                                    size_t preflen, const uint8_t *allow,
2351                                    size_t allowlen) {
2352   const uint8_t *ptmp, *atmp;
2353   size_t i, j, nmatch = 0;
2354 
2355   for (i = 0, ptmp = pref; i < preflen; i += 2, ptmp += 2) {
2356     /* Skip disabled hashes or signature algorithms */
2357     if (tls12_get_hash(ptmp[0]) == NULL ||
2358         tls12_get_pkey_type(ptmp[1]) == -1) {
2359       continue;
2360     }
2361 
2362     for (j = 0, atmp = allow; j < allowlen; j += 2, atmp += 2) {
2363       if (ptmp[0] == atmp[0] && ptmp[1] == atmp[1]) {
2364         nmatch++;
2365         if (shsig) {
2366           shsig->rhash = ptmp[0];
2367           shsig->rsign = ptmp[1];
2368           tls1_lookup_sigalg(&shsig->hash_nid, &shsig->sign_nid,
2369                              &shsig->signandhash_nid, ptmp);
2370           shsig++;
2371         }
2372 
2373         break;
2374       }
2375     }
2376   }
2377 
2378   return nmatch;
2379 }
2380 
2381 /* Set shared signature algorithms for SSL structures */
tls1_set_shared_sigalgs(SSL * s)2382 static int tls1_set_shared_sigalgs(SSL *s) {
2383   const uint8_t *pref, *allow, *conf;
2384   size_t preflen, allowlen, conflen;
2385   size_t nmatch;
2386   TLS_SIGALGS *salgs = NULL;
2387   CERT *c = s->cert;
2388 
2389   OPENSSL_free(c->shared_sigalgs);
2390   c->shared_sigalgs = NULL;
2391   c->shared_sigalgslen = 0;
2392 
2393   /* If client use client signature algorithms if not NULL */
2394   if (!s->server && c->client_sigalgs) {
2395     conf = c->client_sigalgs;
2396     conflen = c->client_sigalgslen;
2397   } else if (c->conf_sigalgs) {
2398     conf = c->conf_sigalgs;
2399     conflen = c->conf_sigalgslen;
2400   } else {
2401     conflen = tls12_get_psigalgs(s, &conf);
2402   }
2403 
2404   if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
2405     pref = conf;
2406     preflen = conflen;
2407     allow = c->peer_sigalgs;
2408     allowlen = c->peer_sigalgslen;
2409   } else {
2410     allow = conf;
2411     allowlen = conflen;
2412     pref = c->peer_sigalgs;
2413     preflen = c->peer_sigalgslen;
2414   }
2415 
2416   nmatch = tls12_do_shared_sigalgs(NULL, pref, preflen, allow, allowlen);
2417   if (!nmatch) {
2418     return 1;
2419   }
2420 
2421   salgs = OPENSSL_malloc(nmatch * sizeof(TLS_SIGALGS));
2422   if (!salgs) {
2423     return 0;
2424   }
2425 
2426   nmatch = tls12_do_shared_sigalgs(salgs, pref, preflen, allow, allowlen);
2427   c->shared_sigalgs = salgs;
2428   c->shared_sigalgslen = nmatch;
2429   return 1;
2430 }
2431 
2432 /* Set preferred digest for each key type */
tls1_process_sigalgs(SSL * s,const CBS * sigalgs)2433 int tls1_process_sigalgs(SSL *s, const CBS *sigalgs) {
2434   CERT *c = s->cert;
2435 
2436   /* Extension ignored for inappropriate versions */
2437   if (!SSL_USE_SIGALGS(s)) {
2438     return 1;
2439   }
2440 
2441   if (CBS_len(sigalgs) % 2 != 0 ||
2442       !CBS_stow(sigalgs, &c->peer_sigalgs, &c->peer_sigalgslen) ||
2443       !tls1_set_shared_sigalgs(s)) {
2444     return 0;
2445   }
2446 
2447   return 1;
2448 }
2449 
tls1_choose_signing_digest(SSL * s,EVP_PKEY * pkey)2450 const EVP_MD *tls1_choose_signing_digest(SSL *s, EVP_PKEY *pkey) {
2451   CERT *c = s->cert;
2452   int type = EVP_PKEY_id(pkey);
2453   size_t i;
2454 
2455   /* Select the first shared digest supported by our key. */
2456   for (i = 0; i < c->shared_sigalgslen; i++) {
2457     const EVP_MD *md = tls12_get_hash(c->shared_sigalgs[i].rhash);
2458     if (md == NULL ||
2459         tls12_get_pkey_type(c->shared_sigalgs[i].rsign) != type ||
2460         !EVP_PKEY_supports_digest(pkey, md)) {
2461       continue;
2462     }
2463     return md;
2464   }
2465 
2466   /* If no suitable digest may be found, default to SHA-1. */
2467   return EVP_sha1();
2468 }
2469 
SSL_get_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,uint8_t * rsig,uint8_t * rhash)2470 int SSL_get_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash,
2471                     uint8_t *rsig, uint8_t *rhash) {
2472   const uint8_t *psig = s->cert->peer_sigalgs;
2473 
2474   if (psig == NULL) {
2475     return 0;
2476   }
2477 
2478   if (idx >= 0) {
2479     idx <<= 1;
2480     if (idx >= (int)s->cert->peer_sigalgslen) {
2481       return 0;
2482     }
2483     psig += idx;
2484     if (rhash) {
2485       *rhash = psig[0];
2486     }
2487     if (rsig) {
2488       *rsig = psig[1];
2489     }
2490     tls1_lookup_sigalg(phash, psign, psignhash, psig);
2491   }
2492 
2493   return s->cert->peer_sigalgslen / 2;
2494 }
2495 
SSL_get_shared_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,uint8_t * rsig,uint8_t * rhash)2496 int SSL_get_shared_sigalgs(SSL *s, int idx, int *psign, int *phash,
2497                            int *psignhash, uint8_t *rsig, uint8_t *rhash) {
2498   TLS_SIGALGS *shsigalgs = s->cert->shared_sigalgs;
2499 
2500   if (!shsigalgs || idx >= (int)s->cert->shared_sigalgslen) {
2501     return 0;
2502   }
2503 
2504   shsigalgs += idx;
2505   if (phash) {
2506     *phash = shsigalgs->hash_nid;
2507   }
2508   if (psign) {
2509     *psign = shsigalgs->sign_nid;
2510   }
2511   if (psignhash) {
2512     *psignhash = shsigalgs->signandhash_nid;
2513   }
2514   if (rsig) {
2515     *rsig = shsigalgs->rsign;
2516   }
2517   if (rhash) {
2518     *rhash = shsigalgs->rhash;
2519   }
2520 
2521   return s->cert->shared_sigalgslen;
2522 }
2523 
2524 /* tls1_channel_id_hash calculates the signed data for a Channel ID on the
2525  * given SSL connection and writes it to |md|. */
tls1_channel_id_hash(EVP_MD_CTX * md,SSL * s)2526 int tls1_channel_id_hash(EVP_MD_CTX *md, SSL *s) {
2527   EVP_MD_CTX ctx;
2528   uint8_t temp_digest[EVP_MAX_MD_SIZE];
2529   unsigned temp_digest_len;
2530   int i;
2531   static const char kClientIDMagic[] = "TLS Channel ID signature";
2532 
2533   if (s->s3->handshake_buffer &&
2534       !ssl3_digest_cached_records(s, free_handshake_buffer)) {
2535     return 0;
2536   }
2537 
2538   EVP_DigestUpdate(md, kClientIDMagic, sizeof(kClientIDMagic));
2539 
2540   if (s->hit && s->s3->tlsext_channel_id_new) {
2541     static const char kResumptionMagic[] = "Resumption";
2542     EVP_DigestUpdate(md, kResumptionMagic, sizeof(kResumptionMagic));
2543     if (s->session->original_handshake_hash_len == 0) {
2544       return 0;
2545     }
2546     EVP_DigestUpdate(md, s->session->original_handshake_hash,
2547                      s->session->original_handshake_hash_len);
2548   }
2549 
2550   EVP_MD_CTX_init(&ctx);
2551   for (i = 0; i < SSL_MAX_DIGEST; i++) {
2552     if (s->s3->handshake_dgst[i] == NULL) {
2553       continue;
2554     }
2555     if (!EVP_MD_CTX_copy_ex(&ctx, s->s3->handshake_dgst[i])) {
2556       EVP_MD_CTX_cleanup(&ctx);
2557       return 0;
2558     }
2559     EVP_DigestFinal_ex(&ctx, temp_digest, &temp_digest_len);
2560     EVP_DigestUpdate(md, temp_digest, temp_digest_len);
2561   }
2562   EVP_MD_CTX_cleanup(&ctx);
2563 
2564   return 1;
2565 }
2566 
2567 /* tls1_record_handshake_hashes_for_channel_id records the current handshake
2568  * hashes in |s->session| so that Channel ID resumptions can sign that data. */
tls1_record_handshake_hashes_for_channel_id(SSL * s)2569 int tls1_record_handshake_hashes_for_channel_id(SSL *s) {
2570   int digest_len;
2571   /* This function should never be called for a resumed session because the
2572    * handshake hashes that we wish to record are for the original, full
2573    * handshake. */
2574   if (s->hit) {
2575     return -1;
2576   }
2577 
2578   /* It only makes sense to call this function if Channel IDs have been
2579    * negotiated. */
2580   if (!s->s3->tlsext_channel_id_new) {
2581     return -1;
2582   }
2583 
2584   digest_len =
2585       tls1_handshake_digest(s, s->session->original_handshake_hash,
2586                             sizeof(s->session->original_handshake_hash));
2587   if (digest_len < 0) {
2588     return -1;
2589   }
2590 
2591   s->session->original_handshake_hash_len = digest_len;
2592 
2593   return 1;
2594 }
2595 
tls1_set_sigalgs(CERT * c,const int * psig_nids,size_t salglen,int client)2596 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen,
2597                      int client) {
2598   uint8_t *sigalgs, *sptr;
2599   int rhash, rsign;
2600   size_t i;
2601 
2602   if (salglen & 1) {
2603     return 0;
2604   }
2605 
2606   sigalgs = OPENSSL_malloc(salglen);
2607   if (sigalgs == NULL) {
2608     return 0;
2609   }
2610 
2611   for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2612     rhash = tls12_find_id(*psig_nids++, tls12_md,
2613                           sizeof(tls12_md) / sizeof(tls12_lookup));
2614     rsign = tls12_find_id(*psig_nids++, tls12_sig,
2615                           sizeof(tls12_sig) / sizeof(tls12_lookup));
2616 
2617     if (rhash == -1 || rsign == -1) {
2618       goto err;
2619     }
2620     *sptr++ = rhash;
2621     *sptr++ = rsign;
2622   }
2623 
2624   if (client) {
2625     OPENSSL_free(c->client_sigalgs);
2626     c->client_sigalgs = sigalgs;
2627     c->client_sigalgslen = salglen;
2628   } else {
2629     OPENSSL_free(c->conf_sigalgs);
2630     c->conf_sigalgs = sigalgs;
2631     c->conf_sigalgslen = salglen;
2632   }
2633 
2634   return 1;
2635 
2636 err:
2637   OPENSSL_free(sigalgs);
2638   return 0;
2639 }
2640