• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2010 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// TLS low level connection and record layer
6
7package main
8
9import (
10	"bytes"
11	"crypto/cipher"
12	"crypto/ecdsa"
13	"crypto/subtle"
14	"crypto/x509"
15	"errors"
16	"fmt"
17	"io"
18	"net"
19	"sync"
20	"time"
21)
22
23// A Conn represents a secured connection.
24// It implements the net.Conn interface.
25type Conn struct {
26	// constant
27	conn     net.Conn
28	isDTLS   bool
29	isClient bool
30
31	// constant after handshake; protected by handshakeMutex
32	handshakeMutex       sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
33	handshakeErr         error      // error resulting from handshake
34	vers                 uint16     // TLS version
35	haveVers             bool       // version has been negotiated
36	config               *Config    // configuration passed to constructor
37	handshakeComplete    bool
38	didResume            bool // whether this connection was a session resumption
39	extendedMasterSecret bool // whether this session used an extended master secret
40	cipherSuite          *cipherSuite
41	ocspResponse         []byte // stapled OCSP response
42	peerCertificates     []*x509.Certificate
43	// verifiedChains contains the certificate chains that we built, as
44	// opposed to the ones presented by the server.
45	verifiedChains [][]*x509.Certificate
46	// serverName contains the server name indicated by the client, if any.
47	serverName string
48	// firstFinished contains the first Finished hash sent during the
49	// handshake. This is the "tls-unique" channel binding value.
50	firstFinished [12]byte
51
52	clientRandom, serverRandom [32]byte
53	masterSecret               [48]byte
54
55	clientProtocol         string
56	clientProtocolFallback bool
57	usedALPN               bool
58
59	// verify_data values for the renegotiation extension.
60	clientVerify []byte
61	serverVerify []byte
62
63	channelID *ecdsa.PublicKey
64
65	srtpProtectionProfile uint16
66
67	clientVersion uint16
68
69	// input/output
70	in, out  halfConn     // in.Mutex < out.Mutex
71	rawInput *block       // raw input, right off the wire
72	input    *block       // application record waiting to be read
73	hand     bytes.Buffer // handshake record waiting to be read
74
75	// DTLS state
76	sendHandshakeSeq uint16
77	recvHandshakeSeq uint16
78	handMsg          []byte   // pending assembled handshake message
79	handMsgLen       int      // handshake message length, not including the header
80	pendingFragments [][]byte // pending outgoing handshake fragments.
81
82	tmp [16]byte
83}
84
85func (c *Conn) init() {
86	c.in.isDTLS = c.isDTLS
87	c.out.isDTLS = c.isDTLS
88	c.in.config = c.config
89	c.out.config = c.config
90}
91
92// Access to net.Conn methods.
93// Cannot just embed net.Conn because that would
94// export the struct field too.
95
96// LocalAddr returns the local network address.
97func (c *Conn) LocalAddr() net.Addr {
98	return c.conn.LocalAddr()
99}
100
101// RemoteAddr returns the remote network address.
102func (c *Conn) RemoteAddr() net.Addr {
103	return c.conn.RemoteAddr()
104}
105
106// SetDeadline sets the read and write deadlines associated with the connection.
107// A zero value for t means Read and Write will not time out.
108// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
109func (c *Conn) SetDeadline(t time.Time) error {
110	return c.conn.SetDeadline(t)
111}
112
113// SetReadDeadline sets the read deadline on the underlying connection.
114// A zero value for t means Read will not time out.
115func (c *Conn) SetReadDeadline(t time.Time) error {
116	return c.conn.SetReadDeadline(t)
117}
118
119// SetWriteDeadline sets the write deadline on the underlying conneciton.
120// A zero value for t means Write will not time out.
121// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
122func (c *Conn) SetWriteDeadline(t time.Time) error {
123	return c.conn.SetWriteDeadline(t)
124}
125
126// A halfConn represents one direction of the record layer
127// connection, either sending or receiving.
128type halfConn struct {
129	sync.Mutex
130
131	err     error  // first permanent error
132	version uint16 // protocol version
133	isDTLS  bool
134	cipher  interface{} // cipher algorithm
135	mac     macFunction
136	seq     [8]byte // 64-bit sequence number
137	bfree   *block  // list of free blocks
138
139	nextCipher interface{} // next encryption state
140	nextMac    macFunction // next MAC algorithm
141	nextSeq    [6]byte     // next epoch's starting sequence number in DTLS
142
143	// used to save allocating a new buffer for each MAC.
144	inDigestBuf, outDigestBuf []byte
145
146	config *Config
147}
148
149func (hc *halfConn) setErrorLocked(err error) error {
150	hc.err = err
151	return err
152}
153
154func (hc *halfConn) error() error {
155	// This should be locked, but I've removed it for the renegotiation
156	// tests since we don't concurrently read and write the same tls.Conn
157	// in any case during testing.
158	err := hc.err
159	return err
160}
161
162// prepareCipherSpec sets the encryption and MAC states
163// that a subsequent changeCipherSpec will use.
164func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
165	hc.version = version
166	hc.nextCipher = cipher
167	hc.nextMac = mac
168}
169
170// changeCipherSpec changes the encryption and MAC states
171// to the ones previously passed to prepareCipherSpec.
172func (hc *halfConn) changeCipherSpec(config *Config) error {
173	if hc.nextCipher == nil {
174		return alertInternalError
175	}
176	hc.cipher = hc.nextCipher
177	hc.mac = hc.nextMac
178	hc.nextCipher = nil
179	hc.nextMac = nil
180	hc.config = config
181	hc.incEpoch()
182	return nil
183}
184
185// incSeq increments the sequence number.
186func (hc *halfConn) incSeq(isOutgoing bool) {
187	limit := 0
188	increment := uint64(1)
189	if hc.isDTLS {
190		// Increment up to the epoch in DTLS.
191		limit = 2
192
193		if isOutgoing && hc.config.Bugs.SequenceNumberIncrement != 0 {
194			increment = hc.config.Bugs.SequenceNumberIncrement
195		}
196	}
197	for i := 7; i >= limit; i-- {
198		increment += uint64(hc.seq[i])
199		hc.seq[i] = byte(increment)
200		increment >>= 8
201	}
202
203	// Not allowed to let sequence number wrap.
204	// Instead, must renegotiate before it does.
205	// Not likely enough to bother.
206	if increment != 0 {
207		panic("TLS: sequence number wraparound")
208	}
209}
210
211// incNextSeq increments the starting sequence number for the next epoch.
212func (hc *halfConn) incNextSeq() {
213	for i := len(hc.nextSeq) - 1; i >= 0; i-- {
214		hc.nextSeq[i]++
215		if hc.nextSeq[i] != 0 {
216			return
217		}
218	}
219	panic("TLS: sequence number wraparound")
220}
221
222// incEpoch resets the sequence number. In DTLS, it also increments the epoch
223// half of the sequence number.
224func (hc *halfConn) incEpoch() {
225	if hc.isDTLS {
226		for i := 1; i >= 0; i-- {
227			hc.seq[i]++
228			if hc.seq[i] != 0 {
229				break
230			}
231			if i == 0 {
232				panic("TLS: epoch number wraparound")
233			}
234		}
235		copy(hc.seq[2:], hc.nextSeq[:])
236		for i := range hc.nextSeq {
237			hc.nextSeq[i] = 0
238		}
239	} else {
240		for i := range hc.seq {
241			hc.seq[i] = 0
242		}
243	}
244}
245
246func (hc *halfConn) recordHeaderLen() int {
247	if hc.isDTLS {
248		return dtlsRecordHeaderLen
249	}
250	return tlsRecordHeaderLen
251}
252
253// removePadding returns an unpadded slice, in constant time, which is a prefix
254// of the input. It also returns a byte which is equal to 255 if the padding
255// was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
256func removePadding(payload []byte) ([]byte, byte) {
257	if len(payload) < 1 {
258		return payload, 0
259	}
260
261	paddingLen := payload[len(payload)-1]
262	t := uint(len(payload)-1) - uint(paddingLen)
263	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
264	good := byte(int32(^t) >> 31)
265
266	toCheck := 255 // the maximum possible padding length
267	// The length of the padded data is public, so we can use an if here
268	if toCheck+1 > len(payload) {
269		toCheck = len(payload) - 1
270	}
271
272	for i := 0; i < toCheck; i++ {
273		t := uint(paddingLen) - uint(i)
274		// if i <= paddingLen then the MSB of t is zero
275		mask := byte(int32(^t) >> 31)
276		b := payload[len(payload)-1-i]
277		good &^= mask&paddingLen ^ mask&b
278	}
279
280	// We AND together the bits of good and replicate the result across
281	// all the bits.
282	good &= good << 4
283	good &= good << 2
284	good &= good << 1
285	good = uint8(int8(good) >> 7)
286
287	toRemove := good&paddingLen + 1
288	return payload[:len(payload)-int(toRemove)], good
289}
290
291// removePaddingSSL30 is a replacement for removePadding in the case that the
292// protocol version is SSLv3. In this version, the contents of the padding
293// are random and cannot be checked.
294func removePaddingSSL30(payload []byte) ([]byte, byte) {
295	if len(payload) < 1 {
296		return payload, 0
297	}
298
299	paddingLen := int(payload[len(payload)-1]) + 1
300	if paddingLen > len(payload) {
301		return payload, 0
302	}
303
304	return payload[:len(payload)-paddingLen], 255
305}
306
307func roundUp(a, b int) int {
308	return a + (b-a%b)%b
309}
310
311// cbcMode is an interface for block ciphers using cipher block chaining.
312type cbcMode interface {
313	cipher.BlockMode
314	SetIV([]byte)
315}
316
317// decrypt checks and strips the mac and decrypts the data in b. Returns a
318// success boolean, the number of bytes to skip from the start of the record in
319// order to get the application payload, and an optional alert value.
320func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
321	recordHeaderLen := hc.recordHeaderLen()
322
323	// pull out payload
324	payload := b.data[recordHeaderLen:]
325
326	macSize := 0
327	if hc.mac != nil {
328		macSize = hc.mac.Size()
329	}
330
331	paddingGood := byte(255)
332	explicitIVLen := 0
333
334	seq := hc.seq[:]
335	if hc.isDTLS {
336		// DTLS sequence numbers are explicit.
337		seq = b.data[3:11]
338	}
339
340	// decrypt
341	if hc.cipher != nil {
342		switch c := hc.cipher.(type) {
343		case cipher.Stream:
344			c.XORKeyStream(payload, payload)
345		case *tlsAead:
346			nonce := seq
347			if c.explicitNonce {
348				explicitIVLen = 8
349				if len(payload) < explicitIVLen {
350					return false, 0, alertBadRecordMAC
351				}
352				nonce = payload[:8]
353				payload = payload[8:]
354			}
355
356			var additionalData [13]byte
357			copy(additionalData[:], seq)
358			copy(additionalData[8:], b.data[:3])
359			n := len(payload) - c.Overhead()
360			additionalData[11] = byte(n >> 8)
361			additionalData[12] = byte(n)
362			var err error
363			payload, err = c.Open(payload[:0], nonce, payload, additionalData[:])
364			if err != nil {
365				return false, 0, alertBadRecordMAC
366			}
367			b.resize(recordHeaderLen + explicitIVLen + len(payload))
368		case cbcMode:
369			blockSize := c.BlockSize()
370			if hc.version >= VersionTLS11 || hc.isDTLS {
371				explicitIVLen = blockSize
372			}
373
374			if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
375				return false, 0, alertBadRecordMAC
376			}
377
378			if explicitIVLen > 0 {
379				c.SetIV(payload[:explicitIVLen])
380				payload = payload[explicitIVLen:]
381			}
382			c.CryptBlocks(payload, payload)
383			if hc.version == VersionSSL30 {
384				payload, paddingGood = removePaddingSSL30(payload)
385			} else {
386				payload, paddingGood = removePadding(payload)
387			}
388			b.resize(recordHeaderLen + explicitIVLen + len(payload))
389
390			// note that we still have a timing side-channel in the
391			// MAC check, below. An attacker can align the record
392			// so that a correct padding will cause one less hash
393			// block to be calculated. Then they can iteratively
394			// decrypt a record by breaking each byte. See
395			// "Password Interception in a SSL/TLS Channel", Brice
396			// Canvel et al.
397			//
398			// However, our behavior matches OpenSSL, so we leak
399			// only as much as they do.
400		default:
401			panic("unknown cipher type")
402		}
403	}
404
405	// check, strip mac
406	if hc.mac != nil {
407		if len(payload) < macSize {
408			return false, 0, alertBadRecordMAC
409		}
410
411		// strip mac off payload, b.data
412		n := len(payload) - macSize
413		b.data[recordHeaderLen-2] = byte(n >> 8)
414		b.data[recordHeaderLen-1] = byte(n)
415		b.resize(recordHeaderLen + explicitIVLen + n)
416		remoteMAC := payload[n:]
417		localMAC := hc.mac.MAC(hc.inDigestBuf, seq, b.data[:3], b.data[recordHeaderLen-2:recordHeaderLen], payload[:n])
418
419		if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
420			return false, 0, alertBadRecordMAC
421		}
422		hc.inDigestBuf = localMAC
423	}
424	hc.incSeq(false)
425
426	return true, recordHeaderLen + explicitIVLen, 0
427}
428
429// padToBlockSize calculates the needed padding block, if any, for a payload.
430// On exit, prefix aliases payload and extends to the end of the last full
431// block of payload. finalBlock is a fresh slice which contains the contents of
432// any suffix of payload as well as the needed padding to make finalBlock a
433// full block.
434func padToBlockSize(payload []byte, blockSize int, config *Config) (prefix, finalBlock []byte) {
435	overrun := len(payload) % blockSize
436	prefix = payload[:len(payload)-overrun]
437
438	paddingLen := blockSize - overrun
439	finalSize := blockSize
440	if config.Bugs.MaxPadding {
441		for paddingLen+blockSize <= 256 {
442			paddingLen += blockSize
443		}
444		finalSize = 256
445	}
446	finalBlock = make([]byte, finalSize)
447	for i := range finalBlock {
448		finalBlock[i] = byte(paddingLen - 1)
449	}
450	if config.Bugs.PaddingFirstByteBad || config.Bugs.PaddingFirstByteBadIf255 && paddingLen == 256 {
451		finalBlock[overrun] ^= 0xff
452	}
453	copy(finalBlock, payload[len(payload)-overrun:])
454	return
455}
456
457// encrypt encrypts and macs the data in b.
458func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
459	recordHeaderLen := hc.recordHeaderLen()
460
461	// mac
462	if hc.mac != nil {
463		mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:3], b.data[recordHeaderLen-2:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])
464
465		n := len(b.data)
466		b.resize(n + len(mac))
467		copy(b.data[n:], mac)
468		hc.outDigestBuf = mac
469	}
470
471	payload := b.data[recordHeaderLen:]
472
473	// encrypt
474	if hc.cipher != nil {
475		switch c := hc.cipher.(type) {
476		case cipher.Stream:
477			c.XORKeyStream(payload, payload)
478		case *tlsAead:
479			payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
480			b.resize(len(b.data) + c.Overhead())
481			nonce := hc.seq[:]
482			if c.explicitNonce {
483				nonce = b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
484			}
485			payload := b.data[recordHeaderLen+explicitIVLen:]
486			payload = payload[:payloadLen]
487
488			var additionalData [13]byte
489			copy(additionalData[:], hc.seq[:])
490			copy(additionalData[8:], b.data[:3])
491			additionalData[11] = byte(payloadLen >> 8)
492			additionalData[12] = byte(payloadLen)
493
494			c.Seal(payload[:0], nonce, payload, additionalData[:])
495		case cbcMode:
496			blockSize := c.BlockSize()
497			if explicitIVLen > 0 {
498				c.SetIV(payload[:explicitIVLen])
499				payload = payload[explicitIVLen:]
500			}
501			prefix, finalBlock := padToBlockSize(payload, blockSize, hc.config)
502			b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
503			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
504			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
505		default:
506			panic("unknown cipher type")
507		}
508	}
509
510	// update length to include MAC and any block padding needed.
511	n := len(b.data) - recordHeaderLen
512	b.data[recordHeaderLen-2] = byte(n >> 8)
513	b.data[recordHeaderLen-1] = byte(n)
514	hc.incSeq(true)
515
516	return true, 0
517}
518
519// A block is a simple data buffer.
520type block struct {
521	data []byte
522	off  int // index for Read
523	link *block
524}
525
526// resize resizes block to be n bytes, growing if necessary.
527func (b *block) resize(n int) {
528	if n > cap(b.data) {
529		b.reserve(n)
530	}
531	b.data = b.data[0:n]
532}
533
534// reserve makes sure that block contains a capacity of at least n bytes.
535func (b *block) reserve(n int) {
536	if cap(b.data) >= n {
537		return
538	}
539	m := cap(b.data)
540	if m == 0 {
541		m = 1024
542	}
543	for m < n {
544		m *= 2
545	}
546	data := make([]byte, len(b.data), m)
547	copy(data, b.data)
548	b.data = data
549}
550
551// readFromUntil reads from r into b until b contains at least n bytes
552// or else returns an error.
553func (b *block) readFromUntil(r io.Reader, n int) error {
554	// quick case
555	if len(b.data) >= n {
556		return nil
557	}
558
559	// read until have enough.
560	b.reserve(n)
561	for {
562		m, err := r.Read(b.data[len(b.data):cap(b.data)])
563		b.data = b.data[0 : len(b.data)+m]
564		if len(b.data) >= n {
565			// TODO(bradfitz,agl): slightly suspicious
566			// that we're throwing away r.Read's err here.
567			break
568		}
569		if err != nil {
570			return err
571		}
572	}
573	return nil
574}
575
576func (b *block) Read(p []byte) (n int, err error) {
577	n = copy(p, b.data[b.off:])
578	b.off += n
579	return
580}
581
582// newBlock allocates a new block, from hc's free list if possible.
583func (hc *halfConn) newBlock() *block {
584	b := hc.bfree
585	if b == nil {
586		return new(block)
587	}
588	hc.bfree = b.link
589	b.link = nil
590	b.resize(0)
591	return b
592}
593
594// freeBlock returns a block to hc's free list.
595// The protocol is such that each side only has a block or two on
596// its free list at a time, so there's no need to worry about
597// trimming the list, etc.
598func (hc *halfConn) freeBlock(b *block) {
599	b.link = hc.bfree
600	hc.bfree = b
601}
602
603// splitBlock splits a block after the first n bytes,
604// returning a block with those n bytes and a
605// block with the remainder.  the latter may be nil.
606func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
607	if len(b.data) <= n {
608		return b, nil
609	}
610	bb := hc.newBlock()
611	bb.resize(len(b.data) - n)
612	copy(bb.data, b.data[n:])
613	b.data = b.data[0:n]
614	return b, bb
615}
616
617func (c *Conn) doReadRecord(want recordType) (recordType, *block, error) {
618	if c.isDTLS {
619		return c.dtlsDoReadRecord(want)
620	}
621
622	recordHeaderLen := tlsRecordHeaderLen
623
624	if c.rawInput == nil {
625		c.rawInput = c.in.newBlock()
626	}
627	b := c.rawInput
628
629	// Read header, payload.
630	if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
631		// RFC suggests that EOF without an alertCloseNotify is
632		// an error, but popular web sites seem to do this,
633		// so we can't make it an error.
634		// if err == io.EOF {
635		// 	err = io.ErrUnexpectedEOF
636		// }
637		if e, ok := err.(net.Error); !ok || !e.Temporary() {
638			c.in.setErrorLocked(err)
639		}
640		return 0, nil, err
641	}
642	typ := recordType(b.data[0])
643
644	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
645	// start with a uint16 length where the MSB is set and the first record
646	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
647	// an SSLv2 client.
648	if want == recordTypeHandshake && typ == 0x80 {
649		c.sendAlert(alertProtocolVersion)
650		return 0, nil, c.in.setErrorLocked(errors.New("tls: unsupported SSLv2 handshake received"))
651	}
652
653	vers := uint16(b.data[1])<<8 | uint16(b.data[2])
654	n := int(b.data[3])<<8 | int(b.data[4])
655	if c.haveVers {
656		if vers != c.vers {
657			c.sendAlert(alertProtocolVersion)
658			return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, c.vers))
659		}
660	} else {
661		if expect := c.config.Bugs.ExpectInitialRecordVersion; expect != 0 && vers != expect {
662			c.sendAlert(alertProtocolVersion)
663			return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, expect))
664		}
665	}
666	if n > maxCiphertext {
667		c.sendAlert(alertRecordOverflow)
668		return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: oversized record received with length %d", n))
669	}
670	if !c.haveVers {
671		// First message, be extra suspicious:
672		// this might not be a TLS client.
673		// Bail out before reading a full 'body', if possible.
674		// The current max version is 3.1.
675		// If the version is >= 16.0, it's probably not real.
676		// Similarly, a clientHello message encodes in
677		// well under a kilobyte.  If the length is >= 12 kB,
678		// it's probably not real.
679		if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 || n >= 0x3000 {
680			c.sendAlert(alertUnexpectedMessage)
681			return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: first record does not look like a TLS handshake"))
682		}
683	}
684	if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
685		if err == io.EOF {
686			err = io.ErrUnexpectedEOF
687		}
688		if e, ok := err.(net.Error); !ok || !e.Temporary() {
689			c.in.setErrorLocked(err)
690		}
691		return 0, nil, err
692	}
693
694	// Process message.
695	b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
696	ok, off, err := c.in.decrypt(b)
697	if !ok {
698		c.in.setErrorLocked(c.sendAlert(err))
699	}
700	b.off = off
701	return typ, b, nil
702}
703
704// readRecord reads the next TLS record from the connection
705// and updates the record layer state.
706// c.in.Mutex <= L; c.input == nil.
707func (c *Conn) readRecord(want recordType) error {
708	// Caller must be in sync with connection:
709	// handshake data if handshake not yet completed,
710	// else application data.
711	switch want {
712	default:
713		c.sendAlert(alertInternalError)
714		return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
715	case recordTypeHandshake, recordTypeChangeCipherSpec:
716		if c.handshakeComplete {
717			c.sendAlert(alertInternalError)
718			return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested after handshake complete"))
719		}
720	case recordTypeApplicationData:
721		if !c.handshakeComplete && !c.config.Bugs.ExpectFalseStart {
722			c.sendAlert(alertInternalError)
723			return c.in.setErrorLocked(errors.New("tls: application data record requested before handshake complete"))
724		}
725	}
726
727Again:
728	typ, b, err := c.doReadRecord(want)
729	if err != nil {
730		return err
731	}
732	data := b.data[b.off:]
733	if len(data) > maxPlaintext {
734		err := c.sendAlert(alertRecordOverflow)
735		c.in.freeBlock(b)
736		return c.in.setErrorLocked(err)
737	}
738
739	switch typ {
740	default:
741		c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
742
743	case recordTypeAlert:
744		if len(data) != 2 {
745			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
746			break
747		}
748		if alert(data[1]) == alertCloseNotify {
749			c.in.setErrorLocked(io.EOF)
750			break
751		}
752		switch data[0] {
753		case alertLevelWarning:
754			// drop on the floor
755			c.in.freeBlock(b)
756			goto Again
757		case alertLevelError:
758			c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
759		default:
760			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
761		}
762
763	case recordTypeChangeCipherSpec:
764		if typ != want || len(data) != 1 || data[0] != 1 {
765			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
766			break
767		}
768		err := c.in.changeCipherSpec(c.config)
769		if err != nil {
770			c.in.setErrorLocked(c.sendAlert(err.(alert)))
771		}
772
773	case recordTypeApplicationData:
774		if typ != want {
775			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
776			break
777		}
778		c.input = b
779		b = nil
780
781	case recordTypeHandshake:
782		// TODO(rsc): Should at least pick off connection close.
783		if typ != want {
784			// A client might need to process a HelloRequest from
785			// the server, thus receiving a handshake message when
786			// application data is expected is ok.
787			if !c.isClient {
788				return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
789			}
790		}
791		c.hand.Write(data)
792	}
793
794	if b != nil {
795		c.in.freeBlock(b)
796	}
797	return c.in.err
798}
799
800// sendAlert sends a TLS alert message.
801// c.out.Mutex <= L.
802func (c *Conn) sendAlertLocked(err alert) error {
803	switch err {
804	case alertNoRenegotiation, alertCloseNotify:
805		c.tmp[0] = alertLevelWarning
806	default:
807		c.tmp[0] = alertLevelError
808	}
809	c.tmp[1] = byte(err)
810	if c.config.Bugs.FragmentAlert {
811		c.writeRecord(recordTypeAlert, c.tmp[0:1])
812		c.writeRecord(recordTypeAlert, c.tmp[1:2])
813	} else {
814		c.writeRecord(recordTypeAlert, c.tmp[0:2])
815	}
816	// closeNotify is a special case in that it isn't an error:
817	if err != alertCloseNotify {
818		return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
819	}
820	return nil
821}
822
823// sendAlert sends a TLS alert message.
824// L < c.out.Mutex.
825func (c *Conn) sendAlert(err alert) error {
826	c.out.Lock()
827	defer c.out.Unlock()
828	return c.sendAlertLocked(err)
829}
830
831// writeV2Record writes a record for a V2ClientHello.
832func (c *Conn) writeV2Record(data []byte) (n int, err error) {
833	record := make([]byte, 2+len(data))
834	record[0] = uint8(len(data)>>8) | 0x80
835	record[1] = uint8(len(data))
836	copy(record[2:], data)
837	return c.conn.Write(record)
838}
839
840// writeRecord writes a TLS record with the given type and payload
841// to the connection and updates the record layer state.
842// c.out.Mutex <= L.
843func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) {
844	if typ != recordTypeAlert && c.config.Bugs.SendWarningAlerts != 0 {
845		alert := make([]byte, 2)
846		alert[0] = alertLevelWarning
847		alert[1] = byte(c.config.Bugs.SendWarningAlerts)
848		c.writeRecord(recordTypeAlert, alert)
849	}
850
851	if c.isDTLS {
852		return c.dtlsWriteRecord(typ, data)
853	}
854
855	recordHeaderLen := tlsRecordHeaderLen
856	b := c.out.newBlock()
857	first := true
858	isClientHello := typ == recordTypeHandshake && len(data) > 0 && data[0] == typeClientHello
859	for len(data) > 0 {
860		m := len(data)
861		if m > maxPlaintext {
862			m = maxPlaintext
863		}
864		if typ == recordTypeHandshake && c.config.Bugs.MaxHandshakeRecordLength > 0 && m > c.config.Bugs.MaxHandshakeRecordLength {
865			m = c.config.Bugs.MaxHandshakeRecordLength
866			// By default, do not fragment the client_version or
867			// server_version, which are located in the first 6
868			// bytes.
869			if first && isClientHello && !c.config.Bugs.FragmentClientVersion && m < 6 {
870				m = 6
871			}
872		}
873		explicitIVLen := 0
874		explicitIVIsSeq := false
875		first = false
876
877		var cbc cbcMode
878		if c.out.version >= VersionTLS11 {
879			var ok bool
880			if cbc, ok = c.out.cipher.(cbcMode); ok {
881				explicitIVLen = cbc.BlockSize()
882			}
883		}
884		if explicitIVLen == 0 {
885			if aead, ok := c.out.cipher.(*tlsAead); ok && aead.explicitNonce {
886				explicitIVLen = 8
887				// The AES-GCM construction in TLS has an
888				// explicit nonce so that the nonce can be
889				// random. However, the nonce is only 8 bytes
890				// which is too small for a secure, random
891				// nonce. Therefore we use the sequence number
892				// as the nonce.
893				explicitIVIsSeq = true
894			}
895		}
896		b.resize(recordHeaderLen + explicitIVLen + m)
897		b.data[0] = byte(typ)
898		vers := c.vers
899		if vers == 0 {
900			// Some TLS servers fail if the record version is
901			// greater than TLS 1.0 for the initial ClientHello.
902			vers = VersionTLS10
903		}
904		b.data[1] = byte(vers >> 8)
905		b.data[2] = byte(vers)
906		b.data[3] = byte(m >> 8)
907		b.data[4] = byte(m)
908		if explicitIVLen > 0 {
909			explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
910			if explicitIVIsSeq {
911				copy(explicitIV, c.out.seq[:])
912			} else {
913				if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil {
914					break
915				}
916			}
917		}
918		copy(b.data[recordHeaderLen+explicitIVLen:], data)
919		c.out.encrypt(b, explicitIVLen)
920		_, err = c.conn.Write(b.data)
921		if err != nil {
922			break
923		}
924		n += m
925		data = data[m:]
926	}
927	c.out.freeBlock(b)
928
929	if typ == recordTypeChangeCipherSpec {
930		err = c.out.changeCipherSpec(c.config)
931		if err != nil {
932			// Cannot call sendAlert directly,
933			// because we already hold c.out.Mutex.
934			c.tmp[0] = alertLevelError
935			c.tmp[1] = byte(err.(alert))
936			c.writeRecord(recordTypeAlert, c.tmp[0:2])
937			return n, c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
938		}
939	}
940	return
941}
942
943func (c *Conn) doReadHandshake() ([]byte, error) {
944	if c.isDTLS {
945		return c.dtlsDoReadHandshake()
946	}
947
948	for c.hand.Len() < 4 {
949		if err := c.in.err; err != nil {
950			return nil, err
951		}
952		if err := c.readRecord(recordTypeHandshake); err != nil {
953			return nil, err
954		}
955	}
956
957	data := c.hand.Bytes()
958	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
959	if n > maxHandshake {
960		return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError))
961	}
962	for c.hand.Len() < 4+n {
963		if err := c.in.err; err != nil {
964			return nil, err
965		}
966		if err := c.readRecord(recordTypeHandshake); err != nil {
967			return nil, err
968		}
969	}
970	return c.hand.Next(4 + n), nil
971}
972
973// readHandshake reads the next handshake message from
974// the record layer.
975// c.in.Mutex < L; c.out.Mutex < L.
976func (c *Conn) readHandshake() (interface{}, error) {
977	data, err := c.doReadHandshake()
978	if err != nil {
979		return nil, err
980	}
981
982	var m handshakeMessage
983	switch data[0] {
984	case typeHelloRequest:
985		m = new(helloRequestMsg)
986	case typeClientHello:
987		m = &clientHelloMsg{
988			isDTLS: c.isDTLS,
989		}
990	case typeServerHello:
991		m = &serverHelloMsg{
992			isDTLS: c.isDTLS,
993		}
994	case typeNewSessionTicket:
995		m = new(newSessionTicketMsg)
996	case typeCertificate:
997		m = new(certificateMsg)
998	case typeCertificateRequest:
999		m = &certificateRequestMsg{
1000			hasSignatureAndHash: c.vers >= VersionTLS12,
1001		}
1002	case typeCertificateStatus:
1003		m = new(certificateStatusMsg)
1004	case typeServerKeyExchange:
1005		m = new(serverKeyExchangeMsg)
1006	case typeServerHelloDone:
1007		m = new(serverHelloDoneMsg)
1008	case typeClientKeyExchange:
1009		m = new(clientKeyExchangeMsg)
1010	case typeCertificateVerify:
1011		m = &certificateVerifyMsg{
1012			hasSignatureAndHash: c.vers >= VersionTLS12,
1013		}
1014	case typeNextProtocol:
1015		m = new(nextProtoMsg)
1016	case typeFinished:
1017		m = new(finishedMsg)
1018	case typeHelloVerifyRequest:
1019		m = new(helloVerifyRequestMsg)
1020	case typeEncryptedExtensions:
1021		m = new(encryptedExtensionsMsg)
1022	default:
1023		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
1024	}
1025
1026	// The handshake message unmarshallers
1027	// expect to be able to keep references to data,
1028	// so pass in a fresh copy that won't be overwritten.
1029	data = append([]byte(nil), data...)
1030
1031	if !m.unmarshal(data) {
1032		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
1033	}
1034	return m, nil
1035}
1036
1037// skipPacket processes all the DTLS records in packet. It updates
1038// sequence number expectations but otherwise ignores them.
1039func (c *Conn) skipPacket(packet []byte) error {
1040	for len(packet) > 0 {
1041		// Dropped packets are completely ignored save to update
1042		// expected sequence numbers for this and the next epoch. (We
1043		// don't assert on the contents of the packets both for
1044		// simplicity and because a previous test with one shorter
1045		// timeout schedule would have done so.)
1046		epoch := packet[3:5]
1047		seq := packet[5:11]
1048		length := uint16(packet[11])<<8 | uint16(packet[12])
1049		if bytes.Equal(c.in.seq[:2], epoch) {
1050			if !bytes.Equal(c.in.seq[2:], seq) {
1051				return errors.New("tls: sequence mismatch")
1052			}
1053			c.in.incSeq(false)
1054		} else {
1055			if !bytes.Equal(c.in.nextSeq[:], seq) {
1056				return errors.New("tls: sequence mismatch")
1057			}
1058			c.in.incNextSeq()
1059		}
1060		packet = packet[13+length:]
1061	}
1062	return nil
1063}
1064
1065// simulatePacketLoss simulates the loss of a handshake leg from the
1066// peer based on the schedule in c.config.Bugs. If resendFunc is
1067// non-nil, it is called after each simulated timeout to retransmit
1068// handshake messages from the local end. This is used in cases where
1069// the peer retransmits on a stale Finished rather than a timeout.
1070func (c *Conn) simulatePacketLoss(resendFunc func()) error {
1071	if len(c.config.Bugs.TimeoutSchedule) == 0 {
1072		return nil
1073	}
1074	if !c.isDTLS {
1075		return errors.New("tls: TimeoutSchedule may only be set in DTLS")
1076	}
1077	if c.config.Bugs.PacketAdaptor == nil {
1078		return errors.New("tls: TimeoutSchedule set without PacketAdapter")
1079	}
1080	for _, timeout := range c.config.Bugs.TimeoutSchedule {
1081		// Simulate a timeout.
1082		packets, err := c.config.Bugs.PacketAdaptor.SendReadTimeout(timeout)
1083		if err != nil {
1084			return err
1085		}
1086		for _, packet := range packets {
1087			if err := c.skipPacket(packet); err != nil {
1088				return err
1089			}
1090		}
1091		if resendFunc != nil {
1092			resendFunc()
1093		}
1094	}
1095	return nil
1096}
1097
1098// Write writes data to the connection.
1099func (c *Conn) Write(b []byte) (int, error) {
1100	if err := c.Handshake(); err != nil {
1101		return 0, err
1102	}
1103
1104	c.out.Lock()
1105	defer c.out.Unlock()
1106
1107	if err := c.out.err; err != nil {
1108		return 0, err
1109	}
1110
1111	if !c.handshakeComplete {
1112		return 0, alertInternalError
1113	}
1114
1115	if c.config.Bugs.SendSpuriousAlert != 0 {
1116		c.sendAlertLocked(c.config.Bugs.SendSpuriousAlert)
1117	}
1118
1119	// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
1120	// attack when using block mode ciphers due to predictable IVs.
1121	// This can be prevented by splitting each Application Data
1122	// record into two records, effectively randomizing the IV.
1123	//
1124	// http://www.openssl.org/~bodo/tls-cbc.txt
1125	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
1126	// http://www.imperialviolet.org/2012/01/15/beastfollowup.html
1127
1128	var m int
1129	if len(b) > 1 && c.vers <= VersionTLS10 && !c.isDTLS {
1130		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
1131			n, err := c.writeRecord(recordTypeApplicationData, b[:1])
1132			if err != nil {
1133				return n, c.out.setErrorLocked(err)
1134			}
1135			m, b = 1, b[1:]
1136		}
1137	}
1138
1139	n, err := c.writeRecord(recordTypeApplicationData, b)
1140	return n + m, c.out.setErrorLocked(err)
1141}
1142
1143func (c *Conn) handleRenegotiation() error {
1144	c.handshakeComplete = false
1145	if !c.isClient {
1146		panic("renegotiation should only happen for a client")
1147	}
1148
1149	msg, err := c.readHandshake()
1150	if err != nil {
1151		return err
1152	}
1153	_, ok := msg.(*helloRequestMsg)
1154	if !ok {
1155		c.sendAlert(alertUnexpectedMessage)
1156		return alertUnexpectedMessage
1157	}
1158
1159	return c.Handshake()
1160}
1161
1162func (c *Conn) Renegotiate() error {
1163	if !c.isClient {
1164		helloReq := new(helloRequestMsg)
1165		c.writeRecord(recordTypeHandshake, helloReq.marshal())
1166	}
1167
1168	c.handshakeComplete = false
1169	return c.Handshake()
1170}
1171
1172// Read can be made to time out and return a net.Error with Timeout() == true
1173// after a fixed time limit; see SetDeadline and SetReadDeadline.
1174func (c *Conn) Read(b []byte) (n int, err error) {
1175	if err = c.Handshake(); err != nil {
1176		return
1177	}
1178
1179	c.in.Lock()
1180	defer c.in.Unlock()
1181
1182	// Some OpenSSL servers send empty records in order to randomize the
1183	// CBC IV. So this loop ignores a limited number of empty records.
1184	const maxConsecutiveEmptyRecords = 100
1185	for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
1186		for c.input == nil && c.in.err == nil {
1187			if err := c.readRecord(recordTypeApplicationData); err != nil {
1188				// Soft error, like EAGAIN
1189				return 0, err
1190			}
1191			if c.hand.Len() > 0 {
1192				// We received handshake bytes, indicating the
1193				// start of a renegotiation.
1194				if err := c.handleRenegotiation(); err != nil {
1195					return 0, err
1196				}
1197				continue
1198			}
1199		}
1200		if err := c.in.err; err != nil {
1201			return 0, err
1202		}
1203
1204		n, err = c.input.Read(b)
1205		if c.input.off >= len(c.input.data) || c.isDTLS {
1206			c.in.freeBlock(c.input)
1207			c.input = nil
1208		}
1209
1210		// If a close-notify alert is waiting, read it so that
1211		// we can return (n, EOF) instead of (n, nil), to signal
1212		// to the HTTP response reading goroutine that the
1213		// connection is now closed. This eliminates a race
1214		// where the HTTP response reading goroutine would
1215		// otherwise not observe the EOF until its next read,
1216		// by which time a client goroutine might have already
1217		// tried to reuse the HTTP connection for a new
1218		// request.
1219		// See https://codereview.appspot.com/76400046
1220		// and http://golang.org/issue/3514
1221		if ri := c.rawInput; ri != nil &&
1222			n != 0 && err == nil &&
1223			c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
1224			if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
1225				err = recErr // will be io.EOF on closeNotify
1226			}
1227		}
1228
1229		if n != 0 || err != nil {
1230			return n, err
1231		}
1232	}
1233
1234	return 0, io.ErrNoProgress
1235}
1236
1237// Close closes the connection.
1238func (c *Conn) Close() error {
1239	var alertErr error
1240
1241	c.handshakeMutex.Lock()
1242	defer c.handshakeMutex.Unlock()
1243	if c.handshakeComplete {
1244		alertErr = c.sendAlert(alertCloseNotify)
1245	}
1246
1247	if err := c.conn.Close(); err != nil {
1248		return err
1249	}
1250	return alertErr
1251}
1252
1253// Handshake runs the client or server handshake
1254// protocol if it has not yet been run.
1255// Most uses of this package need not call Handshake
1256// explicitly: the first Read or Write will call it automatically.
1257func (c *Conn) Handshake() error {
1258	c.handshakeMutex.Lock()
1259	defer c.handshakeMutex.Unlock()
1260	if err := c.handshakeErr; err != nil {
1261		return err
1262	}
1263	if c.handshakeComplete {
1264		return nil
1265	}
1266
1267	if c.isDTLS && c.config.Bugs.SendSplitAlert {
1268		c.conn.Write([]byte{
1269			byte(recordTypeAlert), // type
1270			0xfe, 0xff, // version
1271			0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, // sequence
1272			0x0, 0x2, // length
1273		})
1274		c.conn.Write([]byte{alertLevelError, byte(alertInternalError)})
1275	}
1276	if c.isClient {
1277		c.handshakeErr = c.clientHandshake()
1278	} else {
1279		c.handshakeErr = c.serverHandshake()
1280	}
1281	if c.handshakeErr == nil && c.config.Bugs.SendInvalidRecordType {
1282		c.writeRecord(recordType(42), []byte("invalid record"))
1283	}
1284	return c.handshakeErr
1285}
1286
1287// ConnectionState returns basic TLS details about the connection.
1288func (c *Conn) ConnectionState() ConnectionState {
1289	c.handshakeMutex.Lock()
1290	defer c.handshakeMutex.Unlock()
1291
1292	var state ConnectionState
1293	state.HandshakeComplete = c.handshakeComplete
1294	if c.handshakeComplete {
1295		state.Version = c.vers
1296		state.NegotiatedProtocol = c.clientProtocol
1297		state.DidResume = c.didResume
1298		state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
1299		state.NegotiatedProtocolFromALPN = c.usedALPN
1300		state.CipherSuite = c.cipherSuite.id
1301		state.PeerCertificates = c.peerCertificates
1302		state.VerifiedChains = c.verifiedChains
1303		state.ServerName = c.serverName
1304		state.ChannelID = c.channelID
1305		state.SRTPProtectionProfile = c.srtpProtectionProfile
1306		state.TLSUnique = c.firstFinished[:]
1307	}
1308
1309	return state
1310}
1311
1312// OCSPResponse returns the stapled OCSP response from the TLS server, if
1313// any. (Only valid for client connections.)
1314func (c *Conn) OCSPResponse() []byte {
1315	c.handshakeMutex.Lock()
1316	defer c.handshakeMutex.Unlock()
1317
1318	return c.ocspResponse
1319}
1320
1321// VerifyHostname checks that the peer certificate chain is valid for
1322// connecting to host.  If so, it returns nil; if not, it returns an error
1323// describing the problem.
1324func (c *Conn) VerifyHostname(host string) error {
1325	c.handshakeMutex.Lock()
1326	defer c.handshakeMutex.Unlock()
1327	if !c.isClient {
1328		return errors.New("tls: VerifyHostname called on TLS server connection")
1329	}
1330	if !c.handshakeComplete {
1331		return errors.New("tls: handshake has not yet been performed")
1332	}
1333	return c.peerCertificates[0].VerifyHostname(host)
1334}
1335
1336// ExportKeyingMaterial exports keying material from the current connection
1337// state, as per RFC 5705.
1338func (c *Conn) ExportKeyingMaterial(length int, label, context []byte, useContext bool) ([]byte, error) {
1339	c.handshakeMutex.Lock()
1340	defer c.handshakeMutex.Unlock()
1341	if !c.handshakeComplete {
1342		return nil, errors.New("tls: handshake has not yet been performed")
1343	}
1344
1345	seedLen := len(c.clientRandom) + len(c.serverRandom)
1346	if useContext {
1347		seedLen += 2 + len(context)
1348	}
1349	seed := make([]byte, 0, seedLen)
1350	seed = append(seed, c.clientRandom[:]...)
1351	seed = append(seed, c.serverRandom[:]...)
1352	if useContext {
1353		seed = append(seed, byte(len(context)>>8), byte(len(context)))
1354		seed = append(seed, context...)
1355	}
1356	result := make([]byte, length)
1357	prfForVersion(c.vers, c.cipherSuite)(result, c.masterSecret[:], label, seed)
1358	return result, nil
1359}
1360