1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 extern "C" {
32
33 #include <sys/types.h>
34
35 #include "main/macros.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "main/fbobject.h"
39 #include "program/prog_parameter.h"
40 #include "program/prog_print.h"
41 #include "program/register_allocate.h"
42 #include "program/sampler.h"
43 #include "program/hash_table.h"
44 #include "brw_context.h"
45 #include "brw_eu.h"
46 #include "brw_wm.h"
47 }
48 #include "brw_shader.h"
49 #include "brw_fs.h"
50 #include "glsl/glsl_types.h"
51 #include "glsl/ir_print_visitor.h"
52
53 void
init()54 fs_inst::init()
55 {
56 memset(this, 0, sizeof(*this));
57 this->opcode = BRW_OPCODE_NOP;
58 this->conditional_mod = BRW_CONDITIONAL_NONE;
59
60 this->dst = reg_undef;
61 this->src[0] = reg_undef;
62 this->src[1] = reg_undef;
63 this->src[2] = reg_undef;
64 }
65
fs_inst()66 fs_inst::fs_inst()
67 {
68 init();
69 }
70
fs_inst(enum opcode opcode)71 fs_inst::fs_inst(enum opcode opcode)
72 {
73 init();
74 this->opcode = opcode;
75 }
76
fs_inst(enum opcode opcode,fs_reg dst)77 fs_inst::fs_inst(enum opcode opcode, fs_reg dst)
78 {
79 init();
80 this->opcode = opcode;
81 this->dst = dst;
82
83 if (dst.file == GRF)
84 assert(dst.reg_offset >= 0);
85 }
86
fs_inst(enum opcode opcode,fs_reg dst,fs_reg src0)87 fs_inst::fs_inst(enum opcode opcode, fs_reg dst, fs_reg src0)
88 {
89 init();
90 this->opcode = opcode;
91 this->dst = dst;
92 this->src[0] = src0;
93
94 if (dst.file == GRF)
95 assert(dst.reg_offset >= 0);
96 if (src[0].file == GRF)
97 assert(src[0].reg_offset >= 0);
98 }
99
fs_inst(enum opcode opcode,fs_reg dst,fs_reg src0,fs_reg src1)100 fs_inst::fs_inst(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1)
101 {
102 init();
103 this->opcode = opcode;
104 this->dst = dst;
105 this->src[0] = src0;
106 this->src[1] = src1;
107
108 if (dst.file == GRF)
109 assert(dst.reg_offset >= 0);
110 if (src[0].file == GRF)
111 assert(src[0].reg_offset >= 0);
112 if (src[1].file == GRF)
113 assert(src[1].reg_offset >= 0);
114 }
115
fs_inst(enum opcode opcode,fs_reg dst,fs_reg src0,fs_reg src1,fs_reg src2)116 fs_inst::fs_inst(enum opcode opcode, fs_reg dst,
117 fs_reg src0, fs_reg src1, fs_reg src2)
118 {
119 init();
120 this->opcode = opcode;
121 this->dst = dst;
122 this->src[0] = src0;
123 this->src[1] = src1;
124 this->src[2] = src2;
125
126 if (dst.file == GRF)
127 assert(dst.reg_offset >= 0);
128 if (src[0].file == GRF)
129 assert(src[0].reg_offset >= 0);
130 if (src[1].file == GRF)
131 assert(src[1].reg_offset >= 0);
132 if (src[2].file == GRF)
133 assert(src[2].reg_offset >= 0);
134 }
135
136 bool
equals(fs_inst * inst)137 fs_inst::equals(fs_inst *inst)
138 {
139 return (opcode == inst->opcode &&
140 dst.equals(inst->dst) &&
141 src[0].equals(inst->src[0]) &&
142 src[1].equals(inst->src[1]) &&
143 src[2].equals(inst->src[2]) &&
144 saturate == inst->saturate &&
145 predicated == inst->predicated &&
146 conditional_mod == inst->conditional_mod &&
147 mlen == inst->mlen &&
148 base_mrf == inst->base_mrf &&
149 sampler == inst->sampler &&
150 target == inst->target &&
151 eot == inst->eot &&
152 header_present == inst->header_present &&
153 shadow_compare == inst->shadow_compare &&
154 offset == inst->offset);
155 }
156
157 int
regs_written()158 fs_inst::regs_written()
159 {
160 if (is_tex())
161 return 4;
162
163 /* The SINCOS and INT_DIV_QUOTIENT_AND_REMAINDER math functions return 2,
164 * but we don't currently use them...nor do we have an opcode for them.
165 */
166
167 return 1;
168 }
169
170 bool
overwrites_reg(const fs_reg & reg)171 fs_inst::overwrites_reg(const fs_reg ®)
172 {
173 return (reg.file == dst.file &&
174 reg.reg == dst.reg &&
175 reg.reg_offset >= dst.reg_offset &&
176 reg.reg_offset < dst.reg_offset + regs_written());
177 }
178
179 bool
is_tex()180 fs_inst::is_tex()
181 {
182 return (opcode == SHADER_OPCODE_TEX ||
183 opcode == FS_OPCODE_TXB ||
184 opcode == SHADER_OPCODE_TXD ||
185 opcode == SHADER_OPCODE_TXF ||
186 opcode == SHADER_OPCODE_TXL ||
187 opcode == SHADER_OPCODE_TXS);
188 }
189
190 bool
is_math()191 fs_inst::is_math()
192 {
193 return (opcode == SHADER_OPCODE_RCP ||
194 opcode == SHADER_OPCODE_RSQ ||
195 opcode == SHADER_OPCODE_SQRT ||
196 opcode == SHADER_OPCODE_EXP2 ||
197 opcode == SHADER_OPCODE_LOG2 ||
198 opcode == SHADER_OPCODE_SIN ||
199 opcode == SHADER_OPCODE_COS ||
200 opcode == SHADER_OPCODE_INT_QUOTIENT ||
201 opcode == SHADER_OPCODE_INT_REMAINDER ||
202 opcode == SHADER_OPCODE_POW);
203 }
204
205 void
init()206 fs_reg::init()
207 {
208 memset(this, 0, sizeof(*this));
209 this->smear = -1;
210 }
211
212 /** Generic unset register constructor. */
fs_reg()213 fs_reg::fs_reg()
214 {
215 init();
216 this->file = BAD_FILE;
217 }
218
219 /** Immediate value constructor. */
fs_reg(float f)220 fs_reg::fs_reg(float f)
221 {
222 init();
223 this->file = IMM;
224 this->type = BRW_REGISTER_TYPE_F;
225 this->imm.f = f;
226 }
227
228 /** Immediate value constructor. */
fs_reg(int32_t i)229 fs_reg::fs_reg(int32_t i)
230 {
231 init();
232 this->file = IMM;
233 this->type = BRW_REGISTER_TYPE_D;
234 this->imm.i = i;
235 }
236
237 /** Immediate value constructor. */
fs_reg(uint32_t u)238 fs_reg::fs_reg(uint32_t u)
239 {
240 init();
241 this->file = IMM;
242 this->type = BRW_REGISTER_TYPE_UD;
243 this->imm.u = u;
244 }
245
246 /** Fixed brw_reg Immediate value constructor. */
fs_reg(struct brw_reg fixed_hw_reg)247 fs_reg::fs_reg(struct brw_reg fixed_hw_reg)
248 {
249 init();
250 this->file = FIXED_HW_REG;
251 this->fixed_hw_reg = fixed_hw_reg;
252 this->type = fixed_hw_reg.type;
253 }
254
255 bool
equals(const fs_reg & r) const256 fs_reg::equals(const fs_reg &r) const
257 {
258 return (file == r.file &&
259 reg == r.reg &&
260 reg_offset == r.reg_offset &&
261 type == r.type &&
262 negate == r.negate &&
263 abs == r.abs &&
264 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
265 sizeof(fixed_hw_reg)) == 0 &&
266 smear == r.smear &&
267 imm.u == r.imm.u);
268 }
269
270 int
type_size(const struct glsl_type * type)271 fs_visitor::type_size(const struct glsl_type *type)
272 {
273 unsigned int size, i;
274
275 switch (type->base_type) {
276 case GLSL_TYPE_UINT:
277 case GLSL_TYPE_INT:
278 case GLSL_TYPE_FLOAT:
279 case GLSL_TYPE_BOOL:
280 return type->components();
281 case GLSL_TYPE_ARRAY:
282 return type_size(type->fields.array) * type->length;
283 case GLSL_TYPE_STRUCT:
284 size = 0;
285 for (i = 0; i < type->length; i++) {
286 size += type_size(type->fields.structure[i].type);
287 }
288 return size;
289 case GLSL_TYPE_SAMPLER:
290 /* Samplers take up no register space, since they're baked in at
291 * link time.
292 */
293 return 0;
294 default:
295 assert(!"not reached");
296 return 0;
297 }
298 }
299
300 void
fail(const char * format,...)301 fs_visitor::fail(const char *format, ...)
302 {
303 va_list va;
304 char *msg;
305
306 if (failed)
307 return;
308
309 failed = true;
310
311 va_start(va, format);
312 msg = ralloc_vasprintf(mem_ctx, format, va);
313 va_end(va);
314 msg = ralloc_asprintf(mem_ctx, "FS compile failed: %s\n", msg);
315
316 this->fail_msg = msg;
317
318 if (INTEL_DEBUG & DEBUG_WM) {
319 fprintf(stderr, "%s", msg);
320 }
321 }
322
323 fs_inst *
emit(enum opcode opcode)324 fs_visitor::emit(enum opcode opcode)
325 {
326 return emit(fs_inst(opcode));
327 }
328
329 fs_inst *
emit(enum opcode opcode,fs_reg dst)330 fs_visitor::emit(enum opcode opcode, fs_reg dst)
331 {
332 return emit(fs_inst(opcode, dst));
333 }
334
335 fs_inst *
emit(enum opcode opcode,fs_reg dst,fs_reg src0)336 fs_visitor::emit(enum opcode opcode, fs_reg dst, fs_reg src0)
337 {
338 return emit(fs_inst(opcode, dst, src0));
339 }
340
341 fs_inst *
emit(enum opcode opcode,fs_reg dst,fs_reg src0,fs_reg src1)342 fs_visitor::emit(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1)
343 {
344 return emit(fs_inst(opcode, dst, src0, src1));
345 }
346
347 fs_inst *
emit(enum opcode opcode,fs_reg dst,fs_reg src0,fs_reg src1,fs_reg src2)348 fs_visitor::emit(enum opcode opcode, fs_reg dst,
349 fs_reg src0, fs_reg src1, fs_reg src2)
350 {
351 return emit(fs_inst(opcode, dst, src0, src1, src2));
352 }
353
354 void
push_force_uncompressed()355 fs_visitor::push_force_uncompressed()
356 {
357 force_uncompressed_stack++;
358 }
359
360 void
pop_force_uncompressed()361 fs_visitor::pop_force_uncompressed()
362 {
363 force_uncompressed_stack--;
364 assert(force_uncompressed_stack >= 0);
365 }
366
367 void
push_force_sechalf()368 fs_visitor::push_force_sechalf()
369 {
370 force_sechalf_stack++;
371 }
372
373 void
pop_force_sechalf()374 fs_visitor::pop_force_sechalf()
375 {
376 force_sechalf_stack--;
377 assert(force_sechalf_stack >= 0);
378 }
379
380 /**
381 * Returns how many MRFs an FS opcode will write over.
382 *
383 * Note that this is not the 0 or 1 implied writes in an actual gen
384 * instruction -- the FS opcodes often generate MOVs in addition.
385 */
386 int
implied_mrf_writes(fs_inst * inst)387 fs_visitor::implied_mrf_writes(fs_inst *inst)
388 {
389 if (inst->mlen == 0)
390 return 0;
391
392 switch (inst->opcode) {
393 case SHADER_OPCODE_RCP:
394 case SHADER_OPCODE_RSQ:
395 case SHADER_OPCODE_SQRT:
396 case SHADER_OPCODE_EXP2:
397 case SHADER_OPCODE_LOG2:
398 case SHADER_OPCODE_SIN:
399 case SHADER_OPCODE_COS:
400 return 1 * c->dispatch_width / 8;
401 case SHADER_OPCODE_POW:
402 case SHADER_OPCODE_INT_QUOTIENT:
403 case SHADER_OPCODE_INT_REMAINDER:
404 return 2 * c->dispatch_width / 8;
405 case SHADER_OPCODE_TEX:
406 case FS_OPCODE_TXB:
407 case SHADER_OPCODE_TXD:
408 case SHADER_OPCODE_TXF:
409 case SHADER_OPCODE_TXL:
410 case SHADER_OPCODE_TXS:
411 return 1;
412 case FS_OPCODE_FB_WRITE:
413 return 2;
414 case FS_OPCODE_PULL_CONSTANT_LOAD:
415 case FS_OPCODE_UNSPILL:
416 return 1;
417 case FS_OPCODE_SPILL:
418 return 2;
419 default:
420 assert(!"not reached");
421 return inst->mlen;
422 }
423 }
424
425 int
virtual_grf_alloc(int size)426 fs_visitor::virtual_grf_alloc(int size)
427 {
428 if (virtual_grf_array_size <= virtual_grf_count) {
429 if (virtual_grf_array_size == 0)
430 virtual_grf_array_size = 16;
431 else
432 virtual_grf_array_size *= 2;
433 virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
434 virtual_grf_array_size);
435 }
436 virtual_grf_sizes[virtual_grf_count] = size;
437 return virtual_grf_count++;
438 }
439
440 /** Fixed HW reg constructor. */
fs_reg(enum register_file file,int reg)441 fs_reg::fs_reg(enum register_file file, int reg)
442 {
443 init();
444 this->file = file;
445 this->reg = reg;
446 this->type = BRW_REGISTER_TYPE_F;
447 }
448
449 /** Fixed HW reg constructor. */
fs_reg(enum register_file file,int reg,uint32_t type)450 fs_reg::fs_reg(enum register_file file, int reg, uint32_t type)
451 {
452 init();
453 this->file = file;
454 this->reg = reg;
455 this->type = type;
456 }
457
458 /** Automatic reg constructor. */
fs_reg(class fs_visitor * v,const struct glsl_type * type)459 fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
460 {
461 init();
462
463 this->file = GRF;
464 this->reg = v->virtual_grf_alloc(v->type_size(type));
465 this->reg_offset = 0;
466 this->type = brw_type_for_base_type(type);
467 }
468
469 fs_reg *
variable_storage(ir_variable * var)470 fs_visitor::variable_storage(ir_variable *var)
471 {
472 return (fs_reg *)hash_table_find(this->variable_ht, var);
473 }
474
475 void
import_uniforms_callback(const void * key,void * data,void * closure)476 import_uniforms_callback(const void *key,
477 void *data,
478 void *closure)
479 {
480 struct hash_table *dst_ht = (struct hash_table *)closure;
481 const fs_reg *reg = (const fs_reg *)data;
482
483 if (reg->file != UNIFORM)
484 return;
485
486 hash_table_insert(dst_ht, data, key);
487 }
488
489 /* For 16-wide, we need to follow from the uniform setup of 8-wide dispatch.
490 * This brings in those uniform definitions
491 */
492 void
import_uniforms(fs_visitor * v)493 fs_visitor::import_uniforms(fs_visitor *v)
494 {
495 hash_table_call_foreach(v->variable_ht,
496 import_uniforms_callback,
497 variable_ht);
498 this->params_remap = v->params_remap;
499 }
500
501 /* Our support for uniforms is piggy-backed on the struct
502 * gl_fragment_program, because that's where the values actually
503 * get stored, rather than in some global gl_shader_program uniform
504 * store.
505 */
506 int
setup_uniform_values(int loc,const glsl_type * type)507 fs_visitor::setup_uniform_values(int loc, const glsl_type *type)
508 {
509 unsigned int offset = 0;
510
511 if (type->is_matrix()) {
512 const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
513 type->vector_elements,
514 1);
515
516 for (unsigned int i = 0; i < type->matrix_columns; i++) {
517 offset += setup_uniform_values(loc + offset, column);
518 }
519
520 return offset;
521 }
522
523 switch (type->base_type) {
524 case GLSL_TYPE_FLOAT:
525 case GLSL_TYPE_UINT:
526 case GLSL_TYPE_INT:
527 case GLSL_TYPE_BOOL:
528 for (unsigned int i = 0; i < type->vector_elements; i++) {
529 unsigned int param = c->prog_data.nr_params++;
530
531 assert(param < ARRAY_SIZE(c->prog_data.param));
532
533 this->param_index[param] = loc;
534 this->param_offset[param] = i;
535 }
536 return 1;
537
538 case GLSL_TYPE_STRUCT:
539 for (unsigned int i = 0; i < type->length; i++) {
540 offset += setup_uniform_values(loc + offset,
541 type->fields.structure[i].type);
542 }
543 return offset;
544
545 case GLSL_TYPE_ARRAY:
546 for (unsigned int i = 0; i < type->length; i++) {
547 offset += setup_uniform_values(loc + offset, type->fields.array);
548 }
549 return offset;
550
551 case GLSL_TYPE_SAMPLER:
552 /* The sampler takes up a slot, but we don't use any values from it. */
553 return 1;
554
555 default:
556 assert(!"not reached");
557 return 0;
558 }
559 }
560
561
562 /* Our support for builtin uniforms is even scarier than non-builtin.
563 * It sits on top of the PROG_STATE_VAR parameters that are
564 * automatically updated from GL context state.
565 */
566 void
setup_builtin_uniform_values(ir_variable * ir)567 fs_visitor::setup_builtin_uniform_values(ir_variable *ir)
568 {
569 const ir_state_slot *const slots = ir->state_slots;
570 assert(ir->state_slots != NULL);
571
572 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
573 /* This state reference has already been setup by ir_to_mesa, but we'll
574 * get the same index back here.
575 */
576 int index = _mesa_add_state_reference(this->fp->Base.Parameters,
577 (gl_state_index *)slots[i].tokens);
578
579 /* Add each of the unique swizzles of the element as a parameter.
580 * This'll end up matching the expected layout of the
581 * array/matrix/structure we're trying to fill in.
582 */
583 int last_swiz = -1;
584 for (unsigned int j = 0; j < 4; j++) {
585 int swiz = GET_SWZ(slots[i].swizzle, j);
586 if (swiz == last_swiz)
587 break;
588 last_swiz = swiz;
589
590 this->param_index[c->prog_data.nr_params] = index;
591 this->param_offset[c->prog_data.nr_params] = swiz;
592 c->prog_data.nr_params++;
593 }
594 }
595 }
596
597 fs_reg *
emit_fragcoord_interpolation(ir_variable * ir)598 fs_visitor::emit_fragcoord_interpolation(ir_variable *ir)
599 {
600 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
601 fs_reg wpos = *reg;
602 bool flip = !ir->origin_upper_left ^ c->key.render_to_fbo;
603
604 /* gl_FragCoord.x */
605 if (ir->pixel_center_integer) {
606 emit(BRW_OPCODE_MOV, wpos, this->pixel_x);
607 } else {
608 emit(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f));
609 }
610 wpos.reg_offset++;
611
612 /* gl_FragCoord.y */
613 if (!flip && ir->pixel_center_integer) {
614 emit(BRW_OPCODE_MOV, wpos, this->pixel_y);
615 } else {
616 fs_reg pixel_y = this->pixel_y;
617 float offset = (ir->pixel_center_integer ? 0.0 : 0.5);
618
619 if (flip) {
620 pixel_y.negate = true;
621 offset += c->key.drawable_height - 1.0;
622 }
623
624 emit(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset));
625 }
626 wpos.reg_offset++;
627
628 /* gl_FragCoord.z */
629 if (intel->gen >= 6) {
630 emit(BRW_OPCODE_MOV, wpos,
631 fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
632 } else {
633 emit(FS_OPCODE_LINTERP, wpos,
634 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
635 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
636 interp_reg(FRAG_ATTRIB_WPOS, 2));
637 }
638 wpos.reg_offset++;
639
640 /* gl_FragCoord.w: Already set up in emit_interpolation */
641 emit(BRW_OPCODE_MOV, wpos, this->wpos_w);
642
643 return reg;
644 }
645
646 fs_inst *
emit_linterp(const fs_reg & attr,const fs_reg & interp,glsl_interp_qualifier interpolation_mode,bool is_centroid)647 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
648 glsl_interp_qualifier interpolation_mode,
649 bool is_centroid)
650 {
651 brw_wm_barycentric_interp_mode barycoord_mode;
652 if (is_centroid) {
653 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
654 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
655 else
656 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
657 } else {
658 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
659 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
660 else
661 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
662 }
663 return emit(FS_OPCODE_LINTERP, attr,
664 this->delta_x[barycoord_mode],
665 this->delta_y[barycoord_mode], interp);
666 }
667
668 fs_reg *
emit_general_interpolation(ir_variable * ir)669 fs_visitor::emit_general_interpolation(ir_variable *ir)
670 {
671 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
672 reg->type = brw_type_for_base_type(ir->type->get_scalar_type());
673 fs_reg attr = *reg;
674
675 unsigned int array_elements;
676 const glsl_type *type;
677
678 if (ir->type->is_array()) {
679 array_elements = ir->type->length;
680 if (array_elements == 0) {
681 fail("dereferenced array '%s' has length 0\n", ir->name);
682 }
683 type = ir->type->fields.array;
684 } else {
685 array_elements = 1;
686 type = ir->type;
687 }
688
689 glsl_interp_qualifier interpolation_mode =
690 ir->determine_interpolation_mode(c->key.flat_shade);
691
692 int location = ir->location;
693 for (unsigned int i = 0; i < array_elements; i++) {
694 for (unsigned int j = 0; j < type->matrix_columns; j++) {
695 if (urb_setup[location] == -1) {
696 /* If there's no incoming setup data for this slot, don't
697 * emit interpolation for it.
698 */
699 attr.reg_offset += type->vector_elements;
700 location++;
701 continue;
702 }
703
704 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
705 /* Constant interpolation (flat shading) case. The SF has
706 * handed us defined values in only the constant offset
707 * field of the setup reg.
708 */
709 for (unsigned int k = 0; k < type->vector_elements; k++) {
710 struct brw_reg interp = interp_reg(location, k);
711 interp = suboffset(interp, 3);
712 interp.type = reg->type;
713 emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
714 attr.reg_offset++;
715 }
716 } else {
717 /* Smooth/noperspective interpolation case. */
718 for (unsigned int k = 0; k < type->vector_elements; k++) {
719 /* FINISHME: At some point we probably want to push
720 * this farther by giving similar treatment to the
721 * other potentially constant components of the
722 * attribute, as well as making brw_vs_constval.c
723 * handle varyings other than gl_TexCoord.
724 */
725 if (location >= FRAG_ATTRIB_TEX0 &&
726 location <= FRAG_ATTRIB_TEX7 &&
727 k == 3 && !(c->key.proj_attrib_mask & (1 << location))) {
728 emit(BRW_OPCODE_MOV, attr, fs_reg(1.0f));
729 } else {
730 struct brw_reg interp = interp_reg(location, k);
731 emit_linterp(attr, fs_reg(interp), interpolation_mode,
732 ir->centroid);
733 if (brw->needs_unlit_centroid_workaround && ir->centroid) {
734 /* Get the pixel/sample mask into f0 so that we know
735 * which pixels are lit. Then, for each channel that is
736 * unlit, replace the centroid data with non-centroid
737 * data.
738 */
739 emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS, attr);
740 fs_inst *inst = emit_linterp(attr, fs_reg(interp),
741 interpolation_mode, false);
742 inst->predicated = true;
743 inst->predicate_inverse = true;
744 }
745 if (intel->gen < 6) {
746 emit(BRW_OPCODE_MUL, attr, attr, this->pixel_w);
747 }
748 }
749 attr.reg_offset++;
750 }
751
752 }
753 location++;
754 }
755 }
756
757 return reg;
758 }
759
760 fs_reg *
emit_frontfacing_interpolation(ir_variable * ir)761 fs_visitor::emit_frontfacing_interpolation(ir_variable *ir)
762 {
763 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
764
765 /* The frontfacing comes in as a bit in the thread payload. */
766 if (intel->gen >= 6) {
767 emit(BRW_OPCODE_ASR, *reg,
768 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
769 fs_reg(15));
770 emit(BRW_OPCODE_NOT, *reg, *reg);
771 emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1));
772 } else {
773 struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
774 /* bit 31 is "primitive is back face", so checking < (1 << 31) gives
775 * us front face
776 */
777 fs_inst *inst = emit(BRW_OPCODE_CMP, *reg,
778 fs_reg(r1_6ud),
779 fs_reg(1u << 31));
780 inst->conditional_mod = BRW_CONDITIONAL_L;
781 emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u));
782 }
783
784 return reg;
785 }
786
787 fs_inst *
emit_math(enum opcode opcode,fs_reg dst,fs_reg src)788 fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src)
789 {
790 switch (opcode) {
791 case SHADER_OPCODE_RCP:
792 case SHADER_OPCODE_RSQ:
793 case SHADER_OPCODE_SQRT:
794 case SHADER_OPCODE_EXP2:
795 case SHADER_OPCODE_LOG2:
796 case SHADER_OPCODE_SIN:
797 case SHADER_OPCODE_COS:
798 break;
799 default:
800 assert(!"not reached: bad math opcode");
801 return NULL;
802 }
803
804 /* Can't do hstride == 0 args to gen6 math, so expand it out. We
805 * might be able to do better by doing execsize = 1 math and then
806 * expanding that result out, but we would need to be careful with
807 * masking.
808 *
809 * Gen 6 hardware ignores source modifiers (negate and abs) on math
810 * instructions, so we also move to a temp to set those up.
811 */
812 if (intel->gen == 6 && (src.file == UNIFORM ||
813 src.abs ||
814 src.negate)) {
815 fs_reg expanded = fs_reg(this, glsl_type::float_type);
816 emit(BRW_OPCODE_MOV, expanded, src);
817 src = expanded;
818 }
819
820 fs_inst *inst = emit(opcode, dst, src);
821
822 if (intel->gen < 6) {
823 inst->base_mrf = 2;
824 inst->mlen = c->dispatch_width / 8;
825 }
826
827 return inst;
828 }
829
830 fs_inst *
emit_math(enum opcode opcode,fs_reg dst,fs_reg src0,fs_reg src1)831 fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1)
832 {
833 int base_mrf = 2;
834 fs_inst *inst;
835
836 switch (opcode) {
837 case SHADER_OPCODE_POW:
838 case SHADER_OPCODE_INT_QUOTIENT:
839 case SHADER_OPCODE_INT_REMAINDER:
840 break;
841 default:
842 assert(!"not reached: unsupported binary math opcode.");
843 return NULL;
844 }
845
846 if (intel->gen >= 7) {
847 inst = emit(opcode, dst, src0, src1);
848 } else if (intel->gen == 6) {
849 /* Can't do hstride == 0 args to gen6 math, so expand it out.
850 *
851 * The hardware ignores source modifiers (negate and abs) on math
852 * instructions, so we also move to a temp to set those up.
853 */
854 if (src0.file == UNIFORM || src0.abs || src0.negate) {
855 fs_reg expanded = fs_reg(this, glsl_type::float_type);
856 expanded.type = src0.type;
857 emit(BRW_OPCODE_MOV, expanded, src0);
858 src0 = expanded;
859 }
860
861 if (src1.file == UNIFORM || src1.abs || src1.negate) {
862 fs_reg expanded = fs_reg(this, glsl_type::float_type);
863 expanded.type = src1.type;
864 emit(BRW_OPCODE_MOV, expanded, src1);
865 src1 = expanded;
866 }
867
868 inst = emit(opcode, dst, src0, src1);
869 } else {
870 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
871 * "Message Payload":
872 *
873 * "Operand0[7]. For the INT DIV functions, this operand is the
874 * denominator."
875 * ...
876 * "Operand1[7]. For the INT DIV functions, this operand is the
877 * numerator."
878 */
879 bool is_int_div = opcode != SHADER_OPCODE_POW;
880 fs_reg &op0 = is_int_div ? src1 : src0;
881 fs_reg &op1 = is_int_div ? src0 : src1;
882
883 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + 1, op1.type), op1);
884 inst = emit(opcode, dst, op0, reg_null_f);
885
886 inst->base_mrf = base_mrf;
887 inst->mlen = 2 * c->dispatch_width / 8;
888 }
889 return inst;
890 }
891
892 /**
893 * To be called after the last _mesa_add_state_reference() call, to
894 * set up prog_data.param[] for assign_curb_setup() and
895 * setup_pull_constants().
896 */
897 void
setup_paramvalues_refs()898 fs_visitor::setup_paramvalues_refs()
899 {
900 if (c->dispatch_width != 8)
901 return;
902
903 /* Set up the pointers to ParamValues now that that array is finalized. */
904 for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
905 c->prog_data.param[i] =
906 (const float *)fp->Base.Parameters->ParameterValues[this->param_index[i]] +
907 this->param_offset[i];
908 }
909 }
910
911 void
assign_curb_setup()912 fs_visitor::assign_curb_setup()
913 {
914 c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
915 if (c->dispatch_width == 8) {
916 c->prog_data.first_curbe_grf = c->nr_payload_regs;
917 } else {
918 c->prog_data.first_curbe_grf_16 = c->nr_payload_regs;
919 }
920
921 /* Map the offsets in the UNIFORM file to fixed HW regs. */
922 foreach_list(node, &this->instructions) {
923 fs_inst *inst = (fs_inst *)node;
924
925 for (unsigned int i = 0; i < 3; i++) {
926 if (inst->src[i].file == UNIFORM) {
927 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
928 struct brw_reg brw_reg = brw_vec1_grf(c->nr_payload_regs +
929 constant_nr / 8,
930 constant_nr % 8);
931
932 inst->src[i].file = FIXED_HW_REG;
933 inst->src[i].fixed_hw_reg = retype(brw_reg, inst->src[i].type);
934 }
935 }
936 }
937 }
938
939 void
calculate_urb_setup()940 fs_visitor::calculate_urb_setup()
941 {
942 for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
943 urb_setup[i] = -1;
944 }
945
946 int urb_next = 0;
947 /* Figure out where each of the incoming setup attributes lands. */
948 if (intel->gen >= 6) {
949 for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
950 if (fp->Base.InputsRead & BITFIELD64_BIT(i)) {
951 urb_setup[i] = urb_next++;
952 }
953 }
954 } else {
955 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
956 for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) {
957 /* Point size is packed into the header, not as a general attribute */
958 if (i == VERT_RESULT_PSIZ)
959 continue;
960
961 if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) {
962 int fp_index = _mesa_vert_result_to_frag_attrib((gl_vert_result) i);
963
964 /* The back color slot is skipped when the front color is
965 * also written to. In addition, some slots can be
966 * written in the vertex shader and not read in the
967 * fragment shader. So the register number must always be
968 * incremented, mapped or not.
969 */
970 if (fp_index >= 0)
971 urb_setup[fp_index] = urb_next;
972 urb_next++;
973 }
974 }
975
976 /*
977 * It's a FS only attribute, and we did interpolation for this attribute
978 * in SF thread. So, count it here, too.
979 *
980 * See compile_sf_prog() for more info.
981 */
982 if (fp->Base.InputsRead & BITFIELD64_BIT(FRAG_ATTRIB_PNTC))
983 urb_setup[FRAG_ATTRIB_PNTC] = urb_next++;
984 }
985
986 /* Each attribute is 4 setup channels, each of which is half a reg. */
987 c->prog_data.urb_read_length = urb_next * 2;
988 }
989
990 void
assign_urb_setup()991 fs_visitor::assign_urb_setup()
992 {
993 int urb_start = c->nr_payload_regs + c->prog_data.curb_read_length;
994
995 /* Offset all the urb_setup[] index by the actual position of the
996 * setup regs, now that the location of the constants has been chosen.
997 */
998 foreach_list(node, &this->instructions) {
999 fs_inst *inst = (fs_inst *)node;
1000
1001 if (inst->opcode == FS_OPCODE_LINTERP) {
1002 assert(inst->src[2].file == FIXED_HW_REG);
1003 inst->src[2].fixed_hw_reg.nr += urb_start;
1004 }
1005
1006 if (inst->opcode == FS_OPCODE_CINTERP) {
1007 assert(inst->src[0].file == FIXED_HW_REG);
1008 inst->src[0].fixed_hw_reg.nr += urb_start;
1009 }
1010 }
1011
1012 this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
1013 }
1014
1015 /**
1016 * Split large virtual GRFs into separate components if we can.
1017 *
1018 * This is mostly duplicated with what brw_fs_vector_splitting does,
1019 * but that's really conservative because it's afraid of doing
1020 * splitting that doesn't result in real progress after the rest of
1021 * the optimization phases, which would cause infinite looping in
1022 * optimization. We can do it once here, safely. This also has the
1023 * opportunity to split interpolated values, or maybe even uniforms,
1024 * which we don't have at the IR level.
1025 *
1026 * We want to split, because virtual GRFs are what we register
1027 * allocate and spill (due to contiguousness requirements for some
1028 * instructions), and they're what we naturally generate in the
1029 * codegen process, but most virtual GRFs don't actually need to be
1030 * contiguous sets of GRFs. If we split, we'll end up with reduced
1031 * live intervals and better dead code elimination and coalescing.
1032 */
1033 void
split_virtual_grfs()1034 fs_visitor::split_virtual_grfs()
1035 {
1036 int num_vars = this->virtual_grf_count;
1037 bool split_grf[num_vars];
1038 int new_virtual_grf[num_vars];
1039
1040 /* Try to split anything > 0 sized. */
1041 for (int i = 0; i < num_vars; i++) {
1042 if (this->virtual_grf_sizes[i] != 1)
1043 split_grf[i] = true;
1044 else
1045 split_grf[i] = false;
1046 }
1047
1048 if (brw->has_pln &&
1049 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].file == GRF) {
1050 /* PLN opcodes rely on the delta_xy being contiguous. We only have to
1051 * check this for BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC, because prior to
1052 * Gen6, that was the only supported interpolation mode, and since Gen6,
1053 * delta_x and delta_y are in fixed hardware registers.
1054 */
1055 split_grf[this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg] =
1056 false;
1057 }
1058
1059 foreach_list(node, &this->instructions) {
1060 fs_inst *inst = (fs_inst *)node;
1061
1062 /* If there's a SEND message that requires contiguous destination
1063 * registers, no splitting is allowed.
1064 */
1065 if (inst->regs_written() > 1) {
1066 split_grf[inst->dst.reg] = false;
1067 }
1068 }
1069
1070 /* Allocate new space for split regs. Note that the virtual
1071 * numbers will be contiguous.
1072 */
1073 for (int i = 0; i < num_vars; i++) {
1074 if (split_grf[i]) {
1075 new_virtual_grf[i] = virtual_grf_alloc(1);
1076 for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
1077 int reg = virtual_grf_alloc(1);
1078 assert(reg == new_virtual_grf[i] + j - 1);
1079 (void) reg;
1080 }
1081 this->virtual_grf_sizes[i] = 1;
1082 }
1083 }
1084
1085 foreach_list(node, &this->instructions) {
1086 fs_inst *inst = (fs_inst *)node;
1087
1088 if (inst->dst.file == GRF &&
1089 split_grf[inst->dst.reg] &&
1090 inst->dst.reg_offset != 0) {
1091 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
1092 inst->dst.reg_offset - 1);
1093 inst->dst.reg_offset = 0;
1094 }
1095 for (int i = 0; i < 3; i++) {
1096 if (inst->src[i].file == GRF &&
1097 split_grf[inst->src[i].reg] &&
1098 inst->src[i].reg_offset != 0) {
1099 inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
1100 inst->src[i].reg_offset - 1);
1101 inst->src[i].reg_offset = 0;
1102 }
1103 }
1104 }
1105 this->live_intervals_valid = false;
1106 }
1107
1108 bool
remove_dead_constants()1109 fs_visitor::remove_dead_constants()
1110 {
1111 if (c->dispatch_width == 8) {
1112 this->params_remap = ralloc_array(mem_ctx, int, c->prog_data.nr_params);
1113
1114 for (unsigned int i = 0; i < c->prog_data.nr_params; i++)
1115 this->params_remap[i] = -1;
1116
1117 /* Find which params are still in use. */
1118 foreach_list(node, &this->instructions) {
1119 fs_inst *inst = (fs_inst *)node;
1120
1121 for (int i = 0; i < 3; i++) {
1122 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
1123
1124 if (inst->src[i].file != UNIFORM)
1125 continue;
1126
1127 assert(constant_nr < (int)c->prog_data.nr_params);
1128
1129 /* For now, set this to non-negative. We'll give it the
1130 * actual new number in a moment, in order to keep the
1131 * register numbers nicely ordered.
1132 */
1133 this->params_remap[constant_nr] = 0;
1134 }
1135 }
1136
1137 /* Figure out what the new numbers for the params will be. At some
1138 * point when we're doing uniform array access, we're going to want
1139 * to keep the distinction between .reg and .reg_offset, but for
1140 * now we don't care.
1141 */
1142 unsigned int new_nr_params = 0;
1143 for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
1144 if (this->params_remap[i] != -1) {
1145 this->params_remap[i] = new_nr_params++;
1146 }
1147 }
1148
1149 /* Update the list of params to be uploaded to match our new numbering. */
1150 for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
1151 int remapped = this->params_remap[i];
1152
1153 if (remapped == -1)
1154 continue;
1155
1156 /* We've already done setup_paramvalues_refs() so no need to worry
1157 * about param_index and param_offset.
1158 */
1159 c->prog_data.param[remapped] = c->prog_data.param[i];
1160 }
1161
1162 c->prog_data.nr_params = new_nr_params;
1163 } else {
1164 /* This should have been generated in the 8-wide pass already. */
1165 assert(this->params_remap);
1166 }
1167
1168 /* Now do the renumbering of the shader to remove unused params. */
1169 foreach_list(node, &this->instructions) {
1170 fs_inst *inst = (fs_inst *)node;
1171
1172 for (int i = 0; i < 3; i++) {
1173 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
1174
1175 if (inst->src[i].file != UNIFORM)
1176 continue;
1177
1178 assert(this->params_remap[constant_nr] != -1);
1179 inst->src[i].reg = this->params_remap[constant_nr];
1180 inst->src[i].reg_offset = 0;
1181 }
1182 }
1183
1184 return true;
1185 }
1186
1187 /**
1188 * Choose accesses from the UNIFORM file to demote to using the pull
1189 * constant buffer.
1190 *
1191 * We allow a fragment shader to have more than the specified minimum
1192 * maximum number of fragment shader uniform components (64). If
1193 * there are too many of these, they'd fill up all of register space.
1194 * So, this will push some of them out to the pull constant buffer and
1195 * update the program to load them.
1196 */
1197 void
setup_pull_constants()1198 fs_visitor::setup_pull_constants()
1199 {
1200 /* Only allow 16 registers (128 uniform components) as push constants. */
1201 unsigned int max_uniform_components = 16 * 8;
1202 if (c->prog_data.nr_params <= max_uniform_components)
1203 return;
1204
1205 if (c->dispatch_width == 16) {
1206 fail("Pull constants not supported in 16-wide\n");
1207 return;
1208 }
1209
1210 /* Just demote the end of the list. We could probably do better
1211 * here, demoting things that are rarely used in the program first.
1212 */
1213 int pull_uniform_base = max_uniform_components;
1214 int pull_uniform_count = c->prog_data.nr_params - pull_uniform_base;
1215
1216 foreach_list(node, &this->instructions) {
1217 fs_inst *inst = (fs_inst *)node;
1218
1219 for (int i = 0; i < 3; i++) {
1220 if (inst->src[i].file != UNIFORM)
1221 continue;
1222
1223 int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset;
1224 if (uniform_nr < pull_uniform_base)
1225 continue;
1226
1227 fs_reg dst = fs_reg(this, glsl_type::float_type);
1228 fs_reg index = fs_reg((unsigned)SURF_INDEX_FRAG_CONST_BUFFER);
1229 fs_reg offset = fs_reg((unsigned)(((uniform_nr -
1230 pull_uniform_base) * 4) & ~15));
1231 fs_inst *pull = new(mem_ctx) fs_inst(FS_OPCODE_PULL_CONSTANT_LOAD,
1232 dst, index, offset);
1233 pull->ir = inst->ir;
1234 pull->annotation = inst->annotation;
1235 pull->base_mrf = 14;
1236 pull->mlen = 1;
1237
1238 inst->insert_before(pull);
1239
1240 inst->src[i].file = GRF;
1241 inst->src[i].reg = dst.reg;
1242 inst->src[i].reg_offset = 0;
1243 inst->src[i].smear = (uniform_nr - pull_uniform_base) & 3;
1244 }
1245 }
1246
1247 for (int i = 0; i < pull_uniform_count; i++) {
1248 c->prog_data.pull_param[i] = c->prog_data.param[pull_uniform_base + i];
1249 }
1250 c->prog_data.nr_params -= pull_uniform_count;
1251 c->prog_data.nr_pull_params = pull_uniform_count;
1252 }
1253
1254 /**
1255 * Attempts to move immediate constants into the immediate
1256 * constant slot of following instructions.
1257 *
1258 * Immediate constants are a bit tricky -- they have to be in the last
1259 * operand slot, you can't do abs/negate on them,
1260 */
1261
1262 bool
propagate_constants()1263 fs_visitor::propagate_constants()
1264 {
1265 bool progress = false;
1266
1267 calculate_live_intervals();
1268
1269 foreach_list(node, &this->instructions) {
1270 fs_inst *inst = (fs_inst *)node;
1271
1272 if (inst->opcode != BRW_OPCODE_MOV ||
1273 inst->predicated ||
1274 inst->dst.file != GRF || inst->src[0].file != IMM ||
1275 inst->dst.type != inst->src[0].type ||
1276 (c->dispatch_width == 16 &&
1277 (inst->force_uncompressed || inst->force_sechalf)))
1278 continue;
1279
1280 /* Don't bother with cases where we should have had the
1281 * operation on the constant folded in GLSL already.
1282 */
1283 if (inst->saturate)
1284 continue;
1285
1286 /* Found a move of a constant to a GRF. Find anything else using the GRF
1287 * before it's written, and replace it with the constant if we can.
1288 */
1289 for (fs_inst *scan_inst = (fs_inst *)inst->next;
1290 !scan_inst->is_tail_sentinel();
1291 scan_inst = (fs_inst *)scan_inst->next) {
1292 if (scan_inst->opcode == BRW_OPCODE_DO ||
1293 scan_inst->opcode == BRW_OPCODE_WHILE ||
1294 scan_inst->opcode == BRW_OPCODE_ELSE ||
1295 scan_inst->opcode == BRW_OPCODE_ENDIF) {
1296 break;
1297 }
1298
1299 for (int i = 2; i >= 0; i--) {
1300 if (scan_inst->src[i].file != GRF ||
1301 scan_inst->src[i].reg != inst->dst.reg ||
1302 scan_inst->src[i].reg_offset != inst->dst.reg_offset)
1303 continue;
1304
1305 /* Don't bother with cases where we should have had the
1306 * operation on the constant folded in GLSL already.
1307 */
1308 if (scan_inst->src[i].negate || scan_inst->src[i].abs)
1309 continue;
1310
1311 switch (scan_inst->opcode) {
1312 case BRW_OPCODE_MOV:
1313 scan_inst->src[i] = inst->src[0];
1314 progress = true;
1315 break;
1316
1317 case BRW_OPCODE_MUL:
1318 case BRW_OPCODE_ADD:
1319 if (i == 1) {
1320 scan_inst->src[i] = inst->src[0];
1321 progress = true;
1322 } else if (i == 0 && scan_inst->src[1].file != IMM) {
1323 /* Fit this constant in by commuting the operands.
1324 * Exception: we can't do this for 32-bit integer MUL
1325 * because it's asymmetric.
1326 */
1327 if (scan_inst->opcode == BRW_OPCODE_MUL &&
1328 (scan_inst->src[1].type == BRW_REGISTER_TYPE_D ||
1329 scan_inst->src[1].type == BRW_REGISTER_TYPE_UD))
1330 break;
1331 scan_inst->src[0] = scan_inst->src[1];
1332 scan_inst->src[1] = inst->src[0];
1333 progress = true;
1334 }
1335 break;
1336
1337 case BRW_OPCODE_CMP:
1338 case BRW_OPCODE_IF:
1339 if (i == 1) {
1340 scan_inst->src[i] = inst->src[0];
1341 progress = true;
1342 } else if (i == 0 && scan_inst->src[1].file != IMM) {
1343 uint32_t new_cmod;
1344
1345 new_cmod = brw_swap_cmod(scan_inst->conditional_mod);
1346 if (new_cmod != ~0u) {
1347 /* Fit this constant in by swapping the operands and
1348 * flipping the test
1349 */
1350 scan_inst->src[0] = scan_inst->src[1];
1351 scan_inst->src[1] = inst->src[0];
1352 scan_inst->conditional_mod = new_cmod;
1353 progress = true;
1354 }
1355 }
1356 break;
1357
1358 case BRW_OPCODE_SEL:
1359 if (i == 1) {
1360 scan_inst->src[i] = inst->src[0];
1361 progress = true;
1362 } else if (i == 0 && scan_inst->src[1].file != IMM) {
1363 scan_inst->src[0] = scan_inst->src[1];
1364 scan_inst->src[1] = inst->src[0];
1365
1366 /* If this was predicated, flipping operands means
1367 * we also need to flip the predicate.
1368 */
1369 if (scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) {
1370 scan_inst->predicate_inverse =
1371 !scan_inst->predicate_inverse;
1372 }
1373 progress = true;
1374 }
1375 break;
1376
1377 case SHADER_OPCODE_RCP:
1378 /* The hardware doesn't do math on immediate values
1379 * (because why are you doing that, seriously?), but
1380 * the correct answer is to just constant fold it
1381 * anyway.
1382 */
1383 assert(i == 0);
1384 if (inst->src[0].imm.f != 0.0f) {
1385 scan_inst->opcode = BRW_OPCODE_MOV;
1386 scan_inst->src[0] = inst->src[0];
1387 scan_inst->src[0].imm.f = 1.0f / scan_inst->src[0].imm.f;
1388 progress = true;
1389 }
1390 break;
1391
1392 case FS_OPCODE_PULL_CONSTANT_LOAD:
1393 scan_inst->src[i] = inst->src[0];
1394 progress = true;
1395 break;
1396
1397 default:
1398 break;
1399 }
1400 }
1401
1402 if (scan_inst->dst.file == GRF &&
1403 scan_inst->overwrites_reg(inst->dst)) {
1404 break;
1405 }
1406 }
1407 }
1408
1409 if (progress)
1410 this->live_intervals_valid = false;
1411
1412 return progress;
1413 }
1414
1415
1416 /**
1417 * Attempts to move immediate constants into the immediate
1418 * constant slot of following instructions.
1419 *
1420 * Immediate constants are a bit tricky -- they have to be in the last
1421 * operand slot, you can't do abs/negate on them,
1422 */
1423
1424 bool
opt_algebraic()1425 fs_visitor::opt_algebraic()
1426 {
1427 bool progress = false;
1428
1429 calculate_live_intervals();
1430
1431 foreach_list(node, &this->instructions) {
1432 fs_inst *inst = (fs_inst *)node;
1433
1434 switch (inst->opcode) {
1435 case BRW_OPCODE_MUL:
1436 if (inst->src[1].file != IMM)
1437 continue;
1438
1439 /* a * 1.0 = a */
1440 if (inst->src[1].type == BRW_REGISTER_TYPE_F &&
1441 inst->src[1].imm.f == 1.0) {
1442 inst->opcode = BRW_OPCODE_MOV;
1443 inst->src[1] = reg_undef;
1444 progress = true;
1445 break;
1446 }
1447
1448 break;
1449 default:
1450 break;
1451 }
1452 }
1453
1454 return progress;
1455 }
1456
1457 /**
1458 * Must be called after calculate_live_intervales() to remove unused
1459 * writes to registers -- register allocation will fail otherwise
1460 * because something deffed but not used won't be considered to
1461 * interfere with other regs.
1462 */
1463 bool
dead_code_eliminate()1464 fs_visitor::dead_code_eliminate()
1465 {
1466 bool progress = false;
1467 int pc = 0;
1468
1469 calculate_live_intervals();
1470
1471 foreach_list_safe(node, &this->instructions) {
1472 fs_inst *inst = (fs_inst *)node;
1473
1474 if (inst->dst.file == GRF && this->virtual_grf_use[inst->dst.reg] <= pc) {
1475 inst->remove();
1476 progress = true;
1477 }
1478
1479 pc++;
1480 }
1481
1482 if (progress)
1483 live_intervals_valid = false;
1484
1485 return progress;
1486 }
1487
1488 /**
1489 * Implements a second type of register coalescing: This one checks if
1490 * the two regs involved in a raw move don't interfere, in which case
1491 * they can both by stored in the same place and the MOV removed.
1492 */
1493 bool
register_coalesce_2()1494 fs_visitor::register_coalesce_2()
1495 {
1496 bool progress = false;
1497
1498 calculate_live_intervals();
1499
1500 foreach_list_safe(node, &this->instructions) {
1501 fs_inst *inst = (fs_inst *)node;
1502
1503 if (inst->opcode != BRW_OPCODE_MOV ||
1504 inst->predicated ||
1505 inst->saturate ||
1506 inst->src[0].file != GRF ||
1507 inst->src[0].negate ||
1508 inst->src[0].abs ||
1509 inst->src[0].smear != -1 ||
1510 inst->dst.file != GRF ||
1511 inst->dst.type != inst->src[0].type ||
1512 virtual_grf_sizes[inst->src[0].reg] != 1 ||
1513 virtual_grf_interferes(inst->dst.reg, inst->src[0].reg)) {
1514 continue;
1515 }
1516
1517 int reg_from = inst->src[0].reg;
1518 assert(inst->src[0].reg_offset == 0);
1519 int reg_to = inst->dst.reg;
1520 int reg_to_offset = inst->dst.reg_offset;
1521
1522 foreach_list_safe(node, &this->instructions) {
1523 fs_inst *scan_inst = (fs_inst *)node;
1524
1525 if (scan_inst->dst.file == GRF &&
1526 scan_inst->dst.reg == reg_from) {
1527 scan_inst->dst.reg = reg_to;
1528 scan_inst->dst.reg_offset = reg_to_offset;
1529 }
1530 for (int i = 0; i < 3; i++) {
1531 if (scan_inst->src[i].file == GRF &&
1532 scan_inst->src[i].reg == reg_from) {
1533 scan_inst->src[i].reg = reg_to;
1534 scan_inst->src[i].reg_offset = reg_to_offset;
1535 }
1536 }
1537 }
1538
1539 inst->remove();
1540 live_intervals_valid = false;
1541 progress = true;
1542 continue;
1543 }
1544
1545 return progress;
1546 }
1547
1548 bool
register_coalesce()1549 fs_visitor::register_coalesce()
1550 {
1551 bool progress = false;
1552 int if_depth = 0;
1553 int loop_depth = 0;
1554
1555 foreach_list_safe(node, &this->instructions) {
1556 fs_inst *inst = (fs_inst *)node;
1557
1558 /* Make sure that we dominate the instructions we're going to
1559 * scan for interfering with our coalescing, or we won't have
1560 * scanned enough to see if anything interferes with our
1561 * coalescing. We don't dominate the following instructions if
1562 * we're in a loop or an if block.
1563 */
1564 switch (inst->opcode) {
1565 case BRW_OPCODE_DO:
1566 loop_depth++;
1567 break;
1568 case BRW_OPCODE_WHILE:
1569 loop_depth--;
1570 break;
1571 case BRW_OPCODE_IF:
1572 if_depth++;
1573 break;
1574 case BRW_OPCODE_ENDIF:
1575 if_depth--;
1576 break;
1577 default:
1578 break;
1579 }
1580 if (loop_depth || if_depth)
1581 continue;
1582
1583 if (inst->opcode != BRW_OPCODE_MOV ||
1584 inst->predicated ||
1585 inst->saturate ||
1586 inst->dst.file != GRF || (inst->src[0].file != GRF &&
1587 inst->src[0].file != UNIFORM)||
1588 inst->dst.type != inst->src[0].type)
1589 continue;
1590
1591 bool has_source_modifiers = inst->src[0].abs || inst->src[0].negate;
1592
1593 /* Found a move of a GRF to a GRF. Let's see if we can coalesce
1594 * them: check for no writes to either one until the exit of the
1595 * program.
1596 */
1597 bool interfered = false;
1598
1599 for (fs_inst *scan_inst = (fs_inst *)inst->next;
1600 !scan_inst->is_tail_sentinel();
1601 scan_inst = (fs_inst *)scan_inst->next) {
1602 if (scan_inst->dst.file == GRF) {
1603 if (scan_inst->overwrites_reg(inst->dst) ||
1604 scan_inst->overwrites_reg(inst->src[0])) {
1605 interfered = true;
1606 break;
1607 }
1608 }
1609
1610 /* The gen6 MATH instruction can't handle source modifiers or
1611 * unusual register regions, so avoid coalescing those for
1612 * now. We should do something more specific.
1613 */
1614 if (intel->gen >= 6 &&
1615 scan_inst->is_math() &&
1616 (has_source_modifiers || inst->src[0].file == UNIFORM)) {
1617 interfered = true;
1618 break;
1619 }
1620
1621 /* The accumulator result appears to get used for the
1622 * conditional modifier generation. When negating a UD
1623 * value, there is a 33rd bit generated for the sign in the
1624 * accumulator value, so now you can't check, for example,
1625 * equality with a 32-bit value. See piglit fs-op-neg-uint.
1626 */
1627 if (scan_inst->conditional_mod &&
1628 inst->src[0].negate &&
1629 inst->src[0].type == BRW_REGISTER_TYPE_UD) {
1630 interfered = true;
1631 break;
1632 }
1633 }
1634 if (interfered) {
1635 continue;
1636 }
1637
1638 /* Rewrite the later usage to point at the source of the move to
1639 * be removed.
1640 */
1641 for (fs_inst *scan_inst = inst;
1642 !scan_inst->is_tail_sentinel();
1643 scan_inst = (fs_inst *)scan_inst->next) {
1644 for (int i = 0; i < 3; i++) {
1645 if (scan_inst->src[i].file == GRF &&
1646 scan_inst->src[i].reg == inst->dst.reg &&
1647 scan_inst->src[i].reg_offset == inst->dst.reg_offset) {
1648 fs_reg new_src = inst->src[0];
1649 if (scan_inst->src[i].abs) {
1650 new_src.negate = 0;
1651 new_src.abs = 1;
1652 }
1653 new_src.negate ^= scan_inst->src[i].negate;
1654 scan_inst->src[i] = new_src;
1655 }
1656 }
1657 }
1658
1659 inst->remove();
1660 progress = true;
1661 }
1662
1663 if (progress)
1664 live_intervals_valid = false;
1665
1666 return progress;
1667 }
1668
1669
1670 bool
compute_to_mrf()1671 fs_visitor::compute_to_mrf()
1672 {
1673 bool progress = false;
1674 int next_ip = 0;
1675
1676 calculate_live_intervals();
1677
1678 foreach_list_safe(node, &this->instructions) {
1679 fs_inst *inst = (fs_inst *)node;
1680
1681 int ip = next_ip;
1682 next_ip++;
1683
1684 if (inst->opcode != BRW_OPCODE_MOV ||
1685 inst->predicated ||
1686 inst->dst.file != MRF || inst->src[0].file != GRF ||
1687 inst->dst.type != inst->src[0].type ||
1688 inst->src[0].abs || inst->src[0].negate || inst->src[0].smear != -1)
1689 continue;
1690
1691 /* Work out which hardware MRF registers are written by this
1692 * instruction.
1693 */
1694 int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4;
1695 int mrf_high;
1696 if (inst->dst.reg & BRW_MRF_COMPR4) {
1697 mrf_high = mrf_low + 4;
1698 } else if (c->dispatch_width == 16 &&
1699 (!inst->force_uncompressed && !inst->force_sechalf)) {
1700 mrf_high = mrf_low + 1;
1701 } else {
1702 mrf_high = mrf_low;
1703 }
1704
1705 /* Can't compute-to-MRF this GRF if someone else was going to
1706 * read it later.
1707 */
1708 if (this->virtual_grf_use[inst->src[0].reg] > ip)
1709 continue;
1710
1711 /* Found a move of a GRF to a MRF. Let's see if we can go
1712 * rewrite the thing that made this GRF to write into the MRF.
1713 */
1714 fs_inst *scan_inst;
1715 for (scan_inst = (fs_inst *)inst->prev;
1716 scan_inst->prev != NULL;
1717 scan_inst = (fs_inst *)scan_inst->prev) {
1718 if (scan_inst->dst.file == GRF &&
1719 scan_inst->dst.reg == inst->src[0].reg) {
1720 /* Found the last thing to write our reg we want to turn
1721 * into a compute-to-MRF.
1722 */
1723
1724 /* SENDs can only write to GRFs, so no compute-to-MRF. */
1725 if (scan_inst->mlen) {
1726 break;
1727 }
1728
1729 /* If it's predicated, it (probably) didn't populate all
1730 * the channels. We might be able to rewrite everything
1731 * that writes that reg, but it would require smarter
1732 * tracking to delay the rewriting until complete success.
1733 */
1734 if (scan_inst->predicated)
1735 break;
1736
1737 /* If it's half of register setup and not the same half as
1738 * our MOV we're trying to remove, bail for now.
1739 */
1740 if (scan_inst->force_uncompressed != inst->force_uncompressed ||
1741 scan_inst->force_sechalf != inst->force_sechalf) {
1742 break;
1743 }
1744
1745 /* SEND instructions can't have MRF as a destination. */
1746 if (scan_inst->mlen)
1747 break;
1748
1749 if (intel->gen >= 6) {
1750 /* gen6 math instructions must have the destination be
1751 * GRF, so no compute-to-MRF for them.
1752 */
1753 if (scan_inst->is_math()) {
1754 break;
1755 }
1756 }
1757
1758 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1759 /* Found the creator of our MRF's source value. */
1760 scan_inst->dst.file = MRF;
1761 scan_inst->dst.reg = inst->dst.reg;
1762 scan_inst->saturate |= inst->saturate;
1763 inst->remove();
1764 progress = true;
1765 }
1766 break;
1767 }
1768
1769 /* We don't handle flow control here. Most computation of
1770 * values that end up in MRFs are shortly before the MRF
1771 * write anyway.
1772 */
1773 if (scan_inst->opcode == BRW_OPCODE_DO ||
1774 scan_inst->opcode == BRW_OPCODE_WHILE ||
1775 scan_inst->opcode == BRW_OPCODE_ELSE ||
1776 scan_inst->opcode == BRW_OPCODE_ENDIF) {
1777 break;
1778 }
1779
1780 /* You can't read from an MRF, so if someone else reads our
1781 * MRF's source GRF that we wanted to rewrite, that stops us.
1782 */
1783 bool interfered = false;
1784 for (int i = 0; i < 3; i++) {
1785 if (scan_inst->src[i].file == GRF &&
1786 scan_inst->src[i].reg == inst->src[0].reg &&
1787 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1788 interfered = true;
1789 }
1790 }
1791 if (interfered)
1792 break;
1793
1794 if (scan_inst->dst.file == MRF) {
1795 /* If somebody else writes our MRF here, we can't
1796 * compute-to-MRF before that.
1797 */
1798 int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4;
1799 int scan_mrf_high;
1800
1801 if (scan_inst->dst.reg & BRW_MRF_COMPR4) {
1802 scan_mrf_high = scan_mrf_low + 4;
1803 } else if (c->dispatch_width == 16 &&
1804 (!scan_inst->force_uncompressed &&
1805 !scan_inst->force_sechalf)) {
1806 scan_mrf_high = scan_mrf_low + 1;
1807 } else {
1808 scan_mrf_high = scan_mrf_low;
1809 }
1810
1811 if (mrf_low == scan_mrf_low ||
1812 mrf_low == scan_mrf_high ||
1813 mrf_high == scan_mrf_low ||
1814 mrf_high == scan_mrf_high) {
1815 break;
1816 }
1817 }
1818
1819 if (scan_inst->mlen > 0) {
1820 /* Found a SEND instruction, which means that there are
1821 * live values in MRFs from base_mrf to base_mrf +
1822 * scan_inst->mlen - 1. Don't go pushing our MRF write up
1823 * above it.
1824 */
1825 if (mrf_low >= scan_inst->base_mrf &&
1826 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
1827 break;
1828 }
1829 if (mrf_high >= scan_inst->base_mrf &&
1830 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
1831 break;
1832 }
1833 }
1834 }
1835 }
1836
1837 if (progress)
1838 live_intervals_valid = false;
1839
1840 return progress;
1841 }
1842
1843 /**
1844 * Walks through basic blocks, looking for repeated MRF writes and
1845 * removing the later ones.
1846 */
1847 bool
remove_duplicate_mrf_writes()1848 fs_visitor::remove_duplicate_mrf_writes()
1849 {
1850 fs_inst *last_mrf_move[16];
1851 bool progress = false;
1852
1853 /* Need to update the MRF tracking for compressed instructions. */
1854 if (c->dispatch_width == 16)
1855 return false;
1856
1857 memset(last_mrf_move, 0, sizeof(last_mrf_move));
1858
1859 foreach_list_safe(node, &this->instructions) {
1860 fs_inst *inst = (fs_inst *)node;
1861
1862 switch (inst->opcode) {
1863 case BRW_OPCODE_DO:
1864 case BRW_OPCODE_WHILE:
1865 case BRW_OPCODE_IF:
1866 case BRW_OPCODE_ELSE:
1867 case BRW_OPCODE_ENDIF:
1868 memset(last_mrf_move, 0, sizeof(last_mrf_move));
1869 continue;
1870 default:
1871 break;
1872 }
1873
1874 if (inst->opcode == BRW_OPCODE_MOV &&
1875 inst->dst.file == MRF) {
1876 fs_inst *prev_inst = last_mrf_move[inst->dst.reg];
1877 if (prev_inst && inst->equals(prev_inst)) {
1878 inst->remove();
1879 progress = true;
1880 continue;
1881 }
1882 }
1883
1884 /* Clear out the last-write records for MRFs that were overwritten. */
1885 if (inst->dst.file == MRF) {
1886 last_mrf_move[inst->dst.reg] = NULL;
1887 }
1888
1889 if (inst->mlen > 0) {
1890 /* Found a SEND instruction, which will include two or fewer
1891 * implied MRF writes. We could do better here.
1892 */
1893 for (int i = 0; i < implied_mrf_writes(inst); i++) {
1894 last_mrf_move[inst->base_mrf + i] = NULL;
1895 }
1896 }
1897
1898 /* Clear out any MRF move records whose sources got overwritten. */
1899 if (inst->dst.file == GRF) {
1900 for (unsigned int i = 0; i < Elements(last_mrf_move); i++) {
1901 if (last_mrf_move[i] &&
1902 last_mrf_move[i]->src[0].reg == inst->dst.reg) {
1903 last_mrf_move[i] = NULL;
1904 }
1905 }
1906 }
1907
1908 if (inst->opcode == BRW_OPCODE_MOV &&
1909 inst->dst.file == MRF &&
1910 inst->src[0].file == GRF &&
1911 !inst->predicated) {
1912 last_mrf_move[inst->dst.reg] = inst;
1913 }
1914 }
1915
1916 if (progress)
1917 live_intervals_valid = false;
1918
1919 return progress;
1920 }
1921
1922 /**
1923 * Possibly returns an instruction that set up @param reg.
1924 *
1925 * Sometimes we want to take the result of some expression/variable
1926 * dereference tree and rewrite the instruction generating the result
1927 * of the tree. When processing the tree, we know that the
1928 * instructions generated are all writing temporaries that are dead
1929 * outside of this tree. So, if we have some instructions that write
1930 * a temporary, we're free to point that temp write somewhere else.
1931 *
1932 * Note that this doesn't guarantee that the instruction generated
1933 * only reg -- it might be the size=4 destination of a texture instruction.
1934 */
1935 fs_inst *
get_instruction_generating_reg(fs_inst * start,fs_inst * end,fs_reg reg)1936 fs_visitor::get_instruction_generating_reg(fs_inst *start,
1937 fs_inst *end,
1938 fs_reg reg)
1939 {
1940 if (end == start ||
1941 end->predicated ||
1942 end->force_uncompressed ||
1943 end->force_sechalf ||
1944 !reg.equals(end->dst)) {
1945 return NULL;
1946 } else {
1947 return end;
1948 }
1949 }
1950
1951 bool
run()1952 fs_visitor::run()
1953 {
1954 uint32_t prog_offset_16 = 0;
1955 uint32_t orig_nr_params = c->prog_data.nr_params;
1956
1957 brw_wm_payload_setup(brw, c);
1958
1959 if (c->dispatch_width == 16) {
1960 /* align to 64 byte boundary. */
1961 while ((c->func.nr_insn * sizeof(struct brw_instruction)) % 64) {
1962 brw_NOP(p);
1963 }
1964
1965 /* Save off the start of this 16-wide program in case we succeed. */
1966 prog_offset_16 = c->func.nr_insn * sizeof(struct brw_instruction);
1967
1968 brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED);
1969 }
1970
1971 if (0) {
1972 emit_dummy_fs();
1973 } else {
1974 calculate_urb_setup();
1975 if (intel->gen < 6)
1976 emit_interpolation_setup_gen4();
1977 else
1978 emit_interpolation_setup_gen6();
1979
1980 /* Generate FS IR for main(). (the visitor only descends into
1981 * functions called "main").
1982 */
1983 foreach_list(node, &*shader->ir) {
1984 ir_instruction *ir = (ir_instruction *)node;
1985 base_ir = ir;
1986 this->result = reg_undef;
1987 ir->accept(this);
1988 }
1989 if (failed)
1990 return false;
1991
1992 emit_fb_writes();
1993
1994 split_virtual_grfs();
1995
1996 setup_paramvalues_refs();
1997 setup_pull_constants();
1998
1999 bool progress;
2000 do {
2001 progress = false;
2002
2003 progress = remove_duplicate_mrf_writes() || progress;
2004
2005 progress = propagate_constants() || progress;
2006 progress = opt_algebraic() || progress;
2007 progress = opt_cse() || progress;
2008 progress = opt_copy_propagate() || progress;
2009 progress = register_coalesce() || progress;
2010 progress = register_coalesce_2() || progress;
2011 progress = compute_to_mrf() || progress;
2012 progress = dead_code_eliminate() || progress;
2013 } while (progress);
2014
2015 remove_dead_constants();
2016
2017 schedule_instructions();
2018
2019 assign_curb_setup();
2020 assign_urb_setup();
2021
2022 if (0) {
2023 /* Debug of register spilling: Go spill everything. */
2024 for (int i = 0; i < virtual_grf_count; i++) {
2025 spill_reg(i);
2026 }
2027 }
2028
2029 if (0)
2030 assign_regs_trivial();
2031 else {
2032 while (!assign_regs()) {
2033 if (failed)
2034 break;
2035 }
2036 }
2037 }
2038 assert(force_uncompressed_stack == 0);
2039 assert(force_sechalf_stack == 0);
2040
2041 if (failed)
2042 return false;
2043
2044 generate_code();
2045
2046 if (c->dispatch_width == 8) {
2047 c->prog_data.reg_blocks = brw_register_blocks(grf_used);
2048 } else {
2049 c->prog_data.reg_blocks_16 = brw_register_blocks(grf_used);
2050 c->prog_data.prog_offset_16 = prog_offset_16;
2051
2052 /* Make sure we didn't try to sneak in an extra uniform */
2053 assert(orig_nr_params == c->prog_data.nr_params);
2054 (void) orig_nr_params;
2055 }
2056
2057 return !failed;
2058 }
2059
2060 bool
brw_wm_fs_emit(struct brw_context * brw,struct brw_wm_compile * c,struct gl_shader_program * prog)2061 brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c,
2062 struct gl_shader_program *prog)
2063 {
2064 struct intel_context *intel = &brw->intel;
2065 bool start_busy = false;
2066 float start_time = 0;
2067
2068 if (!prog)
2069 return false;
2070
2071 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2072 start_busy = (intel->batch.last_bo &&
2073 drm_intel_bo_busy(intel->batch.last_bo));
2074 start_time = get_time();
2075 }
2076
2077 struct brw_shader *shader =
2078 (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2079 if (!shader)
2080 return false;
2081
2082 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
2083 printf("GLSL IR for native fragment shader %d:\n", prog->Name);
2084 _mesa_print_ir(shader->ir, NULL);
2085 printf("\n\n");
2086 }
2087
2088 /* Now the main event: Visit the shader IR and generate our FS IR for it.
2089 */
2090 c->dispatch_width = 8;
2091
2092 fs_visitor v(c, prog, shader);
2093 if (!v.run()) {
2094 prog->LinkStatus = false;
2095 ralloc_strcat(&prog->InfoLog, v.fail_msg);
2096
2097 _mesa_problem(NULL, "Failed to compile fragment shader: %s\n",
2098 v.fail_msg);
2099
2100 return false;
2101 }
2102
2103 if (intel->gen >= 5 && c->prog_data.nr_pull_params == 0) {
2104 c->dispatch_width = 16;
2105 fs_visitor v2(c, prog, shader);
2106 v2.import_uniforms(&v);
2107 if (!v2.run()) {
2108 perf_debug("16-wide shader failed to compile, falling back to "
2109 "8-wide at a 10-20%% performance cost: %s", v2.fail_msg);
2110 }
2111 }
2112
2113 c->prog_data.dispatch_width = 8;
2114
2115 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2116 if (shader->compiled_once)
2117 brw_wm_debug_recompile(brw, prog, &c->key);
2118 shader->compiled_once = true;
2119
2120 if (start_busy && !drm_intel_bo_busy(intel->batch.last_bo)) {
2121 perf_debug("FS compile took %.03f ms and stalled the GPU\n",
2122 (get_time() - start_time) * 1000);
2123 }
2124 }
2125
2126 return true;
2127 }
2128
2129 bool
brw_fs_precompile(struct gl_context * ctx,struct gl_shader_program * prog)2130 brw_fs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
2131 {
2132 struct brw_context *brw = brw_context(ctx);
2133 struct intel_context *intel = &brw->intel;
2134 struct brw_wm_prog_key key;
2135
2136 if (!prog->_LinkedShaders[MESA_SHADER_FRAGMENT])
2137 return true;
2138
2139 struct gl_fragment_program *fp = (struct gl_fragment_program *)
2140 prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->Program;
2141 struct brw_fragment_program *bfp = brw_fragment_program(fp);
2142 bool program_uses_dfdy = fp->UsesDFdy;
2143
2144 memset(&key, 0, sizeof(key));
2145
2146 if (intel->gen < 6) {
2147 if (fp->UsesKill)
2148 key.iz_lookup |= IZ_PS_KILL_ALPHATEST_BIT;
2149
2150 if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
2151 key.iz_lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
2152
2153 /* Just assume depth testing. */
2154 key.iz_lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
2155 key.iz_lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
2156 }
2157
2158 if (prog->Name != 0)
2159 key.proj_attrib_mask = 0xffffffff;
2160
2161 if (intel->gen < 6)
2162 key.vp_outputs_written |= BITFIELD64_BIT(FRAG_ATTRIB_WPOS);
2163
2164 for (int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2165 if (!(fp->Base.InputsRead & BITFIELD64_BIT(i)))
2166 continue;
2167
2168 if (prog->Name == 0)
2169 key.proj_attrib_mask |= 1 << i;
2170
2171 if (intel->gen < 6) {
2172 int vp_index = _mesa_vert_result_to_frag_attrib((gl_vert_result) i);
2173
2174 if (vp_index >= 0)
2175 key.vp_outputs_written |= BITFIELD64_BIT(vp_index);
2176 }
2177 }
2178
2179 key.clamp_fragment_color = true;
2180
2181 for (int i = 0; i < MAX_SAMPLERS; i++) {
2182 if (fp->Base.ShadowSamplers & (1 << i)) {
2183 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
2184 key.tex.swizzles[i] =
2185 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
2186 } else {
2187 /* Color sampler: assume no swizzling. */
2188 key.tex.swizzles[i] = SWIZZLE_XYZW;
2189 }
2190 }
2191
2192 if (fp->Base.InputsRead & FRAG_BIT_WPOS) {
2193 key.drawable_height = ctx->DrawBuffer->Height;
2194 }
2195
2196 if ((fp->Base.InputsRead & FRAG_BIT_WPOS) || program_uses_dfdy) {
2197 key.render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2198 }
2199
2200 key.nr_color_regions = 1;
2201
2202 key.program_string_id = bfp->id;
2203
2204 uint32_t old_prog_offset = brw->wm.prog_offset;
2205 struct brw_wm_prog_data *old_prog_data = brw->wm.prog_data;
2206
2207 bool success = do_wm_prog(brw, prog, bfp, &key);
2208
2209 brw->wm.prog_offset = old_prog_offset;
2210 brw->wm.prog_data = old_prog_data;
2211
2212 return success;
2213 }
2214