1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the abstract interface that implements execution support 11 // for LLVM. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H 16 #define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H 17 18 #include "RuntimeDyld.h" 19 #include "llvm-c/ExecutionEngine.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/IR/ValueHandle.h" 24 #include "llvm/IR/ValueMap.h" 25 #include "llvm/MC/MCCodeGenInfo.h" 26 #include "llvm/Object/Binary.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/Mutex.h" 29 #include "llvm/Target/TargetMachine.h" 30 #include "llvm/Target/TargetOptions.h" 31 #include <map> 32 #include <string> 33 #include <vector> 34 35 namespace llvm { 36 37 struct GenericValue; 38 class Constant; 39 class DataLayout; 40 class ExecutionEngine; 41 class Function; 42 class GlobalVariable; 43 class GlobalValue; 44 class JITEventListener; 45 class MachineCodeInfo; 46 class MCJITMemoryManager; 47 class MutexGuard; 48 class ObjectCache; 49 class RTDyldMemoryManager; 50 class Triple; 51 class Type; 52 53 namespace object { 54 class Archive; 55 class ObjectFile; 56 } 57 58 /// \brief Helper class for helping synchronize access to the global address map 59 /// table. Access to this class should be serialized under a mutex. 60 class ExecutionEngineState { 61 public: 62 typedef StringMap<uint64_t> GlobalAddressMapTy; 63 64 private: 65 66 /// GlobalAddressMap - A mapping between LLVM global symbol names values and 67 /// their actualized version... 68 GlobalAddressMapTy GlobalAddressMap; 69 70 /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap, 71 /// used to convert raw addresses into the LLVM global value that is emitted 72 /// at the address. This map is not computed unless getGlobalValueAtAddress 73 /// is called at some point. 74 std::map<uint64_t, std::string> GlobalAddressReverseMap; 75 76 public: 77 getGlobalAddressMap()78 GlobalAddressMapTy &getGlobalAddressMap() { 79 return GlobalAddressMap; 80 } 81 getGlobalAddressReverseMap()82 std::map<uint64_t, std::string> &getGlobalAddressReverseMap() { 83 return GlobalAddressReverseMap; 84 } 85 86 /// \brief Erase an entry from the mapping table. 87 /// 88 /// \returns The address that \p ToUnmap was happed to. 89 uint64_t RemoveMapping(StringRef Name); 90 }; 91 92 /// \brief Abstract interface for implementation execution of LLVM modules, 93 /// designed to support both interpreter and just-in-time (JIT) compiler 94 /// implementations. 95 class ExecutionEngine { 96 /// The state object holding the global address mapping, which must be 97 /// accessed synchronously. 98 // 99 // FIXME: There is no particular need the entire map needs to be 100 // synchronized. Wouldn't a reader-writer design be better here? 101 ExecutionEngineState EEState; 102 103 /// The target data for the platform for which execution is being performed. 104 const DataLayout *DL; 105 106 /// Whether lazy JIT compilation is enabled. 107 bool CompilingLazily; 108 109 /// Whether JIT compilation of external global variables is allowed. 110 bool GVCompilationDisabled; 111 112 /// Whether the JIT should perform lookups of external symbols (e.g., 113 /// using dlsym). 114 bool SymbolSearchingDisabled; 115 116 /// Whether the JIT should verify IR modules during compilation. 117 bool VerifyModules; 118 119 friend class EngineBuilder; // To allow access to JITCtor and InterpCtor. 120 121 protected: 122 /// The list of Modules that we are JIT'ing from. We use a SmallVector to 123 /// optimize for the case where there is only one module. 124 SmallVector<std::unique_ptr<Module>, 1> Modules; 125 setDataLayout(const DataLayout * Val)126 void setDataLayout(const DataLayout *Val) { DL = Val; } 127 128 /// getMemoryforGV - Allocate memory for a global variable. 129 virtual char *getMemoryForGV(const GlobalVariable *GV); 130 131 static ExecutionEngine *(*MCJITCtor)( 132 std::unique_ptr<Module> M, 133 std::string *ErrorStr, 134 std::shared_ptr<MCJITMemoryManager> MM, 135 std::shared_ptr<RuntimeDyld::SymbolResolver> SR, 136 std::unique_ptr<TargetMachine> TM); 137 138 static ExecutionEngine *(*OrcMCJITReplacementCtor)( 139 std::string *ErrorStr, 140 std::shared_ptr<MCJITMemoryManager> MM, 141 std::shared_ptr<RuntimeDyld::SymbolResolver> SR, 142 std::unique_ptr<TargetMachine> TM); 143 144 static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M, 145 std::string *ErrorStr); 146 147 /// LazyFunctionCreator - If an unknown function is needed, this function 148 /// pointer is invoked to create it. If this returns null, the JIT will 149 /// abort. 150 void *(*LazyFunctionCreator)(const std::string &); 151 152 /// getMangledName - Get mangled name. 153 std::string getMangledName(const GlobalValue *GV); 154 155 public: 156 /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must 157 /// be held while changing the internal state of any of those classes. 158 sys::Mutex lock; 159 160 //===--------------------------------------------------------------------===// 161 // ExecutionEngine Startup 162 //===--------------------------------------------------------------------===// 163 164 virtual ~ExecutionEngine(); 165 166 /// Add a Module to the list of modules that we can JIT from. addModule(std::unique_ptr<Module> M)167 virtual void addModule(std::unique_ptr<Module> M) { 168 Modules.push_back(std::move(M)); 169 } 170 171 /// addObjectFile - Add an ObjectFile to the execution engine. 172 /// 173 /// This method is only supported by MCJIT. MCJIT will immediately load the 174 /// object into memory and adds its symbols to the list used to resolve 175 /// external symbols while preparing other objects for execution. 176 /// 177 /// Objects added using this function will not be made executable until 178 /// needed by another object. 179 /// 180 /// MCJIT will take ownership of the ObjectFile. 181 virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O); 182 virtual void addObjectFile(object::OwningBinary<object::ObjectFile> O); 183 184 /// addArchive - Add an Archive to the execution engine. 185 /// 186 /// This method is only supported by MCJIT. MCJIT will use the archive to 187 /// resolve external symbols in objects it is loading. If a symbol is found 188 /// in the Archive the contained object file will be extracted (in memory) 189 /// and loaded for possible execution. 190 virtual void addArchive(object::OwningBinary<object::Archive> A); 191 192 //===--------------------------------------------------------------------===// 193 getDataLayout()194 const DataLayout *getDataLayout() const { return DL; } 195 196 /// removeModule - Remove a Module from the list of modules. Returns true if 197 /// M is found. 198 virtual bool removeModule(Module *M); 199 200 /// FindFunctionNamed - Search all of the active modules to find the one that 201 /// defines FnName. This is very slow operation and shouldn't be used for 202 /// general code. 203 virtual Function *FindFunctionNamed(const char *FnName); 204 205 /// runFunction - Execute the specified function with the specified arguments, 206 /// and return the result. 207 virtual GenericValue runFunction(Function *F, 208 const std::vector<GenericValue> &ArgValues) = 0; 209 210 /// getPointerToNamedFunction - This method returns the address of the 211 /// specified function by using the dlsym function call. As such it is only 212 /// useful for resolving library symbols, not code generated symbols. 213 /// 214 /// If AbortOnFailure is false and no function with the given name is 215 /// found, this function silently returns a null pointer. Otherwise, 216 /// it prints a message to stderr and aborts. 217 /// 218 /// This function is deprecated for the MCJIT execution engine. 219 virtual void *getPointerToNamedFunction(StringRef Name, 220 bool AbortOnFailure = true) = 0; 221 222 /// mapSectionAddress - map a section to its target address space value. 223 /// Map the address of a JIT section as returned from the memory manager 224 /// to the address in the target process as the running code will see it. 225 /// This is the address which will be used for relocation resolution. mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)226 virtual void mapSectionAddress(const void *LocalAddress, 227 uint64_t TargetAddress) { 228 llvm_unreachable("Re-mapping of section addresses not supported with this " 229 "EE!"); 230 } 231 232 /// generateCodeForModule - Run code generation for the specified module and 233 /// load it into memory. 234 /// 235 /// When this function has completed, all code and data for the specified 236 /// module, and any module on which this module depends, will be generated 237 /// and loaded into memory, but relocations will not yet have been applied 238 /// and all memory will be readable and writable but not executable. 239 /// 240 /// This function is primarily useful when generating code for an external 241 /// target, allowing the client an opportunity to remap section addresses 242 /// before relocations are applied. Clients that intend to execute code 243 /// locally can use the getFunctionAddress call, which will generate code 244 /// and apply final preparations all in one step. 245 /// 246 /// This method has no effect for the interpeter. generateCodeForModule(Module * M)247 virtual void generateCodeForModule(Module *M) {} 248 249 /// finalizeObject - ensure the module is fully processed and is usable. 250 /// 251 /// It is the user-level function for completing the process of making the 252 /// object usable for execution. It should be called after sections within an 253 /// object have been relocated using mapSectionAddress. When this method is 254 /// called the MCJIT execution engine will reapply relocations for a loaded 255 /// object. This method has no effect for the interpeter. finalizeObject()256 virtual void finalizeObject() {} 257 258 /// runStaticConstructorsDestructors - This method is used to execute all of 259 /// the static constructors or destructors for a program. 260 /// 261 /// \param isDtors - Run the destructors instead of constructors. 262 virtual void runStaticConstructorsDestructors(bool isDtors); 263 264 /// This method is used to execute all of the static constructors or 265 /// destructors for a particular module. 266 /// 267 /// \param isDtors - Run the destructors instead of constructors. 268 void runStaticConstructorsDestructors(Module &module, bool isDtors); 269 270 271 /// runFunctionAsMain - This is a helper function which wraps runFunction to 272 /// handle the common task of starting up main with the specified argc, argv, 273 /// and envp parameters. 274 int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv, 275 const char * const * envp); 276 277 278 /// addGlobalMapping - Tell the execution engine that the specified global is 279 /// at the specified location. This is used internally as functions are JIT'd 280 /// and as global variables are laid out in memory. It can and should also be 281 /// used by clients of the EE that want to have an LLVM global overlay 282 /// existing data in memory. Mappings are automatically removed when their 283 /// GlobalValue is destroyed. 284 void addGlobalMapping(const GlobalValue *GV, void *Addr); 285 void addGlobalMapping(StringRef Name, uint64_t Addr); 286 287 /// clearAllGlobalMappings - Clear all global mappings and start over again, 288 /// for use in dynamic compilation scenarios to move globals. 289 void clearAllGlobalMappings(); 290 291 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a 292 /// particular module, because it has been removed from the JIT. 293 void clearGlobalMappingsFromModule(Module *M); 294 295 /// updateGlobalMapping - Replace an existing mapping for GV with a new 296 /// address. This updates both maps as required. If "Addr" is null, the 297 /// entry for the global is removed from the mappings. This returns the old 298 /// value of the pointer, or null if it was not in the map. 299 uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr); 300 uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr); 301 302 /// getAddressToGlobalIfAvailable - This returns the address of the specified 303 /// global symbol. 304 uint64_t getAddressToGlobalIfAvailable(StringRef S); 305 306 /// getPointerToGlobalIfAvailable - This returns the address of the specified 307 /// global value if it is has already been codegen'd, otherwise it returns 308 /// null. 309 void *getPointerToGlobalIfAvailable(StringRef S); 310 void *getPointerToGlobalIfAvailable(const GlobalValue *GV); 311 312 /// getPointerToGlobal - This returns the address of the specified global 313 /// value. This may involve code generation if it's a function. 314 /// 315 /// This function is deprecated for the MCJIT execution engine. Use 316 /// getGlobalValueAddress instead. 317 void *getPointerToGlobal(const GlobalValue *GV); 318 319 /// getPointerToFunction - The different EE's represent function bodies in 320 /// different ways. They should each implement this to say what a function 321 /// pointer should look like. When F is destroyed, the ExecutionEngine will 322 /// remove its global mapping and free any machine code. Be sure no threads 323 /// are running inside F when that happens. 324 /// 325 /// This function is deprecated for the MCJIT execution engine. Use 326 /// getFunctionAddress instead. 327 virtual void *getPointerToFunction(Function *F) = 0; 328 329 /// getPointerToFunctionOrStub - If the specified function has been 330 /// code-gen'd, return a pointer to the function. If not, compile it, or use 331 /// a stub to implement lazy compilation if available. See 332 /// getPointerToFunction for the requirements on destroying F. 333 /// 334 /// This function is deprecated for the MCJIT execution engine. Use 335 /// getFunctionAddress instead. getPointerToFunctionOrStub(Function * F)336 virtual void *getPointerToFunctionOrStub(Function *F) { 337 // Default implementation, just codegen the function. 338 return getPointerToFunction(F); 339 } 340 341 /// getGlobalValueAddress - Return the address of the specified global 342 /// value. This may involve code generation. 343 /// 344 /// This function should not be called with the interpreter engine. getGlobalValueAddress(const std::string & Name)345 virtual uint64_t getGlobalValueAddress(const std::string &Name) { 346 // Default implementation for the interpreter. MCJIT will override this. 347 // JIT and interpreter clients should use getPointerToGlobal instead. 348 return 0; 349 } 350 351 /// getFunctionAddress - Return the address of the specified function. 352 /// This may involve code generation. getFunctionAddress(const std::string & Name)353 virtual uint64_t getFunctionAddress(const std::string &Name) { 354 // Default implementation for the interpreter. MCJIT will override this. 355 // Interpreter clients should use getPointerToFunction instead. 356 return 0; 357 } 358 359 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 360 /// at the specified address. 361 /// 362 const GlobalValue *getGlobalValueAtAddress(void *Addr); 363 364 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. 365 /// Ptr is the address of the memory at which to store Val, cast to 366 /// GenericValue *. It is not a pointer to a GenericValue containing the 367 /// address at which to store Val. 368 void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, 369 Type *Ty); 370 371 void InitializeMemory(const Constant *Init, void *Addr); 372 373 /// getOrEmitGlobalVariable - Return the address of the specified global 374 /// variable, possibly emitting it to memory if needed. This is used by the 375 /// Emitter. 376 /// 377 /// This function is deprecated for the MCJIT execution engine. Use 378 /// getGlobalValueAddress instead. getOrEmitGlobalVariable(const GlobalVariable * GV)379 virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) { 380 return getPointerToGlobal((const GlobalValue *)GV); 381 } 382 383 /// Registers a listener to be called back on various events within 384 /// the JIT. See JITEventListener.h for more details. Does not 385 /// take ownership of the argument. The argument may be NULL, in 386 /// which case these functions do nothing. RegisterJITEventListener(JITEventListener *)387 virtual void RegisterJITEventListener(JITEventListener *) {} UnregisterJITEventListener(JITEventListener *)388 virtual void UnregisterJITEventListener(JITEventListener *) {} 389 390 /// Sets the pre-compiled object cache. The ownership of the ObjectCache is 391 /// not changed. Supported by MCJIT but not the interpreter. setObjectCache(ObjectCache *)392 virtual void setObjectCache(ObjectCache *) { 393 llvm_unreachable("No support for an object cache"); 394 } 395 396 /// setProcessAllSections (MCJIT Only): By default, only sections that are 397 /// "required for execution" are passed to the RTDyldMemoryManager, and other 398 /// sections are discarded. Passing 'true' to this method will cause 399 /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless 400 /// of whether they are "required to execute" in the usual sense. 401 /// 402 /// Rationale: Some MCJIT clients want to be able to inspect metadata 403 /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze 404 /// performance. Passing these sections to the memory manager allows the 405 /// client to make policy about the relevant sections, rather than having 406 /// MCJIT do it. setProcessAllSections(bool ProcessAllSections)407 virtual void setProcessAllSections(bool ProcessAllSections) { 408 llvm_unreachable("No support for ProcessAllSections option"); 409 } 410 411 /// Return the target machine (if available). getTargetMachine()412 virtual TargetMachine *getTargetMachine() { return nullptr; } 413 414 /// DisableLazyCompilation - When lazy compilation is off (the default), the 415 /// JIT will eagerly compile every function reachable from the argument to 416 /// getPointerToFunction. If lazy compilation is turned on, the JIT will only 417 /// compile the one function and emit stubs to compile the rest when they're 418 /// first called. If lazy compilation is turned off again while some lazy 419 /// stubs are still around, and one of those stubs is called, the program will 420 /// abort. 421 /// 422 /// In order to safely compile lazily in a threaded program, the user must 423 /// ensure that 1) only one thread at a time can call any particular lazy 424 /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock 425 /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a 426 /// lazy stub. See http://llvm.org/PR5184 for details. 427 void DisableLazyCompilation(bool Disabled = true) { 428 CompilingLazily = !Disabled; 429 } isCompilingLazily()430 bool isCompilingLazily() const { 431 return CompilingLazily; 432 } 433 434 /// DisableGVCompilation - If called, the JIT will abort if it's asked to 435 /// allocate space and populate a GlobalVariable that is not internal to 436 /// the module. 437 void DisableGVCompilation(bool Disabled = true) { 438 GVCompilationDisabled = Disabled; 439 } isGVCompilationDisabled()440 bool isGVCompilationDisabled() const { 441 return GVCompilationDisabled; 442 } 443 444 /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown 445 /// symbols with dlsym. A client can still use InstallLazyFunctionCreator to 446 /// resolve symbols in a custom way. 447 void DisableSymbolSearching(bool Disabled = true) { 448 SymbolSearchingDisabled = Disabled; 449 } isSymbolSearchingDisabled()450 bool isSymbolSearchingDisabled() const { 451 return SymbolSearchingDisabled; 452 } 453 454 /// Enable/Disable IR module verification. 455 /// 456 /// Note: Module verification is enabled by default in Debug builds, and 457 /// disabled by default in Release. Use this method to override the default. setVerifyModules(bool Verify)458 void setVerifyModules(bool Verify) { 459 VerifyModules = Verify; 460 } getVerifyModules()461 bool getVerifyModules() const { 462 return VerifyModules; 463 } 464 465 /// InstallLazyFunctionCreator - If an unknown function is needed, the 466 /// specified function pointer is invoked to create it. If it returns null, 467 /// the JIT will abort. InstallLazyFunctionCreator(void * (* P)(const std::string &))468 void InstallLazyFunctionCreator(void* (*P)(const std::string &)) { 469 LazyFunctionCreator = P; 470 } 471 472 protected: ExecutionEngine()473 ExecutionEngine() {} 474 explicit ExecutionEngine(std::unique_ptr<Module> M); 475 476 void emitGlobals(); 477 478 void EmitGlobalVariable(const GlobalVariable *GV); 479 480 GenericValue getConstantValue(const Constant *C); 481 void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr, 482 Type *Ty); 483 }; 484 485 namespace EngineKind { 486 // These are actually bitmasks that get or-ed together. 487 enum Kind { 488 JIT = 0x1, 489 Interpreter = 0x2 490 }; 491 const static Kind Either = (Kind)(JIT | Interpreter); 492 } 493 494 /// Builder class for ExecutionEngines. Use this by stack-allocating a builder, 495 /// chaining the various set* methods, and terminating it with a .create() 496 /// call. 497 class EngineBuilder { 498 private: 499 std::unique_ptr<Module> M; 500 EngineKind::Kind WhichEngine; 501 std::string *ErrorStr; 502 CodeGenOpt::Level OptLevel; 503 std::shared_ptr<MCJITMemoryManager> MemMgr; 504 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver; 505 TargetOptions Options; 506 Reloc::Model RelocModel; 507 CodeModel::Model CMModel; 508 std::string MArch; 509 std::string MCPU; 510 SmallVector<std::string, 4> MAttrs; 511 bool VerifyModules; 512 bool UseOrcMCJITReplacement; 513 514 public: 515 /// Default constructor for EngineBuilder. 516 EngineBuilder(); 517 518 /// Constructor for EngineBuilder. 519 EngineBuilder(std::unique_ptr<Module> M); 520 521 // Out-of-line since we don't have the def'n of RTDyldMemoryManager here. 522 ~EngineBuilder(); 523 524 /// setEngineKind - Controls whether the user wants the interpreter, the JIT, 525 /// or whichever engine works. This option defaults to EngineKind::Either. setEngineKind(EngineKind::Kind w)526 EngineBuilder &setEngineKind(EngineKind::Kind w) { 527 WhichEngine = w; 528 return *this; 529 } 530 531 /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows 532 /// clients to customize their memory allocation policies for the MCJIT. This 533 /// is only appropriate for the MCJIT; setting this and configuring the builder 534 /// to create anything other than MCJIT will cause a runtime error. If create() 535 /// is called and is successful, the created engine takes ownership of the 536 /// memory manager. This option defaults to NULL. 537 EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); 538 539 EngineBuilder& 540 setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); 541 542 EngineBuilder& 543 setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR); 544 545 /// setErrorStr - Set the error string to write to on error. This option 546 /// defaults to NULL. setErrorStr(std::string * e)547 EngineBuilder &setErrorStr(std::string *e) { 548 ErrorStr = e; 549 return *this; 550 } 551 552 /// setOptLevel - Set the optimization level for the JIT. This option 553 /// defaults to CodeGenOpt::Default. setOptLevel(CodeGenOpt::Level l)554 EngineBuilder &setOptLevel(CodeGenOpt::Level l) { 555 OptLevel = l; 556 return *this; 557 } 558 559 /// setTargetOptions - Set the target options that the ExecutionEngine 560 /// target is using. Defaults to TargetOptions(). setTargetOptions(const TargetOptions & Opts)561 EngineBuilder &setTargetOptions(const TargetOptions &Opts) { 562 Options = Opts; 563 return *this; 564 } 565 566 /// setRelocationModel - Set the relocation model that the ExecutionEngine 567 /// target is using. Defaults to target specific default "Reloc::Default". setRelocationModel(Reloc::Model RM)568 EngineBuilder &setRelocationModel(Reloc::Model RM) { 569 RelocModel = RM; 570 return *this; 571 } 572 573 /// setCodeModel - Set the CodeModel that the ExecutionEngine target 574 /// data is using. Defaults to target specific default 575 /// "CodeModel::JITDefault". setCodeModel(CodeModel::Model M)576 EngineBuilder &setCodeModel(CodeModel::Model M) { 577 CMModel = M; 578 return *this; 579 } 580 581 /// setMArch - Override the architecture set by the Module's triple. setMArch(StringRef march)582 EngineBuilder &setMArch(StringRef march) { 583 MArch.assign(march.begin(), march.end()); 584 return *this; 585 } 586 587 /// setMCPU - Target a specific cpu type. setMCPU(StringRef mcpu)588 EngineBuilder &setMCPU(StringRef mcpu) { 589 MCPU.assign(mcpu.begin(), mcpu.end()); 590 return *this; 591 } 592 593 /// setVerifyModules - Set whether the JIT implementation should verify 594 /// IR modules during compilation. setVerifyModules(bool Verify)595 EngineBuilder &setVerifyModules(bool Verify) { 596 VerifyModules = Verify; 597 return *this; 598 } 599 600 /// setMAttrs - Set cpu-specific attributes. 601 template<typename StringSequence> setMAttrs(const StringSequence & mattrs)602 EngineBuilder &setMAttrs(const StringSequence &mattrs) { 603 MAttrs.clear(); 604 MAttrs.append(mattrs.begin(), mattrs.end()); 605 return *this; 606 } 607 608 // \brief Use OrcMCJITReplacement instead of MCJIT. Off by default. setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement)609 void setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement) { 610 this->UseOrcMCJITReplacement = UseOrcMCJITReplacement; 611 } 612 613 TargetMachine *selectTarget(); 614 615 /// selectTarget - Pick a target either via -march or by guessing the native 616 /// arch. Add any CPU features specified via -mcpu or -mattr. 617 TargetMachine *selectTarget(const Triple &TargetTriple, 618 StringRef MArch, 619 StringRef MCPU, 620 const SmallVectorImpl<std::string>& MAttrs); 621 create()622 ExecutionEngine *create() { 623 return create(selectTarget()); 624 } 625 626 ExecutionEngine *create(TargetMachine *TM); 627 }; 628 629 // Create wrappers for C Binding types (see CBindingWrapping.h). 630 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef) 631 632 } // End llvm namespace 633 634 #endif 635