• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- FastISel.h - Definition of the FastISel class ---*- C++ -*---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file defines the FastISel class.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_FASTISEL_H
16 #define LLVM_CODEGEN_FASTISEL_H
17 
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/IR/CallingConv.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/Target/TargetLowering.h"
24 
25 namespace llvm {
26 
27 /// \brief This is a fast-path instruction selection class that generates poor
28 /// code and doesn't support illegal types or non-trivial lowering, but runs
29 /// quickly.
30 class FastISel {
31 public:
32   struct ArgListEntry {
33     Value *Val;
34     Type *Ty;
35     bool IsSExt : 1;
36     bool IsZExt : 1;
37     bool IsInReg : 1;
38     bool IsSRet : 1;
39     bool IsNest : 1;
40     bool IsByVal : 1;
41     bool IsInAlloca : 1;
42     bool IsReturned : 1;
43     uint16_t Alignment;
44 
ArgListEntryArgListEntry45     ArgListEntry()
46         : Val(nullptr), Ty(nullptr), IsSExt(false), IsZExt(false),
47           IsInReg(false), IsSRet(false), IsNest(false), IsByVal(false),
48           IsInAlloca(false), IsReturned(false), Alignment(0) {}
49 
50     /// \brief Set CallLoweringInfo attribute flags based on a call instruction
51     /// and called function attributes.
52     void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
53   };
54   typedef std::vector<ArgListEntry> ArgListTy;
55 
56   struct CallLoweringInfo {
57     Type *RetTy;
58     bool RetSExt : 1;
59     bool RetZExt : 1;
60     bool IsVarArg : 1;
61     bool IsInReg : 1;
62     bool DoesNotReturn : 1;
63     bool IsReturnValueUsed : 1;
64 
65     // \brief IsTailCall Should be modified by implementations of FastLowerCall
66     // that perform tail call conversions.
67     bool IsTailCall;
68 
69     unsigned NumFixedArgs;
70     CallingConv::ID CallConv;
71     const Value *Callee;
72     const char *SymName;
73     ArgListTy Args;
74     ImmutableCallSite *CS;
75     MachineInstr *Call;
76     unsigned ResultReg;
77     unsigned NumResultRegs;
78 
79     bool IsPatchPoint;
80 
81     SmallVector<Value *, 16> OutVals;
82     SmallVector<ISD::ArgFlagsTy, 16> OutFlags;
83     SmallVector<unsigned, 16> OutRegs;
84     SmallVector<ISD::InputArg, 4> Ins;
85     SmallVector<unsigned, 4> InRegs;
86 
CallLoweringInfoCallLoweringInfo87     CallLoweringInfo()
88         : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
89           IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
90           IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
91           Callee(nullptr), SymName(nullptr), CS(nullptr), Call(nullptr),
92           ResultReg(0), NumResultRegs(0), IsPatchPoint(false) {}
93 
setCalleeCallLoweringInfo94     CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
95                                 const Value *Target, ArgListTy &&ArgsList,
96                                 ImmutableCallSite &Call) {
97       RetTy = ResultTy;
98       Callee = Target;
99 
100       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
101       DoesNotReturn = Call.doesNotReturn();
102       IsVarArg = FuncTy->isVarArg();
103       IsReturnValueUsed = !Call.getInstruction()->use_empty();
104       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
105       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
106 
107       CallConv = Call.getCallingConv();
108       Args = std::move(ArgsList);
109       NumFixedArgs = FuncTy->getNumParams();
110 
111       CS = &Call;
112 
113       return *this;
114     }
115 
116     CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
117                                 const char *Target, ArgListTy &&ArgsList,
118                                 ImmutableCallSite &Call,
119                                 unsigned FixedArgs = ~0U) {
120       RetTy = ResultTy;
121       Callee = Call.getCalledValue();
122       SymName = Target;
123 
124       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
125       DoesNotReturn = Call.doesNotReturn();
126       IsVarArg = FuncTy->isVarArg();
127       IsReturnValueUsed = !Call.getInstruction()->use_empty();
128       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
129       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
130 
131       CallConv = Call.getCallingConv();
132       Args = std::move(ArgsList);
133       NumFixedArgs = (FixedArgs == ~0U) ? FuncTy->getNumParams() : FixedArgs;
134 
135       CS = &Call;
136 
137       return *this;
138     }
139 
140     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
141                                 const Value *Target, ArgListTy &&ArgsList,
142                                 unsigned FixedArgs = ~0U) {
143       RetTy = ResultTy;
144       Callee = Target;
145       CallConv = CC;
146       Args = std::move(ArgsList);
147       NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
148       return *this;
149     }
150 
151     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
152                                 const char *Target, ArgListTy &&ArgsList,
153                                 unsigned FixedArgs = ~0U) {
154       RetTy = ResultTy;
155       SymName = Target;
156       CallConv = CC;
157       Args = std::move(ArgsList);
158       NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
159       return *this;
160     }
161 
162     CallLoweringInfo &setTailCall(bool Value = true) {
163       IsTailCall = Value;
164       return *this;
165     }
166 
167     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
168       IsPatchPoint = Value;
169       return *this;
170     }
171 
getArgsCallLoweringInfo172     ArgListTy &getArgs() { return Args; }
173 
clearOutsCallLoweringInfo174     void clearOuts() {
175       OutVals.clear();
176       OutFlags.clear();
177       OutRegs.clear();
178     }
179 
clearInsCallLoweringInfo180     void clearIns() {
181       Ins.clear();
182       InRegs.clear();
183     }
184   };
185 
186 protected:
187   DenseMap<const Value *, unsigned> LocalValueMap;
188   FunctionLoweringInfo &FuncInfo;
189   MachineFunction *MF;
190   MachineRegisterInfo &MRI;
191   MachineFrameInfo &MFI;
192   MachineConstantPool &MCP;
193   DebugLoc DbgLoc;
194   const TargetMachine &TM;
195   const DataLayout &DL;
196   const TargetInstrInfo &TII;
197   const TargetLowering &TLI;
198   const TargetRegisterInfo &TRI;
199   const TargetLibraryInfo *LibInfo;
200   bool SkipTargetIndependentISel;
201 
202   /// \brief The position of the last instruction for materializing constants
203   /// for use in the current block. It resets to EmitStartPt when it makes sense
204   /// (for example, it's usually profitable to avoid function calls between the
205   /// definition and the use)
206   MachineInstr *LastLocalValue;
207 
208   /// \brief The top most instruction in the current block that is allowed for
209   /// emitting local variables. LastLocalValue resets to EmitStartPt when it
210   /// makes sense (for example, on function calls)
211   MachineInstr *EmitStartPt;
212 
213 public:
214   /// \brief Return the position of the last instruction emitted for
215   /// materializing constants for use in the current block.
getLastLocalValue()216   MachineInstr *getLastLocalValue() { return LastLocalValue; }
217 
218   /// \brief Update the position of the last instruction emitted for
219   /// materializing constants for use in the current block.
setLastLocalValue(MachineInstr * I)220   void setLastLocalValue(MachineInstr *I) {
221     EmitStartPt = I;
222     LastLocalValue = I;
223   }
224 
225   /// \brief Set the current block to which generated machine instructions will
226   /// be appended, and clear the local CSE map.
227   void startNewBlock();
228 
229   /// \brief Return current debug location information.
getCurDebugLoc()230   DebugLoc getCurDebugLoc() const { return DbgLoc; }
231 
232   /// \brief Do "fast" instruction selection for function arguments and append
233   /// the machine instructions to the current block. Returns true when
234   /// successful.
235   bool lowerArguments();
236 
237   /// \brief Do "fast" instruction selection for the given LLVM IR instruction
238   /// and append the generated machine instructions to the current block.
239   /// Returns true if selection was successful.
240   bool selectInstruction(const Instruction *I);
241 
242   /// \brief Do "fast" instruction selection for the given LLVM IR operator
243   /// (Instruction or ConstantExpr), and append generated machine instructions
244   /// to the current block. Return true if selection was successful.
245   bool selectOperator(const User *I, unsigned Opcode);
246 
247   /// \brief Create a virtual register and arrange for it to be assigned the
248   /// value for the given LLVM value.
249   unsigned getRegForValue(const Value *V);
250 
251   /// \brief Look up the value to see if its value is already cached in a
252   /// register. It may be defined by instructions across blocks or defined
253   /// locally.
254   unsigned lookUpRegForValue(const Value *V);
255 
256   /// \brief This is a wrapper around getRegForValue that also takes care of
257   /// truncating or sign-extending the given getelementptr index value.
258   std::pair<unsigned, bool> getRegForGEPIndex(const Value *V);
259 
260   /// \brief We're checking to see if we can fold \p LI into \p FoldInst. Note
261   /// that we could have a sequence where multiple LLVM IR instructions are
262   /// folded into the same machineinstr.  For example we could have:
263   ///
264   ///   A: x = load i32 *P
265   ///   B: y = icmp A, 42
266   ///   C: br y, ...
267   ///
268   /// In this scenario, \p LI is "A", and \p FoldInst is "C".  We know about "B"
269   /// (and any other folded instructions) because it is between A and C.
270   ///
271   /// If we succeed folding, return true.
272   bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst);
273 
274   /// \brief The specified machine instr operand is a vreg, and that vreg is
275   /// being provided by the specified load instruction.  If possible, try to
276   /// fold the load as an operand to the instruction, returning true if
277   /// possible.
278   ///
279   /// This method should be implemented by targets.
tryToFoldLoadIntoMI(MachineInstr *,unsigned,const LoadInst *)280   virtual bool tryToFoldLoadIntoMI(MachineInstr * /*MI*/, unsigned /*OpNo*/,
281                                    const LoadInst * /*LI*/) {
282     return false;
283   }
284 
285   /// \brief Reset InsertPt to prepare for inserting instructions into the
286   /// current block.
287   void recomputeInsertPt();
288 
289   /// \brief Remove all dead instructions between the I and E.
290   void removeDeadCode(MachineBasicBlock::iterator I,
291                       MachineBasicBlock::iterator E);
292 
293   struct SavePoint {
294     MachineBasicBlock::iterator InsertPt;
295     DebugLoc DL;
296   };
297 
298   /// \brief Prepare InsertPt to begin inserting instructions into the local
299   /// value area and return the old insert position.
300   SavePoint enterLocalValueArea();
301 
302   /// \brief Reset InsertPt to the given old insert position.
303   void leaveLocalValueArea(SavePoint Old);
304 
305   virtual ~FastISel();
306 
307 protected:
308   explicit FastISel(FunctionLoweringInfo &FuncInfo,
309                     const TargetLibraryInfo *LibInfo,
310                     bool SkipTargetIndependentISel = false);
311 
312   /// \brief This method is called by target-independent code when the normal
313   /// FastISel process fails to select an instruction. This gives targets a
314   /// chance to emit code for anything that doesn't fit into FastISel's
315   /// framework. It returns true if it was successful.
316   virtual bool fastSelectInstruction(const Instruction *I) = 0;
317 
318   /// \brief This method is called by target-independent code to do target-
319   /// specific argument lowering. It returns true if it was successful.
320   virtual bool fastLowerArguments();
321 
322   /// \brief This method is called by target-independent code to do target-
323   /// specific call lowering. It returns true if it was successful.
324   virtual bool fastLowerCall(CallLoweringInfo &CLI);
325 
326   /// \brief This method is called by target-independent code to do target-
327   /// specific intrinsic lowering. It returns true if it was successful.
328   virtual bool fastLowerIntrinsicCall(const IntrinsicInst *II);
329 
330   /// \brief This method is called by target-independent code to request that an
331   /// instruction with the given type and opcode be emitted.
332   virtual unsigned fastEmit_(MVT VT, MVT RetVT, unsigned Opcode);
333 
334   /// \brief This method is called by target-independent code to request that an
335   /// instruction with the given type, opcode, and register operand be emitted.
336   virtual unsigned fastEmit_r(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
337                               bool Op0IsKill);
338 
339   /// \brief This method is called by target-independent code to request that an
340   /// instruction with the given type, opcode, and register operands be emitted.
341   virtual unsigned fastEmit_rr(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
342                                bool Op0IsKill, unsigned Op1, bool Op1IsKill);
343 
344   /// \brief This method is called by target-independent code to request that an
345   /// instruction with the given type, opcode, and register and immediate
346   // operands be emitted.
347   virtual unsigned fastEmit_ri(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
348                                bool Op0IsKill, uint64_t Imm);
349 
350   /// \brief This method is called by target-independent code to request that an
351   /// instruction with the given type, opcode, and register and floating-point
352   /// immediate operands be emitted.
353   virtual unsigned fastEmit_rf(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
354                                bool Op0IsKill, const ConstantFP *FPImm);
355 
356   /// \brief This method is called by target-independent code to request that an
357   /// instruction with the given type, opcode, and register and immediate
358   /// operands be emitted.
359   virtual unsigned fastEmit_rri(MVT VT, MVT RetVT, unsigned Opcode,
360                                 unsigned Op0, bool Op0IsKill, unsigned Op1,
361                                 bool Op1IsKill, uint64_t Imm);
362 
363   /// \brief This method is a wrapper of fastEmit_ri.
364   ///
365   /// It first tries to emit an instruction with an immediate operand using
366   /// fastEmit_ri.  If that fails, it materializes the immediate into a register
367   /// and try fastEmit_rr instead.
368   unsigned fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, bool Op0IsKill,
369                         uint64_t Imm, MVT ImmType);
370 
371   /// \brief This method is called by target-independent code to request that an
372   /// instruction with the given type, opcode, and immediate operand be emitted.
373   virtual unsigned fastEmit_i(MVT VT, MVT RetVT, unsigned Opcode, uint64_t Imm);
374 
375   /// \brief This method is called by target-independent code to request that an
376   /// instruction with the given type, opcode, and floating-point immediate
377   /// operand be emitted.
378   virtual unsigned fastEmit_f(MVT VT, MVT RetVT, unsigned Opcode,
379                               const ConstantFP *FPImm);
380 
381   /// \brief Emit a MachineInstr with no operands and a result register in the
382   /// given register class.
383   unsigned fastEmitInst_(unsigned MachineInstOpcode,
384                          const TargetRegisterClass *RC);
385 
386   /// \brief Emit a MachineInstr with one register operand and a result register
387   /// in the given register class.
388   unsigned fastEmitInst_r(unsigned MachineInstOpcode,
389                           const TargetRegisterClass *RC, unsigned Op0,
390                           bool Op0IsKill);
391 
392   /// \brief Emit a MachineInstr with two register operands and a result
393   /// register in the given register class.
394   unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
395                            const TargetRegisterClass *RC, unsigned Op0,
396                            bool Op0IsKill, unsigned Op1, bool Op1IsKill);
397 
398   /// \brief Emit a MachineInstr with three register operands and a result
399   /// register in the given register class.
400   unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
401                             const TargetRegisterClass *RC, unsigned Op0,
402                             bool Op0IsKill, unsigned Op1, bool Op1IsKill,
403                             unsigned Op2, bool Op2IsKill);
404 
405   /// \brief Emit a MachineInstr with a register operand, an immediate, and a
406   /// result register in the given register class.
407   unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
408                            const TargetRegisterClass *RC, unsigned Op0,
409                            bool Op0IsKill, uint64_t Imm);
410 
411   /// \brief Emit a MachineInstr with one register operand and two immediate
412   /// operands.
413   unsigned fastEmitInst_rii(unsigned MachineInstOpcode,
414                             const TargetRegisterClass *RC, unsigned Op0,
415                             bool Op0IsKill, uint64_t Imm1, uint64_t Imm2);
416 
417   /// \brief Emit a MachineInstr with two register operands and a result
418   /// register in the given register class.
419   unsigned fastEmitInst_rf(unsigned MachineInstOpcode,
420                            const TargetRegisterClass *RC, unsigned Op0,
421                            bool Op0IsKill, const ConstantFP *FPImm);
422 
423   /// \brief Emit a MachineInstr with two register operands, an immediate, and a
424   /// result register in the given register class.
425   unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
426                             const TargetRegisterClass *RC, unsigned Op0,
427                             bool Op0IsKill, unsigned Op1, bool Op1IsKill,
428                             uint64_t Imm);
429 
430   /// \brief Emit a MachineInstr with two register operands, two immediates
431   /// operands, and a result register in the given register class.
432   unsigned fastEmitInst_rrii(unsigned MachineInstOpcode,
433                              const TargetRegisterClass *RC, unsigned Op0,
434                              bool Op0IsKill, unsigned Op1, bool Op1IsKill,
435                              uint64_t Imm1, uint64_t Imm2);
436 
437   /// \brief Emit a MachineInstr with a single immediate operand, and a result
438   /// register in the given register class.
439   unsigned fastEmitInst_i(unsigned MachineInstrOpcode,
440                           const TargetRegisterClass *RC, uint64_t Imm);
441 
442   /// \brief Emit a MachineInstr with a two immediate operands.
443   unsigned fastEmitInst_ii(unsigned MachineInstrOpcode,
444                            const TargetRegisterClass *RC, uint64_t Imm1,
445                            uint64_t Imm2);
446 
447   /// \brief Emit a MachineInstr for an extract_subreg from a specified index of
448   /// a superregister to a specified type.
449   unsigned fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill,
450                                       uint32_t Idx);
451 
452   /// \brief Emit MachineInstrs to compute the value of Op with all but the
453   /// least significant bit set to zero.
454   unsigned fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill);
455 
456   /// \brief Emit an unconditional branch to the given block, unless it is the
457   /// immediate (fall-through) successor, and update the CFG.
458   void fastEmitBranch(MachineBasicBlock *MBB, DebugLoc DL);
459 
460   /// \brief Update the value map to include the new mapping for this
461   /// instruction, or insert an extra copy to get the result in a previous
462   /// determined register.
463   ///
464   /// NOTE: This is only necessary because we might select a block that uses a
465   /// value before we select the block that defines the value. It might be
466   /// possible to fix this by selecting blocks in reverse postorder.
467   void updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs = 1);
468 
469   unsigned createResultReg(const TargetRegisterClass *RC);
470 
471   /// \brief Try to constrain Op so that it is usable by argument OpNum of the
472   /// provided MCInstrDesc. If this fails, create a new virtual register in the
473   /// correct class and COPY the value there.
474   unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
475                                     unsigned OpNum);
476 
477   /// \brief Emit a constant in a register using target-specific logic, such as
478   /// constant pool loads.
fastMaterializeConstant(const Constant * C)479   virtual unsigned fastMaterializeConstant(const Constant *C) { return 0; }
480 
481   /// \brief Emit an alloca address in a register using target-specific logic.
fastMaterializeAlloca(const AllocaInst * C)482   virtual unsigned fastMaterializeAlloca(const AllocaInst *C) { return 0; }
483 
484   /// \brief Emit the floating-point constant +0.0 in a register using target-
485   /// specific logic.
fastMaterializeFloatZero(const ConstantFP * CF)486   virtual unsigned fastMaterializeFloatZero(const ConstantFP *CF) {
487     return 0;
488   }
489 
490   /// \brief Check if \c Add is an add that can be safely folded into \c GEP.
491   ///
492   /// \c Add can be folded into \c GEP if:
493   /// - \c Add is an add,
494   /// - \c Add's size matches \c GEP's,
495   /// - \c Add is in the same basic block as \c GEP, and
496   /// - \c Add has a constant operand.
497   bool canFoldAddIntoGEP(const User *GEP, const Value *Add);
498 
499   /// \brief Test whether the given value has exactly one use.
500   bool hasTrivialKill(const Value *V);
501 
502   /// \brief Create a machine mem operand from the given instruction.
503   MachineMemOperand *createMachineMemOperandFor(const Instruction *I) const;
504 
505   CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) const;
506 
507   bool lowerCallTo(const CallInst *CI, const char *SymName, unsigned NumArgs);
508   bool lowerCallTo(CallLoweringInfo &CLI);
509 
isCommutativeIntrinsic(IntrinsicInst const * II)510   bool isCommutativeIntrinsic(IntrinsicInst const *II) {
511     switch (II->getIntrinsicID()) {
512     case Intrinsic::sadd_with_overflow:
513     case Intrinsic::uadd_with_overflow:
514     case Intrinsic::smul_with_overflow:
515     case Intrinsic::umul_with_overflow:
516       return true;
517     default:
518       return false;
519     }
520   }
521 
522 
523   bool lowerCall(const CallInst *I);
524   /// \brief Select and emit code for a binary operator instruction, which has
525   /// an opcode which directly corresponds to the given ISD opcode.
526   bool selectBinaryOp(const User *I, unsigned ISDOpcode);
527   bool selectFNeg(const User *I);
528   bool selectGetElementPtr(const User *I);
529   bool selectStackmap(const CallInst *I);
530   bool selectPatchpoint(const CallInst *I);
531   bool selectCall(const User *Call);
532   bool selectIntrinsicCall(const IntrinsicInst *II);
533   bool selectBitCast(const User *I);
534   bool selectCast(const User *I, unsigned Opcode);
535   bool selectExtractValue(const User *I);
536   bool selectInsertValue(const User *I);
537 
538 private:
539   /// \brief Handle PHI nodes in successor blocks.
540   ///
541   /// Emit code to ensure constants are copied into registers when needed.
542   /// Remember the virtual registers that need to be added to the Machine PHI
543   /// nodes as input.  We cannot just directly add them, because expansion might
544   /// result in multiple MBB's for one BB.  As such, the start of the BB might
545   /// correspond to a different MBB than the end.
546   bool handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
547 
548   /// \brief Helper for materializeRegForValue to materialize a constant in a
549   /// target-independent way.
550   unsigned materializeConstant(const Value *V, MVT VT);
551 
552   /// \brief Helper for getRegForVale. This function is called when the value
553   /// isn't already available in a register and must be materialized with new
554   /// instructions.
555   unsigned materializeRegForValue(const Value *V, MVT VT);
556 
557   /// \brief Clears LocalValueMap and moves the area for the new local variables
558   /// to the beginning of the block. It helps to avoid spilling cached variables
559   /// across heavy instructions like calls.
560   void flushLocalValueMap();
561 
562   /// \brief Insertion point before trying to select the current instruction.
563   MachineBasicBlock::iterator SavedInsertPt;
564 
565   /// \brief Add a stackmap or patchpoint intrinsic call's live variable
566   /// operands to a stackmap or patchpoint machine instruction.
567   bool addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
568                            const CallInst *CI, unsigned StartIdx);
569   bool lowerCallOperands(const CallInst *CI, unsigned ArgIdx, unsigned NumArgs,
570                          const Value *Callee, bool ForceRetVoidTy,
571                          CallLoweringInfo &CLI);
572 };
573 
574 } // end namespace llvm
575 
576 #endif
577