• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #ifndef VP9_COMMON_VP9_ONYXC_INT_H_
12 #define VP9_COMMON_VP9_ONYXC_INT_H_
13 
14 #include "./vpx_config.h"
15 #include "vpx/internal/vpx_codec_internal.h"
16 #include "vpx_util/vpx_thread.h"
17 #include "./vp9_rtcd.h"
18 #include "vp9/common/vp9_alloccommon.h"
19 #include "vp9/common/vp9_loopfilter.h"
20 #include "vp9/common/vp9_entropymv.h"
21 #include "vp9/common/vp9_entropy.h"
22 #include "vp9/common/vp9_entropymode.h"
23 #include "vp9/common/vp9_frame_buffers.h"
24 #include "vp9/common/vp9_quant_common.h"
25 #include "vp9/common/vp9_tile_common.h"
26 
27 #if CONFIG_VP9_POSTPROC
28 #include "vp9/common/vp9_postproc.h"
29 #endif
30 
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
34 
35 #define REFS_PER_FRAME 3
36 
37 #define REF_FRAMES_LOG2 3
38 #define REF_FRAMES (1 << REF_FRAMES_LOG2)
39 
40 // 4 scratch frames for the new frames to support a maximum of 4 cores decoding
41 // in parallel, 3 for scaled references on the encoder.
42 // TODO(hkuang): Add ondemand frame buffers instead of hardcoding the number
43 // of framebuffers.
44 // TODO(jkoleszar): These 3 extra references could probably come from the
45 // normal reference pool.
46 #define FRAME_BUFFERS (REF_FRAMES + 7)
47 
48 #define FRAME_CONTEXTS_LOG2 2
49 #define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2)
50 
51 #define NUM_PING_PONG_BUFFERS 2
52 
53 extern const struct {
54   PARTITION_CONTEXT above;
55   PARTITION_CONTEXT left;
56 } partition_context_lookup[BLOCK_SIZES];
57 
58 
59 typedef enum {
60   SINGLE_REFERENCE      = 0,
61   COMPOUND_REFERENCE    = 1,
62   REFERENCE_MODE_SELECT = 2,
63   REFERENCE_MODES       = 3,
64 } REFERENCE_MODE;
65 
66 typedef struct {
67   int_mv mv[2];
68   MV_REFERENCE_FRAME ref_frame[2];
69 } MV_REF;
70 
71 typedef struct {
72   int ref_count;
73   MV_REF *mvs;
74   int mi_rows;
75   int mi_cols;
76   vpx_codec_frame_buffer_t raw_frame_buffer;
77   YV12_BUFFER_CONFIG buf;
78 
79   // The Following variables will only be used in frame parallel decode.
80 
81   // frame_worker_owner indicates which FrameWorker owns this buffer. NULL means
82   // that no FrameWorker owns, or is decoding, this buffer.
83   VPxWorker *frame_worker_owner;
84 
85   // row and col indicate which position frame has been decoded to in real
86   // pixel unit. They are reset to -1 when decoding begins and set to INT_MAX
87   // when the frame is fully decoded.
88   int row;
89   int col;
90 } RefCntBuffer;
91 
92 typedef struct BufferPool {
93   // Protect BufferPool from being accessed by several FrameWorkers at
94   // the same time during frame parallel decode.
95   // TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
96 #if CONFIG_MULTITHREAD
97   pthread_mutex_t pool_mutex;
98 #endif
99 
100   // Private data associated with the frame buffer callbacks.
101   void *cb_priv;
102 
103   vpx_get_frame_buffer_cb_fn_t get_fb_cb;
104   vpx_release_frame_buffer_cb_fn_t release_fb_cb;
105 
106   RefCntBuffer frame_bufs[FRAME_BUFFERS];
107 
108   // Frame buffers allocated internally by the codec.
109   InternalFrameBufferList int_frame_buffers;
110 } BufferPool;
111 
112 typedef struct VP9Common {
113   struct vpx_internal_error_info  error;
114   vpx_color_space_t color_space;
115   int width;
116   int height;
117   int display_width;
118   int display_height;
119   int last_width;
120   int last_height;
121 
122   // TODO(jkoleszar): this implies chroma ss right now, but could vary per
123   // plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to
124   // support additional planes.
125   int subsampling_x;
126   int subsampling_y;
127 
128 #if CONFIG_VP9_HIGHBITDEPTH
129   int use_highbitdepth;  // Marks if we need to use 16bit frame buffers.
130 #endif
131 
132   YV12_BUFFER_CONFIG *frame_to_show;
133   RefCntBuffer *prev_frame;
134 
135   // TODO(hkuang): Combine this with cur_buf in macroblockd.
136   RefCntBuffer *cur_frame;
137 
138   int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */
139 
140   // Prepare ref_frame_map for the next frame.
141   // Only used in frame parallel decode.
142   int next_ref_frame_map[REF_FRAMES];
143 
144   // TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and
145   // roll new_fb_idx into it.
146 
147   // Each frame can reference REFS_PER_FRAME buffers
148   RefBuffer frame_refs[REFS_PER_FRAME];
149 
150   int new_fb_idx;
151 
152 #if CONFIG_VP9_POSTPROC
153   YV12_BUFFER_CONFIG post_proc_buffer;
154   YV12_BUFFER_CONFIG post_proc_buffer_int;
155 #endif
156 
157   FRAME_TYPE last_frame_type;  /* last frame's frame type for motion search.*/
158   FRAME_TYPE frame_type;
159 
160   int show_frame;
161   int last_show_frame;
162   int show_existing_frame;
163 
164   // Flag signaling that the frame is encoded using only INTRA modes.
165   uint8_t intra_only;
166   uint8_t last_intra_only;
167 
168   int allow_high_precision_mv;
169 
170   // Flag signaling that the frame context should be reset to default values.
171   // 0 or 1 implies don't reset, 2 reset just the context specified in the
172   // frame header, 3 reset all contexts.
173   int reset_frame_context;
174 
175   // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in
176   // MODE_INFO (8-pixel) units.
177   int MBs;
178   int mb_rows, mi_rows;
179   int mb_cols, mi_cols;
180   int mi_stride;
181 
182   /* profile settings */
183   TX_MODE tx_mode;
184 
185   int base_qindex;
186   int y_dc_delta_q;
187   int uv_dc_delta_q;
188   int uv_ac_delta_q;
189   int16_t y_dequant[MAX_SEGMENTS][2];
190   int16_t uv_dequant[MAX_SEGMENTS][2];
191 
192   /* We allocate a MODE_INFO struct for each macroblock, together with
193      an extra row on top and column on the left to simplify prediction. */
194   int mi_alloc_size;
195   MODE_INFO *mip; /* Base of allocated array */
196   MODE_INFO *mi;  /* Corresponds to upper left visible macroblock */
197 
198   // TODO(agrange): Move prev_mi into encoder structure.
199   // prev_mip and prev_mi will only be allocated in VP9 encoder.
200   MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */
201   MODE_INFO *prev_mi;  /* 'mi' from last frame (points into prev_mip) */
202 
203   // Separate mi functions between encoder and decoder.
204   int (*alloc_mi)(struct VP9Common *cm, int mi_size);
205   void (*free_mi)(struct VP9Common *cm);
206   void (*setup_mi)(struct VP9Common *cm);
207 
208   // Grid of pointers to 8x8 MODE_INFO structs.  Any 8x8 not in the visible
209   // area will be NULL.
210   MODE_INFO **mi_grid_base;
211   MODE_INFO **mi_grid_visible;
212   MODE_INFO **prev_mi_grid_base;
213   MODE_INFO **prev_mi_grid_visible;
214 
215   // Whether to use previous frame's motion vectors for prediction.
216   int use_prev_frame_mvs;
217 
218   // Persistent mb segment id map used in prediction.
219   int seg_map_idx;
220   int prev_seg_map_idx;
221 
222   uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS];
223   uint8_t *last_frame_seg_map;
224   uint8_t *current_frame_seg_map;
225   int seg_map_alloc_size;
226 
227   INTERP_FILTER interp_filter;
228 
229   loop_filter_info_n lf_info;
230 
231   int refresh_frame_context;    /* Two state 0 = NO, 1 = YES */
232 
233   int ref_frame_sign_bias[MAX_REF_FRAMES];    /* Two state 0, 1 */
234 
235   struct loopfilter lf;
236   struct segmentation seg;
237 
238   // TODO(hkuang): Remove this as it is the same as frame_parallel_decode
239   // in pbi.
240   int frame_parallel_decode;  // frame-based threading.
241 
242   // Context probabilities for reference frame prediction
243   MV_REFERENCE_FRAME comp_fixed_ref;
244   MV_REFERENCE_FRAME comp_var_ref[2];
245   REFERENCE_MODE reference_mode;
246 
247   FRAME_CONTEXT *fc;  /* this frame entropy */
248   FRAME_CONTEXT *frame_contexts;   // FRAME_CONTEXTS
249   unsigned int  frame_context_idx; /* Context to use/update */
250   FRAME_COUNTS counts;
251 
252   unsigned int current_video_frame;
253   BITSTREAM_PROFILE profile;
254 
255   // VPX_BITS_8 in profile 0 or 1, VPX_BITS_10 or VPX_BITS_12 in profile 2 or 3.
256   vpx_bit_depth_t bit_depth;
257   vpx_bit_depth_t dequant_bit_depth;  // bit_depth of current dequantizer
258 
259 #if CONFIG_VP9_POSTPROC
260   struct postproc_state  postproc_state;
261 #endif
262 
263   int error_resilient_mode;
264   int frame_parallel_decoding_mode;
265 
266   int log2_tile_cols, log2_tile_rows;
267   int byte_alignment;
268   int skip_loop_filter;
269 
270   // Private data associated with the frame buffer callbacks.
271   void *cb_priv;
272   vpx_get_frame_buffer_cb_fn_t get_fb_cb;
273   vpx_release_frame_buffer_cb_fn_t release_fb_cb;
274 
275   // Handles memory for the codec.
276   InternalFrameBufferList int_frame_buffers;
277 
278   // External BufferPool passed from outside.
279   BufferPool *buffer_pool;
280 
281   PARTITION_CONTEXT *above_seg_context;
282   ENTROPY_CONTEXT *above_context;
283   int above_context_alloc_cols;
284 } VP9_COMMON;
285 
286 // TODO(hkuang): Don't need to lock the whole pool after implementing atomic
287 // frame reference count.
288 void lock_buffer_pool(BufferPool *const pool);
289 void unlock_buffer_pool(BufferPool *const pool);
290 
get_ref_frame(VP9_COMMON * cm,int index)291 static INLINE YV12_BUFFER_CONFIG *get_ref_frame(VP9_COMMON *cm, int index) {
292   if (index < 0 || index >= REF_FRAMES)
293     return NULL;
294   if (cm->ref_frame_map[index] < 0)
295     return NULL;
296   assert(cm->ref_frame_map[index] < FRAME_BUFFERS);
297   return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf;
298 }
299 
get_frame_new_buffer(VP9_COMMON * cm)300 static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer(VP9_COMMON *cm) {
301   return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf;
302 }
303 
get_free_fb(VP9_COMMON * cm)304 static INLINE int get_free_fb(VP9_COMMON *cm) {
305   RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
306   int i;
307 
308   lock_buffer_pool(cm->buffer_pool);
309   for (i = 0; i < FRAME_BUFFERS; ++i)
310     if (frame_bufs[i].ref_count == 0)
311       break;
312 
313   if (i != FRAME_BUFFERS) {
314     frame_bufs[i].ref_count = 1;
315   } else {
316     // Reset i to be INVALID_IDX to indicate no free buffer found.
317     i = INVALID_IDX;
318   }
319 
320   unlock_buffer_pool(cm->buffer_pool);
321   return i;
322 }
323 
ref_cnt_fb(RefCntBuffer * bufs,int * idx,int new_idx)324 static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) {
325   const int ref_index = *idx;
326 
327   if (ref_index >= 0 && bufs[ref_index].ref_count > 0)
328     bufs[ref_index].ref_count--;
329 
330   *idx = new_idx;
331 
332   bufs[new_idx].ref_count++;
333 }
334 
mi_cols_aligned_to_sb(int n_mis)335 static INLINE int mi_cols_aligned_to_sb(int n_mis) {
336   return ALIGN_POWER_OF_TWO(n_mis, MI_BLOCK_SIZE_LOG2);
337 }
338 
frame_is_intra_only(const VP9_COMMON * const cm)339 static INLINE int frame_is_intra_only(const VP9_COMMON *const cm) {
340   return cm->frame_type == KEY_FRAME || cm->intra_only;
341 }
342 
set_partition_probs(const VP9_COMMON * const cm,MACROBLOCKD * const xd)343 static INLINE void set_partition_probs(const VP9_COMMON *const cm,
344                                        MACROBLOCKD *const xd) {
345   xd->partition_probs =
346       frame_is_intra_only(cm) ?
347           &vp9_kf_partition_probs[0] :
348           (const vpx_prob (*)[PARTITION_TYPES - 1])cm->fc->partition_prob;
349 }
350 
vp9_init_macroblockd(VP9_COMMON * cm,MACROBLOCKD * xd,tran_low_t * dqcoeff)351 static INLINE void vp9_init_macroblockd(VP9_COMMON *cm, MACROBLOCKD *xd,
352                                         tran_low_t *dqcoeff) {
353   int i;
354 
355   for (i = 0; i < MAX_MB_PLANE; ++i) {
356     xd->plane[i].dqcoeff = dqcoeff;
357     xd->above_context[i] = cm->above_context +
358         i * sizeof(*cm->above_context) * 2 * mi_cols_aligned_to_sb(cm->mi_cols);
359 
360     if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
361       memcpy(xd->plane[i].seg_dequant, cm->y_dequant, sizeof(cm->y_dequant));
362     } else {
363       memcpy(xd->plane[i].seg_dequant, cm->uv_dequant, sizeof(cm->uv_dequant));
364     }
365     xd->fc = cm->fc;
366     xd->frame_parallel_decoding_mode = cm->frame_parallel_decoding_mode;
367   }
368 
369   xd->above_seg_context = cm->above_seg_context;
370   xd->mi_stride = cm->mi_stride;
371   xd->error_info = &cm->error;
372 
373   set_partition_probs(cm, xd);
374 }
375 
get_partition_probs(const MACROBLOCKD * xd,int ctx)376 static INLINE const vpx_prob* get_partition_probs(const MACROBLOCKD *xd,
377                                                   int ctx) {
378   return xd->partition_probs[ctx];
379 }
380 
set_skip_context(MACROBLOCKD * xd,int mi_row,int mi_col)381 static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) {
382   const int above_idx = mi_col * 2;
383   const int left_idx = (mi_row * 2) & 15;
384   int i;
385   for (i = 0; i < MAX_MB_PLANE; ++i) {
386     struct macroblockd_plane *const pd = &xd->plane[i];
387     pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x];
388     pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y];
389   }
390 }
391 
calc_mi_size(int len)392 static INLINE int calc_mi_size(int len) {
393   // len is in mi units.
394   return len + MI_BLOCK_SIZE;
395 }
396 
set_mi_row_col(MACROBLOCKD * xd,const TileInfo * const tile,int mi_row,int bh,int mi_col,int bw,int mi_rows,int mi_cols)397 static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
398                                   int mi_row, int bh,
399                                   int mi_col, int bw,
400                                   int mi_rows, int mi_cols) {
401   xd->mb_to_top_edge    = -((mi_row * MI_SIZE) * 8);
402   xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8;
403   xd->mb_to_left_edge   = -((mi_col * MI_SIZE) * 8);
404   xd->mb_to_right_edge  = ((mi_cols - bw - mi_col) * MI_SIZE) * 8;
405 
406   // Are edges available for intra prediction?
407   xd->up_available    = (mi_row != 0);
408   xd->left_available  = (mi_col > tile->mi_col_start);
409   if (xd->up_available) {
410     xd->above_mi = xd->mi[-xd->mi_stride];
411     // above_mi may be NULL in VP9 encoder's first pass.
412     xd->above_mbmi = xd->above_mi ? &xd->above_mi->mbmi : NULL;
413   } else {
414     xd->above_mi = NULL;
415     xd->above_mbmi = NULL;
416   }
417 
418   if (xd->left_available) {
419     xd->left_mi = xd->mi[-1];
420     // left_mi may be NULL in VP9 encoder's first pass.
421     xd->left_mbmi = xd->left_mi ? &xd->left_mi->mbmi : NULL;
422   } else {
423     xd->left_mi = NULL;
424     xd->left_mbmi = NULL;
425   }
426 }
427 
update_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize)428 static INLINE void update_partition_context(MACROBLOCKD *xd,
429                                             int mi_row, int mi_col,
430                                             BLOCK_SIZE subsize,
431                                             BLOCK_SIZE bsize) {
432   PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
433   PARTITION_CONTEXT *const left_ctx = xd->left_seg_context + (mi_row & MI_MASK);
434 
435   // num_4x4_blocks_wide_lookup[bsize] / 2
436   const int bs = num_8x8_blocks_wide_lookup[bsize];
437 
438   // update the partition context at the end notes. set partition bits
439   // of block sizes larger than the current one to be one, and partition
440   // bits of smaller block sizes to be zero.
441   memset(above_ctx, partition_context_lookup[subsize].above, bs);
442   memset(left_ctx, partition_context_lookup[subsize].left, bs);
443 }
444 
partition_plane_context(const MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)445 static INLINE int partition_plane_context(const MACROBLOCKD *xd,
446                                           int mi_row, int mi_col,
447                                           BLOCK_SIZE bsize) {
448   const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
449   const PARTITION_CONTEXT *left_ctx = xd->left_seg_context + (mi_row & MI_MASK);
450   const int bsl = mi_width_log2_lookup[bsize];
451   int above = (*above_ctx >> bsl) & 1 , left = (*left_ctx >> bsl) & 1;
452 
453   assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
454   assert(bsl >= 0);
455 
456   return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
457 }
458 
459 #ifdef __cplusplus
460 }  // extern "C"
461 #endif
462 
463 #endif  // VP9_COMMON_VP9_ONYXC_INT_H_
464