1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #ifndef VP9_COMMON_VP9_ONYXC_INT_H_
12 #define VP9_COMMON_VP9_ONYXC_INT_H_
13
14 #include "./vpx_config.h"
15 #include "vpx/internal/vpx_codec_internal.h"
16 #include "vpx_util/vpx_thread.h"
17 #include "./vp9_rtcd.h"
18 #include "vp9/common/vp9_alloccommon.h"
19 #include "vp9/common/vp9_loopfilter.h"
20 #include "vp9/common/vp9_entropymv.h"
21 #include "vp9/common/vp9_entropy.h"
22 #include "vp9/common/vp9_entropymode.h"
23 #include "vp9/common/vp9_frame_buffers.h"
24 #include "vp9/common/vp9_quant_common.h"
25 #include "vp9/common/vp9_tile_common.h"
26
27 #if CONFIG_VP9_POSTPROC
28 #include "vp9/common/vp9_postproc.h"
29 #endif
30
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
34
35 #define REFS_PER_FRAME 3
36
37 #define REF_FRAMES_LOG2 3
38 #define REF_FRAMES (1 << REF_FRAMES_LOG2)
39
40 // 4 scratch frames for the new frames to support a maximum of 4 cores decoding
41 // in parallel, 3 for scaled references on the encoder.
42 // TODO(hkuang): Add ondemand frame buffers instead of hardcoding the number
43 // of framebuffers.
44 // TODO(jkoleszar): These 3 extra references could probably come from the
45 // normal reference pool.
46 #define FRAME_BUFFERS (REF_FRAMES + 7)
47
48 #define FRAME_CONTEXTS_LOG2 2
49 #define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2)
50
51 #define NUM_PING_PONG_BUFFERS 2
52
53 extern const struct {
54 PARTITION_CONTEXT above;
55 PARTITION_CONTEXT left;
56 } partition_context_lookup[BLOCK_SIZES];
57
58
59 typedef enum {
60 SINGLE_REFERENCE = 0,
61 COMPOUND_REFERENCE = 1,
62 REFERENCE_MODE_SELECT = 2,
63 REFERENCE_MODES = 3,
64 } REFERENCE_MODE;
65
66 typedef struct {
67 int_mv mv[2];
68 MV_REFERENCE_FRAME ref_frame[2];
69 } MV_REF;
70
71 typedef struct {
72 int ref_count;
73 MV_REF *mvs;
74 int mi_rows;
75 int mi_cols;
76 vpx_codec_frame_buffer_t raw_frame_buffer;
77 YV12_BUFFER_CONFIG buf;
78
79 // The Following variables will only be used in frame parallel decode.
80
81 // frame_worker_owner indicates which FrameWorker owns this buffer. NULL means
82 // that no FrameWorker owns, or is decoding, this buffer.
83 VPxWorker *frame_worker_owner;
84
85 // row and col indicate which position frame has been decoded to in real
86 // pixel unit. They are reset to -1 when decoding begins and set to INT_MAX
87 // when the frame is fully decoded.
88 int row;
89 int col;
90 } RefCntBuffer;
91
92 typedef struct BufferPool {
93 // Protect BufferPool from being accessed by several FrameWorkers at
94 // the same time during frame parallel decode.
95 // TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
96 #if CONFIG_MULTITHREAD
97 pthread_mutex_t pool_mutex;
98 #endif
99
100 // Private data associated with the frame buffer callbacks.
101 void *cb_priv;
102
103 vpx_get_frame_buffer_cb_fn_t get_fb_cb;
104 vpx_release_frame_buffer_cb_fn_t release_fb_cb;
105
106 RefCntBuffer frame_bufs[FRAME_BUFFERS];
107
108 // Frame buffers allocated internally by the codec.
109 InternalFrameBufferList int_frame_buffers;
110 } BufferPool;
111
112 typedef struct VP9Common {
113 struct vpx_internal_error_info error;
114 vpx_color_space_t color_space;
115 int width;
116 int height;
117 int display_width;
118 int display_height;
119 int last_width;
120 int last_height;
121
122 // TODO(jkoleszar): this implies chroma ss right now, but could vary per
123 // plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to
124 // support additional planes.
125 int subsampling_x;
126 int subsampling_y;
127
128 #if CONFIG_VP9_HIGHBITDEPTH
129 int use_highbitdepth; // Marks if we need to use 16bit frame buffers.
130 #endif
131
132 YV12_BUFFER_CONFIG *frame_to_show;
133 RefCntBuffer *prev_frame;
134
135 // TODO(hkuang): Combine this with cur_buf in macroblockd.
136 RefCntBuffer *cur_frame;
137
138 int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */
139
140 // Prepare ref_frame_map for the next frame.
141 // Only used in frame parallel decode.
142 int next_ref_frame_map[REF_FRAMES];
143
144 // TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and
145 // roll new_fb_idx into it.
146
147 // Each frame can reference REFS_PER_FRAME buffers
148 RefBuffer frame_refs[REFS_PER_FRAME];
149
150 int new_fb_idx;
151
152 #if CONFIG_VP9_POSTPROC
153 YV12_BUFFER_CONFIG post_proc_buffer;
154 YV12_BUFFER_CONFIG post_proc_buffer_int;
155 #endif
156
157 FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/
158 FRAME_TYPE frame_type;
159
160 int show_frame;
161 int last_show_frame;
162 int show_existing_frame;
163
164 // Flag signaling that the frame is encoded using only INTRA modes.
165 uint8_t intra_only;
166 uint8_t last_intra_only;
167
168 int allow_high_precision_mv;
169
170 // Flag signaling that the frame context should be reset to default values.
171 // 0 or 1 implies don't reset, 2 reset just the context specified in the
172 // frame header, 3 reset all contexts.
173 int reset_frame_context;
174
175 // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in
176 // MODE_INFO (8-pixel) units.
177 int MBs;
178 int mb_rows, mi_rows;
179 int mb_cols, mi_cols;
180 int mi_stride;
181
182 /* profile settings */
183 TX_MODE tx_mode;
184
185 int base_qindex;
186 int y_dc_delta_q;
187 int uv_dc_delta_q;
188 int uv_ac_delta_q;
189 int16_t y_dequant[MAX_SEGMENTS][2];
190 int16_t uv_dequant[MAX_SEGMENTS][2];
191
192 /* We allocate a MODE_INFO struct for each macroblock, together with
193 an extra row on top and column on the left to simplify prediction. */
194 int mi_alloc_size;
195 MODE_INFO *mip; /* Base of allocated array */
196 MODE_INFO *mi; /* Corresponds to upper left visible macroblock */
197
198 // TODO(agrange): Move prev_mi into encoder structure.
199 // prev_mip and prev_mi will only be allocated in VP9 encoder.
200 MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */
201 MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */
202
203 // Separate mi functions between encoder and decoder.
204 int (*alloc_mi)(struct VP9Common *cm, int mi_size);
205 void (*free_mi)(struct VP9Common *cm);
206 void (*setup_mi)(struct VP9Common *cm);
207
208 // Grid of pointers to 8x8 MODE_INFO structs. Any 8x8 not in the visible
209 // area will be NULL.
210 MODE_INFO **mi_grid_base;
211 MODE_INFO **mi_grid_visible;
212 MODE_INFO **prev_mi_grid_base;
213 MODE_INFO **prev_mi_grid_visible;
214
215 // Whether to use previous frame's motion vectors for prediction.
216 int use_prev_frame_mvs;
217
218 // Persistent mb segment id map used in prediction.
219 int seg_map_idx;
220 int prev_seg_map_idx;
221
222 uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS];
223 uint8_t *last_frame_seg_map;
224 uint8_t *current_frame_seg_map;
225 int seg_map_alloc_size;
226
227 INTERP_FILTER interp_filter;
228
229 loop_filter_info_n lf_info;
230
231 int refresh_frame_context; /* Two state 0 = NO, 1 = YES */
232
233 int ref_frame_sign_bias[MAX_REF_FRAMES]; /* Two state 0, 1 */
234
235 struct loopfilter lf;
236 struct segmentation seg;
237
238 // TODO(hkuang): Remove this as it is the same as frame_parallel_decode
239 // in pbi.
240 int frame_parallel_decode; // frame-based threading.
241
242 // Context probabilities for reference frame prediction
243 MV_REFERENCE_FRAME comp_fixed_ref;
244 MV_REFERENCE_FRAME comp_var_ref[2];
245 REFERENCE_MODE reference_mode;
246
247 FRAME_CONTEXT *fc; /* this frame entropy */
248 FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS
249 unsigned int frame_context_idx; /* Context to use/update */
250 FRAME_COUNTS counts;
251
252 unsigned int current_video_frame;
253 BITSTREAM_PROFILE profile;
254
255 // VPX_BITS_8 in profile 0 or 1, VPX_BITS_10 or VPX_BITS_12 in profile 2 or 3.
256 vpx_bit_depth_t bit_depth;
257 vpx_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer
258
259 #if CONFIG_VP9_POSTPROC
260 struct postproc_state postproc_state;
261 #endif
262
263 int error_resilient_mode;
264 int frame_parallel_decoding_mode;
265
266 int log2_tile_cols, log2_tile_rows;
267 int byte_alignment;
268 int skip_loop_filter;
269
270 // Private data associated with the frame buffer callbacks.
271 void *cb_priv;
272 vpx_get_frame_buffer_cb_fn_t get_fb_cb;
273 vpx_release_frame_buffer_cb_fn_t release_fb_cb;
274
275 // Handles memory for the codec.
276 InternalFrameBufferList int_frame_buffers;
277
278 // External BufferPool passed from outside.
279 BufferPool *buffer_pool;
280
281 PARTITION_CONTEXT *above_seg_context;
282 ENTROPY_CONTEXT *above_context;
283 int above_context_alloc_cols;
284 } VP9_COMMON;
285
286 // TODO(hkuang): Don't need to lock the whole pool after implementing atomic
287 // frame reference count.
288 void lock_buffer_pool(BufferPool *const pool);
289 void unlock_buffer_pool(BufferPool *const pool);
290
get_ref_frame(VP9_COMMON * cm,int index)291 static INLINE YV12_BUFFER_CONFIG *get_ref_frame(VP9_COMMON *cm, int index) {
292 if (index < 0 || index >= REF_FRAMES)
293 return NULL;
294 if (cm->ref_frame_map[index] < 0)
295 return NULL;
296 assert(cm->ref_frame_map[index] < FRAME_BUFFERS);
297 return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf;
298 }
299
get_frame_new_buffer(VP9_COMMON * cm)300 static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer(VP9_COMMON *cm) {
301 return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf;
302 }
303
get_free_fb(VP9_COMMON * cm)304 static INLINE int get_free_fb(VP9_COMMON *cm) {
305 RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
306 int i;
307
308 lock_buffer_pool(cm->buffer_pool);
309 for (i = 0; i < FRAME_BUFFERS; ++i)
310 if (frame_bufs[i].ref_count == 0)
311 break;
312
313 if (i != FRAME_BUFFERS) {
314 frame_bufs[i].ref_count = 1;
315 } else {
316 // Reset i to be INVALID_IDX to indicate no free buffer found.
317 i = INVALID_IDX;
318 }
319
320 unlock_buffer_pool(cm->buffer_pool);
321 return i;
322 }
323
ref_cnt_fb(RefCntBuffer * bufs,int * idx,int new_idx)324 static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) {
325 const int ref_index = *idx;
326
327 if (ref_index >= 0 && bufs[ref_index].ref_count > 0)
328 bufs[ref_index].ref_count--;
329
330 *idx = new_idx;
331
332 bufs[new_idx].ref_count++;
333 }
334
mi_cols_aligned_to_sb(int n_mis)335 static INLINE int mi_cols_aligned_to_sb(int n_mis) {
336 return ALIGN_POWER_OF_TWO(n_mis, MI_BLOCK_SIZE_LOG2);
337 }
338
frame_is_intra_only(const VP9_COMMON * const cm)339 static INLINE int frame_is_intra_only(const VP9_COMMON *const cm) {
340 return cm->frame_type == KEY_FRAME || cm->intra_only;
341 }
342
set_partition_probs(const VP9_COMMON * const cm,MACROBLOCKD * const xd)343 static INLINE void set_partition_probs(const VP9_COMMON *const cm,
344 MACROBLOCKD *const xd) {
345 xd->partition_probs =
346 frame_is_intra_only(cm) ?
347 &vp9_kf_partition_probs[0] :
348 (const vpx_prob (*)[PARTITION_TYPES - 1])cm->fc->partition_prob;
349 }
350
vp9_init_macroblockd(VP9_COMMON * cm,MACROBLOCKD * xd,tran_low_t * dqcoeff)351 static INLINE void vp9_init_macroblockd(VP9_COMMON *cm, MACROBLOCKD *xd,
352 tran_low_t *dqcoeff) {
353 int i;
354
355 for (i = 0; i < MAX_MB_PLANE; ++i) {
356 xd->plane[i].dqcoeff = dqcoeff;
357 xd->above_context[i] = cm->above_context +
358 i * sizeof(*cm->above_context) * 2 * mi_cols_aligned_to_sb(cm->mi_cols);
359
360 if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
361 memcpy(xd->plane[i].seg_dequant, cm->y_dequant, sizeof(cm->y_dequant));
362 } else {
363 memcpy(xd->plane[i].seg_dequant, cm->uv_dequant, sizeof(cm->uv_dequant));
364 }
365 xd->fc = cm->fc;
366 xd->frame_parallel_decoding_mode = cm->frame_parallel_decoding_mode;
367 }
368
369 xd->above_seg_context = cm->above_seg_context;
370 xd->mi_stride = cm->mi_stride;
371 xd->error_info = &cm->error;
372
373 set_partition_probs(cm, xd);
374 }
375
get_partition_probs(const MACROBLOCKD * xd,int ctx)376 static INLINE const vpx_prob* get_partition_probs(const MACROBLOCKD *xd,
377 int ctx) {
378 return xd->partition_probs[ctx];
379 }
380
set_skip_context(MACROBLOCKD * xd,int mi_row,int mi_col)381 static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) {
382 const int above_idx = mi_col * 2;
383 const int left_idx = (mi_row * 2) & 15;
384 int i;
385 for (i = 0; i < MAX_MB_PLANE; ++i) {
386 struct macroblockd_plane *const pd = &xd->plane[i];
387 pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x];
388 pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y];
389 }
390 }
391
calc_mi_size(int len)392 static INLINE int calc_mi_size(int len) {
393 // len is in mi units.
394 return len + MI_BLOCK_SIZE;
395 }
396
set_mi_row_col(MACROBLOCKD * xd,const TileInfo * const tile,int mi_row,int bh,int mi_col,int bw,int mi_rows,int mi_cols)397 static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
398 int mi_row, int bh,
399 int mi_col, int bw,
400 int mi_rows, int mi_cols) {
401 xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
402 xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8;
403 xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
404 xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8;
405
406 // Are edges available for intra prediction?
407 xd->up_available = (mi_row != 0);
408 xd->left_available = (mi_col > tile->mi_col_start);
409 if (xd->up_available) {
410 xd->above_mi = xd->mi[-xd->mi_stride];
411 // above_mi may be NULL in VP9 encoder's first pass.
412 xd->above_mbmi = xd->above_mi ? &xd->above_mi->mbmi : NULL;
413 } else {
414 xd->above_mi = NULL;
415 xd->above_mbmi = NULL;
416 }
417
418 if (xd->left_available) {
419 xd->left_mi = xd->mi[-1];
420 // left_mi may be NULL in VP9 encoder's first pass.
421 xd->left_mbmi = xd->left_mi ? &xd->left_mi->mbmi : NULL;
422 } else {
423 xd->left_mi = NULL;
424 xd->left_mbmi = NULL;
425 }
426 }
427
update_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize)428 static INLINE void update_partition_context(MACROBLOCKD *xd,
429 int mi_row, int mi_col,
430 BLOCK_SIZE subsize,
431 BLOCK_SIZE bsize) {
432 PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
433 PARTITION_CONTEXT *const left_ctx = xd->left_seg_context + (mi_row & MI_MASK);
434
435 // num_4x4_blocks_wide_lookup[bsize] / 2
436 const int bs = num_8x8_blocks_wide_lookup[bsize];
437
438 // update the partition context at the end notes. set partition bits
439 // of block sizes larger than the current one to be one, and partition
440 // bits of smaller block sizes to be zero.
441 memset(above_ctx, partition_context_lookup[subsize].above, bs);
442 memset(left_ctx, partition_context_lookup[subsize].left, bs);
443 }
444
partition_plane_context(const MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)445 static INLINE int partition_plane_context(const MACROBLOCKD *xd,
446 int mi_row, int mi_col,
447 BLOCK_SIZE bsize) {
448 const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
449 const PARTITION_CONTEXT *left_ctx = xd->left_seg_context + (mi_row & MI_MASK);
450 const int bsl = mi_width_log2_lookup[bsize];
451 int above = (*above_ctx >> bsl) & 1 , left = (*left_ctx >> bsl) & 1;
452
453 assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
454 assert(bsl >= 0);
455
456 return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
457 }
458
459 #ifdef __cplusplus
460 } // extern "C"
461 #endif
462
463 #endif // VP9_COMMON_VP9_ONYXC_INT_H_
464