1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com).
108 *
109 */
110 /* ====================================================================
111 * Copyright 2005 Nokia. All rights reserved.
112 *
113 * The portions of the attached software ("Contribution") is developed by
114 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
115 * license.
116 *
117 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
118 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
119 * support (see RFC 4279) to OpenSSL.
120 *
121 * No patent licenses or other rights except those expressly stated in
122 * the OpenSSL open source license shall be deemed granted or received
123 * expressly, by implication, estoppel, or otherwise.
124 *
125 * No assurances are provided by Nokia that the Contribution does not
126 * infringe the patent or other intellectual property rights of any third
127 * party or that the license provides you with all the necessary rights
128 * to make use of the Contribution.
129 *
130 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
131 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
132 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
133 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
134 * OTHERWISE. */
135
136 #include <assert.h>
137 #include <stdio.h>
138 #include <string.h>
139
140 #include <openssl/err.h>
141 #include <openssl/evp.h>
142 #include <openssl/hmac.h>
143 #include <openssl/md5.h>
144 #include <openssl/mem.h>
145 #include <openssl/obj.h>
146 #include <openssl/rand.h>
147
148 #include "internal.h"
149
150
151 /* tls1_P_hash computes the TLS P_<hash> function as described in RFC 5246,
152 * section 5. It writes |out_len| bytes to |out|, using |md| as the hash and
153 * |secret| as the secret. |seed1| through |seed3| are concatenated to form the
154 * seed parameter. It returns one on success and zero on failure. */
tls1_P_hash(uint8_t * out,size_t out_len,const EVP_MD * md,const uint8_t * secret,size_t secret_len,const uint8_t * seed1,size_t seed1_len,const uint8_t * seed2,size_t seed2_len,const uint8_t * seed3,size_t seed3_len)155 static int tls1_P_hash(uint8_t *out, size_t out_len, const EVP_MD *md,
156 const uint8_t *secret, size_t secret_len,
157 const uint8_t *seed1, size_t seed1_len,
158 const uint8_t *seed2, size_t seed2_len,
159 const uint8_t *seed3, size_t seed3_len) {
160 size_t chunk;
161 HMAC_CTX ctx, ctx_tmp, ctx_init;
162 uint8_t A1[EVP_MAX_MD_SIZE];
163 unsigned A1_len;
164 int ret = 0;
165
166 chunk = EVP_MD_size(md);
167
168 HMAC_CTX_init(&ctx);
169 HMAC_CTX_init(&ctx_tmp);
170 HMAC_CTX_init(&ctx_init);
171 if (!HMAC_Init_ex(&ctx_init, secret, secret_len, md, NULL) ||
172 !HMAC_CTX_copy_ex(&ctx, &ctx_init) ||
173 (seed1_len && !HMAC_Update(&ctx, seed1, seed1_len)) ||
174 (seed2_len && !HMAC_Update(&ctx, seed2, seed2_len)) ||
175 (seed3_len && !HMAC_Update(&ctx, seed3, seed3_len)) ||
176 !HMAC_Final(&ctx, A1, &A1_len)) {
177 goto err;
178 }
179
180 for (;;) {
181 /* Reinit mac contexts. */
182 if (!HMAC_CTX_copy_ex(&ctx, &ctx_init) ||
183 !HMAC_Update(&ctx, A1, A1_len) ||
184 (out_len > chunk && !HMAC_CTX_copy_ex(&ctx_tmp, &ctx)) ||
185 (seed1_len && !HMAC_Update(&ctx, seed1, seed1_len)) ||
186 (seed2_len && !HMAC_Update(&ctx, seed2, seed2_len)) ||
187 (seed3_len && !HMAC_Update(&ctx, seed3, seed3_len))) {
188 goto err;
189 }
190
191 if (out_len > chunk) {
192 unsigned len;
193 if (!HMAC_Final(&ctx, out, &len)) {
194 goto err;
195 }
196 assert(len == chunk);
197 out += len;
198 out_len -= len;
199 /* Calculate the next A1 value. */
200 if (!HMAC_Final(&ctx_tmp, A1, &A1_len)) {
201 goto err;
202 }
203 } else {
204 /* Last chunk. */
205 if (!HMAC_Final(&ctx, A1, &A1_len)) {
206 goto err;
207 }
208 memcpy(out, A1, out_len);
209 break;
210 }
211 }
212
213 ret = 1;
214
215 err:
216 HMAC_CTX_cleanup(&ctx);
217 HMAC_CTX_cleanup(&ctx_tmp);
218 HMAC_CTX_cleanup(&ctx_init);
219 OPENSSL_cleanse(A1, sizeof(A1));
220 return ret;
221 }
222
tls1_prf(SSL * s,uint8_t * out,size_t out_len,const uint8_t * secret,size_t secret_len,const char * label,size_t label_len,const uint8_t * seed1,size_t seed1_len,const uint8_t * seed2,size_t seed2_len)223 int tls1_prf(SSL *s, uint8_t *out, size_t out_len, const uint8_t *secret,
224 size_t secret_len, const char *label, size_t label_len,
225 const uint8_t *seed1, size_t seed1_len,
226 const uint8_t *seed2, size_t seed2_len) {
227 size_t idx, len, count, i;
228 const uint8_t *S1;
229 uint32_t m;
230 const EVP_MD *md;
231 int ret = 0;
232 uint8_t *tmp;
233
234 if (out_len == 0) {
235 return 1;
236 }
237
238 /* Allocate a temporary buffer. */
239 tmp = OPENSSL_malloc(out_len);
240 if (tmp == NULL) {
241 OPENSSL_PUT_ERROR(SSL, tls1_prf, ERR_R_MALLOC_FAILURE);
242 return 0;
243 }
244
245 /* Count number of digests and partition |secret| evenly. */
246 count = 0;
247 for (idx = 0; ssl_get_handshake_digest(&m, &md, idx); idx++) {
248 if (m & ssl_get_algorithm2(s)) {
249 count++;
250 }
251 }
252 /* TODO(davidben): The only case where count isn't 1 is the old MD5/SHA-1
253 * combination. The logic around multiple handshake digests can probably be
254 * simplified. */
255 assert(count == 1 || count == 2);
256 len = secret_len / count;
257 if (count == 1) {
258 secret_len = 0;
259 }
260 S1 = secret;
261 memset(out, 0, out_len);
262 for (idx = 0; ssl_get_handshake_digest(&m, &md, idx); idx++) {
263 if (m & ssl_get_algorithm2(s)) {
264 /* If |count| is 2 and |secret_len| is odd, |secret| is partitioned into
265 * two halves with an overlapping byte. */
266 if (!tls1_P_hash(tmp, out_len, md, S1, len + (secret_len & 1),
267 (const uint8_t *)label, label_len, seed1, seed1_len,
268 seed2, seed2_len)) {
269 goto err;
270 }
271 S1 += len;
272 for (i = 0; i < out_len; i++) {
273 out[i] ^= tmp[i];
274 }
275 }
276 }
277 ret = 1;
278
279 err:
280 OPENSSL_cleanse(tmp, out_len);
281 OPENSSL_free(tmp);
282 return ret;
283 }
284
tls1_generate_key_block(SSL * s,uint8_t * out,size_t out_len)285 static int tls1_generate_key_block(SSL *s, uint8_t *out, size_t out_len) {
286 return s->enc_method->prf(s, out, out_len, s->session->master_key,
287 s->session->master_key_length,
288 TLS_MD_KEY_EXPANSION_CONST,
289 TLS_MD_KEY_EXPANSION_CONST_SIZE,
290 s->s3->server_random, SSL3_RANDOM_SIZE,
291 s->s3->client_random,
292 SSL3_RANDOM_SIZE);
293 }
294
tls1_change_cipher_state(SSL * s,int which)295 int tls1_change_cipher_state(SSL *s, int which) {
296 /* is_read is true if we have just read a ChangeCipherSpec message - i.e. we
297 * need to update the read cipherspec. Otherwise we have just written one. */
298 const char is_read = (which & SSL3_CC_READ) != 0;
299 /* use_client_keys is true if we wish to use the keys for the "client write"
300 * direction. This is the case if we're a client sending a ChangeCipherSpec,
301 * or a server reading a client's ChangeCipherSpec. */
302 const char use_client_keys = which == SSL3_CHANGE_CIPHER_CLIENT_WRITE ||
303 which == SSL3_CHANGE_CIPHER_SERVER_READ;
304 const uint8_t *client_write_mac_secret, *server_write_mac_secret, *mac_secret;
305 const uint8_t *client_write_key, *server_write_key, *key;
306 const uint8_t *client_write_iv, *server_write_iv, *iv;
307 const EVP_AEAD *aead = s->s3->tmp.new_aead;
308 size_t key_len, iv_len, mac_secret_len;
309 const uint8_t *key_data;
310
311 /* Reset sequence number to zero. */
312 if (!SSL_IS_DTLS(s)) {
313 memset(is_read ? s->s3->read_sequence : s->s3->write_sequence, 0, 8);
314 }
315
316 mac_secret_len = s->s3->tmp.new_mac_secret_len;
317 iv_len = s->s3->tmp.new_fixed_iv_len;
318
319 if (aead == NULL) {
320 OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR);
321 return 0;
322 }
323
324 key_len = EVP_AEAD_key_length(aead);
325 if (mac_secret_len > 0) {
326 /* For "stateful" AEADs (i.e. compatibility with pre-AEAD cipher
327 * suites) the key length reported by |EVP_AEAD_key_length| will
328 * include the MAC and IV key bytes. */
329 if (key_len < mac_secret_len + iv_len) {
330 OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR);
331 return 0;
332 }
333 key_len -= mac_secret_len + iv_len;
334 }
335
336 key_data = s->s3->tmp.key_block;
337 client_write_mac_secret = key_data;
338 key_data += mac_secret_len;
339 server_write_mac_secret = key_data;
340 key_data += mac_secret_len;
341 client_write_key = key_data;
342 key_data += key_len;
343 server_write_key = key_data;
344 key_data += key_len;
345 client_write_iv = key_data;
346 key_data += iv_len;
347 server_write_iv = key_data;
348 key_data += iv_len;
349
350 if (use_client_keys) {
351 mac_secret = client_write_mac_secret;
352 key = client_write_key;
353 iv = client_write_iv;
354 } else {
355 mac_secret = server_write_mac_secret;
356 key = server_write_key;
357 iv = server_write_iv;
358 }
359
360 if (key_data - s->s3->tmp.key_block != s->s3->tmp.key_block_length) {
361 OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR);
362 return 0;
363 }
364
365 if (is_read) {
366 SSL_AEAD_CTX_free(s->aead_read_ctx);
367 s->aead_read_ctx = SSL_AEAD_CTX_new(
368 evp_aead_open, ssl3_version_from_wire(s, s->version),
369 s->s3->tmp.new_cipher, key, key_len, mac_secret, mac_secret_len, iv,
370 iv_len);
371 return s->aead_read_ctx != NULL;
372 } else {
373 SSL_AEAD_CTX_free(s->aead_write_ctx);
374 s->aead_write_ctx = SSL_AEAD_CTX_new(
375 evp_aead_seal, ssl3_version_from_wire(s, s->version),
376 s->s3->tmp.new_cipher, key, key_len, mac_secret, mac_secret_len, iv,
377 iv_len);
378 return s->aead_write_ctx != NULL;
379 }
380 }
381
tls1_setup_key_block(SSL * s)382 int tls1_setup_key_block(SSL *s) {
383 uint8_t *p;
384 const EVP_AEAD *aead = NULL;
385 int ret = 0;
386 size_t mac_secret_len, fixed_iv_len, variable_iv_len, key_len;
387 size_t key_block_len;
388
389 if (s->s3->tmp.key_block_length != 0) {
390 return 1;
391 }
392
393 if (s->session->cipher == NULL) {
394 goto cipher_unavailable_err;
395 }
396
397 if (!ssl_cipher_get_evp_aead(&aead, &mac_secret_len, &fixed_iv_len,
398 s->session->cipher,
399 ssl3_version_from_wire(s, s->version))) {
400 goto cipher_unavailable_err;
401 }
402 key_len = EVP_AEAD_key_length(aead);
403 variable_iv_len = EVP_AEAD_nonce_length(aead);
404 if (mac_secret_len > 0) {
405 /* For "stateful" AEADs (i.e. compatibility with pre-AEAD cipher suites) the
406 * key length reported by |EVP_AEAD_key_length| will include the MAC key
407 * bytes and initial implicit IV. */
408 if (key_len < mac_secret_len + fixed_iv_len) {
409 OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_INTERNAL_ERROR);
410 return 0;
411 }
412 key_len -= mac_secret_len + fixed_iv_len;
413 } else {
414 /* The nonce is split into a fixed portion and a variable portion. */
415 if (variable_iv_len < fixed_iv_len) {
416 OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_INTERNAL_ERROR);
417 return 0;
418 }
419 variable_iv_len -= fixed_iv_len;
420 }
421
422 assert(mac_secret_len < 256);
423 assert(fixed_iv_len < 256);
424 assert(variable_iv_len < 256);
425
426 s->s3->tmp.new_aead = aead;
427 s->s3->tmp.new_mac_secret_len = (uint8_t)mac_secret_len;
428 s->s3->tmp.new_fixed_iv_len = (uint8_t)fixed_iv_len;
429 s->s3->tmp.new_variable_iv_len = (uint8_t)variable_iv_len;
430
431 key_block_len = key_len + mac_secret_len + fixed_iv_len;
432 key_block_len *= 2;
433
434 ssl3_cleanup_key_block(s);
435
436 p = (uint8_t *)OPENSSL_malloc(key_block_len);
437 if (p == NULL) {
438 OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_MALLOC_FAILURE);
439 goto err;
440 }
441
442 s->s3->tmp.key_block_length = key_block_len;
443 s->s3->tmp.key_block = p;
444
445 if (!tls1_generate_key_block(s, p, key_block_len)) {
446 goto err;
447 }
448
449 if (!SSL_USE_EXPLICIT_IV(s) &&
450 (s->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0) {
451 /* enable vulnerability countermeasure for CBC ciphers with known-IV
452 * problem (http://www.openssl.org/~bodo/tls-cbc.txt). */
453 s->s3->need_record_splitting = 1;
454
455 if (s->session->cipher != NULL &&
456 s->session->cipher->algorithm_enc == SSL_RC4) {
457 s->s3->need_record_splitting = 0;
458 }
459 }
460
461 ret = 1;
462
463 err:
464 return ret;
465
466 cipher_unavailable_err:
467 OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block,
468 SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
469 return 0;
470 }
471
tls1_cert_verify_mac(SSL * s,int md_nid,uint8_t * out)472 int tls1_cert_verify_mac(SSL *s, int md_nid, uint8_t *out) {
473 unsigned int ret;
474 EVP_MD_CTX ctx, *d = NULL;
475 int i;
476
477 if (s->s3->handshake_buffer &&
478 !ssl3_digest_cached_records(s, free_handshake_buffer)) {
479 return 0;
480 }
481
482 for (i = 0; i < SSL_MAX_DIGEST; i++) {
483 if (s->s3->handshake_dgst[i] &&
484 EVP_MD_CTX_type(s->s3->handshake_dgst[i]) == md_nid) {
485 d = s->s3->handshake_dgst[i];
486 break;
487 }
488 }
489
490 if (!d) {
491 OPENSSL_PUT_ERROR(SSL, tls1_cert_verify_mac, SSL_R_NO_REQUIRED_DIGEST);
492 return 0;
493 }
494
495 EVP_MD_CTX_init(&ctx);
496 if (!EVP_MD_CTX_copy_ex(&ctx, d)) {
497 EVP_MD_CTX_cleanup(&ctx);
498 return 0;
499 }
500 EVP_DigestFinal_ex(&ctx, out, &ret);
501 EVP_MD_CTX_cleanup(&ctx);
502
503 return ret;
504 }
505
506 /* tls1_handshake_digest calculates the current handshake hash and writes it to
507 * |out|, which has space for |out_len| bytes. It returns the number of bytes
508 * written or -1 in the event of an error. This function works on a copy of the
509 * underlying digests so can be called multiple times and prior to the final
510 * update etc. */
tls1_handshake_digest(SSL * s,uint8_t * out,size_t out_len)511 int tls1_handshake_digest(SSL *s, uint8_t *out, size_t out_len) {
512 const EVP_MD *md;
513 EVP_MD_CTX ctx;
514 int err = 0, len = 0;
515 size_t i;
516 uint32_t mask;
517
518 EVP_MD_CTX_init(&ctx);
519
520 for (i = 0; ssl_get_handshake_digest(&mask, &md, i); i++) {
521 size_t hash_size;
522 unsigned int digest_len;
523 EVP_MD_CTX *hdgst = s->s3->handshake_dgst[i];
524
525 if ((mask & ssl_get_algorithm2(s)) == 0) {
526 continue;
527 }
528
529 hash_size = EVP_MD_size(md);
530 if (!hdgst ||
531 hash_size > out_len ||
532 !EVP_MD_CTX_copy_ex(&ctx, hdgst) ||
533 !EVP_DigestFinal_ex(&ctx, out, &digest_len) ||
534 digest_len != hash_size /* internal error */) {
535 err = 1;
536 break;
537 }
538
539 out += digest_len;
540 out_len -= digest_len;
541 len += digest_len;
542 }
543
544 EVP_MD_CTX_cleanup(&ctx);
545
546 if (err != 0) {
547 return -1;
548 }
549 return len;
550 }
551
tls1_final_finish_mac(SSL * s,const char * str,int slen,uint8_t * out)552 int tls1_final_finish_mac(SSL *s, const char *str, int slen, uint8_t *out) {
553 uint8_t buf[2 * EVP_MAX_MD_SIZE];
554 int err = 0;
555 int digests_len;
556
557 /* At this point, the handshake should have released the handshake buffer on
558 * its own.
559 * TODO(davidben): Apart from initialization, the handshake buffer should be
560 * orthogonal to the handshake digest. https://crbug.com/492371 */
561 assert(s->s3->handshake_buffer == NULL);
562 if (s->s3->handshake_buffer &&
563 !ssl3_digest_cached_records(s, free_handshake_buffer)) {
564 return 0;
565 }
566
567 digests_len = tls1_handshake_digest(s, buf, sizeof(buf));
568 if (digests_len < 0) {
569 err = 1;
570 digests_len = 0;
571 }
572
573 if (!s->enc_method->prf(s, out, 12, s->session->master_key,
574 s->session->master_key_length, str, slen, buf,
575 digests_len, NULL, 0)) {
576 err = 1;
577 }
578
579 if (err) {
580 return 0;
581 } else {
582 return 12;
583 }
584 }
585
tls1_generate_master_secret(SSL * s,uint8_t * out,const uint8_t * premaster,size_t premaster_len)586 int tls1_generate_master_secret(SSL *s, uint8_t *out, const uint8_t *premaster,
587 size_t premaster_len) {
588 if (s->s3->tmp.extended_master_secret) {
589 uint8_t digests[2 * EVP_MAX_MD_SIZE];
590 int digests_len;
591
592 /* The master secret is based on the handshake hash just after sending the
593 * ClientKeyExchange. However, we might have a client certificate to send,
594 * in which case we might need different hashes for the verification and
595 * thus still need the handshake buffer around. Keeping both a handshake
596 * buffer *and* running hashes isn't yet supported so, when it comes to
597 * calculating the Finished hash, we'll have to hash the handshake buffer
598 * again. */
599 if (s->s3->handshake_buffer &&
600 !ssl3_digest_cached_records(s, dont_free_handshake_buffer)) {
601 return 0;
602 }
603
604 digests_len = tls1_handshake_digest(s, digests, sizeof(digests));
605 if (digests_len == -1) {
606 return 0;
607 }
608
609 if (!s->enc_method->prf(s, out, SSL3_MASTER_SECRET_SIZE, premaster,
610 premaster_len, TLS_MD_EXTENDED_MASTER_SECRET_CONST,
611 TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE, digests,
612 digests_len, NULL, 0)) {
613 return 0;
614 }
615 } else {
616 if (!s->enc_method->prf(s, out, SSL3_MASTER_SECRET_SIZE, premaster,
617 premaster_len, TLS_MD_MASTER_SECRET_CONST,
618 TLS_MD_MASTER_SECRET_CONST_SIZE,
619 s->s3->client_random, SSL3_RANDOM_SIZE,
620 s->s3->server_random, SSL3_RANDOM_SIZE)) {
621 return 0;
622 }
623 }
624
625 return SSL3_MASTER_SECRET_SIZE;
626 }
627
tls1_export_keying_material(SSL * s,uint8_t * out,size_t out_len,const char * label,size_t label_len,const uint8_t * context,size_t context_len,int use_context)628 int tls1_export_keying_material(SSL *s, uint8_t *out, size_t out_len,
629 const char *label, size_t label_len,
630 const uint8_t *context, size_t context_len,
631 int use_context) {
632 if (!s->s3->have_version || s->version == SSL3_VERSION) {
633 OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material,
634 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
635 return 0;
636 }
637
638 size_t seed_len = 2 * SSL3_RANDOM_SIZE;
639 if (use_context) {
640 if (context_len >= 1u << 16) {
641 OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, ERR_R_OVERFLOW);
642 return 0;
643 }
644 seed_len += 2 + context_len;
645 }
646 uint8_t *seed = OPENSSL_malloc(seed_len);
647 if (seed == NULL) {
648 OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, ERR_R_MALLOC_FAILURE);
649 return 0;
650 }
651
652 memcpy(seed, s->s3->client_random, SSL3_RANDOM_SIZE);
653 memcpy(seed + SSL3_RANDOM_SIZE, s->s3->server_random, SSL3_RANDOM_SIZE);
654 if (use_context) {
655 seed[2 * SSL3_RANDOM_SIZE] = (uint8_t)(context_len >> 8);
656 seed[2 * SSL3_RANDOM_SIZE + 1] = (uint8_t)context_len;
657 memcpy(seed + 2 * SSL3_RANDOM_SIZE + 2, context, context_len);
658 }
659
660 int ret = s->enc_method->prf(s, out, out_len, s->session->master_key,
661 s->session->master_key_length, label, label_len,
662 seed, seed_len, NULL, 0);
663 OPENSSL_free(seed);
664 return ret;
665 }
666
tls1_alert_code(int code)667 int tls1_alert_code(int code) {
668 switch (code) {
669 case SSL_AD_CLOSE_NOTIFY:
670 return SSL3_AD_CLOSE_NOTIFY;
671
672 case SSL_AD_UNEXPECTED_MESSAGE:
673 return SSL3_AD_UNEXPECTED_MESSAGE;
674
675 case SSL_AD_BAD_RECORD_MAC:
676 return SSL3_AD_BAD_RECORD_MAC;
677
678 case SSL_AD_DECRYPTION_FAILED:
679 return TLS1_AD_DECRYPTION_FAILED;
680
681 case SSL_AD_RECORD_OVERFLOW:
682 return TLS1_AD_RECORD_OVERFLOW;
683
684 case SSL_AD_DECOMPRESSION_FAILURE:
685 return SSL3_AD_DECOMPRESSION_FAILURE;
686
687 case SSL_AD_HANDSHAKE_FAILURE:
688 return SSL3_AD_HANDSHAKE_FAILURE;
689
690 case SSL_AD_NO_CERTIFICATE:
691 return -1;
692
693 case SSL_AD_BAD_CERTIFICATE:
694 return SSL3_AD_BAD_CERTIFICATE;
695
696 case SSL_AD_UNSUPPORTED_CERTIFICATE:
697 return SSL3_AD_UNSUPPORTED_CERTIFICATE;
698
699 case SSL_AD_CERTIFICATE_REVOKED:
700 return SSL3_AD_CERTIFICATE_REVOKED;
701
702 case SSL_AD_CERTIFICATE_EXPIRED:
703 return SSL3_AD_CERTIFICATE_EXPIRED;
704
705 case SSL_AD_CERTIFICATE_UNKNOWN:
706 return SSL3_AD_CERTIFICATE_UNKNOWN;
707
708 case SSL_AD_ILLEGAL_PARAMETER:
709 return SSL3_AD_ILLEGAL_PARAMETER;
710
711 case SSL_AD_UNKNOWN_CA:
712 return TLS1_AD_UNKNOWN_CA;
713
714 case SSL_AD_ACCESS_DENIED:
715 return TLS1_AD_ACCESS_DENIED;
716
717 case SSL_AD_DECODE_ERROR:
718 return TLS1_AD_DECODE_ERROR;
719
720 case SSL_AD_DECRYPT_ERROR:
721 return TLS1_AD_DECRYPT_ERROR;
722 case SSL_AD_EXPORT_RESTRICTION:
723 return TLS1_AD_EXPORT_RESTRICTION;
724
725 case SSL_AD_PROTOCOL_VERSION:
726 return TLS1_AD_PROTOCOL_VERSION;
727
728 case SSL_AD_INSUFFICIENT_SECURITY:
729 return TLS1_AD_INSUFFICIENT_SECURITY;
730
731 case SSL_AD_INTERNAL_ERROR:
732 return TLS1_AD_INTERNAL_ERROR;
733
734 case SSL_AD_USER_CANCELLED:
735 return TLS1_AD_USER_CANCELLED;
736
737 case SSL_AD_NO_RENEGOTIATION:
738 return TLS1_AD_NO_RENEGOTIATION;
739
740 case SSL_AD_UNSUPPORTED_EXTENSION:
741 return TLS1_AD_UNSUPPORTED_EXTENSION;
742
743 case SSL_AD_CERTIFICATE_UNOBTAINABLE:
744 return TLS1_AD_CERTIFICATE_UNOBTAINABLE;
745
746 case SSL_AD_UNRECOGNIZED_NAME:
747 return TLS1_AD_UNRECOGNIZED_NAME;
748
749 case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
750 return TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE;
751
752 case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
753 return TLS1_AD_BAD_CERTIFICATE_HASH_VALUE;
754
755 case SSL_AD_UNKNOWN_PSK_IDENTITY:
756 return TLS1_AD_UNKNOWN_PSK_IDENTITY;
757
758 case SSL_AD_INAPPROPRIATE_FALLBACK:
759 return SSL3_AD_INAPPROPRIATE_FALLBACK;
760
761 default:
762 return -1;
763 }
764 }
765