• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com).
108  *
109  */
110 /* ====================================================================
111  * Copyright 2005 Nokia. All rights reserved.
112  *
113  * The portions of the attached software ("Contribution") is developed by
114  * Nokia Corporation and is licensed pursuant to the OpenSSL open source
115  * license.
116  *
117  * The Contribution, originally written by Mika Kousa and Pasi Eronen of
118  * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
119  * support (see RFC 4279) to OpenSSL.
120  *
121  * No patent licenses or other rights except those expressly stated in
122  * the OpenSSL open source license shall be deemed granted or received
123  * expressly, by implication, estoppel, or otherwise.
124  *
125  * No assurances are provided by Nokia that the Contribution does not
126  * infringe the patent or other intellectual property rights of any third
127  * party or that the license provides you with all the necessary rights
128  * to make use of the Contribution.
129  *
130  * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
131  * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
132  * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
133  * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
134  * OTHERWISE. */
135 
136 #include <assert.h>
137 #include <stdio.h>
138 #include <string.h>
139 
140 #include <openssl/err.h>
141 #include <openssl/evp.h>
142 #include <openssl/hmac.h>
143 #include <openssl/md5.h>
144 #include <openssl/mem.h>
145 #include <openssl/obj.h>
146 #include <openssl/rand.h>
147 
148 #include "internal.h"
149 
150 
151 /* tls1_P_hash computes the TLS P_<hash> function as described in RFC 5246,
152  * section 5. It writes |out_len| bytes to |out|, using |md| as the hash and
153  * |secret| as the secret. |seed1| through |seed3| are concatenated to form the
154  * seed parameter. It returns one on success and zero on failure. */
tls1_P_hash(uint8_t * out,size_t out_len,const EVP_MD * md,const uint8_t * secret,size_t secret_len,const uint8_t * seed1,size_t seed1_len,const uint8_t * seed2,size_t seed2_len,const uint8_t * seed3,size_t seed3_len)155 static int tls1_P_hash(uint8_t *out, size_t out_len, const EVP_MD *md,
156                        const uint8_t *secret, size_t secret_len,
157                        const uint8_t *seed1, size_t seed1_len,
158                        const uint8_t *seed2, size_t seed2_len,
159                        const uint8_t *seed3, size_t seed3_len) {
160   size_t chunk;
161   HMAC_CTX ctx, ctx_tmp, ctx_init;
162   uint8_t A1[EVP_MAX_MD_SIZE];
163   unsigned A1_len;
164   int ret = 0;
165 
166   chunk = EVP_MD_size(md);
167 
168   HMAC_CTX_init(&ctx);
169   HMAC_CTX_init(&ctx_tmp);
170   HMAC_CTX_init(&ctx_init);
171   if (!HMAC_Init_ex(&ctx_init, secret, secret_len, md, NULL) ||
172       !HMAC_CTX_copy_ex(&ctx, &ctx_init) ||
173       (seed1_len && !HMAC_Update(&ctx, seed1, seed1_len)) ||
174       (seed2_len && !HMAC_Update(&ctx, seed2, seed2_len)) ||
175       (seed3_len && !HMAC_Update(&ctx, seed3, seed3_len)) ||
176       !HMAC_Final(&ctx, A1, &A1_len)) {
177     goto err;
178   }
179 
180   for (;;) {
181     /* Reinit mac contexts. */
182     if (!HMAC_CTX_copy_ex(&ctx, &ctx_init) ||
183         !HMAC_Update(&ctx, A1, A1_len) ||
184         (out_len > chunk && !HMAC_CTX_copy_ex(&ctx_tmp, &ctx)) ||
185         (seed1_len && !HMAC_Update(&ctx, seed1, seed1_len)) ||
186         (seed2_len && !HMAC_Update(&ctx, seed2, seed2_len)) ||
187         (seed3_len && !HMAC_Update(&ctx, seed3, seed3_len))) {
188       goto err;
189     }
190 
191     if (out_len > chunk) {
192       unsigned len;
193       if (!HMAC_Final(&ctx, out, &len)) {
194         goto err;
195       }
196       assert(len == chunk);
197       out += len;
198       out_len -= len;
199       /* Calculate the next A1 value. */
200       if (!HMAC_Final(&ctx_tmp, A1, &A1_len)) {
201         goto err;
202       }
203     } else {
204       /* Last chunk. */
205       if (!HMAC_Final(&ctx, A1, &A1_len)) {
206         goto err;
207       }
208       memcpy(out, A1, out_len);
209       break;
210     }
211   }
212 
213   ret = 1;
214 
215 err:
216   HMAC_CTX_cleanup(&ctx);
217   HMAC_CTX_cleanup(&ctx_tmp);
218   HMAC_CTX_cleanup(&ctx_init);
219   OPENSSL_cleanse(A1, sizeof(A1));
220   return ret;
221 }
222 
tls1_prf(SSL * s,uint8_t * out,size_t out_len,const uint8_t * secret,size_t secret_len,const char * label,size_t label_len,const uint8_t * seed1,size_t seed1_len,const uint8_t * seed2,size_t seed2_len)223 int tls1_prf(SSL *s, uint8_t *out, size_t out_len, const uint8_t *secret,
224              size_t secret_len, const char *label, size_t label_len,
225              const uint8_t *seed1, size_t seed1_len,
226              const uint8_t *seed2, size_t seed2_len) {
227   size_t idx, len, count, i;
228   const uint8_t *S1;
229   uint32_t m;
230   const EVP_MD *md;
231   int ret = 0;
232   uint8_t *tmp;
233 
234   if (out_len == 0) {
235     return 1;
236   }
237 
238   /* Allocate a temporary buffer. */
239   tmp = OPENSSL_malloc(out_len);
240   if (tmp == NULL) {
241     OPENSSL_PUT_ERROR(SSL, tls1_prf, ERR_R_MALLOC_FAILURE);
242     return 0;
243   }
244 
245   /* Count number of digests and partition |secret| evenly. */
246   count = 0;
247   for (idx = 0; ssl_get_handshake_digest(&m, &md, idx); idx++) {
248     if (m & ssl_get_algorithm2(s)) {
249       count++;
250     }
251   }
252   /* TODO(davidben): The only case where count isn't 1 is the old MD5/SHA-1
253    * combination. The logic around multiple handshake digests can probably be
254    * simplified. */
255   assert(count == 1 || count == 2);
256   len = secret_len / count;
257   if (count == 1) {
258     secret_len = 0;
259   }
260   S1 = secret;
261   memset(out, 0, out_len);
262   for (idx = 0; ssl_get_handshake_digest(&m, &md, idx); idx++) {
263     if (m & ssl_get_algorithm2(s)) {
264       /* If |count| is 2 and |secret_len| is odd, |secret| is partitioned into
265        * two halves with an overlapping byte. */
266       if (!tls1_P_hash(tmp, out_len, md, S1, len + (secret_len & 1),
267                        (const uint8_t *)label, label_len, seed1, seed1_len,
268                        seed2, seed2_len)) {
269         goto err;
270       }
271       S1 += len;
272       for (i = 0; i < out_len; i++) {
273         out[i] ^= tmp[i];
274       }
275     }
276   }
277   ret = 1;
278 
279 err:
280   OPENSSL_cleanse(tmp, out_len);
281   OPENSSL_free(tmp);
282   return ret;
283 }
284 
tls1_generate_key_block(SSL * s,uint8_t * out,size_t out_len)285 static int tls1_generate_key_block(SSL *s, uint8_t *out, size_t out_len) {
286   return s->enc_method->prf(s, out, out_len, s->session->master_key,
287                             s->session->master_key_length,
288                             TLS_MD_KEY_EXPANSION_CONST,
289                             TLS_MD_KEY_EXPANSION_CONST_SIZE,
290                             s->s3->server_random, SSL3_RANDOM_SIZE,
291                             s->s3->client_random,
292                             SSL3_RANDOM_SIZE);
293 }
294 
tls1_change_cipher_state(SSL * s,int which)295 int tls1_change_cipher_state(SSL *s, int which) {
296   /* is_read is true if we have just read a ChangeCipherSpec message - i.e. we
297    * need to update the read cipherspec. Otherwise we have just written one. */
298   const char is_read = (which & SSL3_CC_READ) != 0;
299   /* use_client_keys is true if we wish to use the keys for the "client write"
300    * direction. This is the case if we're a client sending a ChangeCipherSpec,
301    * or a server reading a client's ChangeCipherSpec. */
302   const char use_client_keys = which == SSL3_CHANGE_CIPHER_CLIENT_WRITE ||
303                                which == SSL3_CHANGE_CIPHER_SERVER_READ;
304   const uint8_t *client_write_mac_secret, *server_write_mac_secret, *mac_secret;
305   const uint8_t *client_write_key, *server_write_key, *key;
306   const uint8_t *client_write_iv, *server_write_iv, *iv;
307   const EVP_AEAD *aead = s->s3->tmp.new_aead;
308   size_t key_len, iv_len, mac_secret_len;
309   const uint8_t *key_data;
310 
311   /* Reset sequence number to zero. */
312   if (!SSL_IS_DTLS(s)) {
313     memset(is_read ? s->s3->read_sequence : s->s3->write_sequence, 0, 8);
314   }
315 
316   mac_secret_len = s->s3->tmp.new_mac_secret_len;
317   iv_len = s->s3->tmp.new_fixed_iv_len;
318 
319   if (aead == NULL) {
320     OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR);
321     return 0;
322   }
323 
324   key_len = EVP_AEAD_key_length(aead);
325   if (mac_secret_len > 0) {
326     /* For "stateful" AEADs (i.e. compatibility with pre-AEAD cipher
327      * suites) the key length reported by |EVP_AEAD_key_length| will
328      * include the MAC and IV key bytes. */
329     if (key_len < mac_secret_len + iv_len) {
330       OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR);
331       return 0;
332     }
333     key_len -= mac_secret_len + iv_len;
334   }
335 
336   key_data = s->s3->tmp.key_block;
337   client_write_mac_secret = key_data;
338   key_data += mac_secret_len;
339   server_write_mac_secret = key_data;
340   key_data += mac_secret_len;
341   client_write_key = key_data;
342   key_data += key_len;
343   server_write_key = key_data;
344   key_data += key_len;
345   client_write_iv = key_data;
346   key_data += iv_len;
347   server_write_iv = key_data;
348   key_data += iv_len;
349 
350   if (use_client_keys) {
351     mac_secret = client_write_mac_secret;
352     key = client_write_key;
353     iv = client_write_iv;
354   } else {
355     mac_secret = server_write_mac_secret;
356     key = server_write_key;
357     iv = server_write_iv;
358   }
359 
360   if (key_data - s->s3->tmp.key_block != s->s3->tmp.key_block_length) {
361     OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR);
362     return 0;
363   }
364 
365   if (is_read) {
366     SSL_AEAD_CTX_free(s->aead_read_ctx);
367     s->aead_read_ctx = SSL_AEAD_CTX_new(
368         evp_aead_open, ssl3_version_from_wire(s, s->version),
369         s->s3->tmp.new_cipher, key, key_len, mac_secret, mac_secret_len, iv,
370         iv_len);
371     return s->aead_read_ctx != NULL;
372   } else {
373     SSL_AEAD_CTX_free(s->aead_write_ctx);
374     s->aead_write_ctx = SSL_AEAD_CTX_new(
375         evp_aead_seal, ssl3_version_from_wire(s, s->version),
376         s->s3->tmp.new_cipher, key, key_len, mac_secret, mac_secret_len, iv,
377         iv_len);
378     return s->aead_write_ctx != NULL;
379   }
380 }
381 
tls1_setup_key_block(SSL * s)382 int tls1_setup_key_block(SSL *s) {
383   uint8_t *p;
384   const EVP_AEAD *aead = NULL;
385   int ret = 0;
386   size_t mac_secret_len, fixed_iv_len, variable_iv_len, key_len;
387   size_t key_block_len;
388 
389   if (s->s3->tmp.key_block_length != 0) {
390     return 1;
391   }
392 
393   if (s->session->cipher == NULL) {
394     goto cipher_unavailable_err;
395   }
396 
397   if (!ssl_cipher_get_evp_aead(&aead, &mac_secret_len, &fixed_iv_len,
398                                s->session->cipher,
399                                ssl3_version_from_wire(s, s->version))) {
400     goto cipher_unavailable_err;
401   }
402   key_len = EVP_AEAD_key_length(aead);
403   variable_iv_len = EVP_AEAD_nonce_length(aead);
404   if (mac_secret_len > 0) {
405     /* For "stateful" AEADs (i.e. compatibility with pre-AEAD cipher suites) the
406      * key length reported by |EVP_AEAD_key_length| will include the MAC key
407      * bytes and initial implicit IV. */
408     if (key_len < mac_secret_len + fixed_iv_len) {
409       OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_INTERNAL_ERROR);
410       return 0;
411     }
412     key_len -= mac_secret_len + fixed_iv_len;
413   } else {
414     /* The nonce is split into a fixed portion and a variable portion. */
415     if (variable_iv_len < fixed_iv_len) {
416       OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_INTERNAL_ERROR);
417       return 0;
418     }
419     variable_iv_len -= fixed_iv_len;
420   }
421 
422   assert(mac_secret_len < 256);
423   assert(fixed_iv_len < 256);
424   assert(variable_iv_len < 256);
425 
426   s->s3->tmp.new_aead = aead;
427   s->s3->tmp.new_mac_secret_len = (uint8_t)mac_secret_len;
428   s->s3->tmp.new_fixed_iv_len = (uint8_t)fixed_iv_len;
429   s->s3->tmp.new_variable_iv_len = (uint8_t)variable_iv_len;
430 
431   key_block_len = key_len + mac_secret_len + fixed_iv_len;
432   key_block_len *= 2;
433 
434   ssl3_cleanup_key_block(s);
435 
436   p = (uint8_t *)OPENSSL_malloc(key_block_len);
437   if (p == NULL) {
438     OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_MALLOC_FAILURE);
439     goto err;
440   }
441 
442   s->s3->tmp.key_block_length = key_block_len;
443   s->s3->tmp.key_block = p;
444 
445   if (!tls1_generate_key_block(s, p, key_block_len)) {
446     goto err;
447   }
448 
449   if (!SSL_USE_EXPLICIT_IV(s) &&
450       (s->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0) {
451     /* enable vulnerability countermeasure for CBC ciphers with known-IV
452      * problem (http://www.openssl.org/~bodo/tls-cbc.txt). */
453     s->s3->need_record_splitting = 1;
454 
455     if (s->session->cipher != NULL &&
456         s->session->cipher->algorithm_enc == SSL_RC4) {
457       s->s3->need_record_splitting = 0;
458     }
459   }
460 
461   ret = 1;
462 
463 err:
464   return ret;
465 
466 cipher_unavailable_err:
467   OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block,
468                     SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
469   return 0;
470 }
471 
tls1_cert_verify_mac(SSL * s,int md_nid,uint8_t * out)472 int tls1_cert_verify_mac(SSL *s, int md_nid, uint8_t *out) {
473   unsigned int ret;
474   EVP_MD_CTX ctx, *d = NULL;
475   int i;
476 
477   if (s->s3->handshake_buffer &&
478       !ssl3_digest_cached_records(s, free_handshake_buffer)) {
479     return 0;
480   }
481 
482   for (i = 0; i < SSL_MAX_DIGEST; i++) {
483     if (s->s3->handshake_dgst[i] &&
484         EVP_MD_CTX_type(s->s3->handshake_dgst[i]) == md_nid) {
485       d = s->s3->handshake_dgst[i];
486       break;
487     }
488   }
489 
490   if (!d) {
491     OPENSSL_PUT_ERROR(SSL, tls1_cert_verify_mac, SSL_R_NO_REQUIRED_DIGEST);
492     return 0;
493   }
494 
495   EVP_MD_CTX_init(&ctx);
496   if (!EVP_MD_CTX_copy_ex(&ctx, d)) {
497     EVP_MD_CTX_cleanup(&ctx);
498     return 0;
499   }
500   EVP_DigestFinal_ex(&ctx, out, &ret);
501   EVP_MD_CTX_cleanup(&ctx);
502 
503   return ret;
504 }
505 
506 /* tls1_handshake_digest calculates the current handshake hash and writes it to
507  * |out|, which has space for |out_len| bytes. It returns the number of bytes
508  * written or -1 in the event of an error. This function works on a copy of the
509  * underlying digests so can be called multiple times and prior to the final
510  * update etc. */
tls1_handshake_digest(SSL * s,uint8_t * out,size_t out_len)511 int tls1_handshake_digest(SSL *s, uint8_t *out, size_t out_len) {
512   const EVP_MD *md;
513   EVP_MD_CTX ctx;
514   int err = 0, len = 0;
515   size_t i;
516   uint32_t mask;
517 
518   EVP_MD_CTX_init(&ctx);
519 
520   for (i = 0; ssl_get_handshake_digest(&mask, &md, i); i++) {
521     size_t hash_size;
522     unsigned int digest_len;
523     EVP_MD_CTX *hdgst = s->s3->handshake_dgst[i];
524 
525     if ((mask & ssl_get_algorithm2(s)) == 0) {
526       continue;
527     }
528 
529     hash_size = EVP_MD_size(md);
530     if (!hdgst ||
531         hash_size > out_len ||
532         !EVP_MD_CTX_copy_ex(&ctx, hdgst) ||
533         !EVP_DigestFinal_ex(&ctx, out, &digest_len) ||
534         digest_len != hash_size /* internal error */) {
535       err = 1;
536       break;
537     }
538 
539     out += digest_len;
540     out_len -= digest_len;
541     len += digest_len;
542   }
543 
544   EVP_MD_CTX_cleanup(&ctx);
545 
546   if (err != 0) {
547     return -1;
548   }
549   return len;
550 }
551 
tls1_final_finish_mac(SSL * s,const char * str,int slen,uint8_t * out)552 int tls1_final_finish_mac(SSL *s, const char *str, int slen, uint8_t *out) {
553   uint8_t buf[2 * EVP_MAX_MD_SIZE];
554   int err = 0;
555   int digests_len;
556 
557   /* At this point, the handshake should have released the handshake buffer on
558    * its own.
559    * TODO(davidben): Apart from initialization, the handshake buffer should be
560    * orthogonal to the handshake digest. https://crbug.com/492371 */
561   assert(s->s3->handshake_buffer == NULL);
562   if (s->s3->handshake_buffer &&
563       !ssl3_digest_cached_records(s, free_handshake_buffer)) {
564     return 0;
565   }
566 
567   digests_len = tls1_handshake_digest(s, buf, sizeof(buf));
568   if (digests_len < 0) {
569     err = 1;
570     digests_len = 0;
571   }
572 
573   if (!s->enc_method->prf(s, out, 12, s->session->master_key,
574                           s->session->master_key_length, str, slen, buf,
575                           digests_len, NULL, 0)) {
576     err = 1;
577   }
578 
579   if (err) {
580     return 0;
581   } else {
582     return 12;
583   }
584 }
585 
tls1_generate_master_secret(SSL * s,uint8_t * out,const uint8_t * premaster,size_t premaster_len)586 int tls1_generate_master_secret(SSL *s, uint8_t *out, const uint8_t *premaster,
587                                 size_t premaster_len) {
588   if (s->s3->tmp.extended_master_secret) {
589     uint8_t digests[2 * EVP_MAX_MD_SIZE];
590     int digests_len;
591 
592     /* The master secret is based on the handshake hash just after sending the
593      * ClientKeyExchange. However, we might have a client certificate to send,
594      * in which case we might need different hashes for the verification and
595      * thus still need the handshake buffer around. Keeping both a handshake
596      * buffer *and* running hashes isn't yet supported so, when it comes to
597      * calculating the Finished hash, we'll have to hash the handshake buffer
598      * again. */
599     if (s->s3->handshake_buffer &&
600         !ssl3_digest_cached_records(s, dont_free_handshake_buffer)) {
601       return 0;
602     }
603 
604     digests_len = tls1_handshake_digest(s, digests, sizeof(digests));
605     if (digests_len == -1) {
606       return 0;
607     }
608 
609     if (!s->enc_method->prf(s, out, SSL3_MASTER_SECRET_SIZE, premaster,
610                             premaster_len, TLS_MD_EXTENDED_MASTER_SECRET_CONST,
611                             TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE, digests,
612                             digests_len, NULL, 0)) {
613       return 0;
614     }
615   } else {
616     if (!s->enc_method->prf(s, out, SSL3_MASTER_SECRET_SIZE, premaster,
617                             premaster_len, TLS_MD_MASTER_SECRET_CONST,
618                             TLS_MD_MASTER_SECRET_CONST_SIZE,
619                             s->s3->client_random, SSL3_RANDOM_SIZE,
620                             s->s3->server_random, SSL3_RANDOM_SIZE)) {
621       return 0;
622     }
623   }
624 
625   return SSL3_MASTER_SECRET_SIZE;
626 }
627 
tls1_export_keying_material(SSL * s,uint8_t * out,size_t out_len,const char * label,size_t label_len,const uint8_t * context,size_t context_len,int use_context)628 int tls1_export_keying_material(SSL *s, uint8_t *out, size_t out_len,
629                                 const char *label, size_t label_len,
630                                 const uint8_t *context, size_t context_len,
631                                 int use_context) {
632   if (!s->s3->have_version || s->version == SSL3_VERSION) {
633     OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material,
634                       ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
635     return 0;
636   }
637 
638   size_t seed_len = 2 * SSL3_RANDOM_SIZE;
639   if (use_context) {
640     if (context_len >= 1u << 16) {
641       OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, ERR_R_OVERFLOW);
642       return 0;
643     }
644     seed_len += 2 + context_len;
645   }
646   uint8_t *seed = OPENSSL_malloc(seed_len);
647   if (seed == NULL) {
648     OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, ERR_R_MALLOC_FAILURE);
649     return 0;
650   }
651 
652   memcpy(seed, s->s3->client_random, SSL3_RANDOM_SIZE);
653   memcpy(seed + SSL3_RANDOM_SIZE, s->s3->server_random, SSL3_RANDOM_SIZE);
654   if (use_context) {
655     seed[2 * SSL3_RANDOM_SIZE] = (uint8_t)(context_len >> 8);
656     seed[2 * SSL3_RANDOM_SIZE + 1] = (uint8_t)context_len;
657     memcpy(seed + 2 * SSL3_RANDOM_SIZE + 2, context, context_len);
658   }
659 
660   int ret = s->enc_method->prf(s, out, out_len, s->session->master_key,
661                                s->session->master_key_length, label, label_len,
662                                seed, seed_len, NULL, 0);
663   OPENSSL_free(seed);
664   return ret;
665 }
666 
tls1_alert_code(int code)667 int tls1_alert_code(int code) {
668   switch (code) {
669     case SSL_AD_CLOSE_NOTIFY:
670       return SSL3_AD_CLOSE_NOTIFY;
671 
672     case SSL_AD_UNEXPECTED_MESSAGE:
673       return SSL3_AD_UNEXPECTED_MESSAGE;
674 
675     case SSL_AD_BAD_RECORD_MAC:
676       return SSL3_AD_BAD_RECORD_MAC;
677 
678     case SSL_AD_DECRYPTION_FAILED:
679       return TLS1_AD_DECRYPTION_FAILED;
680 
681     case SSL_AD_RECORD_OVERFLOW:
682       return TLS1_AD_RECORD_OVERFLOW;
683 
684     case SSL_AD_DECOMPRESSION_FAILURE:
685       return SSL3_AD_DECOMPRESSION_FAILURE;
686 
687     case SSL_AD_HANDSHAKE_FAILURE:
688       return SSL3_AD_HANDSHAKE_FAILURE;
689 
690     case SSL_AD_NO_CERTIFICATE:
691       return -1;
692 
693     case SSL_AD_BAD_CERTIFICATE:
694       return SSL3_AD_BAD_CERTIFICATE;
695 
696     case SSL_AD_UNSUPPORTED_CERTIFICATE:
697       return SSL3_AD_UNSUPPORTED_CERTIFICATE;
698 
699     case SSL_AD_CERTIFICATE_REVOKED:
700       return SSL3_AD_CERTIFICATE_REVOKED;
701 
702     case SSL_AD_CERTIFICATE_EXPIRED:
703       return SSL3_AD_CERTIFICATE_EXPIRED;
704 
705     case SSL_AD_CERTIFICATE_UNKNOWN:
706       return SSL3_AD_CERTIFICATE_UNKNOWN;
707 
708     case SSL_AD_ILLEGAL_PARAMETER:
709       return SSL3_AD_ILLEGAL_PARAMETER;
710 
711     case SSL_AD_UNKNOWN_CA:
712       return TLS1_AD_UNKNOWN_CA;
713 
714     case SSL_AD_ACCESS_DENIED:
715       return TLS1_AD_ACCESS_DENIED;
716 
717     case SSL_AD_DECODE_ERROR:
718       return TLS1_AD_DECODE_ERROR;
719 
720     case SSL_AD_DECRYPT_ERROR:
721       return TLS1_AD_DECRYPT_ERROR;
722     case SSL_AD_EXPORT_RESTRICTION:
723       return TLS1_AD_EXPORT_RESTRICTION;
724 
725     case SSL_AD_PROTOCOL_VERSION:
726       return TLS1_AD_PROTOCOL_VERSION;
727 
728     case SSL_AD_INSUFFICIENT_SECURITY:
729       return TLS1_AD_INSUFFICIENT_SECURITY;
730 
731     case SSL_AD_INTERNAL_ERROR:
732       return TLS1_AD_INTERNAL_ERROR;
733 
734     case SSL_AD_USER_CANCELLED:
735       return TLS1_AD_USER_CANCELLED;
736 
737     case SSL_AD_NO_RENEGOTIATION:
738       return TLS1_AD_NO_RENEGOTIATION;
739 
740     case SSL_AD_UNSUPPORTED_EXTENSION:
741       return TLS1_AD_UNSUPPORTED_EXTENSION;
742 
743     case SSL_AD_CERTIFICATE_UNOBTAINABLE:
744       return TLS1_AD_CERTIFICATE_UNOBTAINABLE;
745 
746     case SSL_AD_UNRECOGNIZED_NAME:
747       return TLS1_AD_UNRECOGNIZED_NAME;
748 
749     case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
750       return TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE;
751 
752     case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
753       return TLS1_AD_BAD_CERTIFICATE_HASH_VALUE;
754 
755     case SSL_AD_UNKNOWN_PSK_IDENTITY:
756       return TLS1_AD_UNKNOWN_PSK_IDENTITY;
757 
758     case SSL_AD_INAPPROPRIATE_FALLBACK:
759       return SSL3_AD_INAPPROPRIATE_FALLBACK;
760 
761     default:
762       return -1;
763   }
764 }
765