• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*-------------------------------------------------------------------------
2  * drawElements Quality Program OpenGL (ES) Module
3  * -----------------------------------------------
4  *
5  * Copyright 2014 The Android Open Source Project
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file
21  * \brief rasterization test utils.
22  *//*--------------------------------------------------------------------*/
23 
24 #include "glsRasterizationTestUtil.hpp"
25 #include "tcuVector.hpp"
26 #include "tcuSurface.hpp"
27 #include "tcuTestLog.hpp"
28 #include "tcuTextureUtil.hpp"
29 #include "tcuVectorUtil.hpp"
30 #include "tcuFloat.hpp"
31 #include "deMath.h"
32 
33 #include "rrRasterizer.hpp"
34 
35 #include <limits>
36 
37 namespace deqp
38 {
39 namespace gls
40 {
41 namespace RasterizationTestUtil
42 {
43 namespace
44 {
45 
lineLineIntersect(const tcu::Vector<deInt64,2> & line0Beg,const tcu::Vector<deInt64,2> & line0End,const tcu::Vector<deInt64,2> & line1Beg,const tcu::Vector<deInt64,2> & line1End)46 bool lineLineIntersect (const tcu::Vector<deInt64, 2>& line0Beg, const tcu::Vector<deInt64, 2>& line0End, const tcu::Vector<deInt64, 2>& line1Beg, const tcu::Vector<deInt64, 2>& line1End)
47 {
48 	typedef tcu::Vector<deInt64, 2> I64Vec2;
49 
50 	// Lines do not intersect if the other line's endpoints are on the same side
51 	// otherwise, the do intersect
52 
53 	// Test line 0
54 	{
55 		const I64Vec2 line			= line0End - line0Beg;
56 		const I64Vec2 v0			= line1Beg - line0Beg;
57 		const I64Vec2 v1			= line1End - line0Beg;
58 		const deInt64 crossProduct0	= (line.x() * v0.y() - line.y() * v0.x());
59 		const deInt64 crossProduct1	= (line.x() * v1.y() - line.y() * v1.x());
60 
61 		// check signs
62 		if ((crossProduct0 < 0 && crossProduct1 < 0) ||
63 			(crossProduct0 > 0 && crossProduct1 > 0))
64 			return false;
65 	}
66 
67 	// Test line 1
68 	{
69 		const I64Vec2 line			= line1End - line1Beg;
70 		const I64Vec2 v0			= line0Beg - line1Beg;
71 		const I64Vec2 v1			= line0End - line1Beg;
72 		const deInt64 crossProduct0	= (line.x() * v0.y() - line.y() * v0.x());
73 		const deInt64 crossProduct1	= (line.x() * v1.y() - line.y() * v1.x());
74 
75 		// check signs
76 		if ((crossProduct0 < 0 && crossProduct1 < 0) ||
77 			(crossProduct0 > 0 && crossProduct1 > 0))
78 			return false;
79 	}
80 
81 	return true;
82 }
83 
isTriangleClockwise(const tcu::Vec4 & p0,const tcu::Vec4 & p1,const tcu::Vec4 & p2)84 bool isTriangleClockwise (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec4& p2)
85 {
86 	const tcu::Vec2	u				(p1.x() / p1.w() - p0.x() / p0.w(), p1.y() / p1.w() - p0.y() / p0.w());
87 	const tcu::Vec2	v				(p2.x() / p2.w() - p0.x() / p0.w(), p2.y() / p2.w() - p0.y() / p0.w());
88 	const float		crossProduct	= (u.x() * v.y() - u.y() * v.x());
89 
90 	return crossProduct > 0.0f;
91 }
92 
compareColors(const tcu::RGBA & colorA,const tcu::RGBA & colorB,int redBits,int greenBits,int blueBits)93 bool compareColors (const tcu::RGBA& colorA, const tcu::RGBA& colorB, int redBits, int greenBits, int blueBits)
94 {
95 	const int thresholdRed		= 1 << (8 - redBits);
96 	const int thresholdGreen	= 1 << (8 - greenBits);
97 	const int thresholdBlue		= 1 << (8 - blueBits);
98 
99 	return	deAbs32(colorA.getRed()   - colorB.getRed())   <= thresholdRed   &&
100 			deAbs32(colorA.getGreen() - colorB.getGreen()) <= thresholdGreen &&
101 			deAbs32(colorA.getBlue()  - colorB.getBlue())  <= thresholdBlue;
102 }
103 
pixelNearLineSegment(const tcu::IVec2 & pixel,const tcu::Vec2 & p0,const tcu::Vec2 & p1)104 bool pixelNearLineSegment (const tcu::IVec2& pixel, const tcu::Vec2& p0, const tcu::Vec2& p1)
105 {
106 	const tcu::Vec2 pixelCenterPosition = tcu::Vec2(pixel.x() + 0.5f, pixel.y() + 0.5f);
107 
108 	// "Near" = Distance from the line to the pixel is less than 2 * pixel_max_radius. (pixel_max_radius = sqrt(2) / 2)
109 	const float maxPixelDistance		= 1.414f;
110 	const float maxPixelDistanceSquared	= 2.0f;
111 
112 	// Near the line
113 	{
114 		const tcu::Vec2	line			= p1                  - p0;
115 		const tcu::Vec2	v				= pixelCenterPosition - p0;
116 		const float		crossProduct	= (line.x() * v.y() - line.y() * v.x());
117 
118 		// distance to line: (line x v) / |line|
119 		//     |(line x v) / |line|| > maxPixelDistance
120 		// ==> (line x v)^2 / |line|^2 > maxPixelDistance^2
121 		// ==> (line x v)^2 > maxPixelDistance^2 * |line|^2
122 
123 		if (crossProduct * crossProduct > maxPixelDistanceSquared * tcu::lengthSquared(line))
124 			return false;
125 	}
126 
127 	// Between the endpoints
128 	{
129 		// distance from line endpoint 1 to pixel is less than line length + maxPixelDistance
130 		const float maxDistance = tcu::length(p1 - p0) + maxPixelDistance;
131 
132 		if (tcu::length(pixelCenterPosition - p0) > maxDistance)
133 			return false;
134 		if (tcu::length(pixelCenterPosition - p1) > maxDistance)
135 			return false;
136 	}
137 
138 	return true;
139 }
140 
pixelOnlyOnASharedEdge(const tcu::IVec2 & pixel,const TriangleSceneSpec::SceneTriangle & triangle,const tcu::IVec2 & viewportSize)141 bool pixelOnlyOnASharedEdge (const tcu::IVec2& pixel, const TriangleSceneSpec::SceneTriangle& triangle, const tcu::IVec2& viewportSize)
142 {
143 	if (triangle.sharedEdge[0] || triangle.sharedEdge[1] || triangle.sharedEdge[2])
144 	{
145 		const tcu::Vec2 triangleNormalizedDeviceSpace[3] =
146 		{
147 			tcu::Vec2(triangle.positions[0].x() / triangle.positions[0].w(), triangle.positions[0].y() / triangle.positions[0].w()),
148 			tcu::Vec2(triangle.positions[1].x() / triangle.positions[1].w(), triangle.positions[1].y() / triangle.positions[1].w()),
149 			tcu::Vec2(triangle.positions[2].x() / triangle.positions[2].w(), triangle.positions[2].y() / triangle.positions[2].w()),
150 		};
151 		const tcu::Vec2 triangleScreenSpace[3] =
152 		{
153 			(triangleNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
154 			(triangleNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
155 			(triangleNormalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
156 		};
157 
158 		const bool pixelOnEdge0 = pixelNearLineSegment(pixel, triangleScreenSpace[0], triangleScreenSpace[1]);
159 		const bool pixelOnEdge1 = pixelNearLineSegment(pixel, triangleScreenSpace[1], triangleScreenSpace[2]);
160 		const bool pixelOnEdge2 = pixelNearLineSegment(pixel, triangleScreenSpace[2], triangleScreenSpace[0]);
161 
162 		// If the pixel is on a multiple edges return false
163 
164 		if (pixelOnEdge0 && !pixelOnEdge1 && !pixelOnEdge2)
165 			return triangle.sharedEdge[0];
166 		if (!pixelOnEdge0 && pixelOnEdge1 && !pixelOnEdge2)
167 			return triangle.sharedEdge[1];
168 		if (!pixelOnEdge0 && !pixelOnEdge1 && pixelOnEdge2)
169 			return triangle.sharedEdge[2];
170 	}
171 
172 	return false;
173 }
174 
triangleArea(const tcu::Vec2 & s0,const tcu::Vec2 & s1,const tcu::Vec2 & s2)175 float triangleArea (const tcu::Vec2& s0, const tcu::Vec2& s1, const tcu::Vec2& s2)
176 {
177 	const tcu::Vec2	u				(s1.x() - s0.x(), s1.y() - s0.y());
178 	const tcu::Vec2	v				(s2.x() - s0.x(), s2.y() - s0.y());
179 	const float		crossProduct	= (u.x() * v.y() - u.y() * v.x());
180 
181 	return crossProduct / 2.0f;
182 }
183 
getTriangleAABB(const TriangleSceneSpec::SceneTriangle & triangle,const tcu::IVec2 & viewportSize)184 tcu::IVec4 getTriangleAABB (const TriangleSceneSpec::SceneTriangle& triangle, const tcu::IVec2& viewportSize)
185 {
186 	const tcu::Vec2 normalizedDeviceSpace[3] =
187 	{
188 		tcu::Vec2(triangle.positions[0].x() / triangle.positions[0].w(), triangle.positions[0].y() / triangle.positions[0].w()),
189 		tcu::Vec2(triangle.positions[1].x() / triangle.positions[1].w(), triangle.positions[1].y() / triangle.positions[1].w()),
190 		tcu::Vec2(triangle.positions[2].x() / triangle.positions[2].w(), triangle.positions[2].y() / triangle.positions[2].w()),
191 	};
192 	const tcu::Vec2 screenSpace[3] =
193 	{
194 		(normalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
195 		(normalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
196 		(normalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
197 	};
198 
199 	tcu::IVec4 aabb;
200 
201 	aabb.x() = (int)deFloatFloor(de::min(de::min(screenSpace[0].x(), screenSpace[1].x()), screenSpace[2].x()));
202 	aabb.y() = (int)deFloatFloor(de::min(de::min(screenSpace[0].y(), screenSpace[1].y()), screenSpace[2].y()));
203 	aabb.z() = (int)deFloatCeil (de::max(de::max(screenSpace[0].x(), screenSpace[1].x()), screenSpace[2].x()));
204 	aabb.w() = (int)deFloatCeil (de::max(de::max(screenSpace[0].y(), screenSpace[1].y()), screenSpace[2].y()));
205 
206 	return aabb;
207 }
208 
getExponentEpsilonFromULP(int valueExponent,deUint32 ulp)209 float getExponentEpsilonFromULP (int valueExponent, deUint32 ulp)
210 {
211 	DE_ASSERT(ulp < (1u<<10));
212 
213 	// assume mediump precision, using ulp as ulps in a 10 bit mantissa
214 	return tcu::Float32::construct(+1, valueExponent, (1u<<23) + (ulp << (23 - 10))).asFloat() - tcu::Float32::construct(+1, valueExponent, (1u<<23)).asFloat();
215 }
216 
getValueEpsilonFromULP(float value,deUint32 ulp)217 float getValueEpsilonFromULP (float value, deUint32 ulp)
218 {
219 	DE_ASSERT(value != std::numeric_limits<float>::infinity() && value != -std::numeric_limits<float>::infinity());
220 
221 	const int exponent = tcu::Float32(value).exponent();
222 	return getExponentEpsilonFromULP(exponent, ulp);
223 }
224 
getMaxValueWithinError(float value,deUint32 ulp)225 float getMaxValueWithinError (float value, deUint32 ulp)
226 {
227 	if (value == std::numeric_limits<float>::infinity() || value == -std::numeric_limits<float>::infinity())
228 		return value;
229 
230 	return value + getValueEpsilonFromULP(value, ulp);
231 }
232 
getMinValueWithinError(float value,deUint32 ulp)233 float getMinValueWithinError (float value, deUint32 ulp)
234 {
235 	if (value == std::numeric_limits<float>::infinity() || value == -std::numeric_limits<float>::infinity())
236 		return value;
237 
238 	return value - getValueEpsilonFromULP(value, ulp);
239 }
240 
getMinFlushToZero(float value)241 float getMinFlushToZero (float value)
242 {
243 	// flush to zero if that decreases the value
244 	// assume mediump precision
245 	if (value > 0.0f && value < tcu::Float32::construct(+1, -14, 1u<<23).asFloat())
246 		return 0.0f;
247 	return value;
248 }
249 
getMaxFlushToZero(float value)250 float getMaxFlushToZero (float value)
251 {
252 	// flush to zero if that increases the value
253 	// assume mediump precision
254 	if (value < 0.0f && value > tcu::Float32::construct(-1, -14, 1u<<23).asFloat())
255 		return 0.0f;
256 	return value;
257 }
258 
convertRGB8ToNativeFormat(const tcu::RGBA & color,const RasterizationArguments & args)259 tcu::IVec3 convertRGB8ToNativeFormat (const tcu::RGBA& color, const RasterizationArguments& args)
260 {
261 	tcu::IVec3 pixelNativeColor;
262 
263 	for (int channelNdx = 0; channelNdx < 3; ++channelNdx)
264 	{
265 		const int channelBitCount	= (channelNdx == 0) ? (args.redBits) : (channelNdx == 1) ? (args.greenBits) : (args.blueBits);
266 		const int channelPixelValue	= (channelNdx == 0) ? (color.getRed()) : (channelNdx == 1) ? (color.getGreen()) : (color.getBlue());
267 
268 		if (channelBitCount <= 8)
269 			pixelNativeColor[channelNdx] = channelPixelValue >> (8 - channelBitCount);
270 		else if (channelBitCount == 8)
271 			pixelNativeColor[channelNdx] = channelPixelValue;
272 		else
273 		{
274 			// just in case someone comes up with 8+ bits framebuffers pixel formats. But as
275 			// we can only read in rgba8, we have to guess the trailing bits. Guessing 0.
276 			pixelNativeColor[channelNdx] = channelPixelValue << (channelBitCount - 8);
277 		}
278 	}
279 
280 	return pixelNativeColor;
281 }
282 
283 /*--------------------------------------------------------------------*//*!
284  * Returns the maximum value of x / y, where x c [minDividend, maxDividend]
285  * and y c [minDivisor, maxDivisor]
286  *//*--------------------------------------------------------------------*/
maximalRangeDivision(float minDividend,float maxDividend,float minDivisor,float maxDivisor)287 float maximalRangeDivision (float minDividend, float maxDividend, float minDivisor, float maxDivisor)
288 {
289 	DE_ASSERT(minDividend <= maxDividend);
290 	DE_ASSERT(minDivisor <= maxDivisor);
291 
292 	// special cases
293 	if (minDividend == 0.0f && maxDividend == 0.0f)
294 		return 0.0f;
295 	if (minDivisor <= 0.0f && maxDivisor >= 0.0f)
296 		return std::numeric_limits<float>::infinity();
297 
298 	return de::max(de::max(minDividend / minDivisor, minDividend / maxDivisor), de::max(maxDividend / minDivisor, maxDividend / maxDivisor));
299 }
300 
301 /*--------------------------------------------------------------------*//*!
302  * Returns the minimum value of x / y, where x c [minDividend, maxDividend]
303  * and y c [minDivisor, maxDivisor]
304  *//*--------------------------------------------------------------------*/
minimalRangeDivision(float minDividend,float maxDividend,float minDivisor,float maxDivisor)305 float minimalRangeDivision (float minDividend, float maxDividend, float minDivisor, float maxDivisor)
306 {
307 	DE_ASSERT(minDividend <= maxDividend);
308 	DE_ASSERT(minDivisor <= maxDivisor);
309 
310 	// special cases
311 	if (minDividend == 0.0f && maxDividend == 0.0f)
312 		return 0.0f;
313 	if (minDivisor <= 0.0f && maxDivisor >= 0.0f)
314 		return -std::numeric_limits<float>::infinity();
315 
316 	return de::min(de::min(minDividend / minDivisor, minDividend / maxDivisor), de::min(maxDividend / minDivisor, maxDividend / maxDivisor));
317 }
318 
isLineXMajor(const tcu::Vec2 & lineScreenSpaceP0,const tcu::Vec2 & lineScreenSpaceP1)319 static bool isLineXMajor (const tcu::Vec2& lineScreenSpaceP0, const tcu::Vec2& lineScreenSpaceP1)
320 {
321 	return de::abs(lineScreenSpaceP1.x() - lineScreenSpaceP0.x()) >= de::abs(lineScreenSpaceP1.y() - lineScreenSpaceP0.y());
322 }
323 
isPackedSSLineXMajor(const tcu::Vec4 & packedLine)324 static bool isPackedSSLineXMajor (const tcu::Vec4& packedLine)
325 {
326 	const tcu::Vec2 lineScreenSpaceP0 = packedLine.swizzle(0, 1);
327 	const tcu::Vec2 lineScreenSpaceP1 = packedLine.swizzle(2, 3);
328 
329 	return isLineXMajor(lineScreenSpaceP0, lineScreenSpaceP1);
330 }
331 
332 struct InterpolationRange
333 {
334 	tcu::Vec3 max;
335 	tcu::Vec3 min;
336 };
337 
338 struct LineInterpolationRange
339 {
340 	tcu::Vec2 max;
341 	tcu::Vec2 min;
342 };
343 
calcTriangleInterpolationWeights(const tcu::Vec4 & p0,const tcu::Vec4 & p1,const tcu::Vec4 & p2,const tcu::Vec2 & ndpixel)344 InterpolationRange calcTriangleInterpolationWeights (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec4& p2, const tcu::Vec2& ndpixel)
345 {
346 	const int roundError		= 1;
347 	const int barycentricError	= 3;
348 	const int divError			= 8;
349 
350 	const tcu::Vec2 nd0 = p0.swizzle(0, 1) / p0.w();
351 	const tcu::Vec2 nd1 = p1.swizzle(0, 1) / p1.w();
352 	const tcu::Vec2 nd2 = p2.swizzle(0, 1) / p2.w();
353 
354 	const float ka = triangleArea(ndpixel, nd1, nd2);
355 	const float kb = triangleArea(ndpixel, nd2, nd0);
356 	const float kc = triangleArea(ndpixel, nd0, nd1);
357 
358 	const float kaMax = getMaxFlushToZero(getMaxValueWithinError(ka, barycentricError));
359 	const float kbMax = getMaxFlushToZero(getMaxValueWithinError(kb, barycentricError));
360 	const float kcMax = getMaxFlushToZero(getMaxValueWithinError(kc, barycentricError));
361 	const float kaMin = getMinFlushToZero(getMinValueWithinError(ka, barycentricError));
362 	const float kbMin = getMinFlushToZero(getMinValueWithinError(kb, barycentricError));
363 	const float kcMin = getMinFlushToZero(getMinValueWithinError(kc, barycentricError));
364 	DE_ASSERT(kaMin <= kaMax);
365 	DE_ASSERT(kbMin <= kbMax);
366 	DE_ASSERT(kcMin <= kcMax);
367 
368 	// calculate weights: vec3(ka / p0.w, kb / p1.w, kc / p2.w) / (ka / p0.w + kb / p1.w + kc / p2.w)
369 	const float maxPreDivisionValues[3] =
370 	{
371 		getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kaMax / p0.w()), divError)),
372 		getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kbMax / p1.w()), divError)),
373 		getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kcMax / p2.w()), divError)),
374 	};
375 	const float minPreDivisionValues[3] =
376 	{
377 		getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kaMin / p0.w()), divError)),
378 		getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kbMin / p1.w()), divError)),
379 		getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kcMin / p2.w()), divError)),
380 	};
381 	DE_ASSERT(minPreDivisionValues[0] <= maxPreDivisionValues[0]);
382 	DE_ASSERT(minPreDivisionValues[1] <= maxPreDivisionValues[1]);
383 	DE_ASSERT(minPreDivisionValues[2] <= maxPreDivisionValues[2]);
384 
385 	const float maxDivisor = getMaxFlushToZero(getMaxValueWithinError(maxPreDivisionValues[0] + maxPreDivisionValues[1] + maxPreDivisionValues[2], 2*roundError));
386 	const float minDivisor = getMinFlushToZero(getMinValueWithinError(minPreDivisionValues[0] + minPreDivisionValues[1] + minPreDivisionValues[2], 2*roundError));
387 	DE_ASSERT(minDivisor <= maxDivisor);
388 
389 	InterpolationRange returnValue;
390 
391 	returnValue.max.x() = getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[0], maxPreDivisionValues[0], minDivisor, maxDivisor)), divError));
392 	returnValue.max.y() = getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[1], maxPreDivisionValues[1], minDivisor, maxDivisor)), divError));
393 	returnValue.max.z() = getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[2], maxPreDivisionValues[2], minDivisor, maxDivisor)), divError));
394 	returnValue.min.x() = getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[0], maxPreDivisionValues[0], minDivisor, maxDivisor)), divError));
395 	returnValue.min.y() = getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[1], maxPreDivisionValues[1], minDivisor, maxDivisor)), divError));
396 	returnValue.min.z() = getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[2], maxPreDivisionValues[2], minDivisor, maxDivisor)), divError));
397 
398 	DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
399 	DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
400 	DE_ASSERT(returnValue.min.z() <= returnValue.max.z());
401 
402 	return returnValue;
403 }
404 
calcLineInterpolationWeights(const tcu::Vec2 & pa,float wa,const tcu::Vec2 & pb,float wb,const tcu::Vec2 & pr)405 LineInterpolationRange calcLineInterpolationWeights (const tcu::Vec2& pa, float wa, const tcu::Vec2& pb, float wb, const tcu::Vec2& pr)
406 {
407 	const int roundError	= 1;
408 	const int divError		= 3;
409 
410 	// calc weights:
411 	//			(1-t) / wa					t / wb
412 	//		-------------------	,	-------------------
413 	//		(1-t) / wa + t / wb		(1-t) / wa + t / wb
414 
415 	// Allow 1 ULP
416 	const float		dividend	= tcu::dot(pr - pa, pb - pa);
417 	const float		dividendMax	= getMaxValueWithinError(dividend, 1);
418 	const float		dividendMin	= getMinValueWithinError(dividend, 1);
419 	DE_ASSERT(dividendMin <= dividendMax);
420 
421 	// Assuming lengthSquared will not be implemented as sqrt(x)^2, allow 1 ULP
422 	const float		divisor		= tcu::lengthSquared(pb - pa);
423 	const float		divisorMax	= getMaxValueWithinError(divisor, 1);
424 	const float		divisorMin	= getMinValueWithinError(divisor, 1);
425 	DE_ASSERT(divisorMin <= divisorMax);
426 
427 	// Allow 3 ULP precision for division
428 	const float		tMax		= getMaxValueWithinError(maximalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
429 	const float		tMin		= getMinValueWithinError(minimalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
430 	DE_ASSERT(tMin <= tMax);
431 
432 	const float		perspectiveTMax			= getMaxValueWithinError(maximalRangeDivision(tMin, tMax, wb, wb), divError);
433 	const float		perspectiveTMin			= getMinValueWithinError(minimalRangeDivision(tMin, tMax, wb, wb), divError);
434 	DE_ASSERT(perspectiveTMin <= perspectiveTMax);
435 
436 	const float		perspectiveInvTMax		= getMaxValueWithinError(maximalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
437 	const float		perspectiveInvTMin		= getMinValueWithinError(minimalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
438 	DE_ASSERT(perspectiveInvTMin <= perspectiveInvTMax);
439 
440 	const float		perspectiveDivisorMax	= getMaxValueWithinError(perspectiveTMax + perspectiveInvTMax, roundError);
441 	const float		perspectiveDivisorMin	= getMinValueWithinError(perspectiveTMin + perspectiveInvTMin, roundError);
442 	DE_ASSERT(perspectiveDivisorMin <= perspectiveDivisorMax);
443 
444 	LineInterpolationRange returnValue;
445 	returnValue.max.x() = getMaxValueWithinError(maximalRangeDivision(perspectiveInvTMin,	perspectiveInvTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
446 	returnValue.max.y() = getMaxValueWithinError(maximalRangeDivision(perspectiveTMin,		perspectiveTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
447 	returnValue.min.x() = getMinValueWithinError(minimalRangeDivision(perspectiveInvTMin,	perspectiveInvTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
448 	returnValue.min.y() = getMinValueWithinError(minimalRangeDivision(perspectiveTMin,		perspectiveTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
449 
450 	DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
451 	DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
452 
453 	return returnValue;
454 }
455 
calcLineInterpolationWeightsAxisProjected(const tcu::Vec2 & pa,float wa,const tcu::Vec2 & pb,float wb,const tcu::Vec2 & pr)456 LineInterpolationRange calcLineInterpolationWeightsAxisProjected (const tcu::Vec2& pa, float wa, const tcu::Vec2& pb, float wb, const tcu::Vec2& pr)
457 {
458 	const int	roundError		= 1;
459 	const int	divError		= 3;
460 	const bool	isXMajor		= isLineXMajor(pa, pb);
461 	const int	majorAxisNdx	= (isXMajor) ? (0) : (1);
462 
463 	// calc weights:
464 	//			(1-t) / wa					t / wb
465 	//		-------------------	,	-------------------
466 	//		(1-t) / wa + t / wb		(1-t) / wa + t / wb
467 
468 	// Use axis projected (inaccurate) method, i.e. for X-major lines:
469 	//     (xd - xa) * (xb - xa)      xd - xa
470 	// t = ---------------------  ==  -------
471 	//       ( xb - xa ) ^ 2          xb - xa
472 
473 	// Allow 1 ULP
474 	const float		dividend	= (pr[majorAxisNdx] - pa[majorAxisNdx]);
475 	const float		dividendMax	= getMaxValueWithinError(dividend, 1);
476 	const float		dividendMin	= getMinValueWithinError(dividend, 1);
477 	DE_ASSERT(dividendMin <= dividendMax);
478 
479 	// Allow 1 ULP
480 	const float		divisor		= (pb[majorAxisNdx] - pa[majorAxisNdx]);
481 	const float		divisorMax	= getMaxValueWithinError(divisor, 1);
482 	const float		divisorMin	= getMinValueWithinError(divisor, 1);
483 	DE_ASSERT(divisorMin <= divisorMax);
484 
485 	// Allow 3 ULP precision for division
486 	const float		tMax		= getMaxValueWithinError(maximalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
487 	const float		tMin		= getMinValueWithinError(minimalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
488 	DE_ASSERT(tMin <= tMax);
489 
490 	const float		perspectiveTMax			= getMaxValueWithinError(maximalRangeDivision(tMin, tMax, wb, wb), divError);
491 	const float		perspectiveTMin			= getMinValueWithinError(minimalRangeDivision(tMin, tMax, wb, wb), divError);
492 	DE_ASSERT(perspectiveTMin <= perspectiveTMax);
493 
494 	const float		perspectiveInvTMax		= getMaxValueWithinError(maximalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
495 	const float		perspectiveInvTMin		= getMinValueWithinError(minimalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
496 	DE_ASSERT(perspectiveInvTMin <= perspectiveInvTMax);
497 
498 	const float		perspectiveDivisorMax	= getMaxValueWithinError(perspectiveTMax + perspectiveInvTMax, roundError);
499 	const float		perspectiveDivisorMin	= getMinValueWithinError(perspectiveTMin + perspectiveInvTMin, roundError);
500 	DE_ASSERT(perspectiveDivisorMin <= perspectiveDivisorMax);
501 
502 	LineInterpolationRange returnValue;
503 	returnValue.max.x() = getMaxValueWithinError(maximalRangeDivision(perspectiveInvTMin,	perspectiveInvTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
504 	returnValue.max.y() = getMaxValueWithinError(maximalRangeDivision(perspectiveTMin,		perspectiveTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
505 	returnValue.min.x() = getMinValueWithinError(minimalRangeDivision(perspectiveInvTMin,	perspectiveInvTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
506 	returnValue.min.y() = getMinValueWithinError(minimalRangeDivision(perspectiveTMin,		perspectiveTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
507 
508 	DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
509 	DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
510 
511 	return returnValue;
512 }
513 
514 template <typename WeightEquation>
calcSingleSampleLineInterpolationRangeWithWeightEquation(const tcu::Vec2 & pa,float wa,const tcu::Vec2 & pb,float wb,const tcu::IVec2 & pixel,int subpixelBits,WeightEquation weightEquation)515 LineInterpolationRange calcSingleSampleLineInterpolationRangeWithWeightEquation (const tcu::Vec2&	pa,
516 																				 float				wa,
517 																				 const tcu::Vec2&	pb,
518 																				 float				wb,
519 																				 const tcu::IVec2&	pixel,
520 																				 int				subpixelBits,
521 																				 WeightEquation		weightEquation)
522 {
523 	// allow interpolation weights anywhere in the central subpixels
524 	const float testSquareSize = (2.0f / (1UL << subpixelBits));
525 	const float testSquarePos  = (0.5f - testSquareSize / 2);
526 
527 	const tcu::Vec2 corners[4] =
528 	{
529 		tcu::Vec2(pixel.x() + testSquarePos + 0.0f,				pixel.y() + testSquarePos + 0.0f),
530 		tcu::Vec2(pixel.x() + testSquarePos + 0.0f,				pixel.y() + testSquarePos + testSquareSize),
531 		tcu::Vec2(pixel.x() + testSquarePos + testSquareSize,	pixel.y() + testSquarePos + testSquareSize),
532 		tcu::Vec2(pixel.x() + testSquarePos + testSquareSize,	pixel.y() + testSquarePos + 0.0f),
533 	};
534 
535 	// calculate interpolation as a line
536 	const LineInterpolationRange weights[4] =
537 	{
538 		weightEquation(pa, wa, pb, wb, corners[0]),
539 		weightEquation(pa, wa, pb, wb, corners[1]),
540 		weightEquation(pa, wa, pb, wb, corners[2]),
541 		weightEquation(pa, wa, pb, wb, corners[3]),
542 	};
543 
544 	const tcu::Vec2 minWeights = tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
545 	const tcu::Vec2 maxWeights = tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
546 
547 	LineInterpolationRange result;
548 	result.min = minWeights;
549 	result.max = maxWeights;
550 	return result;
551 }
552 
calcSingleSampleLineInterpolationRange(const tcu::Vec2 & pa,float wa,const tcu::Vec2 & pb,float wb,const tcu::IVec2 & pixel,int subpixelBits)553 LineInterpolationRange calcSingleSampleLineInterpolationRange (const tcu::Vec2& pa, float wa, const tcu::Vec2& pb, float wb, const tcu::IVec2& pixel, int subpixelBits)
554 {
555 	return calcSingleSampleLineInterpolationRangeWithWeightEquation(pa, wa, pb, wb, pixel, subpixelBits, calcLineInterpolationWeights);
556 }
557 
calcSingleSampleLineInterpolationRangeAxisProjected(const tcu::Vec2 & pa,float wa,const tcu::Vec2 & pb,float wb,const tcu::IVec2 & pixel,int subpixelBits)558 LineInterpolationRange calcSingleSampleLineInterpolationRangeAxisProjected (const tcu::Vec2& pa, float wa, const tcu::Vec2& pb, float wb, const tcu::IVec2& pixel, int subpixelBits)
559 {
560 	return calcSingleSampleLineInterpolationRangeWithWeightEquation(pa, wa, pb, wb, pixel, subpixelBits, calcLineInterpolationWeightsAxisProjected);
561 }
562 
563 struct TriangleInterpolator
564 {
565 	const TriangleSceneSpec& scene;
566 
TriangleInterpolatordeqp::gls::RasterizationTestUtil::__anon7e42dc6f0111::TriangleInterpolator567 	TriangleInterpolator (const TriangleSceneSpec& scene_)
568 		: scene(scene_)
569 	{
570 	}
571 
interpolatedeqp::gls::RasterizationTestUtil::__anon7e42dc6f0111::TriangleInterpolator572 	InterpolationRange interpolate (int primitiveNdx, const tcu::IVec2 pixel, const tcu::IVec2 viewportSize, bool multisample, int subpixelBits) const
573 	{
574 		// allow anywhere in the pixel area in multisample
575 		// allow only in the center subpixels (4 subpixels) in singlesample
576 		const float testSquareSize = (multisample) ? (1.0f) : (2.0f / (1UL << subpixelBits));
577 		const float testSquarePos  = (multisample) ? (0.0f) : (0.5f - testSquareSize / 2);
578 		const tcu::Vec2 corners[4] =
579 		{
580 			tcu::Vec2((pixel.x() + testSquarePos + 0.0f)           / viewportSize.x() * 2.0f - 1.0f, (pixel.y() + testSquarePos + 0.0f          ) / viewportSize.y() * 2.0f - 1.0f),
581 			tcu::Vec2((pixel.x() + testSquarePos + 0.0f)           / viewportSize.x() * 2.0f - 1.0f, (pixel.y() + testSquarePos + testSquareSize) / viewportSize.y() * 2.0f - 1.0f),
582 			tcu::Vec2((pixel.x() + testSquarePos + testSquareSize) / viewportSize.x() * 2.0f - 1.0f, (pixel.y() + testSquarePos + testSquareSize) / viewportSize.y() * 2.0f - 1.0f),
583 			tcu::Vec2((pixel.x() + testSquarePos + testSquareSize) / viewportSize.x() * 2.0f - 1.0f, (pixel.y() + testSquarePos + 0.0f          ) / viewportSize.y() * 2.0f - 1.0f),
584 		};
585 		const InterpolationRange weights[4] =
586 		{
587 			calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[0]),
588 			calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[1]),
589 			calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[2]),
590 			calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[3]),
591 		};
592 
593 		InterpolationRange result;
594 		result.min = tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
595 		result.max = tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
596 		return result;
597 	}
598 };
599 
600 /*--------------------------------------------------------------------*//*!
601  * Used only by verifyMultisampleLineGroupInterpolation to calculate
602  * correct line interpolations for the triangulated lines.
603  *//*--------------------------------------------------------------------*/
604 struct MultisampleLineInterpolator
605 {
606 	const LineSceneSpec& scene;
607 
MultisampleLineInterpolatordeqp::gls::RasterizationTestUtil::__anon7e42dc6f0111::MultisampleLineInterpolator608 	MultisampleLineInterpolator (const LineSceneSpec& scene_)
609 		: scene(scene_)
610 	{
611 	}
612 
interpolatedeqp::gls::RasterizationTestUtil::__anon7e42dc6f0111::MultisampleLineInterpolator613 	InterpolationRange interpolate (int primitiveNdx, const tcu::IVec2 pixel, const tcu::IVec2 viewportSize, bool multisample, int subpixelBits) const
614 	{
615 		DE_ASSERT(multisample);
616 		DE_UNREF(multisample);
617 		DE_UNREF(subpixelBits);
618 
619 		// in triangulation, one line emits two triangles
620 		const int		lineNdx		= primitiveNdx / 2;
621 
622 		// allow interpolation weights anywhere in the pixel
623 		const tcu::Vec2 corners[4] =
624 		{
625 			tcu::Vec2(pixel.x() + 0.0f, pixel.y() + 0.0f),
626 			tcu::Vec2(pixel.x() + 0.0f, pixel.y() + 1.0f),
627 			tcu::Vec2(pixel.x() + 1.0f, pixel.y() + 1.0f),
628 			tcu::Vec2(pixel.x() + 1.0f, pixel.y() + 0.0f),
629 		};
630 
631 		const float		wa = scene.lines[lineNdx].positions[0].w();
632 		const float		wb = scene.lines[lineNdx].positions[1].w();
633 		const tcu::Vec2	pa = tcu::Vec2((scene.lines[lineNdx].positions[0].x() / wa + 1.0f) * 0.5f * viewportSize.x(),
634 									   (scene.lines[lineNdx].positions[0].y() / wa + 1.0f) * 0.5f * viewportSize.y());
635 		const tcu::Vec2	pb = tcu::Vec2((scene.lines[lineNdx].positions[1].x() / wb + 1.0f) * 0.5f * viewportSize.x(),
636 									   (scene.lines[lineNdx].positions[1].y() / wb + 1.0f) * 0.5f * viewportSize.y());
637 
638 		// calculate interpolation as a line
639 		const LineInterpolationRange weights[4] =
640 		{
641 			calcLineInterpolationWeights(pa, wa, pb, wb, corners[0]),
642 			calcLineInterpolationWeights(pa, wa, pb, wb, corners[1]),
643 			calcLineInterpolationWeights(pa, wa, pb, wb, corners[2]),
644 			calcLineInterpolationWeights(pa, wa, pb, wb, corners[3]),
645 		};
646 
647 		const tcu::Vec2 minWeights = tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
648 		const tcu::Vec2 maxWeights = tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
649 
650 		// convert to three-component form. For all triangles, the vertex 0 is always emitted by the line starting point, and vertex 2 by the ending point
651 		InterpolationRange result;
652 		result.min = tcu::Vec3(minWeights.x(), 0.0f, minWeights.y());
653 		result.max = tcu::Vec3(maxWeights.x(), 0.0f, maxWeights.y());
654 		return result;
655 	}
656 };
657 
658 template <typename Interpolator>
verifyTriangleGroupInterpolationWithInterpolator(const tcu::Surface & surface,const TriangleSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log,const Interpolator & interpolator)659 bool verifyTriangleGroupInterpolationWithInterpolator (const tcu::Surface& surface, const TriangleSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log, const Interpolator& interpolator)
660 {
661 	const tcu::RGBA		invalidPixelColor	= tcu::RGBA(255, 0, 0, 255);
662 	const bool			multisampled		= (args.numSamples != 0);
663 	const tcu::IVec2	viewportSize		= tcu::IVec2(surface.getWidth(), surface.getHeight());
664 	const int			errorFloodThreshold	= 4;
665 	int					errorCount			= 0;
666 	int					invalidPixels		= 0;
667 	int					subPixelBits		= args.subpixelBits;
668 	tcu::Surface		errorMask			(surface.getWidth(), surface.getHeight());
669 
670 	tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
671 
672 	// log format
673 
674 	log << tcu::TestLog::Message << "Verifying rasterization result. Native format is RGB" << args.redBits << args.greenBits << args.blueBits << tcu::TestLog::EndMessage;
675 	if (args.redBits > 8 || args.greenBits > 8 || args.blueBits > 8)
676 		log << tcu::TestLog::Message << "Warning! More than 8 bits in a color channel, this may produce false negatives." << tcu::TestLog::EndMessage;
677 
678 	// subpixel bits in in a valid range?
679 
680 	if (subPixelBits < 0)
681 	{
682 		log << tcu::TestLog::Message << "Invalid subpixel count (" << subPixelBits << "), assuming 0" << tcu::TestLog::EndMessage;
683 		subPixelBits = 0;
684 	}
685 	else if (subPixelBits > 16)
686 	{
687 		// At high subpixel bit counts we might overflow. Checking at lower bit count is ok, but is less strict
688 		log << tcu::TestLog::Message << "Subpixel count is greater than 16 (" << subPixelBits << "). Checking results using less strict 16 bit requirements. This may produce false positives." << tcu::TestLog::EndMessage;
689 		subPixelBits = 16;
690 	}
691 
692 	// check pixels
693 
694 	for (int y = 0; y < surface.getHeight(); ++y)
695 	for (int x = 0; x < surface.getWidth();  ++x)
696 	{
697 		const tcu::RGBA		color				= surface.getPixel(x, y);
698 		bool				stackBottomFound	= false;
699 		int					stackSize			= 0;
700 		tcu::Vec4			colorStackMin;
701 		tcu::Vec4			colorStackMax;
702 
703 		// Iterate triangle coverage front to back, find the stack of pontentially contributing fragments
704 		for (int triNdx = (int)scene.triangles.size() - 1; triNdx >= 0; --triNdx)
705 		{
706 			const CoverageType coverage = calculateTriangleCoverage(scene.triangles[triNdx].positions[0],
707 																	scene.triangles[triNdx].positions[1],
708 																	scene.triangles[triNdx].positions[2],
709 																	tcu::IVec2(x, y),
710 																	viewportSize,
711 																	subPixelBits,
712 																	multisampled);
713 
714 			if (coverage == COVERAGE_FULL || coverage == COVERAGE_PARTIAL)
715 			{
716 				// potentially contributes to the result fragment's value
717 				const InterpolationRange weights = interpolator.interpolate(triNdx, tcu::IVec2(x, y), viewportSize, multisampled, subPixelBits);
718 
719 				const tcu::Vec4 fragmentColorMax =	de::clamp(weights.max.x(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[0] +
720 													de::clamp(weights.max.y(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[1] +
721 													de::clamp(weights.max.z(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[2];
722 				const tcu::Vec4 fragmentColorMin =	de::clamp(weights.min.x(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[0] +
723 													de::clamp(weights.min.y(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[1] +
724 													de::clamp(weights.min.z(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[2];
725 
726 				if (stackSize++ == 0)
727 				{
728 					// first triangle, set the values properly
729 					colorStackMin = fragmentColorMin;
730 					colorStackMax = fragmentColorMax;
731 				}
732 				else
733 				{
734 					// contributing triangle
735 					colorStackMin = tcu::min(colorStackMin, fragmentColorMin);
736 					colorStackMax = tcu::max(colorStackMax, fragmentColorMax);
737 				}
738 
739 				if (coverage == COVERAGE_FULL)
740 				{
741 					// loop terminates, this is the bottommost fragment
742 					stackBottomFound = true;
743 					break;
744 				}
745 			}
746 		}
747 
748 		// Partial coverage == background may be visible
749 		if (stackSize != 0 && !stackBottomFound)
750 		{
751 			stackSize++;
752 			colorStackMin = tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f);
753 		}
754 
755 		// Is the result image color in the valid range.
756 		if (stackSize == 0)
757 		{
758 			// No coverage, allow only background (black, value=0)
759 			const tcu::IVec3	pixelNativeColor	= convertRGB8ToNativeFormat(color, args);
760 			const int			threshold			= 1;
761 
762 			if (pixelNativeColor.x() > threshold ||
763 				pixelNativeColor.y() > threshold ||
764 				pixelNativeColor.z() > threshold)
765 			{
766 				++errorCount;
767 
768 				// don't fill the logs with too much data
769 				if (errorCount < errorFloodThreshold)
770 				{
771 					log << tcu::TestLog::Message
772 						<< "Found an invalid pixel at (" << x << "," << y << ")\n"
773 						<< "\tPixel color:\t\t" << color << "\n"
774 						<< "\tExpected background color.\n"
775 						<< tcu::TestLog::EndMessage;
776 				}
777 
778 				++invalidPixels;
779 				errorMask.setPixel(x, y, invalidPixelColor);
780 			}
781 		}
782 		else
783 		{
784 			DE_ASSERT(stackSize);
785 
786 			// Each additional step in the stack may cause conversion error of 1 bit due to undefined rounding direction
787 			const int			thresholdRed	= stackSize - 1;
788 			const int			thresholdGreen	= stackSize - 1;
789 			const int			thresholdBlue	= stackSize - 1;
790 
791 			const tcu::Vec3		valueRangeMin	= tcu::Vec3(colorStackMin.xyz());
792 			const tcu::Vec3		valueRangeMax	= tcu::Vec3(colorStackMax.xyz());
793 
794 			const tcu::IVec3	formatLimit		((1 << args.redBits) - 1, (1 << args.greenBits) - 1, (1 << args.blueBits) - 1);
795 			const tcu::Vec3		colorMinF		(de::clamp(valueRangeMin.x() * formatLimit.x(), 0.0f, (float)formatLimit.x()),
796 												 de::clamp(valueRangeMin.y() * formatLimit.y(), 0.0f, (float)formatLimit.y()),
797 												 de::clamp(valueRangeMin.z() * formatLimit.z(), 0.0f, (float)formatLimit.z()));
798 			const tcu::Vec3		colorMaxF		(de::clamp(valueRangeMax.x() * formatLimit.x(), 0.0f, (float)formatLimit.x()),
799 												 de::clamp(valueRangeMax.y() * formatLimit.y(), 0.0f, (float)formatLimit.y()),
800 												 de::clamp(valueRangeMax.z() * formatLimit.z(), 0.0f, (float)formatLimit.z()));
801 			const tcu::IVec3	colorMin		((int)deFloatFloor(colorMinF.x()),
802 												 (int)deFloatFloor(colorMinF.y()),
803 												 (int)deFloatFloor(colorMinF.z()));
804 			const tcu::IVec3	colorMax		((int)deFloatCeil (colorMaxF.x()),
805 												 (int)deFloatCeil (colorMaxF.y()),
806 												 (int)deFloatCeil (colorMaxF.z()));
807 
808 			// Convert pixel color from rgba8 to the real pixel format. Usually rgba8 or 565
809 			const tcu::IVec3 pixelNativeColor = convertRGB8ToNativeFormat(color, args);
810 
811 			// Validity check
812 			if (pixelNativeColor.x() < colorMin.x() - thresholdRed   ||
813 				pixelNativeColor.y() < colorMin.y() - thresholdGreen ||
814 				pixelNativeColor.z() < colorMin.z() - thresholdBlue  ||
815 				pixelNativeColor.x() > colorMax.x() + thresholdRed   ||
816 				pixelNativeColor.y() > colorMax.y() + thresholdGreen ||
817 				pixelNativeColor.z() > colorMax.z() + thresholdBlue)
818 			{
819 				++errorCount;
820 
821 				// don't fill the logs with too much data
822 				if (errorCount <= errorFloodThreshold)
823 				{
824 					log << tcu::TestLog::Message
825 						<< "Found an invalid pixel at (" << x << "," << y << ")\n"
826 						<< "\tPixel color:\t\t" << color << "\n"
827 						<< "\tNative color:\t\t" << pixelNativeColor << "\n"
828 						<< "\tAllowed error:\t\t" << tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue) << "\n"
829 						<< "\tReference native color min: " << tcu::clamp(colorMin - tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue), tcu::IVec3(0,0,0), formatLimit) << "\n"
830 						<< "\tReference native color max: " << tcu::clamp(colorMax + tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue), tcu::IVec3(0,0,0), formatLimit) << "\n"
831 						<< "\tReference native float min: " << tcu::clamp(colorMinF - tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue).cast<float>(), tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
832 						<< "\tReference native float max: " << tcu::clamp(colorMaxF + tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue).cast<float>(), tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
833 						<< "\tFmin:\t" << tcu::clamp(valueRangeMin, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
834 						<< "\tFmax:\t" << tcu::clamp(valueRangeMax, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
835 						<< tcu::TestLog::EndMessage;
836 				}
837 
838 				++invalidPixels;
839 				errorMask.setPixel(x, y, invalidPixelColor);
840 			}
841 		}
842 	}
843 
844 	// don't just hide failures
845 	if (errorCount > errorFloodThreshold)
846 		log << tcu::TestLog::Message << "Omitted " << (errorCount-errorFloodThreshold) << " pixel error description(s)." << tcu::TestLog::EndMessage;
847 
848 	// report result
849 	if (invalidPixels)
850 	{
851 		log << tcu::TestLog::Message << invalidPixels << " invalid pixel(s) found." << tcu::TestLog::EndMessage;
852 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
853 			<< tcu::TestLog::Image("Result", "Result",			surface)
854 			<< tcu::TestLog::Image("ErrorMask", "ErrorMask",	errorMask)
855 			<< tcu::TestLog::EndImageSet;
856 
857 		return false;
858 	}
859 	else
860 	{
861 		log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
862 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
863 			<< tcu::TestLog::Image("Result", "Result", surface)
864 			<< tcu::TestLog::EndImageSet;
865 
866 		return true;
867 	}
868 }
869 
verifyMultisampleLineGroupRasterization(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)870 bool verifyMultisampleLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
871 {
872 	// Multisampled line == 2 triangles
873 
874 	const tcu::Vec2		viewportSize	= tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
875 	const float			halfLineWidth	= scene.lineWidth * 0.5f;
876 	TriangleSceneSpec	triangleScene;
877 
878 	triangleScene.triangles.resize(2 * scene.lines.size());
879 	for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
880 	{
881 		// Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
882 		const tcu::Vec2 lineNormalizedDeviceSpace[2] =
883 		{
884 			tcu::Vec2(scene.lines[lineNdx].positions[0].x() / scene.lines[lineNdx].positions[0].w(), scene.lines[lineNdx].positions[0].y() / scene.lines[lineNdx].positions[0].w()),
885 			tcu::Vec2(scene.lines[lineNdx].positions[1].x() / scene.lines[lineNdx].positions[1].w(), scene.lines[lineNdx].positions[1].y() / scene.lines[lineNdx].positions[1].w()),
886 		};
887 		const tcu::Vec2 lineScreenSpace[2] =
888 		{
889 			(lineNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
890 			(lineNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
891 		};
892 
893 		const tcu::Vec2 lineDir			= tcu::normalize(lineScreenSpace[1] - lineScreenSpace[0]);
894 		const tcu::Vec2 lineNormalDir	= tcu::Vec2(lineDir.y(), -lineDir.x());
895 
896 		const tcu::Vec2 lineQuadScreenSpace[4] =
897 		{
898 			lineScreenSpace[0] + lineNormalDir * halfLineWidth,
899 			lineScreenSpace[0] - lineNormalDir * halfLineWidth,
900 			lineScreenSpace[1] - lineNormalDir * halfLineWidth,
901 			lineScreenSpace[1] + lineNormalDir * halfLineWidth,
902 		};
903 		const tcu::Vec2 lineQuadNormalizedDeviceSpace[4] =
904 		{
905 			lineQuadScreenSpace[0] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
906 			lineQuadScreenSpace[1] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
907 			lineQuadScreenSpace[2] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
908 			lineQuadScreenSpace[3] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
909 		};
910 
911 		triangleScene.triangles[lineNdx*2 + 0].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 0].sharedEdge[0] = false;
912 		triangleScene.triangles[lineNdx*2 + 0].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 0].sharedEdge[1] = false;
913 		triangleScene.triangles[lineNdx*2 + 0].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 0].sharedEdge[2] = true;
914 
915 		triangleScene.triangles[lineNdx*2 + 1].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 1].sharedEdge[0] = true;
916 		triangleScene.triangles[lineNdx*2 + 1].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 1].sharedEdge[1] = false;
917 		triangleScene.triangles[lineNdx*2 + 1].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 1].sharedEdge[2] = false;
918 	}
919 
920 	return verifyTriangleGroupRasterization(surface, triangleScene, args, log);
921 }
922 
verifyMultisampleLineGroupInterpolation(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)923 bool verifyMultisampleLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
924 {
925 	// Multisampled line == 2 triangles
926 
927 	const tcu::Vec2		viewportSize	= tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
928 	const float			halfLineWidth	= scene.lineWidth * 0.5f;
929 	TriangleSceneSpec	triangleScene;
930 
931 	triangleScene.triangles.resize(2 * scene.lines.size());
932 	for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
933 	{
934 		// Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
935 		const tcu::Vec2 lineNormalizedDeviceSpace[2] =
936 		{
937 			tcu::Vec2(scene.lines[lineNdx].positions[0].x() / scene.lines[lineNdx].positions[0].w(), scene.lines[lineNdx].positions[0].y() / scene.lines[lineNdx].positions[0].w()),
938 			tcu::Vec2(scene.lines[lineNdx].positions[1].x() / scene.lines[lineNdx].positions[1].w(), scene.lines[lineNdx].positions[1].y() / scene.lines[lineNdx].positions[1].w()),
939 		};
940 		const tcu::Vec2 lineScreenSpace[2] =
941 		{
942 			(lineNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
943 			(lineNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
944 		};
945 
946 		const tcu::Vec2 lineDir			= tcu::normalize(lineScreenSpace[1] - lineScreenSpace[0]);
947 		const tcu::Vec2 lineNormalDir	= tcu::Vec2(lineDir.y(), -lineDir.x());
948 
949 		const tcu::Vec2 lineQuadScreenSpace[4] =
950 		{
951 			lineScreenSpace[0] + lineNormalDir * halfLineWidth,
952 			lineScreenSpace[0] - lineNormalDir * halfLineWidth,
953 			lineScreenSpace[1] - lineNormalDir * halfLineWidth,
954 			lineScreenSpace[1] + lineNormalDir * halfLineWidth,
955 		};
956 		const tcu::Vec2 lineQuadNormalizedDeviceSpace[4] =
957 		{
958 			lineQuadScreenSpace[0] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
959 			lineQuadScreenSpace[1] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
960 			lineQuadScreenSpace[2] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
961 			lineQuadScreenSpace[3] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
962 		};
963 
964 		triangleScene.triangles[lineNdx*2 + 0].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);
965 		triangleScene.triangles[lineNdx*2 + 0].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f);
966 		triangleScene.triangles[lineNdx*2 + 0].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);
967 
968 		triangleScene.triangles[lineNdx*2 + 0].sharedEdge[0] = false;
969 		triangleScene.triangles[lineNdx*2 + 0].sharedEdge[1] = false;
970 		triangleScene.triangles[lineNdx*2 + 0].sharedEdge[2] = true;
971 
972 		triangleScene.triangles[lineNdx*2 + 0].colors[0] = scene.lines[lineNdx].colors[0];
973 		triangleScene.triangles[lineNdx*2 + 0].colors[1] = scene.lines[lineNdx].colors[0];
974 		triangleScene.triangles[lineNdx*2 + 0].colors[2] = scene.lines[lineNdx].colors[1];
975 
976 		triangleScene.triangles[lineNdx*2 + 1].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);
977 		triangleScene.triangles[lineNdx*2 + 1].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);
978 		triangleScene.triangles[lineNdx*2 + 1].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f);
979 
980 		triangleScene.triangles[lineNdx*2 + 1].sharedEdge[0] = true;
981 		triangleScene.triangles[lineNdx*2 + 1].sharedEdge[1] = false;
982 		triangleScene.triangles[lineNdx*2 + 1].sharedEdge[2] = false;
983 
984 		triangleScene.triangles[lineNdx*2 + 1].colors[0] = scene.lines[lineNdx].colors[0];
985 		triangleScene.triangles[lineNdx*2 + 1].colors[1] = scene.lines[lineNdx].colors[1];
986 		triangleScene.triangles[lineNdx*2 + 1].colors[2] = scene.lines[lineNdx].colors[1];
987 	}
988 
989 	return verifyTriangleGroupInterpolationWithInterpolator(surface, triangleScene, args, log, MultisampleLineInterpolator(scene));
990 }
991 
verifyMultisamplePointGroupRasterization(const tcu::Surface & surface,const PointSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)992 bool verifyMultisamplePointGroupRasterization (const tcu::Surface& surface, const PointSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
993 {
994 	// Multisampled point == 2 triangles
995 
996 	const tcu::Vec2		viewportSize	= tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
997 	TriangleSceneSpec	triangleScene;
998 
999 	triangleScene.triangles.resize(2 * scene.points.size());
1000 	for (int pointNdx = 0; pointNdx < (int)scene.points.size(); ++pointNdx)
1001 	{
1002 		// Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
1003 		const tcu::Vec2	pointNormalizedDeviceSpace			= tcu::Vec2(scene.points[pointNdx].position.x() / scene.points[pointNdx].position.w(), scene.points[pointNdx].position.y() / scene.points[pointNdx].position.w());
1004 		const tcu::Vec2	pointScreenSpace					= (pointNormalizedDeviceSpace + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize;
1005 		const float		offset								= scene.points[pointNdx].pointSize * 0.5f;
1006 		const tcu::Vec2	lineQuadNormalizedDeviceSpace[4]	=
1007 		{
1008 			(pointScreenSpace + tcu::Vec2(-offset, -offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1009 			(pointScreenSpace + tcu::Vec2(-offset,  offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1010 			(pointScreenSpace + tcu::Vec2( offset,  offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1011 			(pointScreenSpace + tcu::Vec2( offset, -offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1012 		};
1013 
1014 		triangleScene.triangles[pointNdx*2 + 0].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 0].sharedEdge[0] = false;
1015 		triangleScene.triangles[pointNdx*2 + 0].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 0].sharedEdge[1] = false;
1016 		triangleScene.triangles[pointNdx*2 + 0].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 0].sharedEdge[2] = true;
1017 
1018 		triangleScene.triangles[pointNdx*2 + 1].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 1].sharedEdge[0] = true;
1019 		triangleScene.triangles[pointNdx*2 + 1].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 1].sharedEdge[1] = false;
1020 		triangleScene.triangles[pointNdx*2 + 1].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 1].sharedEdge[2] = false;
1021 	}
1022 
1023 	return verifyTriangleGroupRasterization(surface, triangleScene, args, log);
1024 }
1025 
genScreenSpaceLines(std::vector<tcu::Vec4> & screenspaceLines,const std::vector<LineSceneSpec::SceneLine> & lines,const tcu::IVec2 & viewportSize)1026 void genScreenSpaceLines (std::vector<tcu::Vec4>& screenspaceLines, const std::vector<LineSceneSpec::SceneLine>& lines, const tcu::IVec2& viewportSize)
1027 {
1028 	DE_ASSERT(screenspaceLines.size() == lines.size());
1029 
1030 	for (int lineNdx = 0; lineNdx < (int)lines.size(); ++lineNdx)
1031 	{
1032 		const tcu::Vec2 lineNormalizedDeviceSpace[2] =
1033 		{
1034 			tcu::Vec2(lines[lineNdx].positions[0].x() / lines[lineNdx].positions[0].w(), lines[lineNdx].positions[0].y() / lines[lineNdx].positions[0].w()),
1035 			tcu::Vec2(lines[lineNdx].positions[1].x() / lines[lineNdx].positions[1].w(), lines[lineNdx].positions[1].y() / lines[lineNdx].positions[1].w()),
1036 		};
1037 		const tcu::Vec4 lineScreenSpace[2] =
1038 		{
1039 			tcu::Vec4((lineNormalizedDeviceSpace[0].x() + 1.0f) * 0.5f * (float)viewportSize.x(), (lineNormalizedDeviceSpace[0].y() + 1.0f) * 0.5f * (float)viewportSize.y(), 0.0f, 1.0f),
1040 			tcu::Vec4((lineNormalizedDeviceSpace[1].x() + 1.0f) * 0.5f * (float)viewportSize.x(), (lineNormalizedDeviceSpace[1].y() + 1.0f) * 0.5f * (float)viewportSize.y(), 0.0f, 1.0f),
1041 		};
1042 
1043 		screenspaceLines[lineNdx] = tcu::Vec4(lineScreenSpace[0].x(), lineScreenSpace[0].y(), lineScreenSpace[1].x(), lineScreenSpace[1].y());
1044 	}
1045 }
1046 
verifySinglesampleLineGroupRasterization(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)1047 bool verifySinglesampleLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
1048 {
1049 	DE_ASSERT(deFloatFrac(scene.lineWidth) != 0.5f); // rounding direction is not defined, disallow undefined cases
1050 	DE_ASSERT(scene.lines.size() < 255); // indices are stored as unsigned 8-bit ints
1051 
1052 	bool					allOK				= true;
1053 	bool					overdrawInReference	= false;
1054 	int						referenceFragments	= 0;
1055 	int						resultFragments		= 0;
1056 	int						lineWidth			= deFloorFloatToInt32(scene.lineWidth + 0.5f);
1057 	bool					imageShown			= false;
1058 	std::vector<bool>		lineIsXMajor		(scene.lines.size());
1059 	std::vector<tcu::Vec4>	screenspaceLines(scene.lines.size());
1060 
1061 	// Reference renderer produces correct fragments using the diamond-rule. Make 2D int array, each cell contains the highest index (first index = 1) of the overlapping lines or 0 if no line intersects the pixel
1062 	tcu::TextureLevel referenceLineMap(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
1063 	tcu::clear(referenceLineMap.getAccess(), tcu::IVec4(0, 0, 0, 0));
1064 
1065 	genScreenSpaceLines(screenspaceLines, scene.lines, tcu::IVec2(surface.getWidth(), surface.getHeight()));
1066 
1067 	for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
1068 	{
1069 		rr::SingleSampleLineRasterizer rasterizer(tcu::IVec4(0, 0, surface.getWidth(), surface.getHeight()));
1070 		rasterizer.init(tcu::Vec4(screenspaceLines[lineNdx][0],
1071 								  screenspaceLines[lineNdx][1],
1072 								  0.0f,
1073 								  1.0f),
1074 						tcu::Vec4(screenspaceLines[lineNdx][2],
1075 								  screenspaceLines[lineNdx][3],
1076 								  0.0f,
1077 								  1.0f),
1078 						scene.lineWidth);
1079 
1080 		// calculate majority of later use
1081 		lineIsXMajor[lineNdx] = isPackedSSLineXMajor(screenspaceLines[lineNdx]);
1082 
1083 		for (;;)
1084 		{
1085 			const int			maxPackets			= 32;
1086 			int					numRasterized		= 0;
1087 			rr::FragmentPacket	packets[maxPackets];
1088 
1089 			rasterizer.rasterize(packets, DE_NULL, maxPackets, numRasterized);
1090 
1091 			for (int packetNdx = 0; packetNdx < numRasterized; ++packetNdx)
1092 			{
1093 				for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
1094 				{
1095 					if ((deUint32)packets[packetNdx].coverage & (1 << fragNdx))
1096 					{
1097 						const tcu::IVec2 fragPos = packets[packetNdx].position + tcu::IVec2(fragNdx%2, fragNdx/2);
1098 
1099 						// Check for overdraw
1100 						if (!overdrawInReference)
1101 							overdrawInReference = referenceLineMap.getAccess().getPixelInt(fragPos.x(), fragPos.y()).x() != 0;
1102 
1103 						// Output pixel
1104 						referenceLineMap.getAccess().setPixel(tcu::IVec4(lineNdx + 1, 0, 0, 0), fragPos.x(), fragPos.y());
1105 					}
1106 				}
1107 			}
1108 
1109 			if (numRasterized != maxPackets)
1110 				break;
1111 		}
1112 	}
1113 
1114 	// Requirement 1: The coordinates of a fragment produced by the algorithm may not deviate by more than one unit
1115 	{
1116 		tcu::Surface	errorMask			(surface.getWidth(), surface.getHeight());
1117 		bool			missingFragments	= false;
1118 
1119 		tcu::clear(errorMask.getAccess(), tcu::IVec4(0, 255, 0, 255));
1120 
1121 		log << tcu::TestLog::Message << "Searching for deviating fragments." << tcu::TestLog::EndMessage;
1122 
1123 		for (int y = 0; y < referenceLineMap.getHeight(); ++y)
1124 		for (int x = 0; x < referenceLineMap.getWidth(); ++x)
1125 		{
1126 			const bool reference	= referenceLineMap.getAccess().getPixelInt(x, y).x() != 0;
1127 			const bool result		= compareColors(surface.getPixel(x, y), tcu::RGBA::white, args.redBits, args.greenBits, args.blueBits);
1128 
1129 			if (reference)
1130 				++referenceFragments;
1131 			if (result)
1132 				++resultFragments;
1133 
1134 			if (reference == result)
1135 				continue;
1136 
1137 			// Reference fragment here, matching result fragment must be nearby
1138 			if (reference && !result)
1139 			{
1140 				bool foundFragment = false;
1141 
1142 				if (x == 0 || y == 0 || x == referenceLineMap.getWidth() - 1 || y == referenceLineMap.getHeight() -1)
1143 				{
1144 					// image boundary, missing fragment could be over the image edge
1145 					foundFragment = true;
1146 				}
1147 
1148 				// find nearby fragment
1149 				for (int dy = -1; dy < 2 && !foundFragment; ++dy)
1150 				for (int dx = -1; dx < 2 && !foundFragment; ++dx)
1151 				{
1152 					if (compareColors(surface.getPixel(x+dx, y+dy), tcu::RGBA::white, args.redBits, args.greenBits, args.blueBits))
1153 						foundFragment = true;
1154 				}
1155 
1156 				if (!foundFragment)
1157 				{
1158 					missingFragments = true;
1159 					errorMask.setPixel(x, y, tcu::RGBA::red);
1160 				}
1161 			}
1162 		}
1163 
1164 		if (missingFragments)
1165 		{
1166 			log << tcu::TestLog::Message << "Invalid deviation(s) found." << tcu::TestLog::EndMessage;
1167 			log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
1168 				<< tcu::TestLog::Image("Result", "Result",			surface)
1169 				<< tcu::TestLog::Image("ErrorMask", "ErrorMask",	errorMask)
1170 				<< tcu::TestLog::EndImageSet;
1171 
1172 			imageShown = true;
1173 			allOK = false;
1174 		}
1175 		else
1176 		{
1177 			log << tcu::TestLog::Message << "No invalid deviations found." << tcu::TestLog::EndMessage;
1178 		}
1179 	}
1180 
1181 	// Requirement 2: The total number of fragments produced by the algorithm may differ from
1182 	//                that produced by the diamond-exit rule by no more than one.
1183 	{
1184 		// Check is not valid if the primitives intersect or otherwise share same fragments
1185 		if (!overdrawInReference)
1186 		{
1187 			int allowedDeviation = (int)scene.lines.size() * lineWidth; // one pixel per primitive in the major direction
1188 
1189 			log << tcu::TestLog::Message << "Verifying fragment counts:\n"
1190 				<< "\tDiamond-exit rule: " << referenceFragments << " fragments.\n"
1191 				<< "\tResult image: " << resultFragments << " fragments.\n"
1192 				<< "\tAllowing deviation of " << allowedDeviation << " fragments.\n"
1193 				<< tcu::TestLog::EndMessage;
1194 
1195 			if (deAbs32(referenceFragments - resultFragments) > allowedDeviation)
1196 			{
1197 				tcu::Surface reference(surface.getWidth(), surface.getHeight());
1198 
1199 				// show a helpful reference image
1200 				tcu::clear(reference.getAccess(), tcu::IVec4(0, 0, 0, 255));
1201 				for (int y = 0; y < surface.getHeight(); ++y)
1202 				for (int x = 0; x < surface.getWidth(); ++x)
1203 					if (referenceLineMap.getAccess().getPixelInt(x, y).x())
1204 						reference.setPixel(x, y, tcu::RGBA::white);
1205 
1206 				log << tcu::TestLog::Message << "Invalid fragment count in result image." << tcu::TestLog::EndMessage;
1207 				log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
1208 					<< tcu::TestLog::Image("Reference", "Reference",	reference)
1209 					<< tcu::TestLog::Image("Result", "Result",			surface)
1210 					<< tcu::TestLog::EndImageSet;
1211 
1212 				allOK = false;
1213 				imageShown = true;
1214 			}
1215 			else
1216 			{
1217 				log << tcu::TestLog::Message << "Fragment count is valid." << tcu::TestLog::EndMessage;
1218 			}
1219 		}
1220 		else
1221 		{
1222 			log << tcu::TestLog::Message << "Overdraw in scene. Fragment count cannot be verified. Skipping fragment count checks." << tcu::TestLog::EndMessage;
1223 		}
1224 	}
1225 
1226 	// Requirement 3: Line width must be constant
1227 	{
1228 		bool invalidWidthFound = false;
1229 
1230 		log << tcu::TestLog::Message << "Verifying line widths of the x-major lines." << tcu::TestLog::EndMessage;
1231 		for (int y = 1; y < referenceLineMap.getHeight() - 1; ++y)
1232 		{
1233 			bool	fullyVisibleLine		= false;
1234 			bool	previousPixelUndefined	= false;
1235 			int		currentLine				= 0;
1236 			int		currentWidth			= 1;
1237 
1238 			for (int x = 1; x < referenceLineMap.getWidth() - 1; ++x)
1239 			{
1240 				const bool	result	= compareColors(surface.getPixel(x, y), tcu::RGBA::white, args.redBits, args.greenBits, args.blueBits);
1241 				int			lineID	= 0;
1242 
1243 				// Which line does this fragment belong to?
1244 
1245 				if (result)
1246 				{
1247 					bool multipleNearbyLines = false;
1248 
1249 					for (int dy = -1; dy < 2; ++dy)
1250 					for (int dx = -1; dx < 2; ++dx)
1251 					{
1252 						const int nearbyID = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
1253 						if (nearbyID)
1254 						{
1255 							if (lineID && lineID != nearbyID)
1256 								multipleNearbyLines = true;
1257 							lineID = nearbyID;
1258 						}
1259 					}
1260 
1261 					if (multipleNearbyLines)
1262 					{
1263 						// Another line is too close, don't try to calculate width here
1264 						previousPixelUndefined = true;
1265 						continue;
1266 					}
1267 				}
1268 
1269 				// Only line with id of lineID is nearby
1270 
1271 				if (previousPixelUndefined)
1272 				{
1273 					// The line might have been overdrawn or not
1274 					currentLine = lineID;
1275 					currentWidth = 1;
1276 					fullyVisibleLine = false;
1277 					previousPixelUndefined = false;
1278 				}
1279 				else if (lineID == currentLine)
1280 				{
1281 					// Current line continues
1282 					++currentWidth;
1283 				}
1284 				else if (lineID > currentLine)
1285 				{
1286 					// Another line was drawn over or the line ends
1287 					currentLine = lineID;
1288 					currentWidth = 1;
1289 					fullyVisibleLine = true;
1290 				}
1291 				else
1292 				{
1293 					// The line ends
1294 					if (fullyVisibleLine && !lineIsXMajor[currentLine-1])
1295 					{
1296 						// check width
1297 						if (currentWidth != lineWidth)
1298 						{
1299 							log << tcu::TestLog::Message << "\tInvalid line width at (" << x - currentWidth << ", " << y << ") - (" << x - 1 << ", " << y << "). Detected width of " << currentWidth << ", expected " << lineWidth << tcu::TestLog::EndMessage;
1300 							invalidWidthFound = true;
1301 						}
1302 					}
1303 
1304 					currentLine = lineID;
1305 					currentWidth = 1;
1306 					fullyVisibleLine = false;
1307 				}
1308 			}
1309 		}
1310 
1311 		log << tcu::TestLog::Message << "Verifying line widths of the y-major lines." << tcu::TestLog::EndMessage;
1312 		for (int x = 1; x < referenceLineMap.getWidth() - 1; ++x)
1313 		{
1314 			bool	fullyVisibleLine		= false;
1315 			bool	previousPixelUndefined	= false;
1316 			int		currentLine				= 0;
1317 			int		currentWidth			= 1;
1318 
1319 			for (int y = 1; y < referenceLineMap.getHeight() - 1; ++y)
1320 			{
1321 				const bool	result	= compareColors(surface.getPixel(x, y), tcu::RGBA::white, args.redBits, args.greenBits, args.blueBits);
1322 				int			lineID	= 0;
1323 
1324 				// Which line does this fragment belong to?
1325 
1326 				if (result)
1327 				{
1328 					bool multipleNearbyLines = false;
1329 
1330 					for (int dy = -1; dy < 2; ++dy)
1331 					for (int dx = -1; dx < 2; ++dx)
1332 					{
1333 						const int nearbyID = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
1334 						if (nearbyID)
1335 						{
1336 							if (lineID && lineID != nearbyID)
1337 								multipleNearbyLines = true;
1338 							lineID = nearbyID;
1339 						}
1340 					}
1341 
1342 					if (multipleNearbyLines)
1343 					{
1344 						// Another line is too close, don't try to calculate width here
1345 						previousPixelUndefined = true;
1346 						continue;
1347 					}
1348 				}
1349 
1350 				// Only line with id of lineID is nearby
1351 
1352 				if (previousPixelUndefined)
1353 				{
1354 					// The line might have been overdrawn or not
1355 					currentLine = lineID;
1356 					currentWidth = 1;
1357 					fullyVisibleLine = false;
1358 					previousPixelUndefined = false;
1359 				}
1360 				else if (lineID == currentLine)
1361 				{
1362 					// Current line continues
1363 					++currentWidth;
1364 				}
1365 				else if (lineID > currentLine)
1366 				{
1367 					// Another line was drawn over or the line ends
1368 					currentLine = lineID;
1369 					currentWidth = 1;
1370 					fullyVisibleLine = true;
1371 				}
1372 				else
1373 				{
1374 					// The line ends
1375 					if (fullyVisibleLine && lineIsXMajor[currentLine-1])
1376 					{
1377 						// check width
1378 						if (currentWidth != lineWidth)
1379 						{
1380 							log << tcu::TestLog::Message << "\tInvalid line width at (" << x << ", " << y - currentWidth << ") - (" << x  << ", " << y - 1 << "). Detected width of " << currentWidth << ", expected " << lineWidth << tcu::TestLog::EndMessage;
1381 							invalidWidthFound = true;
1382 						}
1383 					}
1384 
1385 					currentLine = lineID;
1386 					currentWidth = 1;
1387 					fullyVisibleLine = false;
1388 				}
1389 			}
1390 		}
1391 
1392 		if (invalidWidthFound)
1393 		{
1394 			log << tcu::TestLog::Message << "Invalid line width found, image is not valid." << tcu::TestLog::EndMessage;
1395 			allOK = false;
1396 		}
1397 		else
1398 		{
1399 			log << tcu::TestLog::Message << "Line widths are valid." << tcu::TestLog::EndMessage;
1400 		}
1401 	}
1402 
1403 	//\todo [2013-10-24 jarkko].
1404 	//Requirement 4. If two line segments share a common endpoint, and both segments are either
1405 	//x-major (both left-to-right or both right-to-left) or y-major (both bottom-totop
1406 	//or both top-to-bottom), then rasterizing both segments may not produce
1407 	//duplicate fragments, nor may any fragments be omitted so as to interrupt
1408 	//continuity of the connected segments.
1409 
1410 	if (!imageShown)
1411 	{
1412 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
1413 			<< tcu::TestLog::Image("Result", "Result", surface)
1414 			<< tcu::TestLog::EndImageSet;
1415 	}
1416 
1417 	return allOK;
1418 }
1419 
1420 struct SingleSampleNarrowLineCandidate
1421 {
1422 	int			lineNdx;
1423 	tcu::IVec3	colorMin;
1424 	tcu::IVec3	colorMax;
1425 	tcu::Vec3	colorMinF;
1426 	tcu::Vec3	colorMaxF;
1427 	tcu::Vec3	valueRangeMin;
1428 	tcu::Vec3	valueRangeMax;
1429 };
1430 
setMaskMapCoverageBitForLine(int bitNdx,const tcu::Vec2 & screenSpaceP0,const tcu::Vec2 & screenSpaceP1,float lineWidth,tcu::PixelBufferAccess maskMap)1431 void setMaskMapCoverageBitForLine (int bitNdx, const tcu::Vec2& screenSpaceP0, const tcu::Vec2& screenSpaceP1, float lineWidth, tcu::PixelBufferAccess maskMap)
1432 {
1433 	enum
1434 	{
1435 		MAX_PACKETS = 32,
1436 	};
1437 
1438 	rr::SingleSampleLineRasterizer	rasterizer				(tcu::IVec4(0, 0, maskMap.getWidth(), maskMap.getHeight()));
1439 	int								numRasterized			= MAX_PACKETS;
1440 	rr::FragmentPacket				packets[MAX_PACKETS];
1441 
1442 	rasterizer.init(tcu::Vec4(screenSpaceP0.x(), screenSpaceP0.y(), 0.0f, 1.0f),
1443 					tcu::Vec4(screenSpaceP1.x(), screenSpaceP1.y(), 0.0f, 1.0f),
1444 					lineWidth);
1445 
1446 	while (numRasterized == MAX_PACKETS)
1447 	{
1448 		rasterizer.rasterize(packets, DE_NULL, MAX_PACKETS, numRasterized);
1449 
1450 		for (int packetNdx = 0; packetNdx < numRasterized; ++packetNdx)
1451 		{
1452 			for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
1453 			{
1454 				if ((deUint32)packets[packetNdx].coverage & (1 << fragNdx))
1455 				{
1456 					const tcu::IVec2	fragPos			= packets[packetNdx].position + tcu::IVec2(fragNdx%2, fragNdx/2);
1457 
1458 					DE_ASSERT(deInBounds32(fragPos.x(), 0, maskMap.getWidth()));
1459 					DE_ASSERT(deInBounds32(fragPos.y(), 0, maskMap.getHeight()));
1460 
1461 					const int			previousMask	= maskMap.getPixelInt(fragPos.x(), fragPos.y()).x();
1462 					const int			newMask			= (previousMask) | (1UL << bitNdx);
1463 
1464 					maskMap.setPixel(tcu::IVec4(newMask, 0, 0, 0), fragPos.x(), fragPos.y());
1465 				}
1466 			}
1467 		}
1468 	}
1469 }
1470 
setMaskMapCoverageBitForLines(const std::vector<tcu::Vec4> & screenspaceLines,float lineWidth,tcu::PixelBufferAccess maskMap)1471 void setMaskMapCoverageBitForLines (const std::vector<tcu::Vec4>& screenspaceLines, float lineWidth, tcu::PixelBufferAccess maskMap)
1472 {
1473 	for (int lineNdx = 0; lineNdx < (int)screenspaceLines.size(); ++lineNdx)
1474 	{
1475 		const tcu::Vec2 pa = screenspaceLines[lineNdx].swizzle(0, 1);
1476 		const tcu::Vec2 pb = screenspaceLines[lineNdx].swizzle(2, 3);
1477 
1478 		setMaskMapCoverageBitForLine(lineNdx, pa, pb, lineWidth, maskMap);
1479 	}
1480 }
1481 
1482 // verify line interpolation assuming line pixels are interpolated independently depending only on screen space location
verifyLineGroupPixelIndependentInterpolation(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log,LineInterpolationMethod interpolationMethod)1483 bool verifyLineGroupPixelIndependentInterpolation (const tcu::Surface&				surface,
1484 												   const LineSceneSpec&				scene,
1485 												   const RasterizationArguments&	args,
1486 												   tcu::TestLog&					log,
1487 												   LineInterpolationMethod			interpolationMethod)
1488 {
1489 	DE_ASSERT(scene.lines.size() < 8); // coverage indices are stored as bitmask in a unsigned 8-bit ints
1490 	DE_ASSERT(interpolationMethod == LINEINTERPOLATION_STRICTLY_CORRECT || interpolationMethod == LINEINTERPOLATION_PROJECTED);
1491 
1492 	const tcu::RGBA			invalidPixelColor	= tcu::RGBA(255, 0, 0, 255);
1493 	const tcu::IVec2		viewportSize		= tcu::IVec2(surface.getWidth(), surface.getHeight());
1494 	const int				errorFloodThreshold	= 4;
1495 	int						errorCount			= 0;
1496 	tcu::Surface			errorMask			(surface.getWidth(), surface.getHeight());
1497 	int						invalidPixels		= 0;
1498 	std::vector<tcu::Vec4>	screenspaceLines	(scene.lines.size()); //!< packed (x0, y0, x1, y1)
1499 
1500 	// Reference renderer produces correct fragments using the diamond-exit-rule. Make 2D int array, store line coverage as a 8-bit bitfield
1501 	// The map is used to find lines with potential coverage to a given pixel
1502 	tcu::TextureLevel		referenceLineMap	(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
1503 
1504 	tcu::clear(referenceLineMap.getAccess(), tcu::IVec4(0, 0, 0, 0));
1505 	tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
1506 
1507 	// log format
1508 
1509 	log << tcu::TestLog::Message << "Verifying rasterization result. Native format is RGB" << args.redBits << args.greenBits << args.blueBits << tcu::TestLog::EndMessage;
1510 	if (args.redBits > 8 || args.greenBits > 8 || args.blueBits > 8)
1511 		log << tcu::TestLog::Message << "Warning! More than 8 bits in a color channel, this may produce false negatives." << tcu::TestLog::EndMessage;
1512 
1513 	// prepare lookup map
1514 
1515 	genScreenSpaceLines(screenspaceLines, scene.lines, viewportSize);
1516 	setMaskMapCoverageBitForLines(screenspaceLines, scene.lineWidth, referenceLineMap.getAccess());
1517 
1518 	// Find all possible lines with coverage, check pixel color matches one of them
1519 
1520 	for (int y = 1; y < surface.getHeight() - 1; ++y)
1521 	for (int x = 1; x < surface.getWidth()  - 1; ++x)
1522 	{
1523 		const tcu::RGBA		color					= surface.getPixel(x, y);
1524 		const tcu::IVec3	pixelNativeColor		= convertRGB8ToNativeFormat(color, args);	// Convert pixel color from rgba8 to the real pixel format. Usually rgba8 or 565
1525 		int					lineCoverageSet			= 0;										// !< lines that may cover this fragment
1526 		int					lineSurroundingCoverage = 0xFFFF;									// !< lines that will cover this fragment
1527 		bool				matchFound				= false;
1528 		const tcu::IVec3	formatLimit				((1 << args.redBits) - 1, (1 << args.greenBits) - 1, (1 << args.blueBits) - 1);
1529 
1530 		std::vector<SingleSampleNarrowLineCandidate> candidates;
1531 
1532 		// Find lines with possible coverage
1533 
1534 		for (int dy = -1; dy < 2; ++dy)
1535 		for (int dx = -1; dx < 2; ++dx)
1536 		{
1537 			const int coverage = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
1538 
1539 			lineCoverageSet			|= coverage;
1540 			lineSurroundingCoverage	&= coverage;
1541 		}
1542 
1543 		// background color is possible?
1544 		if (lineSurroundingCoverage == 0 && compareColors(color, tcu::RGBA::black, args.redBits, args.greenBits, args.blueBits))
1545 			continue;
1546 
1547 		// Check those lines
1548 
1549 		for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
1550 		{
1551 			if (((lineCoverageSet >> lineNdx) & 0x01) != 0)
1552 			{
1553 				const float						wa				= scene.lines[lineNdx].positions[0].w();
1554 				const float						wb				= scene.lines[lineNdx].positions[1].w();
1555 				const tcu::Vec2					pa				= screenspaceLines[lineNdx].swizzle(0, 1);
1556 				const tcu::Vec2					pb				= screenspaceLines[lineNdx].swizzle(2, 3);
1557 
1558 				const LineInterpolationRange	range			= (interpolationMethod == LINEINTERPOLATION_STRICTLY_CORRECT)
1559 																	? (calcSingleSampleLineInterpolationRange(pa, wa, pb, wb, tcu::IVec2(x, y), args.subpixelBits))
1560 																	: (calcSingleSampleLineInterpolationRangeAxisProjected(pa, wa, pb, wb, tcu::IVec2(x, y), args.subpixelBits));
1561 
1562 				const tcu::Vec4					valueMin		= de::clamp(range.min.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.min.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
1563 				const tcu::Vec4					valueMax		= de::clamp(range.max.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.max.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
1564 
1565 				const tcu::Vec3					colorMinF		(de::clamp(valueMin.x() * formatLimit.x(), 0.0f, (float)formatLimit.x()),
1566 																 de::clamp(valueMin.y() * formatLimit.y(), 0.0f, (float)formatLimit.y()),
1567 																 de::clamp(valueMin.z() * formatLimit.z(), 0.0f, (float)formatLimit.z()));
1568 				const tcu::Vec3					colorMaxF		(de::clamp(valueMax.x() * formatLimit.x(), 0.0f, (float)formatLimit.x()),
1569 																 de::clamp(valueMax.y() * formatLimit.y(), 0.0f, (float)formatLimit.y()),
1570 																 de::clamp(valueMax.z() * formatLimit.z(), 0.0f, (float)formatLimit.z()));
1571 				const tcu::IVec3				colorMin		((int)deFloatFloor(colorMinF.x()),
1572 																 (int)deFloatFloor(colorMinF.y()),
1573 																 (int)deFloatFloor(colorMinF.z()));
1574 				const tcu::IVec3				colorMax		((int)deFloatCeil (colorMaxF.x()),
1575 																 (int)deFloatCeil (colorMaxF.y()),
1576 																 (int)deFloatCeil (colorMaxF.z()));
1577 
1578 				// Verify validity
1579 				if (pixelNativeColor.x() < colorMin.x() ||
1580 					pixelNativeColor.y() < colorMin.y() ||
1581 					pixelNativeColor.z() < colorMin.z() ||
1582 					pixelNativeColor.x() > colorMax.x() ||
1583 					pixelNativeColor.y() > colorMax.y() ||
1584 					pixelNativeColor.z() > colorMax.z())
1585 				{
1586 					if (errorCount < errorFloodThreshold)
1587 					{
1588 						// Store candidate information for logging
1589 						SingleSampleNarrowLineCandidate candidate;
1590 
1591 						candidate.lineNdx		= lineNdx;
1592 						candidate.colorMin		= colorMin;
1593 						candidate.colorMax		= colorMax;
1594 						candidate.colorMinF		= colorMinF;
1595 						candidate.colorMaxF		= colorMaxF;
1596 						candidate.valueRangeMin	= valueMin.swizzle(0, 1, 2);
1597 						candidate.valueRangeMax	= valueMax.swizzle(0, 1, 2);
1598 
1599 						candidates.push_back(candidate);
1600 					}
1601 				}
1602 				else
1603 				{
1604 					matchFound = true;
1605 					break;
1606 				}
1607 			}
1608 		}
1609 
1610 		if (matchFound)
1611 			continue;
1612 
1613 		// invalid fragment
1614 		++invalidPixels;
1615 		errorMask.setPixel(x, y, invalidPixelColor);
1616 
1617 		++errorCount;
1618 
1619 		// don't fill the logs with too much data
1620 		if (errorCount < errorFloodThreshold)
1621 		{
1622 			log << tcu::TestLog::Message
1623 				<< "Found an invalid pixel at (" << x << "," << y << "), " << (int)candidates.size() << " candidate reference value(s) found:\n"
1624 				<< "\tPixel color:\t\t" << color << "\n"
1625 				<< "\tNative color:\t\t" << pixelNativeColor << "\n"
1626 				<< tcu::TestLog::EndMessage;
1627 
1628 			for (int candidateNdx = 0; candidateNdx < (int)candidates.size(); ++candidateNdx)
1629 			{
1630 				const SingleSampleNarrowLineCandidate& candidate = candidates[candidateNdx];
1631 
1632 				log << tcu::TestLog::Message << "\tCandidate (line " << candidate.lineNdx << "):\n"
1633 					<< "\t\tReference native color min: " << tcu::clamp(candidate.colorMin, tcu::IVec3(0,0,0), formatLimit) << "\n"
1634 					<< "\t\tReference native color max: " << tcu::clamp(candidate.colorMax, tcu::IVec3(0,0,0), formatLimit) << "\n"
1635 					<< "\t\tReference native float min: " << tcu::clamp(candidate.colorMinF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
1636 					<< "\t\tReference native float max: " << tcu::clamp(candidate.colorMaxF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
1637 					<< "\t\tFmin:\t" << tcu::clamp(candidate.valueRangeMin, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
1638 					<< "\t\tFmax:\t" << tcu::clamp(candidate.valueRangeMax, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
1639 					<< tcu::TestLog::EndMessage;
1640 			}
1641 		}
1642 	}
1643 
1644 	// don't just hide failures
1645 	if (errorCount > errorFloodThreshold)
1646 		log << tcu::TestLog::Message << "Omitted " << (errorCount-errorFloodThreshold) << " pixel error description(s)." << tcu::TestLog::EndMessage;
1647 
1648 	// report result
1649 	if (invalidPixels)
1650 	{
1651 		log << tcu::TestLog::Message << invalidPixels << " invalid pixel(s) found." << tcu::TestLog::EndMessage;
1652 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
1653 			<< tcu::TestLog::Image("Result", "Result",			surface)
1654 			<< tcu::TestLog::Image("ErrorMask", "ErrorMask",	errorMask)
1655 			<< tcu::TestLog::EndImageSet;
1656 
1657 		return false;
1658 	}
1659 	else
1660 	{
1661 		log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
1662 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
1663 			<< tcu::TestLog::Image("Result", "Result", surface)
1664 			<< tcu::TestLog::EndImageSet;
1665 
1666 		return true;
1667 	}
1668 }
1669 
verifySinglesampleNarrowLineGroupInterpolation(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)1670 bool verifySinglesampleNarrowLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
1671 {
1672 	DE_ASSERT(scene.lineWidth == 1.0f);
1673 	return verifyLineGroupPixelIndependentInterpolation(surface, scene, args, log, LINEINTERPOLATION_STRICTLY_CORRECT);
1674 }
1675 
verifyLineGroupInterpolationWithProjectedWeights(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)1676 bool verifyLineGroupInterpolationWithProjectedWeights (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
1677 {
1678 	return verifyLineGroupPixelIndependentInterpolation(surface, scene, args, log, LINEINTERPOLATION_PROJECTED);
1679 }
1680 
1681 struct SingleSampleWideLineCandidate
1682 {
1683 	struct InterpolationPointCandidate
1684 	{
1685 		tcu::IVec2	interpolationPoint;
1686 		tcu::IVec3	colorMin;
1687 		tcu::IVec3	colorMax;
1688 		tcu::Vec3	colorMinF;
1689 		tcu::Vec3	colorMaxF;
1690 		tcu::Vec3	valueRangeMin;
1691 		tcu::Vec3	valueRangeMax;
1692 	};
1693 
1694 	int							lineNdx;
1695 	int							numCandidates;
1696 	InterpolationPointCandidate	interpolationCandidates[3];
1697 };
1698 
1699 // return point on line at a given position on a given axis
getLineCoordAtAxisCoord(const tcu::Vec2 & pa,const tcu::Vec2 & pb,bool isXAxis,float axisCoord)1700 tcu::Vec2 getLineCoordAtAxisCoord (const tcu::Vec2& pa, const tcu::Vec2& pb, bool isXAxis, float axisCoord)
1701 {
1702 	const int	fixedCoordNdx		= (isXAxis) ? (0) : (1);
1703 	const int	varyingCoordNdx		= (isXAxis) ? (1) : (0);
1704 
1705 	const float	fixedDifference		= pb[fixedCoordNdx] - pa[fixedCoordNdx];
1706 	const float	varyingDifference	= pb[varyingCoordNdx] - pa[varyingCoordNdx];
1707 
1708 	DE_ASSERT(fixedDifference != 0.0f);
1709 
1710 	const float	resultFixedCoord	= axisCoord;
1711 	const float	resultVaryingCoord	= pa[varyingCoordNdx] + (axisCoord - pa[fixedCoordNdx]) * (varyingDifference / fixedDifference);
1712 
1713 	return (isXAxis) ? (tcu::Vec2(resultFixedCoord, resultVaryingCoord))
1714 					 : (tcu::Vec2(resultVaryingCoord, resultFixedCoord));
1715 }
1716 
isBlack(const tcu::RGBA & c)1717 bool isBlack (const tcu::RGBA& c)
1718 {
1719 	return c.getRed() == 0 && c.getGreen() == 0 && c.getBlue() == 0;
1720 }
1721 
verifySinglesampleWideLineGroupInterpolation(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)1722 bool verifySinglesampleWideLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
1723 {
1724 	DE_ASSERT(deFloatFrac(scene.lineWidth) != 0.5f); // rounding direction is not defined, disallow undefined cases
1725 	DE_ASSERT(scene.lines.size() < 8); // coverage indices are stored as bitmask in a unsigned 8-bit ints
1726 
1727 	enum
1728 	{
1729 		FLAG_ROOT_NOT_SET = (1u << 16)
1730 	};
1731 
1732 	const tcu::RGBA						invalidPixelColor	= tcu::RGBA(255, 0, 0, 255);
1733 	const tcu::IVec2					viewportSize		= tcu::IVec2(surface.getWidth(), surface.getHeight());
1734 	const int							errorFloodThreshold	= 4;
1735 	int									errorCount			= 0;
1736 	tcu::Surface						errorMask			(surface.getWidth(), surface.getHeight());
1737 	int									invalidPixels		= 0;
1738 	std::vector<tcu::Vec4>				effectiveLines		(scene.lines.size()); //!< packed (x0, y0, x1, y1)
1739 	std::vector<bool>					lineIsXMajor		(scene.lines.size());
1740 
1741 	// for each line, for every distinct major direction fragment, store root pixel location (along
1742 	// minor direction);
1743 	std::vector<std::vector<deUint32> >	rootPixelLocation	(scene.lines.size()); //!< packed [16b - flags] [16b - coordinate]
1744 
1745 	// log format
1746 
1747 	log << tcu::TestLog::Message << "Verifying rasterization result. Native format is RGB" << args.redBits << args.greenBits << args.blueBits << tcu::TestLog::EndMessage;
1748 	if (args.redBits > 8 || args.greenBits > 8 || args.blueBits > 8)
1749 		log << tcu::TestLog::Message << "Warning! More than 8 bits in a color channel, this may produce false negatives." << tcu::TestLog::EndMessage;
1750 
1751 	// Reference renderer produces correct fragments using the diamond-exit-rule. Make 2D int array, store line coverage as a 8-bit bitfield
1752 	// The map is used to find lines with potential coverage to a given pixel
1753 	tcu::TextureLevel referenceLineMap(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
1754 	tcu::clear(referenceLineMap.getAccess(), tcu::IVec4(0, 0, 0, 0));
1755 
1756 	tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
1757 
1758 	// calculate mask and effective line coordinates
1759 	{
1760 		std::vector<tcu::Vec4> screenspaceLines(scene.lines.size());
1761 
1762 		genScreenSpaceLines(screenspaceLines, scene.lines, viewportSize);
1763 		setMaskMapCoverageBitForLines(screenspaceLines, scene.lineWidth, referenceLineMap.getAccess());
1764 
1765 		for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
1766 		{
1767 			const tcu::Vec2	lineScreenSpaceP0	= screenspaceLines[lineNdx].swizzle(0, 1);
1768 			const tcu::Vec2	lineScreenSpaceP1	= screenspaceLines[lineNdx].swizzle(2, 3);
1769 			const bool		isXMajor			= isPackedSSLineXMajor(screenspaceLines[lineNdx]);
1770 
1771 			lineIsXMajor[lineNdx] = isXMajor;
1772 
1773 			// wide line interpolations are calculated for a line moved in minor direction
1774 			{
1775 				const float		offsetLength	= (scene.lineWidth - 1.0f) / 2.0f;
1776 				const tcu::Vec2	offsetDirection	= (isXMajor) ? (tcu::Vec2(0.0f, -1.0f)) : (tcu::Vec2(-1.0f, 0.0f));
1777 				const tcu::Vec2	offset			= offsetDirection * offsetLength;
1778 
1779 				effectiveLines[lineNdx] = tcu::Vec4(lineScreenSpaceP0.x() + offset.x(),
1780 													lineScreenSpaceP0.y() + offset.y(),
1781 													lineScreenSpaceP1.x() + offset.x(),
1782 													lineScreenSpaceP1.y() + offset.y());
1783 			}
1784 		}
1785 	}
1786 
1787 	for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
1788 	{
1789 		// Calculate root pixel lookup table for this line. Since the implementation's fragment
1790 		// major coordinate range might not be a subset of the correct line range (they are allowed
1791 		// to vary by one pixel), we must extend the domain to cover whole viewport along major
1792 		// dimension.
1793 		//
1794 		// Expanding line strip to (effectively) infinite line might result in exit-diamnod set
1795 		// that is not a superset of the exit-diamond set of the line strip. In practice, this
1796 		// won't be an issue, since the allow-one-pixel-variation rule should tolerate this even
1797 		// if the original and extended line would resolve differently a diamond the line just
1798 		// touches (precision lost in expansion changes enter/exit status).
1799 
1800 		{
1801 			const bool						isXMajor			= lineIsXMajor[lineNdx];
1802 			const int						majorSize			= (isXMajor) ? (surface.getWidth()) : (surface.getHeight());
1803 			rr::LineExitDiamondGenerator	diamondGenerator;
1804 			rr::LineExitDiamond				diamonds[32];
1805 			int								numRasterized		= DE_LENGTH_OF_ARRAY(diamonds);
1806 
1807 			// Expand to effectively infinite line (endpoints are just one pixel over viewport boundaries)
1808 			const tcu::Vec2					expandedP0		= getLineCoordAtAxisCoord(effectiveLines[lineNdx].swizzle(0, 1), effectiveLines[lineNdx].swizzle(2, 3), isXMajor, -1.0f);
1809 			const tcu::Vec2					expandedP1		= getLineCoordAtAxisCoord(effectiveLines[lineNdx].swizzle(0, 1), effectiveLines[lineNdx].swizzle(2, 3), isXMajor, (float)majorSize + 1.0f);
1810 
1811 			diamondGenerator.init(tcu::Vec4(expandedP0.x(), expandedP0.y(), 0.0f, 1.0f),
1812 								  tcu::Vec4(expandedP1.x(), expandedP1.y(), 0.0f, 1.0f));
1813 
1814 			rootPixelLocation[lineNdx].resize(majorSize, FLAG_ROOT_NOT_SET);
1815 
1816 			while (numRasterized == DE_LENGTH_OF_ARRAY(diamonds))
1817 			{
1818 				diamondGenerator.rasterize(diamonds, DE_LENGTH_OF_ARRAY(diamonds), numRasterized);
1819 
1820 				for (int packetNdx = 0; packetNdx < numRasterized; ++packetNdx)
1821 				{
1822 					const tcu::IVec2	fragPos			= diamonds[packetNdx].position;
1823 					const int			majorPos		= (isXMajor) ? (fragPos.x()) : (fragPos.y());
1824 					const int			rootPos			= (isXMajor) ? (fragPos.y()) : (fragPos.x());
1825 					const deUint32		packed			= (deUint32)((deUint16)((deInt16)rootPos));
1826 
1827 					// infinite line will generate some diamonds outside the viewport
1828 					if (deInBounds32(majorPos, 0, majorSize))
1829 					{
1830 						DE_ASSERT((rootPixelLocation[lineNdx][majorPos] & FLAG_ROOT_NOT_SET) != 0u);
1831 						rootPixelLocation[lineNdx][majorPos] = packed;
1832 					}
1833 				}
1834 			}
1835 
1836 			// Filled whole lookup table
1837 			for (int majorPos = 0; majorPos < majorSize; ++majorPos)
1838 				DE_ASSERT((rootPixelLocation[lineNdx][majorPos] & FLAG_ROOT_NOT_SET) == 0u);
1839 		}
1840 	}
1841 
1842 	// Find all possible lines with coverage, check pixel color matches one of them
1843 
1844 	for (int y = 1; y < surface.getHeight() - 1; ++y)
1845 	for (int x = 1; x < surface.getWidth()  - 1; ++x)
1846 	{
1847 		const tcu::RGBA		color					= surface.getPixel(x, y);
1848 		const tcu::IVec3	pixelNativeColor		= convertRGB8ToNativeFormat(color, args);	// Convert pixel color from rgba8 to the real pixel format. Usually rgba8 or 565
1849 		int					lineCoverageSet			= 0;										// !< lines that may cover this fragment
1850 		int					lineSurroundingCoverage = 0xFFFF;									// !< lines that will cover this fragment
1851 		bool				matchFound				= false;
1852 		const tcu::IVec3	formatLimit				((1 << args.redBits) - 1, (1 << args.greenBits) - 1, (1 << args.blueBits) - 1);
1853 
1854 		std::vector<SingleSampleWideLineCandidate> candidates;
1855 
1856 		// Find lines with possible coverage
1857 
1858 		for (int dy = -1; dy < 2; ++dy)
1859 		for (int dx = -1; dx < 2; ++dx)
1860 		{
1861 			const int coverage = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
1862 
1863 			lineCoverageSet			|= coverage;
1864 			lineSurroundingCoverage	&= coverage;
1865 		}
1866 
1867 		// background color is possible?
1868 		if (lineSurroundingCoverage == 0 && compareColors(color, tcu::RGBA::black, args.redBits, args.greenBits, args.blueBits))
1869 			continue;
1870 
1871 		// Check those lines
1872 
1873 		for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
1874 		{
1875 			if (((lineCoverageSet >> lineNdx) & 0x01) != 0)
1876 			{
1877 				const float						wa				= scene.lines[lineNdx].positions[0].w();
1878 				const float						wb				= scene.lines[lineNdx].positions[1].w();
1879 				const tcu::Vec2					pa				= effectiveLines[lineNdx].swizzle(0, 1);
1880 				const tcu::Vec2					pb				= effectiveLines[lineNdx].swizzle(2, 3);
1881 
1882 				// \note Wide line fragments are generated by replicating the root fragment for each
1883 				//       fragment column (row for y-major). Calculate interpolation at the root
1884 				//       fragment.
1885 				const bool						isXMajor		= lineIsXMajor[lineNdx];
1886 				const int						majorPosition	= (isXMajor) ? (x) : (y);
1887 				const deUint32					minorInfoPacked	= rootPixelLocation[lineNdx][majorPosition];
1888 				const int						minorPosition	= (int)((deInt16)((deUint16)(minorInfoPacked & 0xFFFFu)));
1889 				const tcu::IVec2				idealRootPos	= (isXMajor) ? (tcu::IVec2(majorPosition, minorPosition)) : (tcu::IVec2(minorPosition, majorPosition));
1890 				const tcu::IVec2				minorDirection	= (isXMajor) ? (tcu::IVec2(0, 1)) : (tcu::IVec2(1, 0));
1891 
1892 				SingleSampleWideLineCandidate	candidate;
1893 
1894 				candidate.lineNdx		= lineNdx;
1895 				candidate.numCandidates	= 0;
1896 				DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(candidate.interpolationCandidates) == 3);
1897 
1898 				// Interpolation happens at the root fragment, which is then replicated in minor
1899 				// direction. Search for implementation's root position near accurate root.
1900 				for (int minorOffset = -1; minorOffset < 2; ++minorOffset)
1901 				{
1902 					const tcu::IVec2				rootPosition	= idealRootPos + minorOffset * minorDirection;
1903 
1904 					// A fragment can be root fragment only if it exists
1905 					// \note root fragment can "exist" outside viewport
1906 					// \note no pixel format theshold since in this case allowing only black is more conservative
1907 					if (deInBounds32(rootPosition.x(), 0, surface.getWidth()) &&
1908 						deInBounds32(rootPosition.y(), 0, surface.getHeight()) &&
1909 						isBlack(surface.getPixel(rootPosition.x(), rootPosition.y())))
1910 					{
1911 						continue;
1912 					}
1913 
1914 					const LineInterpolationRange	range			= calcSingleSampleLineInterpolationRange(pa, wa, pb, wb, rootPosition, args.subpixelBits);
1915 
1916 					const tcu::Vec4					valueMin		= de::clamp(range.min.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.min.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
1917 					const tcu::Vec4					valueMax		= de::clamp(range.max.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.max.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
1918 
1919 					const tcu::Vec3					colorMinF		(de::clamp(valueMin.x() * formatLimit.x(), 0.0f, (float)formatLimit.x()),
1920 																	de::clamp(valueMin.y() * formatLimit.y(), 0.0f, (float)formatLimit.y()),
1921 																	de::clamp(valueMin.z() * formatLimit.z(), 0.0f, (float)formatLimit.z()));
1922 					const tcu::Vec3					colorMaxF		(de::clamp(valueMax.x() * formatLimit.x(), 0.0f, (float)formatLimit.x()),
1923 																	de::clamp(valueMax.y() * formatLimit.y(), 0.0f, (float)formatLimit.y()),
1924 																	de::clamp(valueMax.z() * formatLimit.z(), 0.0f, (float)formatLimit.z()));
1925 					const tcu::IVec3				colorMin		((int)deFloatFloor(colorMinF.x()),
1926 																	(int)deFloatFloor(colorMinF.y()),
1927 																	(int)deFloatFloor(colorMinF.z()));
1928 					const tcu::IVec3				colorMax		((int)deFloatCeil (colorMaxF.x()),
1929 																	(int)deFloatCeil (colorMaxF.y()),
1930 																	(int)deFloatCeil (colorMaxF.z()));
1931 
1932 					// Verify validity
1933 					if (pixelNativeColor.x() < colorMin.x() ||
1934 						pixelNativeColor.y() < colorMin.y() ||
1935 						pixelNativeColor.z() < colorMin.z() ||
1936 						pixelNativeColor.x() > colorMax.x() ||
1937 						pixelNativeColor.y() > colorMax.y() ||
1938 						pixelNativeColor.z() > colorMax.z())
1939 					{
1940 						if (errorCount < errorFloodThreshold)
1941 						{
1942 							// Store candidate information for logging
1943 							SingleSampleWideLineCandidate::InterpolationPointCandidate& interpolationCandidate = candidate.interpolationCandidates[candidate.numCandidates++];
1944 							DE_ASSERT(candidate.numCandidates <= DE_LENGTH_OF_ARRAY(candidate.interpolationCandidates));
1945 
1946 							interpolationCandidate.interpolationPoint	= rootPosition;
1947 							interpolationCandidate.colorMin				= colorMin;
1948 							interpolationCandidate.colorMax				= colorMax;
1949 							interpolationCandidate.colorMinF			= colorMinF;
1950 							interpolationCandidate.colorMaxF			= colorMaxF;
1951 							interpolationCandidate.valueRangeMin		= valueMin.swizzle(0, 1, 2);
1952 							interpolationCandidate.valueRangeMax		= valueMax.swizzle(0, 1, 2);
1953 						}
1954 					}
1955 					else
1956 					{
1957 						matchFound = true;
1958 						break;
1959 					}
1960 				}
1961 
1962 				if (!matchFound)
1963 				{
1964 					// store info for logging
1965 					if (errorCount < errorFloodThreshold && candidate.numCandidates > 0)
1966 						candidates.push_back(candidate);
1967 				}
1968 				else
1969 				{
1970 					// no need to check other lines
1971 					break;
1972 				}
1973 			}
1974 		}
1975 
1976 		if (matchFound)
1977 			continue;
1978 
1979 		// invalid fragment
1980 		++invalidPixels;
1981 		errorMask.setPixel(x, y, invalidPixelColor);
1982 
1983 		++errorCount;
1984 
1985 		// don't fill the logs with too much data
1986 		if (errorCount < errorFloodThreshold)
1987 		{
1988 			tcu::MessageBuilder msg(&log);
1989 
1990 			msg	<< "Found an invalid pixel at (" << x << "," << y << "), " << (int)candidates.size() << " candidate reference value(s) found:\n"
1991 				<< "\tPixel color:\t\t" << color << "\n"
1992 				<< "\tNative color:\t\t" << pixelNativeColor << "\n";
1993 
1994 			for (int lineCandidateNdx = 0; lineCandidateNdx < (int)candidates.size(); ++lineCandidateNdx)
1995 			{
1996 				const SingleSampleWideLineCandidate& candidate = candidates[lineCandidateNdx];
1997 
1998 				msg << "\tCandidate line (line " << candidate.lineNdx << "):\n";
1999 
2000 				for (int interpolationCandidateNdx = 0; interpolationCandidateNdx < candidate.numCandidates; ++interpolationCandidateNdx)
2001 				{
2002 					const SingleSampleWideLineCandidate::InterpolationPointCandidate& interpolationCandidate = candidate.interpolationCandidates[interpolationCandidateNdx];
2003 
2004 					msg	<< "\t\tCandidate interpolation point (index " << interpolationCandidateNdx << "):\n"
2005 						<< "\t\t\tRoot fragment position (non-replicated fragment): " << interpolationCandidate.interpolationPoint << ":\n"
2006 						<< "\t\t\tReference native color min: " << tcu::clamp(interpolationCandidate.colorMin, tcu::IVec3(0,0,0), formatLimit) << "\n"
2007 						<< "\t\t\tReference native color max: " << tcu::clamp(interpolationCandidate.colorMax, tcu::IVec3(0,0,0), formatLimit) << "\n"
2008 						<< "\t\t\tReference native float min: " << tcu::clamp(interpolationCandidate.colorMinF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
2009 						<< "\t\t\tReference native float max: " << tcu::clamp(interpolationCandidate.colorMaxF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
2010 						<< "\t\t\tFmin:\t" << tcu::clamp(interpolationCandidate.valueRangeMin, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
2011 						<< "\t\t\tFmax:\t" << tcu::clamp(interpolationCandidate.valueRangeMax, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n";
2012 				}
2013 			}
2014 
2015 			msg << tcu::TestLog::EndMessage;
2016 		}
2017 	}
2018 
2019 	// don't just hide failures
2020 	if (errorCount > errorFloodThreshold)
2021 		log << tcu::TestLog::Message << "Omitted " << (errorCount-errorFloodThreshold) << " pixel error description(s)." << tcu::TestLog::EndMessage;
2022 
2023 	// report result
2024 	if (invalidPixels)
2025 	{
2026 		log << tcu::TestLog::Message << invalidPixels << " invalid pixel(s) found." << tcu::TestLog::EndMessage;
2027 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
2028 			<< tcu::TestLog::Image("Result", "Result",			surface)
2029 			<< tcu::TestLog::Image("ErrorMask", "ErrorMask",	errorMask)
2030 			<< tcu::TestLog::EndImageSet;
2031 
2032 		return false;
2033 	}
2034 	else
2035 	{
2036 		log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
2037 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
2038 			<< tcu::TestLog::Image("Result", "Result", surface)
2039 			<< tcu::TestLog::EndImageSet;
2040 
2041 		return true;
2042 	}
2043 }
2044 
2045 } // anonymous
2046 
calculateTriangleCoverage(const tcu::Vec4 & p0,const tcu::Vec4 & p1,const tcu::Vec4 & p2,const tcu::IVec2 & pixel,const tcu::IVec2 & viewportSize,int subpixelBits,bool multisample)2047 CoverageType calculateTriangleCoverage (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec4& p2, const tcu::IVec2& pixel, const tcu::IVec2& viewportSize, int subpixelBits, bool multisample)
2048 {
2049 	typedef tcu::Vector<deInt64, 2> I64Vec2;
2050 
2051 	const deUint64		numSubPixels						= ((deUint64)1) << subpixelBits;
2052 	const deUint64		pixelHitBoxSize						= (multisample) ? (numSubPixels) : (2+2);	//!< allow 4 central (2x2) for non-multisample pixels. Rounding may move edges 1 subpixel to any direction.
2053 	const bool			order								= isTriangleClockwise(p0, p1, p2);			//!< clockwise / counter-clockwise
2054 	const tcu::Vec4&	orderedP0							= p0;										//!< vertices of a clockwise triangle
2055 	const tcu::Vec4&	orderedP1							= (order) ? (p1) : (p2);
2056 	const tcu::Vec4&	orderedP2							= (order) ? (p2) : (p1);
2057 	const tcu::Vec2		triangleNormalizedDeviceSpace[3]	=
2058 	{
2059 		tcu::Vec2(orderedP0.x() / orderedP0.w(), orderedP0.y() / orderedP0.w()),
2060 		tcu::Vec2(orderedP1.x() / orderedP1.w(), orderedP1.y() / orderedP1.w()),
2061 		tcu::Vec2(orderedP2.x() / orderedP2.w(), orderedP2.y() / orderedP2.w()),
2062 	};
2063 	const tcu::Vec2		triangleScreenSpace[3]				=
2064 	{
2065 		(triangleNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
2066 		(triangleNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
2067 		(triangleNormalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
2068 	};
2069 
2070 	// Broad bounding box - pixel check
2071 	{
2072 		const float minX = de::min(de::min(triangleScreenSpace[0].x(), triangleScreenSpace[1].x()), triangleScreenSpace[2].x());
2073 		const float minY = de::min(de::min(triangleScreenSpace[0].y(), triangleScreenSpace[1].y()), triangleScreenSpace[2].y());
2074 		const float maxX = de::max(de::max(triangleScreenSpace[0].x(), triangleScreenSpace[1].x()), triangleScreenSpace[2].x());
2075 		const float maxY = de::max(de::max(triangleScreenSpace[0].y(), triangleScreenSpace[1].y()), triangleScreenSpace[2].y());
2076 
2077 		if ((float)pixel.x() > maxX + 1 ||
2078 			(float)pixel.y() > maxY + 1 ||
2079 			(float)pixel.x() < minX - 1 ||
2080 			(float)pixel.y() < minY - 1)
2081 			return COVERAGE_NONE;
2082 	}
2083 
2084 	// Broad triangle - pixel area intersection
2085 	{
2086 		const I64Vec2 pixelCenterPosition = I64Vec2(pixel.x(), pixel.y()) * I64Vec2(numSubPixels, numSubPixels) + I64Vec2(numSubPixels / 2, numSubPixels / 2);
2087 		const I64Vec2 triangleSubPixelSpaceRound[3] =
2088 		{
2089 			I64Vec2(deRoundFloatToInt32(triangleScreenSpace[0].x()*numSubPixels), deRoundFloatToInt32(triangleScreenSpace[0].y()*numSubPixels)),
2090 			I64Vec2(deRoundFloatToInt32(triangleScreenSpace[1].x()*numSubPixels), deRoundFloatToInt32(triangleScreenSpace[1].y()*numSubPixels)),
2091 			I64Vec2(deRoundFloatToInt32(triangleScreenSpace[2].x()*numSubPixels), deRoundFloatToInt32(triangleScreenSpace[2].y()*numSubPixels)),
2092 		};
2093 
2094 		// Check (using cross product) if pixel center is
2095 		// a) too far from any edge
2096 		// b) fully inside all edges
2097 		bool insideAllEdges = true;
2098 		for (int vtxNdx = 0; vtxNdx < 3; ++vtxNdx)
2099 		{
2100 			const int		otherVtxNdx				= (vtxNdx + 1) % 3;
2101 			const deInt64	maxPixelDistanceSquared	= pixelHitBoxSize*pixelHitBoxSize; // Max distance from the pixel center from within the pixel is (sqrt(2) * boxWidth/2). Use 2x value for rounding tolerance
2102 			const I64Vec2	edge					= triangleSubPixelSpaceRound[otherVtxNdx]	- triangleSubPixelSpaceRound[vtxNdx];
2103 			const I64Vec2	v						= pixelCenterPosition						- triangleSubPixelSpaceRound[vtxNdx];
2104 			const deInt64	crossProduct			= (edge.x() * v.y() - edge.y() * v.x());
2105 
2106 			// distance from edge: (edge x v) / |edge|
2107 			//     (edge x v) / |edge| > maxPixelDistance
2108 			// ==> (edge x v)^2 / edge^2 > maxPixelDistance^2    | edge x v > 0
2109 			// ==> (edge x v)^2 > maxPixelDistance^2 * edge^2
2110 			if (crossProduct < 0 && crossProduct*crossProduct > maxPixelDistanceSquared * tcu::lengthSquared(edge))
2111 				return COVERAGE_NONE;
2112 			if (crossProduct < 0 || crossProduct*crossProduct < maxPixelDistanceSquared * tcu::lengthSquared(edge))
2113 				insideAllEdges = false;
2114 		}
2115 
2116 		if (insideAllEdges)
2117 			return COVERAGE_FULL;
2118 	}
2119 
2120 	// Accurate intersection for edge pixels
2121 	{
2122 		//  In multisampling, the sample points can be anywhere in the pixel, and in single sampling only in the center.
2123 		const I64Vec2 pixelCorners[4] =
2124 		{
2125 			I64Vec2((pixel.x()+0) * numSubPixels, (pixel.y()+0) * numSubPixels),
2126 			I64Vec2((pixel.x()+1) * numSubPixels, (pixel.y()+0) * numSubPixels),
2127 			I64Vec2((pixel.x()+1) * numSubPixels, (pixel.y()+1) * numSubPixels),
2128 			I64Vec2((pixel.x()+0) * numSubPixels, (pixel.y()+1) * numSubPixels),
2129 		};
2130 		const I64Vec2 pixelCenterCorners[4] =
2131 		{
2132 			I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 0, pixel.y() * numSubPixels + numSubPixels/2 + 0),
2133 			I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 1, pixel.y() * numSubPixels + numSubPixels/2 + 0),
2134 			I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 1, pixel.y() * numSubPixels + numSubPixels/2 + 1),
2135 			I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 0, pixel.y() * numSubPixels + numSubPixels/2 + 1),
2136 		};
2137 
2138 		// both rounding directions
2139 		const I64Vec2 triangleSubPixelSpaceFloor[3] =
2140 		{
2141 			I64Vec2(deFloorFloatToInt32(triangleScreenSpace[0].x()*numSubPixels), deFloorFloatToInt32(triangleScreenSpace[0].y()*numSubPixels)),
2142 			I64Vec2(deFloorFloatToInt32(triangleScreenSpace[1].x()*numSubPixels), deFloorFloatToInt32(triangleScreenSpace[1].y()*numSubPixels)),
2143 			I64Vec2(deFloorFloatToInt32(triangleScreenSpace[2].x()*numSubPixels), deFloorFloatToInt32(triangleScreenSpace[2].y()*numSubPixels)),
2144 		};
2145 		const I64Vec2 triangleSubPixelSpaceCeil[3] =
2146 		{
2147 			I64Vec2(deCeilFloatToInt32(triangleScreenSpace[0].x()*numSubPixels), deCeilFloatToInt32(triangleScreenSpace[0].y()*numSubPixels)),
2148 			I64Vec2(deCeilFloatToInt32(triangleScreenSpace[1].x()*numSubPixels), deCeilFloatToInt32(triangleScreenSpace[1].y()*numSubPixels)),
2149 			I64Vec2(deCeilFloatToInt32(triangleScreenSpace[2].x()*numSubPixels), deCeilFloatToInt32(triangleScreenSpace[2].y()*numSubPixels)),
2150 		};
2151 		const I64Vec2* const corners = (multisample) ? (pixelCorners) : (pixelCenterCorners);
2152 
2153 		// Test if any edge (with any rounding) intersects the pixel (boundary). If it does => Partial. If not => fully inside or outside
2154 
2155 		for (int edgeNdx = 0; edgeNdx < 3; ++edgeNdx)
2156 		for (int startRounding = 0; startRounding < 4; ++startRounding)
2157 		for (int endRounding = 0; endRounding < 4; ++endRounding)
2158 		{
2159 			const int		nextEdgeNdx	= (edgeNdx+1) % 3;
2160 			const I64Vec2	startPos	((startRounding&0x01)	? (triangleSubPixelSpaceFloor[edgeNdx].x())		: (triangleSubPixelSpaceCeil[edgeNdx].x()),		(startRounding&0x02)	? (triangleSubPixelSpaceFloor[edgeNdx].y())		: (triangleSubPixelSpaceCeil[edgeNdx].y()));
2161 			const I64Vec2	endPos		((endRounding&0x01)		? (triangleSubPixelSpaceFloor[nextEdgeNdx].x())	: (triangleSubPixelSpaceCeil[nextEdgeNdx].x()),	(endRounding&0x02)		? (triangleSubPixelSpaceFloor[nextEdgeNdx].y())	: (triangleSubPixelSpaceCeil[nextEdgeNdx].y()));
2162 
2163 			for (int pixelEdgeNdx = 0; pixelEdgeNdx < 4; ++pixelEdgeNdx)
2164 			{
2165 				const int pixelEdgeEnd = (pixelEdgeNdx + 1) % 4;
2166 
2167 				if (lineLineIntersect(startPos, endPos, corners[pixelEdgeNdx], corners[pixelEdgeEnd]))
2168 					return COVERAGE_PARTIAL;
2169 			}
2170 		}
2171 
2172 		// fully inside or outside
2173 		for (int edgeNdx = 0; edgeNdx < 3; ++edgeNdx)
2174 		{
2175 			const int		nextEdgeNdx		= (edgeNdx+1) % 3;
2176 			const I64Vec2&	startPos		= triangleSubPixelSpaceFloor[edgeNdx];
2177 			const I64Vec2&	endPos			= triangleSubPixelSpaceFloor[nextEdgeNdx];
2178 			const I64Vec2	edge			= endPos - startPos;
2179 			const I64Vec2	v				= corners[0] - endPos;
2180 			const deInt64	crossProduct	= (edge.x() * v.y() - edge.y() * v.x());
2181 
2182 			// a corner of the pixel is outside => "fully inside" option is impossible
2183 			if (crossProduct < 0)
2184 				return COVERAGE_NONE;
2185 		}
2186 
2187 		return COVERAGE_FULL;
2188 	}
2189 }
2190 
verifyTriangleGroupRasterization(const tcu::Surface & surface,const TriangleSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log,VerificationMode mode)2191 bool verifyTriangleGroupRasterization (const tcu::Surface& surface, const TriangleSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log, VerificationMode mode)
2192 {
2193 	DE_ASSERT(mode < VERIFICATIONMODE_LAST);
2194 
2195 	const tcu::RGBA		backGroundColor				= tcu::RGBA(0, 0, 0, 255);
2196 	const tcu::RGBA		triangleColor				= tcu::RGBA(255, 255, 255, 255);
2197 	const tcu::RGBA		missingPixelColor			= tcu::RGBA(255, 0, 255, 255);
2198 	const tcu::RGBA		unexpectedPixelColor		= tcu::RGBA(255, 0, 0, 255);
2199 	const tcu::RGBA		partialPixelColor			= tcu::RGBA(255, 255, 0, 255);
2200 	const tcu::RGBA		primitivePixelColor			= tcu::RGBA(30, 30, 30, 255);
2201 	const int			weakVerificationThreshold	= 10;
2202 	const bool			multisampled				= (args.numSamples != 0);
2203 	const tcu::IVec2	viewportSize				= tcu::IVec2(surface.getWidth(), surface.getHeight());
2204 	int					missingPixels				= 0;
2205 	int					unexpectedPixels			= 0;
2206 	int					subPixelBits				= args.subpixelBits;
2207 	tcu::TextureLevel	coverageMap					(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
2208 	tcu::Surface		errorMask					(surface.getWidth(), surface.getHeight());
2209 
2210 	// subpixel bits in in a valid range?
2211 
2212 	if (subPixelBits < 0)
2213 	{
2214 		log << tcu::TestLog::Message << "Invalid subpixel count (" << subPixelBits << "), assuming 0" << tcu::TestLog::EndMessage;
2215 		subPixelBits = 0;
2216 	}
2217 	else if (subPixelBits > 16)
2218 	{
2219 		// At high subpixel bit counts we might overflow. Checking at lower bit count is ok, but is less strict
2220 		log << tcu::TestLog::Message << "Subpixel count is greater than 16 (" << subPixelBits << "). Checking results using less strict 16 bit requirements. This may produce false positives." << tcu::TestLog::EndMessage;
2221 		subPixelBits = 16;
2222 	}
2223 
2224 	// generate coverage map
2225 
2226 	tcu::clear(coverageMap.getAccess(), tcu::IVec4(COVERAGE_NONE, 0, 0, 0));
2227 
2228 	for (int triNdx = 0; triNdx < (int)scene.triangles.size(); ++triNdx)
2229 	{
2230 		const tcu::IVec4 aabb = getTriangleAABB(scene.triangles[triNdx], viewportSize);
2231 
2232 		for (int y = de::max(0, aabb.y()); y <= de::min(aabb.w(), coverageMap.getHeight() - 1); ++y)
2233 		for (int x = de::max(0, aabb.x()); x <= de::min(aabb.z(), coverageMap.getWidth() - 1); ++x)
2234 		{
2235 			if (coverageMap.getAccess().getPixelUint(x, y).x() == COVERAGE_FULL)
2236 				continue;
2237 
2238 			const CoverageType coverage = calculateTriangleCoverage(scene.triangles[triNdx].positions[0],
2239 																	scene.triangles[triNdx].positions[1],
2240 																	scene.triangles[triNdx].positions[2],
2241 																	tcu::IVec2(x, y),
2242 																	viewportSize,
2243 																	subPixelBits,
2244 																	multisampled);
2245 
2246 			if (coverage == COVERAGE_FULL)
2247 			{
2248 				coverageMap.getAccess().setPixel(tcu::IVec4(COVERAGE_FULL, 0, 0, 0), x, y);
2249 			}
2250 			else if (coverage == COVERAGE_PARTIAL)
2251 			{
2252 				CoverageType resultCoverage = COVERAGE_PARTIAL;
2253 
2254 				// Sharing an edge with another triangle?
2255 				// There should always be such a triangle, but the pixel in the other triangle might be
2256 				// on multiple edges, some of which are not shared. In these cases the coverage cannot be determined.
2257 				// Assume full coverage if the pixel is only on a shared edge in shared triangle too.
2258 				if (pixelOnlyOnASharedEdge(tcu::IVec2(x, y), scene.triangles[triNdx], viewportSize))
2259 				{
2260 					bool friendFound = false;
2261 					for (int friendTriNdx = 0; friendTriNdx < (int)scene.triangles.size(); ++friendTriNdx)
2262 					{
2263 						if (friendTriNdx != triNdx && pixelOnlyOnASharedEdge(tcu::IVec2(x, y), scene.triangles[friendTriNdx], viewportSize))
2264 						{
2265 							friendFound = true;
2266 							break;
2267 						}
2268 					}
2269 
2270 					if (friendFound)
2271 						resultCoverage = COVERAGE_FULL;
2272 				}
2273 
2274 				coverageMap.getAccess().setPixel(tcu::IVec4(resultCoverage, 0, 0, 0), x, y);
2275 			}
2276 		}
2277 	}
2278 
2279 	// check pixels
2280 
2281 	tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
2282 
2283 	for (int y = 0; y < surface.getHeight(); ++y)
2284 	for (int x = 0; x < surface.getWidth(); ++x)
2285 	{
2286 		const tcu::RGBA		color				= surface.getPixel(x, y);
2287 		const bool			imageNoCoverage		= compareColors(color, backGroundColor, args.redBits, args.greenBits, args.blueBits);
2288 		const bool			imageFullCoverage	= compareColors(color, triangleColor, args.redBits, args.greenBits, args.blueBits);
2289 		CoverageType		referenceCoverage	= (CoverageType)coverageMap.getAccess().getPixelUint(x, y).x();
2290 
2291 		switch (referenceCoverage)
2292 		{
2293 			case COVERAGE_NONE:
2294 				if (!imageNoCoverage)
2295 				{
2296 					// coverage where there should not be
2297 					++unexpectedPixels;
2298 					errorMask.setPixel(x, y, unexpectedPixelColor);
2299 				}
2300 				break;
2301 
2302 			case COVERAGE_PARTIAL:
2303 				// anything goes
2304 				errorMask.setPixel(x, y, partialPixelColor);
2305 				break;
2306 
2307 			case COVERAGE_FULL:
2308 				if (!imageFullCoverage)
2309 				{
2310 					// no coverage where there should be
2311 					++missingPixels;
2312 					errorMask.setPixel(x, y, missingPixelColor);
2313 				}
2314 				else
2315 				{
2316 					errorMask.setPixel(x, y, primitivePixelColor);
2317 				}
2318 				break;
2319 
2320 			default:
2321 				DE_ASSERT(false);
2322 		};
2323 	}
2324 
2325 	// Output results
2326 	log << tcu::TestLog::Message << "Verifying rasterization result." << tcu::TestLog::EndMessage;
2327 
2328 	if (((mode == VERIFICATIONMODE_STRICT) && (missingPixels + unexpectedPixels > 0)) ||
2329 		((mode == VERIFICATIONMODE_WEAK)   && (missingPixels + unexpectedPixels > weakVerificationThreshold)))
2330 	{
2331 		log << tcu::TestLog::Message << "Invalid pixels found:\n\t"
2332 			<< missingPixels << " missing pixels. (Marked with purple)\n\t"
2333 			<< unexpectedPixels << " incorrectly filled pixels. (Marked with red)\n\t"
2334 			<< "Unknown (subpixel on edge) pixels are marked with yellow."
2335 			<< tcu::TestLog::EndMessage;
2336 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
2337 			<< tcu::TestLog::Image("Result",	"Result",		surface)
2338 			<< tcu::TestLog::Image("ErrorMask", "ErrorMask",	errorMask)
2339 			<< tcu::TestLog::EndImageSet;
2340 
2341 		return false;
2342 	}
2343 	else
2344 	{
2345 		log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
2346 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
2347 			<< tcu::TestLog::Image("Result", "Result", surface)
2348 			<< tcu::TestLog::EndImageSet;
2349 
2350 		return true;
2351 	}
2352 }
2353 
verifyLineGroupRasterization(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)2354 bool verifyLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
2355 {
2356 	const bool multisampled = args.numSamples != 0;
2357 
2358 	if (multisampled)
2359 		return verifyMultisampleLineGroupRasterization(surface, scene, args, log);
2360 	else
2361 		return verifySinglesampleLineGroupRasterization(surface, scene, args, log);
2362 }
2363 
verifyPointGroupRasterization(const tcu::Surface & surface,const PointSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)2364 bool verifyPointGroupRasterization (const tcu::Surface& surface, const PointSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
2365 {
2366 	// Splitting to triangles is a valid solution in multisampled cases and even in non-multisample cases too.
2367 	return verifyMultisamplePointGroupRasterization(surface, scene, args, log);
2368 }
2369 
verifyTriangleGroupInterpolation(const tcu::Surface & surface,const TriangleSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)2370 bool verifyTriangleGroupInterpolation (const tcu::Surface& surface, const TriangleSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
2371 {
2372 	return verifyTriangleGroupInterpolationWithInterpolator(surface, scene, args, log, TriangleInterpolator(scene));
2373 }
2374 
verifyLineGroupInterpolation(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)2375 LineInterpolationMethod verifyLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
2376 {
2377 	const bool multisampled = args.numSamples != 0;
2378 
2379 	if (multisampled)
2380 	{
2381 		if (verifyMultisampleLineGroupInterpolation(surface, scene, args, log))
2382 			return LINEINTERPOLATION_STRICTLY_CORRECT;
2383 		return LINEINTERPOLATION_INCORRECT;
2384 	}
2385 	else
2386 	{
2387 		const bool isNarrow = (scene.lineWidth == 1.0f);
2388 
2389 		// accurate interpolation
2390 		if (isNarrow)
2391 		{
2392 			if (verifySinglesampleNarrowLineGroupInterpolation(surface, scene, args, log))
2393 				return LINEINTERPOLATION_STRICTLY_CORRECT;
2394 		}
2395 		else
2396 		{
2397 			if (verifySinglesampleWideLineGroupInterpolation(surface, scene, args, log))
2398 				return LINEINTERPOLATION_STRICTLY_CORRECT;
2399 		}
2400 
2401 		// check with projected (inaccurate) interpolation
2402 		log << tcu::TestLog::Message << "Accurate verification failed, checking with projected weights (inaccurate equation)." << tcu::TestLog::EndMessage;
2403 		if (verifyLineGroupInterpolationWithProjectedWeights(surface, scene, args, log))
2404 			return LINEINTERPOLATION_PROJECTED;
2405 
2406 		return LINEINTERPOLATION_INCORRECT;
2407 	}
2408 }
2409 
2410 } // StateQueryUtil
2411 } // gls
2412 } // deqp
2413