1 /*
2 * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <limits.h>
12 #include <math.h>
13
14 #include "vpx_ports/system_state.h"
15
16 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
17
18 #include "vp9/common/vp9_seg_common.h"
19
20 #include "vp9/encoder/vp9_ratectrl.h"
21 #include "vp9/encoder/vp9_segmentation.h"
22
23 struct CYCLIC_REFRESH {
24 // Percentage of blocks per frame that are targeted as candidates
25 // for cyclic refresh.
26 int percent_refresh;
27 // Maximum q-delta as percentage of base q.
28 int max_qdelta_perc;
29 // Superblock starting index for cycling through the frame.
30 int sb_index;
31 // Controls how long block will need to wait to be refreshed again, in
32 // excess of the cycle time, i.e., in the case of all zero motion, block
33 // will be refreshed every (100/percent_refresh + time_for_refresh) frames.
34 int time_for_refresh;
35 // Target number of (8x8) blocks that are set for delta-q.
36 int target_num_seg_blocks;
37 // Actual number of (8x8) blocks that were applied delta-q.
38 int actual_num_seg1_blocks;
39 int actual_num_seg2_blocks;
40 // RD mult. parameters for segment 1.
41 int rdmult;
42 // Cyclic refresh map.
43 signed char *map;
44 // Map of the last q a block was coded at.
45 uint8_t *last_coded_q_map;
46 // Thresholds applied to the projected rate/distortion of the coding block,
47 // when deciding whether block should be refreshed.
48 int64_t thresh_rate_sb;
49 int64_t thresh_dist_sb;
50 // Threshold applied to the motion vector (in units of 1/8 pel) of the
51 // coding block, when deciding whether block should be refreshed.
52 int16_t motion_thresh;
53 // Rate target ratio to set q delta.
54 double rate_ratio_qdelta;
55 // Boost factor for rate target ratio, for segment CR_SEGMENT_ID_BOOST2.
56 int rate_boost_fac;
57 double low_content_avg;
58 int qindex_delta[3];
59 };
60
vp9_cyclic_refresh_alloc(int mi_rows,int mi_cols)61 CYCLIC_REFRESH *vp9_cyclic_refresh_alloc(int mi_rows, int mi_cols) {
62 size_t last_coded_q_map_size;
63 CYCLIC_REFRESH *const cr = vpx_calloc(1, sizeof(*cr));
64 if (cr == NULL)
65 return NULL;
66
67 cr->map = vpx_calloc(mi_rows * mi_cols, sizeof(*cr->map));
68 if (cr->map == NULL) {
69 vpx_free(cr);
70 return NULL;
71 }
72 last_coded_q_map_size = mi_rows * mi_cols * sizeof(*cr->last_coded_q_map);
73 cr->last_coded_q_map = vpx_malloc(last_coded_q_map_size);
74 if (cr->last_coded_q_map == NULL) {
75 vpx_free(cr);
76 return NULL;
77 }
78 assert(MAXQ <= 255);
79 memset(cr->last_coded_q_map, MAXQ, last_coded_q_map_size);
80
81 return cr;
82 }
83
vp9_cyclic_refresh_free(CYCLIC_REFRESH * cr)84 void vp9_cyclic_refresh_free(CYCLIC_REFRESH *cr) {
85 vpx_free(cr->map);
86 vpx_free(cr->last_coded_q_map);
87 vpx_free(cr);
88 }
89
90 // Check if we should turn off cyclic refresh based on bitrate condition.
apply_cyclic_refresh_bitrate(const VP9_COMMON * cm,const RATE_CONTROL * rc)91 static int apply_cyclic_refresh_bitrate(const VP9_COMMON *cm,
92 const RATE_CONTROL *rc) {
93 // Turn off cyclic refresh if bits available per frame is not sufficiently
94 // larger than bit cost of segmentation. Segment map bit cost should scale
95 // with number of seg blocks, so compare available bits to number of blocks.
96 // Average bits available per frame = avg_frame_bandwidth
97 // Number of (8x8) blocks in frame = mi_rows * mi_cols;
98 const float factor = 0.25;
99 const int number_blocks = cm->mi_rows * cm->mi_cols;
100 // The condition below corresponds to turning off at target bitrates:
101 // (at 30fps), ~12kbps for CIF, 36kbps for VGA, 100kps for HD/720p.
102 // Also turn off at very small frame sizes, to avoid too large fraction of
103 // superblocks to be refreshed per frame. Threshold below is less than QCIF.
104 if (rc->avg_frame_bandwidth < factor * number_blocks ||
105 number_blocks / 64 < 5)
106 return 0;
107 else
108 return 1;
109 }
110
111 // Check if this coding block, of size bsize, should be considered for refresh
112 // (lower-qp coding). Decision can be based on various factors, such as
113 // size of the coding block (i.e., below min_block size rejected), coding
114 // mode, and rate/distortion.
candidate_refresh_aq(const CYCLIC_REFRESH * cr,const MB_MODE_INFO * mbmi,int64_t rate,int64_t dist,int bsize)115 static int candidate_refresh_aq(const CYCLIC_REFRESH *cr,
116 const MB_MODE_INFO *mbmi,
117 int64_t rate,
118 int64_t dist,
119 int bsize) {
120 MV mv = mbmi->mv[0].as_mv;
121 // Reject the block for lower-qp coding if projected distortion
122 // is above the threshold, and any of the following is true:
123 // 1) mode uses large mv
124 // 2) mode is an intra-mode
125 // Otherwise accept for refresh.
126 if (dist > cr->thresh_dist_sb &&
127 (mv.row > cr->motion_thresh || mv.row < -cr->motion_thresh ||
128 mv.col > cr->motion_thresh || mv.col < -cr->motion_thresh ||
129 !is_inter_block(mbmi)))
130 return CR_SEGMENT_ID_BASE;
131 else if (bsize >= BLOCK_16X16 &&
132 rate < cr->thresh_rate_sb &&
133 is_inter_block(mbmi) &&
134 mbmi->mv[0].as_int == 0 &&
135 cr->rate_boost_fac > 10)
136 // More aggressive delta-q for bigger blocks with zero motion.
137 return CR_SEGMENT_ID_BOOST2;
138 else
139 return CR_SEGMENT_ID_BOOST1;
140 }
141
142 // Compute delta-q for the segment.
compute_deltaq(const VP9_COMP * cpi,int q,double rate_factor)143 static int compute_deltaq(const VP9_COMP *cpi, int q, double rate_factor) {
144 const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
145 const RATE_CONTROL *const rc = &cpi->rc;
146 int deltaq = vp9_compute_qdelta_by_rate(rc, cpi->common.frame_type,
147 q, rate_factor,
148 cpi->common.bit_depth);
149 if ((-deltaq) > cr->max_qdelta_perc * q / 100) {
150 deltaq = -cr->max_qdelta_perc * q / 100;
151 }
152 return deltaq;
153 }
154
155 // For the just encoded frame, estimate the bits, incorporating the delta-q
156 // from non-base segment. For now ignore effect of multiple segments
157 // (with different delta-q). Note this function is called in the postencode
158 // (called from rc_update_rate_correction_factors()).
vp9_cyclic_refresh_estimate_bits_at_q(const VP9_COMP * cpi,double correction_factor)159 int vp9_cyclic_refresh_estimate_bits_at_q(const VP9_COMP *cpi,
160 double correction_factor) {
161 const VP9_COMMON *const cm = &cpi->common;
162 const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
163 int estimated_bits;
164 int mbs = cm->MBs;
165 int num8x8bl = mbs << 2;
166 // Weight for non-base segments: use actual number of blocks refreshed in
167 // previous/just encoded frame. Note number of blocks here is in 8x8 units.
168 double weight_segment1 = (double)cr->actual_num_seg1_blocks / num8x8bl;
169 double weight_segment2 = (double)cr->actual_num_seg2_blocks / num8x8bl;
170 // Take segment weighted average for estimated bits.
171 estimated_bits = (int)((1.0 - weight_segment1 - weight_segment2) *
172 vp9_estimate_bits_at_q(cm->frame_type, cm->base_qindex, mbs,
173 correction_factor, cm->bit_depth) +
174 weight_segment1 *
175 vp9_estimate_bits_at_q(cm->frame_type,
176 cm->base_qindex + cr->qindex_delta[1], mbs,
177 correction_factor, cm->bit_depth) +
178 weight_segment2 *
179 vp9_estimate_bits_at_q(cm->frame_type,
180 cm->base_qindex + cr->qindex_delta[2], mbs,
181 correction_factor, cm->bit_depth));
182 return estimated_bits;
183 }
184
185 // Prior to encoding the frame, estimate the bits per mb, for a given q = i and
186 // a corresponding delta-q (for segment 1). This function is called in the
187 // rc_regulate_q() to set the base qp index.
188 // Note: the segment map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or
189 // to 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock, prior to encoding.
vp9_cyclic_refresh_rc_bits_per_mb(const VP9_COMP * cpi,int i,double correction_factor)190 int vp9_cyclic_refresh_rc_bits_per_mb(const VP9_COMP *cpi, int i,
191 double correction_factor) {
192 const VP9_COMMON *const cm = &cpi->common;
193 CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
194 int bits_per_mb;
195 int num8x8bl = cm->MBs << 2;
196 // Weight for segment prior to encoding: take the average of the target
197 // number for the frame to be encoded and the actual from the previous frame.
198 double weight_segment = (double)((cr->target_num_seg_blocks +
199 cr->actual_num_seg1_blocks + cr->actual_num_seg2_blocks) >> 1) /
200 num8x8bl;
201 // Compute delta-q corresponding to qindex i.
202 int deltaq = compute_deltaq(cpi, i, cr->rate_ratio_qdelta);
203 // Take segment weighted average for bits per mb.
204 bits_per_mb = (int)((1.0 - weight_segment) *
205 vp9_rc_bits_per_mb(cm->frame_type, i, correction_factor, cm->bit_depth) +
206 weight_segment *
207 vp9_rc_bits_per_mb(cm->frame_type, i + deltaq, correction_factor,
208 cm->bit_depth));
209 return bits_per_mb;
210 }
211
212 // Prior to coding a given prediction block, of size bsize at (mi_row, mi_col),
213 // check if we should reset the segment_id, and update the cyclic_refresh map
214 // and segmentation map.
vp9_cyclic_refresh_update_segment(VP9_COMP * const cpi,MB_MODE_INFO * const mbmi,int mi_row,int mi_col,BLOCK_SIZE bsize,int64_t rate,int64_t dist,int skip)215 void vp9_cyclic_refresh_update_segment(VP9_COMP *const cpi,
216 MB_MODE_INFO *const mbmi,
217 int mi_row, int mi_col,
218 BLOCK_SIZE bsize,
219 int64_t rate,
220 int64_t dist,
221 int skip) {
222 const VP9_COMMON *const cm = &cpi->common;
223 CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
224 const int bw = num_8x8_blocks_wide_lookup[bsize];
225 const int bh = num_8x8_blocks_high_lookup[bsize];
226 const int xmis = MIN(cm->mi_cols - mi_col, bw);
227 const int ymis = MIN(cm->mi_rows - mi_row, bh);
228 const int block_index = mi_row * cm->mi_cols + mi_col;
229 const int refresh_this_block = candidate_refresh_aq(cr, mbmi, rate, dist,
230 bsize);
231 // Default is to not update the refresh map.
232 int new_map_value = cr->map[block_index];
233 int x = 0; int y = 0;
234
235 // If this block is labeled for refresh, check if we should reset the
236 // segment_id.
237 if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) {
238 mbmi->segment_id = refresh_this_block;
239 // Reset segment_id if will be skipped.
240 if (skip)
241 mbmi->segment_id = CR_SEGMENT_ID_BASE;
242 }
243
244 // Update the cyclic refresh map, to be used for setting segmentation map
245 // for the next frame. If the block will be refreshed this frame, mark it
246 // as clean. The magnitude of the -ve influences how long before we consider
247 // it for refresh again.
248 if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) {
249 new_map_value = -cr->time_for_refresh;
250 } else if (refresh_this_block) {
251 // Else if it is accepted as candidate for refresh, and has not already
252 // been refreshed (marked as 1) then mark it as a candidate for cleanup
253 // for future time (marked as 0), otherwise don't update it.
254 if (cr->map[block_index] == 1)
255 new_map_value = 0;
256 } else {
257 // Leave it marked as block that is not candidate for refresh.
258 new_map_value = 1;
259 }
260
261 // Update entries in the cyclic refresh map with new_map_value, and
262 // copy mbmi->segment_id into global segmentation map.
263 for (y = 0; y < ymis; y++)
264 for (x = 0; x < xmis; x++) {
265 int map_offset = block_index + y * cm->mi_cols + x;
266 cr->map[map_offset] = new_map_value;
267 cpi->segmentation_map[map_offset] = mbmi->segment_id;
268 // Inter skip blocks were clearly not coded at the current qindex, so
269 // don't update the map for them. For cases where motion is non-zero or
270 // the reference frame isn't the previous frame, the previous value in
271 // the map for this spatial location is not entirely correct.
272 if (!is_inter_block(mbmi) || !skip)
273 cr->last_coded_q_map[map_offset] = clamp(
274 cm->base_qindex + cr->qindex_delta[mbmi->segment_id], 0, MAXQ);
275 }
276 }
277
278 // Update the actual number of blocks that were applied the segment delta q.
vp9_cyclic_refresh_postencode(VP9_COMP * const cpi)279 void vp9_cyclic_refresh_postencode(VP9_COMP *const cpi) {
280 VP9_COMMON *const cm = &cpi->common;
281 CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
282 unsigned char *const seg_map = cpi->segmentation_map;
283 int mi_row, mi_col;
284 cr->actual_num_seg1_blocks = 0;
285 cr->actual_num_seg2_blocks = 0;
286 for (mi_row = 0; mi_row < cm->mi_rows; mi_row++)
287 for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) {
288 if (cyclic_refresh_segment_id(
289 seg_map[mi_row * cm->mi_cols + mi_col]) == CR_SEGMENT_ID_BOOST1)
290 cr->actual_num_seg1_blocks++;
291 else if (cyclic_refresh_segment_id(
292 seg_map[mi_row * cm->mi_cols + mi_col]) == CR_SEGMENT_ID_BOOST2)
293 cr->actual_num_seg2_blocks++;
294 }
295 }
296
297 // Set golden frame update interval, for non-svc 1 pass CBR mode.
vp9_cyclic_refresh_set_golden_update(VP9_COMP * const cpi)298 void vp9_cyclic_refresh_set_golden_update(VP9_COMP *const cpi) {
299 RATE_CONTROL *const rc = &cpi->rc;
300 CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
301 // Set minimum gf_interval for GF update to a multiple (== 2) of refresh
302 // period. Depending on past encoding stats, GF flag may be reset and update
303 // may not occur until next baseline_gf_interval.
304 if (cr->percent_refresh > 0)
305 rc->baseline_gf_interval = 4 * (100 / cr->percent_refresh);
306 else
307 rc->baseline_gf_interval = 40;
308 }
309
310 // Update some encoding stats (from the just encoded frame). If this frame's
311 // background has high motion, refresh the golden frame. Otherwise, if the
312 // golden reference is to be updated check if we should NOT update the golden
313 // ref.
vp9_cyclic_refresh_check_golden_update(VP9_COMP * const cpi)314 void vp9_cyclic_refresh_check_golden_update(VP9_COMP *const cpi) {
315 VP9_COMMON *const cm = &cpi->common;
316 CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
317 int mi_row, mi_col;
318 double fraction_low = 0.0;
319 int low_content_frame = 0;
320
321 MODE_INFO **mi = cm->mi_grid_visible;
322 RATE_CONTROL *const rc = &cpi->rc;
323 const int rows = cm->mi_rows, cols = cm->mi_cols;
324 int cnt1 = 0, cnt2 = 0;
325 int force_gf_refresh = 0;
326
327 for (mi_row = 0; mi_row < rows; mi_row++) {
328 for (mi_col = 0; mi_col < cols; mi_col++) {
329 int16_t abs_mvr = mi[0]->mbmi.mv[0].as_mv.row >= 0 ?
330 mi[0]->mbmi.mv[0].as_mv.row : -1 * mi[0]->mbmi.mv[0].as_mv.row;
331 int16_t abs_mvc = mi[0]->mbmi.mv[0].as_mv.col >= 0 ?
332 mi[0]->mbmi.mv[0].as_mv.col : -1 * mi[0]->mbmi.mv[0].as_mv.col;
333
334 // Calculate the motion of the background.
335 if (abs_mvr <= 16 && abs_mvc <= 16) {
336 cnt1++;
337 if (abs_mvr == 0 && abs_mvc == 0)
338 cnt2++;
339 }
340 mi++;
341
342 // Accumulate low_content_frame.
343 if (cr->map[mi_row * cols + mi_col] < 1)
344 low_content_frame++;
345 }
346 mi += 8;
347 }
348
349 // For video conference clips, if the background has high motion in current
350 // frame because of the camera movement, set this frame as the golden frame.
351 // Use 70% and 5% as the thresholds for golden frame refreshing.
352 // Also, force this frame as a golden update frame if this frame will change
353 // the resolution (resize_pending != 0).
354 if (cpi->resize_pending != 0 ||
355 (cnt1 * 10 > (70 * rows * cols) && cnt2 * 20 < cnt1)) {
356 vp9_cyclic_refresh_set_golden_update(cpi);
357 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
358
359 if (rc->frames_till_gf_update_due > rc->frames_to_key)
360 rc->frames_till_gf_update_due = rc->frames_to_key;
361 cpi->refresh_golden_frame = 1;
362 force_gf_refresh = 1;
363 }
364
365 fraction_low =
366 (double)low_content_frame / (rows * cols);
367 // Update average.
368 cr->low_content_avg = (fraction_low + 3 * cr->low_content_avg) / 4;
369 if (!force_gf_refresh && cpi->refresh_golden_frame == 1) {
370 // Don't update golden reference if the amount of low_content for the
371 // current encoded frame is small, or if the recursive average of the
372 // low_content over the update interval window falls below threshold.
373 if (fraction_low < 0.8 || cr->low_content_avg < 0.7)
374 cpi->refresh_golden_frame = 0;
375 // Reset for next internal.
376 cr->low_content_avg = fraction_low;
377 }
378 }
379
380 // Update the segmentation map, and related quantities: cyclic refresh map,
381 // refresh sb_index, and target number of blocks to be refreshed.
382 // The map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or to
383 // 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock.
384 // Blocks labeled as BOOST1 may later get set to BOOST2 (during the
385 // encoding of the superblock).
cyclic_refresh_update_map(VP9_COMP * const cpi)386 static void cyclic_refresh_update_map(VP9_COMP *const cpi) {
387 VP9_COMMON *const cm = &cpi->common;
388 CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
389 unsigned char *const seg_map = cpi->segmentation_map;
390 int i, block_count, bl_index, sb_rows, sb_cols, sbs_in_frame;
391 int xmis, ymis, x, y;
392 memset(seg_map, CR_SEGMENT_ID_BASE, cm->mi_rows * cm->mi_cols);
393 sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
394 sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
395 sbs_in_frame = sb_cols * sb_rows;
396 // Number of target blocks to get the q delta (segment 1).
397 block_count = cr->percent_refresh * cm->mi_rows * cm->mi_cols / 100;
398 // Set the segmentation map: cycle through the superblocks, starting at
399 // cr->mb_index, and stopping when either block_count blocks have been found
400 // to be refreshed, or we have passed through whole frame.
401 assert(cr->sb_index < sbs_in_frame);
402 i = cr->sb_index;
403 cr->target_num_seg_blocks = 0;
404 do {
405 int sum_map = 0;
406 // Get the mi_row/mi_col corresponding to superblock index i.
407 int sb_row_index = (i / sb_cols);
408 int sb_col_index = i - sb_row_index * sb_cols;
409 int mi_row = sb_row_index * MI_BLOCK_SIZE;
410 int mi_col = sb_col_index * MI_BLOCK_SIZE;
411 int qindex_thresh =
412 cpi->oxcf.content == VP9E_CONTENT_SCREEN
413 ? vp9_get_qindex(&cm->seg, CR_SEGMENT_ID_BOOST2, cm->base_qindex)
414 : 0;
415 assert(mi_row >= 0 && mi_row < cm->mi_rows);
416 assert(mi_col >= 0 && mi_col < cm->mi_cols);
417 bl_index = mi_row * cm->mi_cols + mi_col;
418 // Loop through all 8x8 blocks in superblock and update map.
419 xmis = MIN(cm->mi_cols - mi_col,
420 num_8x8_blocks_wide_lookup[BLOCK_64X64]);
421 ymis = MIN(cm->mi_rows - mi_row,
422 num_8x8_blocks_high_lookup[BLOCK_64X64]);
423 for (y = 0; y < ymis; y++) {
424 for (x = 0; x < xmis; x++) {
425 const int bl_index2 = bl_index + y * cm->mi_cols + x;
426 // If the block is as a candidate for clean up then mark it
427 // for possible boost/refresh (segment 1). The segment id may get
428 // reset to 0 later if block gets coded anything other than ZEROMV.
429 if (cr->map[bl_index2] == 0) {
430 if (cr->last_coded_q_map[bl_index2] > qindex_thresh)
431 sum_map++;
432 } else if (cr->map[bl_index2] < 0) {
433 cr->map[bl_index2]++;
434 }
435 }
436 }
437 // Enforce constant segment over superblock.
438 // If segment is at least half of superblock, set to 1.
439 if (sum_map >= xmis * ymis / 2) {
440 for (y = 0; y < ymis; y++)
441 for (x = 0; x < xmis; x++) {
442 seg_map[bl_index + y * cm->mi_cols + x] = CR_SEGMENT_ID_BOOST1;
443 }
444 cr->target_num_seg_blocks += xmis * ymis;
445 }
446 i++;
447 if (i == sbs_in_frame) {
448 i = 0;
449 }
450 } while (cr->target_num_seg_blocks < block_count && i != cr->sb_index);
451 cr->sb_index = i;
452 }
453
454 // Set cyclic refresh parameters.
vp9_cyclic_refresh_update_parameters(VP9_COMP * const cpi)455 void vp9_cyclic_refresh_update_parameters(VP9_COMP *const cpi) {
456 const RATE_CONTROL *const rc = &cpi->rc;
457 const VP9_COMMON *const cm = &cpi->common;
458 CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
459 cr->percent_refresh = 10;
460 cr->max_qdelta_perc = 50;
461 cr->time_for_refresh = 0;
462 // Use larger delta-qp (increase rate_ratio_qdelta) for first few (~4)
463 // periods of the refresh cycle, after a key frame.
464 // Account for larger interval on base layer for temporal layers.
465 if (cr->percent_refresh > 0 &&
466 rc->frames_since_key < (4 * cpi->svc.number_temporal_layers) *
467 (100 / cr->percent_refresh))
468 cr->rate_ratio_qdelta = 3.0;
469 else
470 cr->rate_ratio_qdelta = 2.0;
471 // Adjust some parameters for low resolutions at low bitrates.
472 if (cm->width <= 352 &&
473 cm->height <= 288 &&
474 rc->avg_frame_bandwidth < 3400) {
475 cr->motion_thresh = 4;
476 cr->rate_boost_fac = 10;
477 } else {
478 cr->motion_thresh = 32;
479 cr->rate_boost_fac = 17;
480 }
481 }
482
483 // Setup cyclic background refresh: set delta q and segmentation map.
vp9_cyclic_refresh_setup(VP9_COMP * const cpi)484 void vp9_cyclic_refresh_setup(VP9_COMP *const cpi) {
485 VP9_COMMON *const cm = &cpi->common;
486 const RATE_CONTROL *const rc = &cpi->rc;
487 CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
488 struct segmentation *const seg = &cm->seg;
489 const int apply_cyclic_refresh = apply_cyclic_refresh_bitrate(cm, rc);
490 if (cm->current_video_frame == 0)
491 cr->low_content_avg = 0.0;
492 // Don't apply refresh on key frame or enhancement layer frames.
493 if (!apply_cyclic_refresh ||
494 (cm->frame_type == KEY_FRAME) ||
495 (cpi->svc.temporal_layer_id > 0) ||
496 (cpi->svc.spatial_layer_id > 0)) {
497 // Set segmentation map to 0 and disable.
498 unsigned char *const seg_map = cpi->segmentation_map;
499 memset(seg_map, 0, cm->mi_rows * cm->mi_cols);
500 vp9_disable_segmentation(&cm->seg);
501 if (cm->frame_type == KEY_FRAME) {
502 memset(cr->last_coded_q_map, MAXQ,
503 cm->mi_rows * cm->mi_cols * sizeof(*cr->last_coded_q_map));
504 cr->sb_index = 0;
505 }
506 return;
507 } else {
508 int qindex_delta = 0;
509 int qindex2;
510 const double q = vp9_convert_qindex_to_q(cm->base_qindex, cm->bit_depth);
511 vpx_clear_system_state();
512 // Set rate threshold to some multiple (set to 2 for now) of the target
513 // rate (target is given by sb64_target_rate and scaled by 256).
514 cr->thresh_rate_sb = ((int64_t)(rc->sb64_target_rate) << 8) << 2;
515 // Distortion threshold, quadratic in Q, scale factor to be adjusted.
516 // q will not exceed 457, so (q * q) is within 32bit; see:
517 // vp9_convert_qindex_to_q(), vp9_ac_quant(), ac_qlookup*[].
518 cr->thresh_dist_sb = ((int64_t)(q * q)) << 2;
519
520 // Set up segmentation.
521 // Clear down the segment map.
522 vp9_enable_segmentation(&cm->seg);
523 vp9_clearall_segfeatures(seg);
524 // Select delta coding method.
525 seg->abs_delta = SEGMENT_DELTADATA;
526
527 // Note: setting temporal_update has no effect, as the seg-map coding method
528 // (temporal or spatial) is determined in vp9_choose_segmap_coding_method(),
529 // based on the coding cost of each method. For error_resilient mode on the
530 // last_frame_seg_map is set to 0, so if temporal coding is used, it is
531 // relative to 0 previous map.
532 // seg->temporal_update = 0;
533
534 // Segment BASE "Q" feature is disabled so it defaults to the baseline Q.
535 vp9_disable_segfeature(seg, CR_SEGMENT_ID_BASE, SEG_LVL_ALT_Q);
536 // Use segment BOOST1 for in-frame Q adjustment.
537 vp9_enable_segfeature(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q);
538 // Use segment BOOST2 for more aggressive in-frame Q adjustment.
539 vp9_enable_segfeature(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q);
540
541 // Set the q delta for segment BOOST1.
542 qindex_delta = compute_deltaq(cpi, cm->base_qindex, cr->rate_ratio_qdelta);
543 cr->qindex_delta[1] = qindex_delta;
544
545 // Compute rd-mult for segment BOOST1.
546 qindex2 = clamp(cm->base_qindex + cm->y_dc_delta_q + qindex_delta, 0, MAXQ);
547
548 cr->rdmult = vp9_compute_rd_mult(cpi, qindex2);
549
550 vp9_set_segdata(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q, qindex_delta);
551
552 // Set a more aggressive (higher) q delta for segment BOOST2.
553 qindex_delta = compute_deltaq(
554 cpi, cm->base_qindex, MIN(CR_MAX_RATE_TARGET_RATIO,
555 0.1 * cr->rate_boost_fac * cr->rate_ratio_qdelta));
556 cr->qindex_delta[2] = qindex_delta;
557 vp9_set_segdata(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q, qindex_delta);
558
559 // Update the segmentation and refresh map.
560 cyclic_refresh_update_map(cpi);
561 }
562 }
563
vp9_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH * cr)564 int vp9_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr) {
565 return cr->rdmult;
566 }
567
vp9_cyclic_refresh_reset_resize(VP9_COMP * const cpi)568 void vp9_cyclic_refresh_reset_resize(VP9_COMP *const cpi) {
569 const VP9_COMMON *const cm = &cpi->common;
570 CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
571 memset(cr->map, 0, cm->mi_rows * cm->mi_cols);
572 cr->sb_index = 0;
573 cpi->refresh_golden_frame = 1;
574 }
575