1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <limits.h>
13 #include <math.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17
18 #include "vpx_mem/vpx_mem.h"
19 #include "vpx_ports/mem.h"
20 #include "vpx_ports/system_state.h"
21
22 #include "vp9/common/vp9_alloccommon.h"
23 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
24 #include "vp9/common/vp9_common.h"
25 #include "vp9/common/vp9_entropymode.h"
26 #include "vp9/common/vp9_quant_common.h"
27 #include "vp9/common/vp9_seg_common.h"
28
29 #include "vp9/encoder/vp9_encodemv.h"
30 #include "vp9/encoder/vp9_ratectrl.h"
31
32 // Max rate target for 1080P and below encodes under normal circumstances
33 // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
34 #define MAX_MB_RATE 250
35 #define MAXRATE_1080P 2025000
36
37 #define DEFAULT_KF_BOOST 2000
38 #define DEFAULT_GF_BOOST 2000
39
40 #define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
41
42 #define MIN_BPB_FACTOR 0.005
43 #define MAX_BPB_FACTOR 50
44
45 #define FRAME_OVERHEAD_BITS 200
46
47 #if CONFIG_VP9_HIGHBITDEPTH
48 #define ASSIGN_MINQ_TABLE(bit_depth, name) \
49 do { \
50 switch (bit_depth) { \
51 case VPX_BITS_8: \
52 name = name##_8; \
53 break; \
54 case VPX_BITS_10: \
55 name = name##_10; \
56 break; \
57 case VPX_BITS_12: \
58 name = name##_12; \
59 break; \
60 default: \
61 assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10" \
62 " or VPX_BITS_12"); \
63 name = NULL; \
64 } \
65 } while (0)
66 #else
67 #define ASSIGN_MINQ_TABLE(bit_depth, name) \
68 do { \
69 (void) bit_depth; \
70 name = name##_8; \
71 } while (0)
72 #endif
73
74 // Tables relating active max Q to active min Q
75 static int kf_low_motion_minq_8[QINDEX_RANGE];
76 static int kf_high_motion_minq_8[QINDEX_RANGE];
77 static int arfgf_low_motion_minq_8[QINDEX_RANGE];
78 static int arfgf_high_motion_minq_8[QINDEX_RANGE];
79 static int inter_minq_8[QINDEX_RANGE];
80 static int rtc_minq_8[QINDEX_RANGE];
81
82 #if CONFIG_VP9_HIGHBITDEPTH
83 static int kf_low_motion_minq_10[QINDEX_RANGE];
84 static int kf_high_motion_minq_10[QINDEX_RANGE];
85 static int arfgf_low_motion_minq_10[QINDEX_RANGE];
86 static int arfgf_high_motion_minq_10[QINDEX_RANGE];
87 static int inter_minq_10[QINDEX_RANGE];
88 static int rtc_minq_10[QINDEX_RANGE];
89 static int kf_low_motion_minq_12[QINDEX_RANGE];
90 static int kf_high_motion_minq_12[QINDEX_RANGE];
91 static int arfgf_low_motion_minq_12[QINDEX_RANGE];
92 static int arfgf_high_motion_minq_12[QINDEX_RANGE];
93 static int inter_minq_12[QINDEX_RANGE];
94 static int rtc_minq_12[QINDEX_RANGE];
95 #endif
96
97 static int gf_high = 2000;
98 static int gf_low = 400;
99 static int kf_high = 5000;
100 static int kf_low = 400;
101
102 // Functions to compute the active minq lookup table entries based on a
103 // formulaic approach to facilitate easier adjustment of the Q tables.
104 // The formulae were derived from computing a 3rd order polynomial best
105 // fit to the original data (after plotting real maxq vs minq (not q index))
get_minq_index(double maxq,double x3,double x2,double x1,vpx_bit_depth_t bit_depth)106 static int get_minq_index(double maxq, double x3, double x2, double x1,
107 vpx_bit_depth_t bit_depth) {
108 int i;
109 const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq,
110 maxq);
111
112 // Special case handling to deal with the step from q2.0
113 // down to lossless mode represented by q 1.0.
114 if (minqtarget <= 2.0)
115 return 0;
116
117 for (i = 0; i < QINDEX_RANGE; i++) {
118 if (minqtarget <= vp9_convert_qindex_to_q(i, bit_depth))
119 return i;
120 }
121
122 return QINDEX_RANGE - 1;
123 }
124
init_minq_luts(int * kf_low_m,int * kf_high_m,int * arfgf_low,int * arfgf_high,int * inter,int * rtc,vpx_bit_depth_t bit_depth)125 static void init_minq_luts(int *kf_low_m, int *kf_high_m,
126 int *arfgf_low, int *arfgf_high,
127 int *inter, int *rtc, vpx_bit_depth_t bit_depth) {
128 int i;
129 for (i = 0; i < QINDEX_RANGE; i++) {
130 const double maxq = vp9_convert_qindex_to_q(i, bit_depth);
131 kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
132 kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
133 arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
134 arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
135 inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth);
136 rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
137 }
138 }
139
vp9_rc_init_minq_luts(void)140 void vp9_rc_init_minq_luts(void) {
141 init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
142 arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
143 inter_minq_8, rtc_minq_8, VPX_BITS_8);
144 #if CONFIG_VP9_HIGHBITDEPTH
145 init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
146 arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
147 inter_minq_10, rtc_minq_10, VPX_BITS_10);
148 init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
149 arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
150 inter_minq_12, rtc_minq_12, VPX_BITS_12);
151 #endif
152 }
153
154 // These functions use formulaic calculations to make playing with the
155 // quantizer tables easier. If necessary they can be replaced by lookup
156 // tables if and when things settle down in the experimental bitstream
vp9_convert_qindex_to_q(int qindex,vpx_bit_depth_t bit_depth)157 double vp9_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) {
158 // Convert the index to a real Q value (scaled down to match old Q values)
159 #if CONFIG_VP9_HIGHBITDEPTH
160 switch (bit_depth) {
161 case VPX_BITS_8:
162 return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
163 case VPX_BITS_10:
164 return vp9_ac_quant(qindex, 0, bit_depth) / 16.0;
165 case VPX_BITS_12:
166 return vp9_ac_quant(qindex, 0, bit_depth) / 64.0;
167 default:
168 assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
169 return -1.0;
170 }
171 #else
172 return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
173 #endif
174 }
175
vp9_rc_bits_per_mb(FRAME_TYPE frame_type,int qindex,double correction_factor,vpx_bit_depth_t bit_depth)176 int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
177 double correction_factor,
178 vpx_bit_depth_t bit_depth) {
179 const double q = vp9_convert_qindex_to_q(qindex, bit_depth);
180 int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
181
182 assert(correction_factor <= MAX_BPB_FACTOR &&
183 correction_factor >= MIN_BPB_FACTOR);
184
185 // q based adjustment to baseline enumerator
186 enumerator += (int)(enumerator * q) >> 12;
187 return (int)(enumerator * correction_factor / q);
188 }
189
vp9_estimate_bits_at_q(FRAME_TYPE frame_type,int q,int mbs,double correction_factor,vpx_bit_depth_t bit_depth)190 int vp9_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
191 double correction_factor,
192 vpx_bit_depth_t bit_depth) {
193 const int bpm = (int)(vp9_rc_bits_per_mb(frame_type, q, correction_factor,
194 bit_depth));
195 return MAX(FRAME_OVERHEAD_BITS,
196 (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
197 }
198
vp9_rc_clamp_pframe_target_size(const VP9_COMP * const cpi,int target)199 int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
200 const RATE_CONTROL *rc = &cpi->rc;
201 const VP9EncoderConfig *oxcf = &cpi->oxcf;
202 const int min_frame_target = MAX(rc->min_frame_bandwidth,
203 rc->avg_frame_bandwidth >> 5);
204 if (target < min_frame_target)
205 target = min_frame_target;
206 if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) {
207 // If there is an active ARF at this location use the minimum
208 // bits on this frame even if it is a constructed arf.
209 // The active maximum quantizer insures that an appropriate
210 // number of bits will be spent if needed for constructed ARFs.
211 target = min_frame_target;
212 }
213 // Clip the frame target to the maximum allowed value.
214 if (target > rc->max_frame_bandwidth)
215 target = rc->max_frame_bandwidth;
216 if (oxcf->rc_max_inter_bitrate_pct) {
217 const int max_rate = rc->avg_frame_bandwidth *
218 oxcf->rc_max_inter_bitrate_pct / 100;
219 target = MIN(target, max_rate);
220 }
221 return target;
222 }
223
vp9_rc_clamp_iframe_target_size(const VP9_COMP * const cpi,int target)224 int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) {
225 const RATE_CONTROL *rc = &cpi->rc;
226 const VP9EncoderConfig *oxcf = &cpi->oxcf;
227 if (oxcf->rc_max_intra_bitrate_pct) {
228 const int max_rate = rc->avg_frame_bandwidth *
229 oxcf->rc_max_intra_bitrate_pct / 100;
230 target = MIN(target, max_rate);
231 }
232 if (target > rc->max_frame_bandwidth)
233 target = rc->max_frame_bandwidth;
234 return target;
235 }
236
237 // Update the buffer level for higher temporal layers, given the encoded current
238 // temporal layer.
update_layer_buffer_level(SVC * svc,int encoded_frame_size)239 static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) {
240 int i = 0;
241 int current_temporal_layer = svc->temporal_layer_id;
242 for (i = current_temporal_layer + 1;
243 i < svc->number_temporal_layers; ++i) {
244 const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
245 svc->number_temporal_layers);
246 LAYER_CONTEXT *lc = &svc->layer_context[layer];
247 RATE_CONTROL *lrc = &lc->rc;
248 int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate -
249 encoded_frame_size);
250 lrc->bits_off_target += bits_off_for_this_layer;
251
252 // Clip buffer level to maximum buffer size for the layer.
253 lrc->bits_off_target = MIN(lrc->bits_off_target, lrc->maximum_buffer_size);
254 lrc->buffer_level = lrc->bits_off_target;
255 }
256 }
257
258 // Update the buffer level: leaky bucket model.
update_buffer_level(VP9_COMP * cpi,int encoded_frame_size)259 static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) {
260 const VP9_COMMON *const cm = &cpi->common;
261 RATE_CONTROL *const rc = &cpi->rc;
262
263 // Non-viewable frames are a special case and are treated as pure overhead.
264 if (!cm->show_frame) {
265 rc->bits_off_target -= encoded_frame_size;
266 } else {
267 rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size;
268 }
269
270 // Clip the buffer level to the maximum specified buffer size.
271 rc->bits_off_target = MIN(rc->bits_off_target, rc->maximum_buffer_size);
272 rc->buffer_level = rc->bits_off_target;
273
274 if (is_one_pass_cbr_svc(cpi)) {
275 update_layer_buffer_level(&cpi->svc, encoded_frame_size);
276 }
277 }
278
vp9_rc_get_default_min_gf_interval(int width,int height,double framerate)279 int vp9_rc_get_default_min_gf_interval(
280 int width, int height, double framerate) {
281 // Assume we do not need any constraint lower than 4K 20 fps
282 static const double factor_safe = 3840 * 2160 * 20.0;
283 const double factor = width * height * framerate;
284 const int default_interval =
285 clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
286
287 if (factor <= factor_safe)
288 return default_interval;
289 else
290 return MAX(default_interval,
291 (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
292 // Note this logic makes:
293 // 4K24: 5
294 // 4K30: 6
295 // 4K60: 12
296 }
297
vp9_rc_get_default_max_gf_interval(double framerate,int min_gf_interval)298 int vp9_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
299 int interval = MIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
300 interval += (interval & 0x01); // Round to even value
301 return MAX(interval, min_gf_interval);
302 }
303
vp9_rc_init(const VP9EncoderConfig * oxcf,int pass,RATE_CONTROL * rc)304 void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
305 int i;
306
307 if (pass == 0 && oxcf->rc_mode == VPX_CBR) {
308 rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
309 rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
310 } else {
311 rc->avg_frame_qindex[KEY_FRAME] = (oxcf->worst_allowed_q +
312 oxcf->best_allowed_q) / 2;
313 rc->avg_frame_qindex[INTER_FRAME] = (oxcf->worst_allowed_q +
314 oxcf->best_allowed_q) / 2;
315 }
316
317 rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
318 rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
319
320 rc->buffer_level = rc->starting_buffer_level;
321 rc->bits_off_target = rc->starting_buffer_level;
322
323 rc->rolling_target_bits = rc->avg_frame_bandwidth;
324 rc->rolling_actual_bits = rc->avg_frame_bandwidth;
325 rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
326 rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
327
328 rc->total_actual_bits = 0;
329 rc->total_target_bits = 0;
330 rc->total_target_vs_actual = 0;
331
332 rc->frames_since_key = 8; // Sensible default for first frame.
333 rc->this_key_frame_forced = 0;
334 rc->next_key_frame_forced = 0;
335 rc->source_alt_ref_pending = 0;
336 rc->source_alt_ref_active = 0;
337
338 rc->frames_till_gf_update_due = 0;
339 rc->ni_av_qi = oxcf->worst_allowed_q;
340 rc->ni_tot_qi = 0;
341 rc->ni_frames = 0;
342
343 rc->tot_q = 0.0;
344 rc->avg_q = vp9_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
345
346 for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
347 rc->rate_correction_factors[i] = 1.0;
348 }
349
350 rc->min_gf_interval = oxcf->min_gf_interval;
351 rc->max_gf_interval = oxcf->max_gf_interval;
352 if (rc->min_gf_interval == 0)
353 rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
354 oxcf->width, oxcf->height, oxcf->init_framerate);
355 if (rc->max_gf_interval == 0)
356 rc->max_gf_interval = vp9_rc_get_default_max_gf_interval(
357 oxcf->init_framerate, rc->min_gf_interval);
358 rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
359 }
360
vp9_rc_drop_frame(VP9_COMP * cpi)361 int vp9_rc_drop_frame(VP9_COMP *cpi) {
362 const VP9EncoderConfig *oxcf = &cpi->oxcf;
363 RATE_CONTROL *const rc = &cpi->rc;
364
365 if (!oxcf->drop_frames_water_mark) {
366 return 0;
367 } else {
368 if (rc->buffer_level < 0) {
369 // Always drop if buffer is below 0.
370 return 1;
371 } else {
372 // If buffer is below drop_mark, for now just drop every other frame
373 // (starting with the next frame) until it increases back over drop_mark.
374 int drop_mark = (int)(oxcf->drop_frames_water_mark *
375 rc->optimal_buffer_level / 100);
376 if ((rc->buffer_level > drop_mark) &&
377 (rc->decimation_factor > 0)) {
378 --rc->decimation_factor;
379 } else if (rc->buffer_level <= drop_mark &&
380 rc->decimation_factor == 0) {
381 rc->decimation_factor = 1;
382 }
383 if (rc->decimation_factor > 0) {
384 if (rc->decimation_count > 0) {
385 --rc->decimation_count;
386 return 1;
387 } else {
388 rc->decimation_count = rc->decimation_factor;
389 return 0;
390 }
391 } else {
392 rc->decimation_count = 0;
393 return 0;
394 }
395 }
396 }
397 }
398
get_rate_correction_factor(const VP9_COMP * cpi)399 static double get_rate_correction_factor(const VP9_COMP *cpi) {
400 const RATE_CONTROL *const rc = &cpi->rc;
401 double rcf;
402
403 if (cpi->common.frame_type == KEY_FRAME) {
404 rcf = rc->rate_correction_factors[KF_STD];
405 } else if (cpi->oxcf.pass == 2) {
406 RATE_FACTOR_LEVEL rf_lvl =
407 cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
408 rcf = rc->rate_correction_factors[rf_lvl];
409 } else {
410 if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
411 !rc->is_src_frame_alt_ref && !cpi->use_svc &&
412 (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
413 rcf = rc->rate_correction_factors[GF_ARF_STD];
414 else
415 rcf = rc->rate_correction_factors[INTER_NORMAL];
416 }
417 rcf *= rcf_mult[rc->frame_size_selector];
418 return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
419 }
420
set_rate_correction_factor(VP9_COMP * cpi,double factor)421 static void set_rate_correction_factor(VP9_COMP *cpi, double factor) {
422 RATE_CONTROL *const rc = &cpi->rc;
423
424 // Normalize RCF to account for the size-dependent scaling factor.
425 factor /= rcf_mult[cpi->rc.frame_size_selector];
426
427 factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
428
429 if (cpi->common.frame_type == KEY_FRAME) {
430 rc->rate_correction_factors[KF_STD] = factor;
431 } else if (cpi->oxcf.pass == 2) {
432 RATE_FACTOR_LEVEL rf_lvl =
433 cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
434 rc->rate_correction_factors[rf_lvl] = factor;
435 } else {
436 if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
437 !rc->is_src_frame_alt_ref && !cpi->use_svc &&
438 (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
439 rc->rate_correction_factors[GF_ARF_STD] = factor;
440 else
441 rc->rate_correction_factors[INTER_NORMAL] = factor;
442 }
443 }
444
vp9_rc_update_rate_correction_factors(VP9_COMP * cpi)445 void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi) {
446 const VP9_COMMON *const cm = &cpi->common;
447 int correction_factor = 100;
448 double rate_correction_factor = get_rate_correction_factor(cpi);
449 double adjustment_limit;
450
451 int projected_size_based_on_q = 0;
452
453 // Do not update the rate factors for arf overlay frames.
454 if (cpi->rc.is_src_frame_alt_ref)
455 return;
456
457 // Clear down mmx registers to allow floating point in what follows
458 vpx_clear_system_state();
459
460 // Work out how big we would have expected the frame to be at this Q given
461 // the current correction factor.
462 // Stay in double to avoid int overflow when values are large
463 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) {
464 projected_size_based_on_q =
465 vp9_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
466 } else {
467 projected_size_based_on_q = vp9_estimate_bits_at_q(cpi->common.frame_type,
468 cm->base_qindex,
469 cm->MBs,
470 rate_correction_factor,
471 cm->bit_depth);
472 }
473 // Work out a size correction factor.
474 if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
475 correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) /
476 projected_size_based_on_q);
477
478 // More heavily damped adjustment used if we have been oscillating either side
479 // of target.
480 adjustment_limit = 0.25 +
481 0.5 * MIN(1, fabs(log10(0.01 * correction_factor)));
482
483 cpi->rc.q_2_frame = cpi->rc.q_1_frame;
484 cpi->rc.q_1_frame = cm->base_qindex;
485 cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
486 if (correction_factor > 110)
487 cpi->rc.rc_1_frame = -1;
488 else if (correction_factor < 90)
489 cpi->rc.rc_1_frame = 1;
490 else
491 cpi->rc.rc_1_frame = 0;
492
493 if (correction_factor > 102) {
494 // We are not already at the worst allowable quality
495 correction_factor = (int)(100 + ((correction_factor - 100) *
496 adjustment_limit));
497 rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
498 // Keep rate_correction_factor within limits
499 if (rate_correction_factor > MAX_BPB_FACTOR)
500 rate_correction_factor = MAX_BPB_FACTOR;
501 } else if (correction_factor < 99) {
502 // We are not already at the best allowable quality
503 correction_factor = (int)(100 - ((100 - correction_factor) *
504 adjustment_limit));
505 rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
506
507 // Keep rate_correction_factor within limits
508 if (rate_correction_factor < MIN_BPB_FACTOR)
509 rate_correction_factor = MIN_BPB_FACTOR;
510 }
511
512 set_rate_correction_factor(cpi, rate_correction_factor);
513 }
514
515
vp9_rc_regulate_q(const VP9_COMP * cpi,int target_bits_per_frame,int active_best_quality,int active_worst_quality)516 int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
517 int active_best_quality, int active_worst_quality) {
518 const VP9_COMMON *const cm = &cpi->common;
519 int q = active_worst_quality;
520 int last_error = INT_MAX;
521 int i, target_bits_per_mb, bits_per_mb_at_this_q;
522 const double correction_factor = get_rate_correction_factor(cpi);
523
524 // Calculate required scaling factor based on target frame size and size of
525 // frame produced using previous Q.
526 target_bits_per_mb =
527 ((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs;
528
529 i = active_best_quality;
530
531 do {
532 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
533 cm->seg.enabled &&
534 cpi->svc.temporal_layer_id == 0 &&
535 cpi->svc.spatial_layer_id == 0) {
536 bits_per_mb_at_this_q =
537 (int)vp9_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor);
538 } else {
539 bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cm->frame_type, i,
540 correction_factor,
541 cm->bit_depth);
542 }
543
544 if (bits_per_mb_at_this_q <= target_bits_per_mb) {
545 if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
546 q = i;
547 else
548 q = i - 1;
549
550 break;
551 } else {
552 last_error = bits_per_mb_at_this_q - target_bits_per_mb;
553 }
554 } while (++i <= active_worst_quality);
555
556 // In CBR mode, this makes sure q is between oscillating Qs to prevent
557 // resonance.
558 if (cpi->oxcf.rc_mode == VPX_CBR &&
559 (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
560 cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
561 q = clamp(q, MIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
562 MAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
563 }
564 return q;
565 }
566
get_active_quality(int q,int gfu_boost,int low,int high,int * low_motion_minq,int * high_motion_minq)567 static int get_active_quality(int q, int gfu_boost, int low, int high,
568 int *low_motion_minq, int *high_motion_minq) {
569 if (gfu_boost > high) {
570 return low_motion_minq[q];
571 } else if (gfu_boost < low) {
572 return high_motion_minq[q];
573 } else {
574 const int gap = high - low;
575 const int offset = high - gfu_boost;
576 const int qdiff = high_motion_minq[q] - low_motion_minq[q];
577 const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
578 return low_motion_minq[q] + adjustment;
579 }
580 }
581
get_kf_active_quality(const RATE_CONTROL * const rc,int q,vpx_bit_depth_t bit_depth)582 static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
583 vpx_bit_depth_t bit_depth) {
584 int *kf_low_motion_minq;
585 int *kf_high_motion_minq;
586 ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
587 ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
588 return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
589 kf_low_motion_minq, kf_high_motion_minq);
590 }
591
get_gf_active_quality(const RATE_CONTROL * const rc,int q,vpx_bit_depth_t bit_depth)592 static int get_gf_active_quality(const RATE_CONTROL *const rc, int q,
593 vpx_bit_depth_t bit_depth) {
594 int *arfgf_low_motion_minq;
595 int *arfgf_high_motion_minq;
596 ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
597 ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
598 return get_active_quality(q, rc->gfu_boost, gf_low, gf_high,
599 arfgf_low_motion_minq, arfgf_high_motion_minq);
600 }
601
calc_active_worst_quality_one_pass_vbr(const VP9_COMP * cpi)602 static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) {
603 const RATE_CONTROL *const rc = &cpi->rc;
604 const unsigned int curr_frame = cpi->common.current_video_frame;
605 int active_worst_quality;
606
607 if (cpi->common.frame_type == KEY_FRAME) {
608 active_worst_quality = curr_frame == 0 ? rc->worst_quality
609 : rc->last_q[KEY_FRAME] * 2;
610 } else {
611 if (!rc->is_src_frame_alt_ref &&
612 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
613 active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4
614 : rc->last_q[INTER_FRAME];
615 } else {
616 active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2
617 : rc->last_q[INTER_FRAME] * 2;
618 }
619 }
620 return MIN(active_worst_quality, rc->worst_quality);
621 }
622
623 // Adjust active_worst_quality level based on buffer level.
calc_active_worst_quality_one_pass_cbr(const VP9_COMP * cpi)624 static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) {
625 // Adjust active_worst_quality: If buffer is above the optimal/target level,
626 // bring active_worst_quality down depending on fullness of buffer.
627 // If buffer is below the optimal level, let the active_worst_quality go from
628 // ambient Q (at buffer = optimal level) to worst_quality level
629 // (at buffer = critical level).
630 const VP9_COMMON *const cm = &cpi->common;
631 const RATE_CONTROL *rc = &cpi->rc;
632 // Buffer level below which we push active_worst to worst_quality.
633 int64_t critical_level = rc->optimal_buffer_level >> 3;
634 int64_t buff_lvl_step = 0;
635 int adjustment = 0;
636 int active_worst_quality;
637 int ambient_qp;
638 unsigned int num_frames_weight_key = 5 * cpi->svc.number_temporal_layers;
639 if (cm->frame_type == KEY_FRAME)
640 return rc->worst_quality;
641 // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
642 // for the first few frames following key frame. These are both initialized
643 // to worst_quality and updated with (3/4, 1/4) average in postencode_update.
644 // So for first few frames following key, the qp of that key frame is weighted
645 // into the active_worst_quality setting.
646 ambient_qp = (cm->current_video_frame < num_frames_weight_key) ?
647 MIN(rc->avg_frame_qindex[INTER_FRAME], rc->avg_frame_qindex[KEY_FRAME]) :
648 rc->avg_frame_qindex[INTER_FRAME];
649 active_worst_quality = MIN(rc->worst_quality,
650 ambient_qp * 5 / 4);
651 if (rc->buffer_level > rc->optimal_buffer_level) {
652 // Adjust down.
653 // Maximum limit for down adjustment, ~30%.
654 int max_adjustment_down = active_worst_quality / 3;
655 if (max_adjustment_down) {
656 buff_lvl_step = ((rc->maximum_buffer_size -
657 rc->optimal_buffer_level) / max_adjustment_down);
658 if (buff_lvl_step)
659 adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
660 buff_lvl_step);
661 active_worst_quality -= adjustment;
662 }
663 } else if (rc->buffer_level > critical_level) {
664 // Adjust up from ambient Q.
665 if (critical_level) {
666 buff_lvl_step = (rc->optimal_buffer_level - critical_level);
667 if (buff_lvl_step) {
668 adjustment = (int)((rc->worst_quality - ambient_qp) *
669 (rc->optimal_buffer_level - rc->buffer_level) /
670 buff_lvl_step);
671 }
672 active_worst_quality = ambient_qp + adjustment;
673 }
674 } else {
675 // Set to worst_quality if buffer is below critical level.
676 active_worst_quality = rc->worst_quality;
677 }
678 return active_worst_quality;
679 }
680
rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP * cpi,int * bottom_index,int * top_index)681 static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi,
682 int *bottom_index,
683 int *top_index) {
684 const VP9_COMMON *const cm = &cpi->common;
685 const RATE_CONTROL *const rc = &cpi->rc;
686 int active_best_quality;
687 int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
688 int q;
689 int *rtc_minq;
690 ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq);
691
692 if (frame_is_intra_only(cm)) {
693 active_best_quality = rc->best_quality;
694 // Handle the special case for key frames forced when we have reached
695 // the maximum key frame interval. Here force the Q to a range
696 // based on the ambient Q to reduce the risk of popping.
697 if (rc->this_key_frame_forced) {
698 int qindex = rc->last_boosted_qindex;
699 double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
700 int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
701 (last_boosted_q * 0.75),
702 cm->bit_depth);
703 active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
704 } else if (cm->current_video_frame > 0) {
705 // not first frame of one pass and kf_boost is set
706 double q_adj_factor = 1.0;
707 double q_val;
708
709 active_best_quality =
710 get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME],
711 cm->bit_depth);
712
713 // Allow somewhat lower kf minq with small image formats.
714 if ((cm->width * cm->height) <= (352 * 288)) {
715 q_adj_factor -= 0.25;
716 }
717
718 // Convert the adjustment factor to a qindex delta
719 // on active_best_quality.
720 q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
721 active_best_quality += vp9_compute_qdelta(rc, q_val,
722 q_val * q_adj_factor,
723 cm->bit_depth);
724 }
725 } else if (!rc->is_src_frame_alt_ref &&
726 !cpi->use_svc &&
727 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
728 // Use the lower of active_worst_quality and recent
729 // average Q as basis for GF/ARF best Q limit unless last frame was
730 // a key frame.
731 if (rc->frames_since_key > 1 &&
732 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
733 q = rc->avg_frame_qindex[INTER_FRAME];
734 } else {
735 q = active_worst_quality;
736 }
737 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
738 } else {
739 // Use the lower of active_worst_quality and recent/average Q.
740 if (cm->current_video_frame > 1) {
741 if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
742 active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
743 else
744 active_best_quality = rtc_minq[active_worst_quality];
745 } else {
746 if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
747 active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
748 else
749 active_best_quality = rtc_minq[active_worst_quality];
750 }
751 }
752
753 // Clip the active best and worst quality values to limits
754 active_best_quality = clamp(active_best_quality,
755 rc->best_quality, rc->worst_quality);
756 active_worst_quality = clamp(active_worst_quality,
757 active_best_quality, rc->worst_quality);
758
759 *top_index = active_worst_quality;
760 *bottom_index = active_best_quality;
761
762 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
763 // Limit Q range for the adaptive loop.
764 if (cm->frame_type == KEY_FRAME &&
765 !rc->this_key_frame_forced &&
766 !(cm->current_video_frame == 0)) {
767 int qdelta = 0;
768 vpx_clear_system_state();
769 qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
770 active_worst_quality, 2.0,
771 cm->bit_depth);
772 *top_index = active_worst_quality + qdelta;
773 *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
774 }
775 #endif
776
777 // Special case code to try and match quality with forced key frames
778 if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) {
779 q = rc->last_boosted_qindex;
780 } else {
781 q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
782 active_best_quality, active_worst_quality);
783 if (q > *top_index) {
784 // Special case when we are targeting the max allowed rate
785 if (rc->this_frame_target >= rc->max_frame_bandwidth)
786 *top_index = q;
787 else
788 q = *top_index;
789 }
790 }
791 assert(*top_index <= rc->worst_quality &&
792 *top_index >= rc->best_quality);
793 assert(*bottom_index <= rc->worst_quality &&
794 *bottom_index >= rc->best_quality);
795 assert(q <= rc->worst_quality && q >= rc->best_quality);
796 return q;
797 }
798
get_active_cq_level(const RATE_CONTROL * rc,const VP9EncoderConfig * const oxcf)799 static int get_active_cq_level(const RATE_CONTROL *rc,
800 const VP9EncoderConfig *const oxcf) {
801 static const double cq_adjust_threshold = 0.1;
802 int active_cq_level = oxcf->cq_level;
803 if (oxcf->rc_mode == VPX_CQ &&
804 rc->total_target_bits > 0) {
805 const double x = (double)rc->total_actual_bits / rc->total_target_bits;
806 if (x < cq_adjust_threshold) {
807 active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
808 }
809 }
810 return active_cq_level;
811 }
812
rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP * cpi,int * bottom_index,int * top_index)813 static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
814 int *bottom_index,
815 int *top_index) {
816 const VP9_COMMON *const cm = &cpi->common;
817 const RATE_CONTROL *const rc = &cpi->rc;
818 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
819 const int cq_level = get_active_cq_level(rc, oxcf);
820 int active_best_quality;
821 int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
822 int q;
823 int *inter_minq;
824 ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
825
826 if (frame_is_intra_only(cm)) {
827 // Handle the special case for key frames forced when we have reached
828 // the maximum key frame interval. Here force the Q to a range
829 // based on the ambient Q to reduce the risk of popping.
830 if (rc->this_key_frame_forced) {
831 int qindex = rc->last_boosted_qindex;
832 double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
833 int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
834 last_boosted_q * 0.75,
835 cm->bit_depth);
836 active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
837 } else {
838 // not first frame of one pass and kf_boost is set
839 double q_adj_factor = 1.0;
840 double q_val;
841
842 active_best_quality =
843 get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME],
844 cm->bit_depth);
845
846 // Allow somewhat lower kf minq with small image formats.
847 if ((cm->width * cm->height) <= (352 * 288)) {
848 q_adj_factor -= 0.25;
849 }
850
851 // Convert the adjustment factor to a qindex delta
852 // on active_best_quality.
853 q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
854 active_best_quality += vp9_compute_qdelta(rc, q_val,
855 q_val * q_adj_factor,
856 cm->bit_depth);
857 }
858 } else if (!rc->is_src_frame_alt_ref &&
859 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
860 // Use the lower of active_worst_quality and recent
861 // average Q as basis for GF/ARF best Q limit unless last frame was
862 // a key frame.
863 if (rc->frames_since_key > 1 &&
864 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
865 q = rc->avg_frame_qindex[INTER_FRAME];
866 } else {
867 q = rc->avg_frame_qindex[KEY_FRAME];
868 }
869 // For constrained quality dont allow Q less than the cq level
870 if (oxcf->rc_mode == VPX_CQ) {
871 if (q < cq_level)
872 q = cq_level;
873
874 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
875
876 // Constrained quality use slightly lower active best.
877 active_best_quality = active_best_quality * 15 / 16;
878
879 } else if (oxcf->rc_mode == VPX_Q) {
880 if (!cpi->refresh_alt_ref_frame) {
881 active_best_quality = cq_level;
882 } else {
883 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
884 }
885 } else {
886 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
887 }
888 } else {
889 if (oxcf->rc_mode == VPX_Q) {
890 active_best_quality = cq_level;
891 } else {
892 // Use the lower of active_worst_quality and recent/average Q.
893 if (cm->current_video_frame > 1)
894 active_best_quality = inter_minq[rc->avg_frame_qindex[INTER_FRAME]];
895 else
896 active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
897 // For the constrained quality mode we don't want
898 // q to fall below the cq level.
899 if ((oxcf->rc_mode == VPX_CQ) &&
900 (active_best_quality < cq_level)) {
901 active_best_quality = cq_level;
902 }
903 }
904 }
905
906 // Clip the active best and worst quality values to limits
907 active_best_quality = clamp(active_best_quality,
908 rc->best_quality, rc->worst_quality);
909 active_worst_quality = clamp(active_worst_quality,
910 active_best_quality, rc->worst_quality);
911
912 *top_index = active_worst_quality;
913 *bottom_index = active_best_quality;
914
915 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
916 {
917 int qdelta = 0;
918 vpx_clear_system_state();
919
920 // Limit Q range for the adaptive loop.
921 if (cm->frame_type == KEY_FRAME &&
922 !rc->this_key_frame_forced &&
923 !(cm->current_video_frame == 0)) {
924 qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
925 active_worst_quality, 2.0,
926 cm->bit_depth);
927 } else if (!rc->is_src_frame_alt_ref &&
928 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
929 qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
930 active_worst_quality, 1.75,
931 cm->bit_depth);
932 }
933 *top_index = active_worst_quality + qdelta;
934 *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
935 }
936 #endif
937
938 if (oxcf->rc_mode == VPX_Q) {
939 q = active_best_quality;
940 // Special case code to try and match quality with forced key frames
941 } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) {
942 q = rc->last_boosted_qindex;
943 } else {
944 q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
945 active_best_quality, active_worst_quality);
946 if (q > *top_index) {
947 // Special case when we are targeting the max allowed rate
948 if (rc->this_frame_target >= rc->max_frame_bandwidth)
949 *top_index = q;
950 else
951 q = *top_index;
952 }
953 }
954
955 assert(*top_index <= rc->worst_quality &&
956 *top_index >= rc->best_quality);
957 assert(*bottom_index <= rc->worst_quality &&
958 *bottom_index >= rc->best_quality);
959 assert(q <= rc->worst_quality && q >= rc->best_quality);
960 return q;
961 }
962
vp9_frame_type_qdelta(const VP9_COMP * cpi,int rf_level,int q)963 int vp9_frame_type_qdelta(const VP9_COMP *cpi, int rf_level, int q) {
964 static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
965 1.00, // INTER_NORMAL
966 1.00, // INTER_HIGH
967 1.50, // GF_ARF_LOW
968 1.75, // GF_ARF_STD
969 2.00, // KF_STD
970 };
971 static const FRAME_TYPE frame_type[RATE_FACTOR_LEVELS] =
972 {INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, KEY_FRAME};
973 const VP9_COMMON *const cm = &cpi->common;
974 int qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, frame_type[rf_level],
975 q, rate_factor_deltas[rf_level],
976 cm->bit_depth);
977 return qdelta;
978 }
979
980 #define STATIC_MOTION_THRESH 95
rc_pick_q_and_bounds_two_pass(const VP9_COMP * cpi,int * bottom_index,int * top_index)981 static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi,
982 int *bottom_index,
983 int *top_index) {
984 const VP9_COMMON *const cm = &cpi->common;
985 const RATE_CONTROL *const rc = &cpi->rc;
986 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
987 const GF_GROUP *gf_group = &cpi->twopass.gf_group;
988 const int cq_level = get_active_cq_level(rc, oxcf);
989 int active_best_quality;
990 int active_worst_quality = cpi->twopass.active_worst_quality;
991 int q;
992 int *inter_minq;
993 ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
994
995 if (frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) {
996 // Handle the special case for key frames forced when we have reached
997 // the maximum key frame interval. Here force the Q to a range
998 // based on the ambient Q to reduce the risk of popping.
999 if (rc->this_key_frame_forced) {
1000 double last_boosted_q;
1001 int delta_qindex;
1002 int qindex;
1003
1004 if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
1005 qindex = MIN(rc->last_kf_qindex, rc->last_boosted_qindex);
1006 active_best_quality = qindex;
1007 last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1008 delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
1009 last_boosted_q * 1.25,
1010 cm->bit_depth);
1011 active_worst_quality = MIN(qindex + delta_qindex, active_worst_quality);
1012
1013 } else {
1014 qindex = rc->last_boosted_qindex;
1015 last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1016 delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
1017 last_boosted_q * 0.75,
1018 cm->bit_depth);
1019 active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
1020 }
1021 } else {
1022 // Not forced keyframe.
1023 double q_adj_factor = 1.0;
1024 double q_val;
1025 // Baseline value derived from cpi->active_worst_quality and kf boost.
1026 active_best_quality = get_kf_active_quality(rc, active_worst_quality,
1027 cm->bit_depth);
1028
1029 // Allow somewhat lower kf minq with small image formats.
1030 if ((cm->width * cm->height) <= (352 * 288)) {
1031 q_adj_factor -= 0.25;
1032 }
1033
1034 // Make a further adjustment based on the kf zero motion measure.
1035 q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
1036
1037 // Convert the adjustment factor to a qindex delta
1038 // on active_best_quality.
1039 q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
1040 active_best_quality += vp9_compute_qdelta(rc, q_val,
1041 q_val * q_adj_factor,
1042 cm->bit_depth);
1043 }
1044 } else if (!rc->is_src_frame_alt_ref &&
1045 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
1046 // Use the lower of active_worst_quality and recent
1047 // average Q as basis for GF/ARF best Q limit unless last frame was
1048 // a key frame.
1049 if (rc->frames_since_key > 1 &&
1050 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
1051 q = rc->avg_frame_qindex[INTER_FRAME];
1052 } else {
1053 q = active_worst_quality;
1054 }
1055 // For constrained quality dont allow Q less than the cq level
1056 if (oxcf->rc_mode == VPX_CQ) {
1057 if (q < cq_level)
1058 q = cq_level;
1059
1060 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
1061
1062 // Constrained quality use slightly lower active best.
1063 active_best_quality = active_best_quality * 15 / 16;
1064
1065 } else if (oxcf->rc_mode == VPX_Q) {
1066 if (!cpi->refresh_alt_ref_frame) {
1067 active_best_quality = cq_level;
1068 } else {
1069 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
1070
1071 // Modify best quality for second level arfs. For mode VPX_Q this
1072 // becomes the baseline frame q.
1073 if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW)
1074 active_best_quality = (active_best_quality + cq_level + 1) / 2;
1075 }
1076 } else {
1077 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
1078 }
1079 } else {
1080 if (oxcf->rc_mode == VPX_Q) {
1081 active_best_quality = cq_level;
1082 } else {
1083 active_best_quality = inter_minq[active_worst_quality];
1084
1085 // For the constrained quality mode we don't want
1086 // q to fall below the cq level.
1087 if ((oxcf->rc_mode == VPX_CQ) &&
1088 (active_best_quality < cq_level)) {
1089 active_best_quality = cq_level;
1090 }
1091 }
1092 }
1093
1094 // Extension to max or min Q if undershoot or overshoot is outside
1095 // the permitted range.
1096 if ((cpi->oxcf.rc_mode != VPX_Q) &&
1097 (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD)) {
1098 if (frame_is_intra_only(cm) ||
1099 (!rc->is_src_frame_alt_ref &&
1100 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
1101 active_best_quality -=
1102 (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast);
1103 active_worst_quality += (cpi->twopass.extend_maxq / 2);
1104 } else {
1105 active_best_quality -=
1106 (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2;
1107 active_worst_quality += cpi->twopass.extend_maxq;
1108 }
1109 }
1110
1111 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
1112 vpx_clear_system_state();
1113 // Static forced key frames Q restrictions dealt with elsewhere.
1114 if (!((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi))) ||
1115 !rc->this_key_frame_forced ||
1116 (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
1117 int qdelta = vp9_frame_type_qdelta(cpi, gf_group->rf_level[gf_group->index],
1118 active_worst_quality);
1119 active_worst_quality = MAX(active_worst_quality + qdelta,
1120 active_best_quality);
1121 }
1122 #endif
1123
1124 // Modify active_best_quality for downscaled normal frames.
1125 if (rc->frame_size_selector != UNSCALED && !frame_is_kf_gf_arf(cpi)) {
1126 int qdelta = vp9_compute_qdelta_by_rate(rc, cm->frame_type,
1127 active_best_quality, 2.0,
1128 cm->bit_depth);
1129 active_best_quality = MAX(active_best_quality + qdelta, rc->best_quality);
1130 }
1131
1132 active_best_quality = clamp(active_best_quality,
1133 rc->best_quality, rc->worst_quality);
1134 active_worst_quality = clamp(active_worst_quality,
1135 active_best_quality, rc->worst_quality);
1136
1137 if (oxcf->rc_mode == VPX_Q) {
1138 q = active_best_quality;
1139 // Special case code to try and match quality with forced key frames.
1140 } else if ((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) &&
1141 rc->this_key_frame_forced) {
1142 // If static since last kf use better of last boosted and last kf q.
1143 if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
1144 q = MIN(rc->last_kf_qindex, rc->last_boosted_qindex);
1145 } else {
1146 q = rc->last_boosted_qindex;
1147 }
1148 } else {
1149 q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
1150 active_best_quality, active_worst_quality);
1151 if (q > active_worst_quality) {
1152 // Special case when we are targeting the max allowed rate.
1153 if (rc->this_frame_target >= rc->max_frame_bandwidth)
1154 active_worst_quality = q;
1155 else
1156 q = active_worst_quality;
1157 }
1158 }
1159 clamp(q, active_best_quality, active_worst_quality);
1160
1161 *top_index = active_worst_quality;
1162 *bottom_index = active_best_quality;
1163
1164 assert(*top_index <= rc->worst_quality &&
1165 *top_index >= rc->best_quality);
1166 assert(*bottom_index <= rc->worst_quality &&
1167 *bottom_index >= rc->best_quality);
1168 assert(q <= rc->worst_quality && q >= rc->best_quality);
1169 return q;
1170 }
1171
vp9_rc_pick_q_and_bounds(const VP9_COMP * cpi,int * bottom_index,int * top_index)1172 int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi,
1173 int *bottom_index, int *top_index) {
1174 int q;
1175 if (cpi->oxcf.pass == 0) {
1176 if (cpi->oxcf.rc_mode == VPX_CBR)
1177 q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index);
1178 else
1179 q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index);
1180 } else {
1181 q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index);
1182 }
1183 if (cpi->sf.use_nonrd_pick_mode) {
1184 if (cpi->sf.force_frame_boost == 1)
1185 q -= cpi->sf.max_delta_qindex;
1186
1187 if (q < *bottom_index)
1188 *bottom_index = q;
1189 else if (q > *top_index)
1190 *top_index = q;
1191 }
1192 return q;
1193 }
1194
vp9_rc_compute_frame_size_bounds(const VP9_COMP * cpi,int frame_target,int * frame_under_shoot_limit,int * frame_over_shoot_limit)1195 void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi,
1196 int frame_target,
1197 int *frame_under_shoot_limit,
1198 int *frame_over_shoot_limit) {
1199 if (cpi->oxcf.rc_mode == VPX_Q) {
1200 *frame_under_shoot_limit = 0;
1201 *frame_over_shoot_limit = INT_MAX;
1202 } else {
1203 // For very small rate targets where the fractional adjustment
1204 // may be tiny make sure there is at least a minimum range.
1205 const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100;
1206 *frame_under_shoot_limit = MAX(frame_target - tolerance - 200, 0);
1207 *frame_over_shoot_limit = MIN(frame_target + tolerance + 200,
1208 cpi->rc.max_frame_bandwidth);
1209 }
1210 }
1211
vp9_rc_set_frame_target(VP9_COMP * cpi,int target)1212 void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) {
1213 const VP9_COMMON *const cm = &cpi->common;
1214 RATE_CONTROL *const rc = &cpi->rc;
1215
1216 rc->this_frame_target = target;
1217
1218 // Modify frame size target when down-scaling.
1219 if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC &&
1220 rc->frame_size_selector != UNSCALED)
1221 rc->this_frame_target = (int)(rc->this_frame_target
1222 * rate_thresh_mult[rc->frame_size_selector]);
1223
1224 // Target rate per SB64 (including partial SB64s.
1225 rc->sb64_target_rate = ((int64_t)rc->this_frame_target * 64 * 64) /
1226 (cm->width * cm->height);
1227 }
1228
update_alt_ref_frame_stats(VP9_COMP * cpi)1229 static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
1230 // this frame refreshes means next frames don't unless specified by user
1231 RATE_CONTROL *const rc = &cpi->rc;
1232 rc->frames_since_golden = 0;
1233
1234 // Mark the alt ref as done (setting to 0 means no further alt refs pending).
1235 rc->source_alt_ref_pending = 0;
1236
1237 // Set the alternate reference frame active flag
1238 rc->source_alt_ref_active = 1;
1239 }
1240
update_golden_frame_stats(VP9_COMP * cpi)1241 static void update_golden_frame_stats(VP9_COMP *cpi) {
1242 RATE_CONTROL *const rc = &cpi->rc;
1243
1244 // Update the Golden frame usage counts.
1245 if (cpi->refresh_golden_frame) {
1246 // this frame refreshes means next frames don't unless specified by user
1247 rc->frames_since_golden = 0;
1248
1249 // If we are not using alt ref in the up and coming group clear the arf
1250 // active flag.
1251 if (!rc->source_alt_ref_pending) {
1252 rc->source_alt_ref_active = 0;
1253 }
1254
1255 // Decrement count down till next gf
1256 if (rc->frames_till_gf_update_due > 0)
1257 rc->frames_till_gf_update_due--;
1258
1259 } else if (!cpi->refresh_alt_ref_frame) {
1260 // Decrement count down till next gf
1261 if (rc->frames_till_gf_update_due > 0)
1262 rc->frames_till_gf_update_due--;
1263
1264 rc->frames_since_golden++;
1265 }
1266 }
1267
vp9_rc_postencode_update(VP9_COMP * cpi,uint64_t bytes_used)1268 void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
1269 const VP9_COMMON *const cm = &cpi->common;
1270 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1271 RATE_CONTROL *const rc = &cpi->rc;
1272 const int qindex = cm->base_qindex;
1273
1274 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
1275 vp9_cyclic_refresh_postencode(cpi);
1276 }
1277
1278 // Update rate control heuristics
1279 rc->projected_frame_size = (int)(bytes_used << 3);
1280
1281 // Post encode loop adjustment of Q prediction.
1282 vp9_rc_update_rate_correction_factors(cpi);
1283
1284 // Keep a record of last Q and ambient average Q.
1285 if (cm->frame_type == KEY_FRAME) {
1286 rc->last_q[KEY_FRAME] = qindex;
1287 rc->avg_frame_qindex[KEY_FRAME] =
1288 ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
1289 if (cpi->use_svc) {
1290 int i = 0;
1291 SVC *svc = &cpi->svc;
1292 for (i = 0; i < svc->number_temporal_layers; ++i) {
1293 const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
1294 svc->number_temporal_layers);
1295 LAYER_CONTEXT *lc = &svc->layer_context[layer];
1296 RATE_CONTROL *lrc = &lc->rc;
1297 lrc->last_q[KEY_FRAME] = rc->last_q[KEY_FRAME];
1298 lrc->avg_frame_qindex[KEY_FRAME] = rc->avg_frame_qindex[KEY_FRAME];
1299 }
1300 }
1301 } else {
1302 if (rc->is_src_frame_alt_ref ||
1303 !(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) ||
1304 (cpi->use_svc && oxcf->rc_mode == VPX_CBR)) {
1305 rc->last_q[INTER_FRAME] = qindex;
1306 rc->avg_frame_qindex[INTER_FRAME] =
1307 ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
1308 rc->ni_frames++;
1309 rc->tot_q += vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1310 rc->avg_q = rc->tot_q / rc->ni_frames;
1311 // Calculate the average Q for normal inter frames (not key or GFU
1312 // frames).
1313 rc->ni_tot_qi += qindex;
1314 rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
1315 }
1316 }
1317
1318 // Keep record of last boosted (KF/KF/ARF) Q value.
1319 // If the current frame is coded at a lower Q then we also update it.
1320 // If all mbs in this group are skipped only update if the Q value is
1321 // better than that already stored.
1322 // This is used to help set quality in forced key frames to reduce popping
1323 if ((qindex < rc->last_boosted_qindex) ||
1324 (cm->frame_type == KEY_FRAME) ||
1325 (!rc->constrained_gf_group &&
1326 (cpi->refresh_alt_ref_frame ||
1327 (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
1328 rc->last_boosted_qindex = qindex;
1329 }
1330 if (cm->frame_type == KEY_FRAME)
1331 rc->last_kf_qindex = qindex;
1332
1333 update_buffer_level(cpi, rc->projected_frame_size);
1334
1335 // Rolling monitors of whether we are over or underspending used to help
1336 // regulate min and Max Q in two pass.
1337 if (cm->frame_type != KEY_FRAME) {
1338 rc->rolling_target_bits = ROUND_POWER_OF_TWO(
1339 rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
1340 rc->rolling_actual_bits = ROUND_POWER_OF_TWO(
1341 rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
1342 rc->long_rolling_target_bits = ROUND_POWER_OF_TWO(
1343 rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
1344 rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO(
1345 rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5);
1346 }
1347
1348 // Actual bits spent
1349 rc->total_actual_bits += rc->projected_frame_size;
1350 rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
1351
1352 rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
1353
1354 if (!cpi->use_svc) {
1355 if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
1356 (cm->frame_type != KEY_FRAME))
1357 // Update the alternate reference frame stats as appropriate.
1358 update_alt_ref_frame_stats(cpi);
1359 else
1360 // Update the Golden frame stats as appropriate.
1361 update_golden_frame_stats(cpi);
1362 }
1363
1364 if (cm->frame_type == KEY_FRAME)
1365 rc->frames_since_key = 0;
1366 if (cm->show_frame) {
1367 rc->frames_since_key++;
1368 rc->frames_to_key--;
1369 }
1370
1371 // Trigger the resizing of the next frame if it is scaled.
1372 if (oxcf->pass != 0) {
1373 cpi->resize_pending =
1374 rc->next_frame_size_selector != rc->frame_size_selector;
1375 rc->frame_size_selector = rc->next_frame_size_selector;
1376 }
1377 }
1378
vp9_rc_postencode_update_drop_frame(VP9_COMP * cpi)1379 void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) {
1380 // Update buffer level with zero size, update frame counters, and return.
1381 update_buffer_level(cpi, 0);
1382 cpi->rc.frames_since_key++;
1383 cpi->rc.frames_to_key--;
1384 cpi->rc.rc_2_frame = 0;
1385 cpi->rc.rc_1_frame = 0;
1386 }
1387
1388 // Use this macro to turn on/off use of alt-refs in one-pass mode.
1389 #define USE_ALTREF_FOR_ONE_PASS 1
1390
calc_pframe_target_size_one_pass_vbr(const VP9_COMP * const cpi)1391 static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
1392 static const int af_ratio = 10;
1393 const RATE_CONTROL *const rc = &cpi->rc;
1394 int target;
1395 #if USE_ALTREF_FOR_ONE_PASS
1396 target = (!rc->is_src_frame_alt_ref &&
1397 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) ?
1398 (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) /
1399 (rc->baseline_gf_interval + af_ratio - 1) :
1400 (rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
1401 (rc->baseline_gf_interval + af_ratio - 1);
1402 #else
1403 target = rc->avg_frame_bandwidth;
1404 #endif
1405 return vp9_rc_clamp_pframe_target_size(cpi, target);
1406 }
1407
calc_iframe_target_size_one_pass_vbr(const VP9_COMP * const cpi)1408 static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
1409 static const int kf_ratio = 25;
1410 const RATE_CONTROL *rc = &cpi->rc;
1411 const int target = rc->avg_frame_bandwidth * kf_ratio;
1412 return vp9_rc_clamp_iframe_target_size(cpi, target);
1413 }
1414
vp9_rc_get_one_pass_vbr_params(VP9_COMP * cpi)1415 void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
1416 VP9_COMMON *const cm = &cpi->common;
1417 RATE_CONTROL *const rc = &cpi->rc;
1418 int target;
1419 // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
1420 if (!cpi->refresh_alt_ref_frame &&
1421 (cm->current_video_frame == 0 ||
1422 (cpi->frame_flags & FRAMEFLAGS_KEY) ||
1423 rc->frames_to_key == 0 ||
1424 (cpi->oxcf.auto_key && 0))) {
1425 cm->frame_type = KEY_FRAME;
1426 rc->this_key_frame_forced = cm->current_video_frame != 0 &&
1427 rc->frames_to_key == 0;
1428 rc->frames_to_key = cpi->oxcf.key_freq;
1429 rc->kf_boost = DEFAULT_KF_BOOST;
1430 rc->source_alt_ref_active = 0;
1431 } else {
1432 cm->frame_type = INTER_FRAME;
1433 }
1434 if (rc->frames_till_gf_update_due == 0) {
1435 rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
1436 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
1437 // NOTE: frames_till_gf_update_due must be <= frames_to_key.
1438 if (rc->frames_till_gf_update_due > rc->frames_to_key) {
1439 rc->frames_till_gf_update_due = rc->frames_to_key;
1440 rc->constrained_gf_group = 1;
1441 } else {
1442 rc->constrained_gf_group = 0;
1443 }
1444 cpi->refresh_golden_frame = 1;
1445 rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS;
1446 rc->gfu_boost = DEFAULT_GF_BOOST;
1447 }
1448 if (cm->frame_type == KEY_FRAME)
1449 target = calc_iframe_target_size_one_pass_vbr(cpi);
1450 else
1451 target = calc_pframe_target_size_one_pass_vbr(cpi);
1452 vp9_rc_set_frame_target(cpi, target);
1453 }
1454
calc_pframe_target_size_one_pass_cbr(const VP9_COMP * cpi)1455 static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
1456 const VP9EncoderConfig *oxcf = &cpi->oxcf;
1457 const RATE_CONTROL *rc = &cpi->rc;
1458 const SVC *const svc = &cpi->svc;
1459 const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
1460 const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
1461 int min_frame_target = MAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
1462 int target;
1463
1464 if (oxcf->gf_cbr_boost_pct) {
1465 const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
1466 target = cpi->refresh_golden_frame ?
1467 (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio_pct) /
1468 (rc->baseline_gf_interval * 100 + af_ratio_pct - 100) :
1469 (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
1470 (rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
1471 } else {
1472 target = rc->avg_frame_bandwidth;
1473 }
1474 if (is_one_pass_cbr_svc(cpi)) {
1475 // Note that for layers, avg_frame_bandwidth is the cumulative
1476 // per-frame-bandwidth. For the target size of this frame, use the
1477 // layer average frame size (i.e., non-cumulative per-frame-bw).
1478 int layer =
1479 LAYER_IDS_TO_IDX(svc->spatial_layer_id,
1480 svc->temporal_layer_id, svc->number_temporal_layers);
1481 const LAYER_CONTEXT *lc = &svc->layer_context[layer];
1482 target = lc->avg_frame_size;
1483 min_frame_target = MAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
1484 }
1485 if (diff > 0) {
1486 // Lower the target bandwidth for this frame.
1487 const int pct_low = (int)MIN(diff / one_pct_bits, oxcf->under_shoot_pct);
1488 target -= (target * pct_low) / 200;
1489 } else if (diff < 0) {
1490 // Increase the target bandwidth for this frame.
1491 const int pct_high = (int)MIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
1492 target += (target * pct_high) / 200;
1493 }
1494 if (oxcf->rc_max_inter_bitrate_pct) {
1495 const int max_rate = rc->avg_frame_bandwidth *
1496 oxcf->rc_max_inter_bitrate_pct / 100;
1497 target = MIN(target, max_rate);
1498 }
1499 return MAX(min_frame_target, target);
1500 }
1501
calc_iframe_target_size_one_pass_cbr(const VP9_COMP * cpi)1502 static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
1503 const RATE_CONTROL *rc = &cpi->rc;
1504 const VP9EncoderConfig *oxcf = &cpi->oxcf;
1505 const SVC *const svc = &cpi->svc;
1506 int target;
1507 if (cpi->common.current_video_frame == 0) {
1508 target = ((rc->starting_buffer_level / 2) > INT_MAX)
1509 ? INT_MAX : (int)(rc->starting_buffer_level / 2);
1510 } else {
1511 int kf_boost = 32;
1512 double framerate = cpi->framerate;
1513 if (svc->number_temporal_layers > 1 &&
1514 oxcf->rc_mode == VPX_CBR) {
1515 // Use the layer framerate for temporal layers CBR mode.
1516 const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id,
1517 svc->temporal_layer_id, svc->number_temporal_layers);
1518 const LAYER_CONTEXT *lc = &svc->layer_context[layer];
1519 framerate = lc->framerate;
1520 }
1521 kf_boost = MAX(kf_boost, (int)(2 * framerate - 16));
1522 if (rc->frames_since_key < framerate / 2) {
1523 kf_boost = (int)(kf_boost * rc->frames_since_key /
1524 (framerate / 2));
1525 }
1526 target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
1527 }
1528 return vp9_rc_clamp_iframe_target_size(cpi, target);
1529 }
1530
1531 // Reset information needed to set proper reference frames and buffer updates
1532 // for temporal layering. This is called when a key frame is encoded.
reset_temporal_layer_to_zero(VP9_COMP * cpi)1533 static void reset_temporal_layer_to_zero(VP9_COMP *cpi) {
1534 int sl;
1535 LAYER_CONTEXT *lc = NULL;
1536 cpi->svc.temporal_layer_id = 0;
1537
1538 for (sl = 0; sl < cpi->svc.number_spatial_layers; ++sl) {
1539 lc = &cpi->svc.layer_context[sl * cpi->svc.number_temporal_layers];
1540 lc->current_video_frame_in_layer = 0;
1541 lc->frames_from_key_frame = 0;
1542 }
1543 }
1544
vp9_rc_get_svc_params(VP9_COMP * cpi)1545 void vp9_rc_get_svc_params(VP9_COMP *cpi) {
1546 VP9_COMMON *const cm = &cpi->common;
1547 RATE_CONTROL *const rc = &cpi->rc;
1548 int target = rc->avg_frame_bandwidth;
1549 const int layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id,
1550 cpi->svc.temporal_layer_id, cpi->svc.number_temporal_layers);
1551
1552 if ((cm->current_video_frame == 0) ||
1553 (cpi->frame_flags & FRAMEFLAGS_KEY) ||
1554 (cpi->oxcf.auto_key && (rc->frames_since_key %
1555 cpi->oxcf.key_freq == 0))) {
1556 cm->frame_type = KEY_FRAME;
1557 rc->source_alt_ref_active = 0;
1558
1559 if (is_two_pass_svc(cpi)) {
1560 cpi->svc.layer_context[layer].is_key_frame = 1;
1561 cpi->ref_frame_flags &=
1562 (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
1563 } else if (is_one_pass_cbr_svc(cpi)) {
1564 cpi->svc.layer_context[layer].is_key_frame = 1;
1565 reset_temporal_layer_to_zero(cpi);
1566 cpi->ref_frame_flags &=
1567 (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
1568 // Assumption here is that LAST_FRAME is being updated for a keyframe.
1569 // Thus no change in update flags.
1570 target = calc_iframe_target_size_one_pass_cbr(cpi);
1571 }
1572 } else {
1573 cm->frame_type = INTER_FRAME;
1574 if (is_two_pass_svc(cpi)) {
1575 LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
1576 if (cpi->svc.spatial_layer_id == 0) {
1577 lc->is_key_frame = 0;
1578 } else {
1579 lc->is_key_frame =
1580 cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame;
1581 if (lc->is_key_frame)
1582 cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
1583 }
1584 cpi->ref_frame_flags &= (~VP9_ALT_FLAG);
1585 } else if (is_one_pass_cbr_svc(cpi)) {
1586 LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
1587 if (cpi->svc.spatial_layer_id == 0) {
1588 lc->is_key_frame = 0;
1589 } else {
1590 lc->is_key_frame =
1591 cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame;
1592 }
1593 target = calc_pframe_target_size_one_pass_cbr(cpi);
1594 }
1595 }
1596
1597 // Any update/change of global cyclic refresh parameters (amount/delta-qp)
1598 // should be done here, before the frame qp is selected.
1599 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
1600 vp9_cyclic_refresh_update_parameters(cpi);
1601
1602 vp9_rc_set_frame_target(cpi, target);
1603 rc->frames_till_gf_update_due = INT_MAX;
1604 rc->baseline_gf_interval = INT_MAX;
1605 }
1606
vp9_rc_get_one_pass_cbr_params(VP9_COMP * cpi)1607 void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) {
1608 VP9_COMMON *const cm = &cpi->common;
1609 RATE_CONTROL *const rc = &cpi->rc;
1610 int target;
1611 // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
1612 if ((cm->current_video_frame == 0 ||
1613 (cpi->frame_flags & FRAMEFLAGS_KEY) ||
1614 rc->frames_to_key == 0 ||
1615 (cpi->oxcf.auto_key && 0))) {
1616 cm->frame_type = KEY_FRAME;
1617 rc->this_key_frame_forced = cm->current_video_frame != 0 &&
1618 rc->frames_to_key == 0;
1619 rc->frames_to_key = cpi->oxcf.key_freq;
1620 rc->kf_boost = DEFAULT_KF_BOOST;
1621 rc->source_alt_ref_active = 0;
1622 } else {
1623 cm->frame_type = INTER_FRAME;
1624 }
1625 if (rc->frames_till_gf_update_due == 0) {
1626 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
1627 vp9_cyclic_refresh_set_golden_update(cpi);
1628 else
1629 rc->baseline_gf_interval =
1630 (rc->min_gf_interval + rc->max_gf_interval) / 2;
1631 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
1632 // NOTE: frames_till_gf_update_due must be <= frames_to_key.
1633 if (rc->frames_till_gf_update_due > rc->frames_to_key)
1634 rc->frames_till_gf_update_due = rc->frames_to_key;
1635 cpi->refresh_golden_frame = 1;
1636 rc->gfu_boost = DEFAULT_GF_BOOST;
1637 }
1638
1639 // Any update/change of global cyclic refresh parameters (amount/delta-qp)
1640 // should be done here, before the frame qp is selected.
1641 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
1642 vp9_cyclic_refresh_update_parameters(cpi);
1643
1644 if (cm->frame_type == KEY_FRAME)
1645 target = calc_iframe_target_size_one_pass_cbr(cpi);
1646 else
1647 target = calc_pframe_target_size_one_pass_cbr(cpi);
1648
1649 vp9_rc_set_frame_target(cpi, target);
1650 if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC)
1651 cpi->resize_pending = vp9_resize_one_pass_cbr(cpi);
1652 else
1653 cpi->resize_pending = 0;
1654 }
1655
vp9_compute_qdelta(const RATE_CONTROL * rc,double qstart,double qtarget,vpx_bit_depth_t bit_depth)1656 int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
1657 vpx_bit_depth_t bit_depth) {
1658 int start_index = rc->worst_quality;
1659 int target_index = rc->worst_quality;
1660 int i;
1661
1662 // Convert the average q value to an index.
1663 for (i = rc->best_quality; i < rc->worst_quality; ++i) {
1664 start_index = i;
1665 if (vp9_convert_qindex_to_q(i, bit_depth) >= qstart)
1666 break;
1667 }
1668
1669 // Convert the q target to an index
1670 for (i = rc->best_quality; i < rc->worst_quality; ++i) {
1671 target_index = i;
1672 if (vp9_convert_qindex_to_q(i, bit_depth) >= qtarget)
1673 break;
1674 }
1675
1676 return target_index - start_index;
1677 }
1678
vp9_compute_qdelta_by_rate(const RATE_CONTROL * rc,FRAME_TYPE frame_type,int qindex,double rate_target_ratio,vpx_bit_depth_t bit_depth)1679 int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
1680 int qindex, double rate_target_ratio,
1681 vpx_bit_depth_t bit_depth) {
1682 int target_index = rc->worst_quality;
1683 int i;
1684
1685 // Look up the current projected bits per block for the base index
1686 const int base_bits_per_mb = vp9_rc_bits_per_mb(frame_type, qindex, 1.0,
1687 bit_depth);
1688
1689 // Find the target bits per mb based on the base value and given ratio.
1690 const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
1691
1692 // Convert the q target to an index
1693 for (i = rc->best_quality; i < rc->worst_quality; ++i) {
1694 if (vp9_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <=
1695 target_bits_per_mb) {
1696 target_index = i;
1697 break;
1698 }
1699 }
1700 return target_index - qindex;
1701 }
1702
vp9_rc_set_gf_interval_range(const VP9_COMP * const cpi,RATE_CONTROL * const rc)1703 void vp9_rc_set_gf_interval_range(const VP9_COMP *const cpi,
1704 RATE_CONTROL *const rc) {
1705 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1706
1707 // Set Maximum gf/arf interval
1708 rc->max_gf_interval = oxcf->max_gf_interval;
1709 rc->min_gf_interval = oxcf->min_gf_interval;
1710 if (rc->min_gf_interval == 0)
1711 rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
1712 oxcf->width, oxcf->height, cpi->framerate);
1713 if (rc->max_gf_interval == 0)
1714 rc->max_gf_interval = vp9_rc_get_default_max_gf_interval(
1715 cpi->framerate, rc->min_gf_interval);
1716
1717 // Extended interval for genuinely static scenes
1718 rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2;
1719
1720 if (is_altref_enabled(cpi)) {
1721 if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1)
1722 rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1;
1723 }
1724
1725 if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
1726 rc->max_gf_interval = rc->static_scene_max_gf_interval;
1727
1728 // Clamp min to max
1729 rc->min_gf_interval = MIN(rc->min_gf_interval, rc->max_gf_interval);
1730 }
1731
vp9_rc_update_framerate(VP9_COMP * cpi)1732 void vp9_rc_update_framerate(VP9_COMP *cpi) {
1733 const VP9_COMMON *const cm = &cpi->common;
1734 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1735 RATE_CONTROL *const rc = &cpi->rc;
1736 int vbr_max_bits;
1737
1738 rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate);
1739 rc->min_frame_bandwidth = (int)(rc->avg_frame_bandwidth *
1740 oxcf->two_pass_vbrmin_section / 100);
1741
1742 rc->min_frame_bandwidth = MAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
1743
1744 // A maximum bitrate for a frame is defined.
1745 // The baseline for this aligns with HW implementations that
1746 // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
1747 // per 16x16 MB (averaged over a frame). However this limit is extended if
1748 // a very high rate is given on the command line or the the rate cannnot
1749 // be acheived because of a user specificed max q (e.g. when the user
1750 // specifies lossless encode.
1751 vbr_max_bits = (int)(((int64_t)rc->avg_frame_bandwidth *
1752 oxcf->two_pass_vbrmax_section) / 100);
1753 rc->max_frame_bandwidth = MAX(MAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P),
1754 vbr_max_bits);
1755
1756 vp9_rc_set_gf_interval_range(cpi, rc);
1757 }
1758
1759 #define VBR_PCT_ADJUSTMENT_LIMIT 50
1760 // For VBR...adjustment to the frame target based on error from previous frames
vbr_rate_correction(VP9_COMP * cpi,int * this_frame_target)1761 static void vbr_rate_correction(VP9_COMP *cpi, int *this_frame_target) {
1762 RATE_CONTROL *const rc = &cpi->rc;
1763 int64_t vbr_bits_off_target = rc->vbr_bits_off_target;
1764 int max_delta;
1765 double position_factor = 1.0;
1766
1767 // How far through the clip are we.
1768 // This number is used to damp the per frame rate correction.
1769 // Range 0 - 1.0
1770 if (cpi->twopass.total_stats.count) {
1771 position_factor = sqrt((double)cpi->common.current_video_frame /
1772 cpi->twopass.total_stats.count);
1773 }
1774 max_delta = (int)(position_factor *
1775 ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100));
1776
1777 // vbr_bits_off_target > 0 means we have extra bits to spend
1778 if (vbr_bits_off_target > 0) {
1779 *this_frame_target +=
1780 (vbr_bits_off_target > max_delta) ? max_delta
1781 : (int)vbr_bits_off_target;
1782 } else {
1783 *this_frame_target -=
1784 (vbr_bits_off_target < -max_delta) ? max_delta
1785 : (int)-vbr_bits_off_target;
1786 }
1787
1788 // Fast redistribution of bits arising from massive local undershoot.
1789 // Dont do it for kf,arf,gf or overlay frames.
1790 if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
1791 rc->vbr_bits_off_target_fast) {
1792 int one_frame_bits = MAX(rc->avg_frame_bandwidth, *this_frame_target);
1793 int fast_extra_bits;
1794 fast_extra_bits =
1795 (int)MIN(rc->vbr_bits_off_target_fast, one_frame_bits);
1796 fast_extra_bits = (int)MIN(fast_extra_bits,
1797 MAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
1798 *this_frame_target += (int)fast_extra_bits;
1799 rc->vbr_bits_off_target_fast -= fast_extra_bits;
1800 }
1801 }
1802
vp9_set_target_rate(VP9_COMP * cpi)1803 void vp9_set_target_rate(VP9_COMP *cpi) {
1804 RATE_CONTROL *const rc = &cpi->rc;
1805 int target_rate = rc->base_frame_target;
1806
1807 // Correction to rate target based on prior over or under shoot.
1808 if (cpi->oxcf.rc_mode == VPX_VBR || cpi->oxcf.rc_mode == VPX_CQ)
1809 vbr_rate_correction(cpi, &target_rate);
1810 vp9_rc_set_frame_target(cpi, target_rate);
1811 }
1812
1813 // Check if we should resize, based on average QP from past x frames.
1814 // Only allow for resize at most one scale down for now, scaling factor is 2.
vp9_resize_one_pass_cbr(VP9_COMP * cpi)1815 int vp9_resize_one_pass_cbr(VP9_COMP *cpi) {
1816 const VP9_COMMON *const cm = &cpi->common;
1817 RATE_CONTROL *const rc = &cpi->rc;
1818 int resize_now = 0;
1819 cpi->resize_scale_num = 1;
1820 cpi->resize_scale_den = 1;
1821 // Don't resize on key frame; reset the counters on key frame.
1822 if (cm->frame_type == KEY_FRAME) {
1823 cpi->resize_avg_qp = 0;
1824 cpi->resize_count = 0;
1825 return 0;
1826 }
1827 // Resize based on average buffer underflow and QP over some window.
1828 // Ignore samples close to key frame, since QP is usually high after key.
1829 if (cpi->rc.frames_since_key > 2 * cpi->framerate) {
1830 const int window = (int)(5 * cpi->framerate);
1831 cpi->resize_avg_qp += cm->base_qindex;
1832 if (cpi->rc.buffer_level < (int)(30 * rc->optimal_buffer_level / 100))
1833 ++cpi->resize_buffer_underflow;
1834 ++cpi->resize_count;
1835 // Check for resize action every "window" frames.
1836 if (cpi->resize_count >= window) {
1837 int avg_qp = cpi->resize_avg_qp / cpi->resize_count;
1838 // Resize down if buffer level has underflowed sufficent amount in past
1839 // window, and we are at original resolution.
1840 // Resize back up if average QP is low, and we are currently in a resized
1841 // down state.
1842 if (cpi->resize_state == 0 &&
1843 cpi->resize_buffer_underflow > (cpi->resize_count >> 2)) {
1844 resize_now = 1;
1845 cpi->resize_state = 1;
1846 } else if (cpi->resize_state == 1 &&
1847 avg_qp < 40 * cpi->rc.worst_quality / 100) {
1848 resize_now = -1;
1849 cpi->resize_state = 0;
1850 }
1851 // Reset for next window measurement.
1852 cpi->resize_avg_qp = 0;
1853 cpi->resize_count = 0;
1854 cpi->resize_buffer_underflow = 0;
1855 }
1856 }
1857 // If decision is to resize, reset some quantities, and check is we should
1858 // reduce rate correction factor,
1859 if (resize_now != 0) {
1860 int target_bits_per_frame;
1861 int active_worst_quality;
1862 int qindex;
1863 int tot_scale_change;
1864 // For now, resize is by 1/2 x 1/2.
1865 cpi->resize_scale_num = 1;
1866 cpi->resize_scale_den = 2;
1867 tot_scale_change = (cpi->resize_scale_den * cpi->resize_scale_den) /
1868 (cpi->resize_scale_num * cpi->resize_scale_num);
1869 // Reset buffer level to optimal, update target size.
1870 rc->buffer_level = rc->optimal_buffer_level;
1871 rc->bits_off_target = rc->optimal_buffer_level;
1872 rc->this_frame_target = calc_pframe_target_size_one_pass_cbr(cpi);
1873 // Reset cyclic refresh parameters.
1874 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled)
1875 vp9_cyclic_refresh_reset_resize(cpi);
1876 // Get the projected qindex, based on the scaled target frame size (scaled
1877 // so target_bits_per_mb in vp9_rc_regulate_q will be correct target).
1878 target_bits_per_frame = (resize_now == 1) ?
1879 rc->this_frame_target * tot_scale_change :
1880 rc->this_frame_target / tot_scale_change;
1881 active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
1882 qindex = vp9_rc_regulate_q(cpi,
1883 target_bits_per_frame,
1884 rc->best_quality,
1885 active_worst_quality);
1886 // If resize is down, check if projected q index is close to worst_quality,
1887 // and if so, reduce the rate correction factor (since likely can afford
1888 // lower q for resized frame).
1889 if (resize_now == 1 &&
1890 qindex > 90 * cpi->rc.worst_quality / 100) {
1891 rc->rate_correction_factors[INTER_NORMAL] *= 0.85;
1892 }
1893 // If resize is back up, check if projected q index is too much above the
1894 // current base_qindex, and if so, reduce the rate correction factor
1895 // (since prefer to keep q for resized frame at least close to previous q).
1896 if (resize_now == -1 &&
1897 qindex > 130 * cm->base_qindex / 100) {
1898 rc->rate_correction_factors[INTER_NORMAL] *= 0.9;
1899 }
1900 }
1901 return resize_now;
1902 }
1903
1904 // Compute average source sad (temporal sad: between current source and
1905 // previous source) over a subset of superblocks. Use this is detect big changes
1906 // in content and allow rate control to react.
1907 // TODO(marpan): Superblock sad is computed again in variance partition for
1908 // non-rd mode (but based on last reconstructed frame). Should try to reuse
1909 // these computations.
vp9_avg_source_sad(VP9_COMP * cpi)1910 void vp9_avg_source_sad(VP9_COMP *cpi) {
1911 VP9_COMMON * const cm = &cpi->common;
1912 RATE_CONTROL *const rc = &cpi->rc;
1913 rc->high_source_sad = 0;
1914 if (cpi->Last_Source != NULL) {
1915 const uint8_t *src_y = cpi->Source->y_buffer;
1916 const int src_ystride = cpi->Source->y_stride;
1917 const uint8_t *last_src_y = cpi->Last_Source->y_buffer;
1918 const int last_src_ystride = cpi->Last_Source->y_stride;
1919 int sbi_row, sbi_col;
1920 const BLOCK_SIZE bsize = BLOCK_64X64;
1921 // Loop over sub-sample of frame, and compute average sad over 64x64 blocks.
1922 uint64_t avg_sad = 0;
1923 int num_samples = 0;
1924 int sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
1925 int sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
1926 for (sbi_row = 0; sbi_row < sb_rows; sbi_row ++) {
1927 for (sbi_col = 0; sbi_col < sb_cols; sbi_col ++) {
1928 // Checker-board pattern, ignore boundary.
1929 if ((sbi_row > 0 && sbi_col > 0) &&
1930 (sbi_row < sb_rows - 1 && sbi_col < sb_cols - 1) &&
1931 ((sbi_row % 2 == 0 && sbi_col % 2 == 0) ||
1932 (sbi_row % 2 != 0 && sbi_col % 2 != 0))) {
1933 num_samples++;
1934 avg_sad += cpi->fn_ptr[bsize].sdf(src_y,
1935 src_ystride,
1936 last_src_y,
1937 last_src_ystride);
1938 }
1939 src_y += 64;
1940 last_src_y += 64;
1941 }
1942 src_y += (src_ystride << 6) - (sb_cols << 6);
1943 last_src_y += (last_src_ystride << 6) - (sb_cols << 6);
1944 }
1945 if (num_samples > 0)
1946 avg_sad = avg_sad / num_samples;
1947 // Set high_source_sad flag if we detect very high increase in avg_sad
1948 // between current and the previous frame value(s). Use a minimum threshold
1949 // for cases where there is small change from content that is completely
1950 // static.
1951 if (avg_sad > MAX(4000, (rc->avg_source_sad << 3)) &&
1952 rc->frames_since_key > 1)
1953 rc->high_source_sad = 1;
1954 else
1955 rc->high_source_sad = 0;
1956 rc->avg_source_sad = (rc->avg_source_sad + avg_sad) >> 1;
1957 }
1958 }
1959
1960 // Test if encoded frame will significantly overshoot the target bitrate, and
1961 // if so, set the QP, reset/adjust some rate control parameters, and return 1.
vp9_encodedframe_overshoot(VP9_COMP * cpi,int frame_size,int * q)1962 int vp9_encodedframe_overshoot(VP9_COMP *cpi,
1963 int frame_size,
1964 int *q) {
1965 VP9_COMMON * const cm = &cpi->common;
1966 RATE_CONTROL *const rc = &cpi->rc;
1967 int thresh_qp = 3 * (rc->worst_quality >> 2);
1968 int thresh_rate = rc->avg_frame_bandwidth * 10;
1969 if (cm->base_qindex < thresh_qp &&
1970 frame_size > thresh_rate) {
1971 // Force a re-encode, and for now use max-QP.
1972 *q = cpi->rc.worst_quality;
1973 // Adjust avg_frame_qindex and buffer_level, as these parameters will affect
1974 // QP selection for subsequent frames. If they have settled down to a very
1975 // different (low QP) state, then not re-adjusting them may cause next
1976 // frame to select low QP and overshoot again.
1977 // TODO(marpan): Check if rate correction factor should also be adjusted.
1978 cpi->rc.avg_frame_qindex[INTER_FRAME] = *q;
1979 rc->buffer_level = rc->optimal_buffer_level;
1980 rc->bits_off_target = rc->optimal_buffer_level;
1981 return 1;
1982 } else {
1983 return 0;
1984 }
1985 }
1986