• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                        Intel License Agreement
11 //
12 // Copyright (C) 2000, Intel Corporation, all rights reserved.
13 // Third party copyrights are property of their respective owners.
14 //
15 // Redistribution and use in source and binary forms, with or without modification,
16 // are permitted provided that the following conditions are met:
17 //
18 //   * Redistribution's of source code must retain the above copyright notice,
19 //     this list of conditions and the following disclaimer.
20 //
21 //   * Redistribution's in binary form must reproduce the above copyright notice,
22 //     this list of conditions and the following disclaimer in the documentation
23 //     and/or other materials provided with the distribution.
24 //
25 //   * The name of Intel Corporation may not be used to endorse or promote products
26 //     derived from this software without specific prior written permission.
27 //
28 // This software is provided by the copyright holders and contributors "as is" and
29 // any express or implied warranties, including, but not limited to, the implied
30 // warranties of merchantability and fitness for a particular purpose are disclaimed.
31 // In no event shall the Intel Corporation or contributors be liable for any direct,
32 // indirect, incidental, special, exemplary, or consequential damages
33 // (including, but not limited to, procurement of substitute goods or services;
34 // loss of use, data, or profits; or business interruption) however caused
35 // and on any theory of liability, whether in contract, strict liability,
36 // or tort (including negligence or otherwise) arising in any way out of
37 // the use of this software, even if advised of the possibility of such damage.
38 //
39 //M*/
40 
41 #include "_ml.h"
42 
43 /****************************************************************************************\
44 *                          K-Nearest Neighbors Classifier                                *
45 \****************************************************************************************/
46 
47 // k Nearest Neighbors
CvKNearest()48 CvKNearest::CvKNearest()
49 {
50     samples = 0;
51     clear();
52 }
53 
54 
~CvKNearest()55 CvKNearest::~CvKNearest()
56 {
57     clear();
58 }
59 
60 
CvKNearest(const CvMat * _train_data,const CvMat * _responses,const CvMat * _sample_idx,bool _is_regression,int _max_k)61 CvKNearest::CvKNearest( const CvMat* _train_data, const CvMat* _responses,
62                         const CvMat* _sample_idx, bool _is_regression, int _max_k )
63 {
64     samples = 0;
65     train( _train_data, _responses, _sample_idx, _is_regression, _max_k, false );
66 }
67 
68 
clear()69 void CvKNearest::clear()
70 {
71     while( samples )
72     {
73         CvVectors* next_samples = samples->next;
74         cvFree( &samples->data.fl );
75         cvFree( &samples );
76         samples = next_samples;
77     }
78     var_count = 0;
79     total = 0;
80     max_k = 0;
81 }
82 
83 
get_max_k() const84 int CvKNearest::get_max_k() const { return max_k; }
85 
get_var_count() const86 int CvKNearest::get_var_count() const { return var_count; }
87 
is_regression() const88 bool CvKNearest::is_regression() const { return regression; }
89 
get_sample_count() const90 int CvKNearest::get_sample_count() const { return total; }
91 
train(const CvMat * _train_data,const CvMat * _responses,const CvMat * _sample_idx,bool _is_regression,int _max_k,bool _update_base)92 bool CvKNearest::train( const CvMat* _train_data, const CvMat* _responses,
93                         const CvMat* _sample_idx, bool _is_regression,
94                         int _max_k, bool _update_base )
95 {
96     bool ok = false;
97     CvMat* responses = 0;
98 
99     CV_FUNCNAME( "CvKNearest::train" );
100 
101     __BEGIN__;
102 
103     CvVectors* _samples;
104     float** _data;
105     int _count, _dims, _dims_all, _rsize;
106 
107     if( !_update_base )
108         clear();
109 
110     // Prepare training data and related parameters.
111     // Treat categorical responses as ordered - to prevent class label compression and
112     // to enable entering new classes in the updates
113     CV_CALL( cvPrepareTrainData( "CvKNearest::train", _train_data, CV_ROW_SAMPLE,
114         _responses, CV_VAR_ORDERED, 0, _sample_idx, true, (const float***)&_data,
115         &_count, &_dims, &_dims_all, &responses, 0, 0 ));
116 
117     if( _update_base && _dims != var_count )
118         CV_ERROR( CV_StsBadArg, "The newly added data have different dimensionality" );
119 
120     if( !_update_base )
121     {
122         if( _max_k < 1 )
123             CV_ERROR( CV_StsOutOfRange, "max_k must be a positive number" );
124 
125         regression = _is_regression;
126         var_count = _dims;
127         max_k = _max_k;
128     }
129 
130     _rsize = _count*sizeof(float);
131     CV_CALL( _samples = (CvVectors*)cvAlloc( sizeof(*_samples) + _rsize ));
132     _samples->next = samples;
133     _samples->type = CV_32F;
134     _samples->data.fl = _data;
135     _samples->count = _count;
136     total += _count;
137 
138     samples = _samples;
139     memcpy( _samples + 1, responses->data.fl, _rsize );
140 
141     ok = true;
142 
143     __END__;
144 
145     return ok;
146 }
147 
148 
149 
find_neighbors_direct(const CvMat * _samples,int k,int start,int end,float * neighbor_responses,const float ** neighbors,float * dist) const150 void CvKNearest::find_neighbors_direct( const CvMat* _samples, int k, int start, int end,
151                     float* neighbor_responses, const float** neighbors, float* dist ) const
152 {
153     int i, j, count = end - start, k1 = 0, k2 = 0, d = var_count;
154     CvVectors* s = samples;
155 
156     for( ; s != 0; s = s->next )
157     {
158         int n = s->count;
159         for( j = 0; j < n; j++ )
160         {
161             for( i = 0; i < count; i++ )
162             {
163                 double sum = 0;
164                 Cv32suf si;
165                 const float* v = s->data.fl[j];
166                 const float* u = (float*)(_samples->data.ptr + _samples->step*(start + i));
167                 Cv32suf* dd = (Cv32suf*)(dist + i*k);
168                 float* nr;
169                 const float** nn;
170                 int t, ii, ii1;
171 
172                 for( t = 0; t <= d - 4; t += 4 )
173                 {
174                     double t0 = u[t] - v[t], t1 = u[t+1] - v[t+1];
175                     double t2 = u[t+2] - v[t+2], t3 = u[t+3] - v[t+3];
176                     sum += t0*t0 + t1*t1 + t2*t2 + t3*t3;
177                 }
178 
179                 for( ; t < d; t++ )
180                 {
181                     double t0 = u[t] - v[t];
182                     sum += t0*t0;
183                 }
184 
185                 si.f = (float)sum;
186                 for( ii = k1-1; ii >= 0; ii-- )
187                     if( si.i > dd[ii].i )
188                         break;
189                 if( ii >= k-1 )
190                     continue;
191 
192                 nr = neighbor_responses + i*k;
193                 nn = neighbors ? neighbors + (start + i)*k : 0;
194                 for( ii1 = k2 - 1; ii1 > ii; ii1-- )
195                 {
196                     dd[ii1+1].i = dd[ii1].i;
197                     nr[ii1+1] = nr[ii1];
198                     if( nn ) nn[ii1+1] = nn[ii1];
199                 }
200                 dd[ii+1].i = si.i;
201                 nr[ii+1] = ((float*)(s + 1))[j];
202                 if( nn )
203                     nn[ii+1] = v;
204             }
205             k1 = MIN( k1+1, k );
206             k2 = MIN( k1, k-1 );
207         }
208     }
209 }
210 
211 
write_results(int k,int k1,int start,int end,const float * neighbor_responses,const float * dist,CvMat * _results,CvMat * _neighbor_responses,CvMat * _dist,Cv32suf * sort_buf) const212 float CvKNearest::write_results( int k, int k1, int start, int end,
213     const float* neighbor_responses, const float* dist,
214     CvMat* _results, CvMat* _neighbor_responses,
215     CvMat* _dist, Cv32suf* sort_buf ) const
216 {
217     float result = 0.f;
218     int i, j, j1, count = end - start;
219     double inv_scale = 1./k1;
220     int rstep = _results && !CV_IS_MAT_CONT(_results->type) ? _results->step/sizeof(result) : 1;
221 
222     for( i = 0; i < count; i++ )
223     {
224         const Cv32suf* nr = (const Cv32suf*)(neighbor_responses + i*k);
225         float* dst;
226         float r;
227         if( _results || start+i == 0 )
228         {
229             if( regression )
230             {
231                 double s = 0;
232                 for( j = 0; j < k1; j++ )
233                     s += nr[j].f;
234                 r = (float)(s*inv_scale);
235             }
236             else
237             {
238                 int prev_start = 0, best_count = 0, cur_count;
239                 Cv32suf best_val;
240 
241                 for( j = 0; j < k1; j++ )
242                     sort_buf[j].i = nr[j].i;
243 
244                 for( j = k1-1; j > 0; j-- )
245                 {
246                     bool swap_fl = false;
247                     for( j1 = 0; j1 < j; j1++ )
248                         if( sort_buf[j1].i > sort_buf[j1+1].i )
249                         {
250                             int t;
251                             CV_SWAP( sort_buf[j1].i, sort_buf[j1+1].i, t );
252                             swap_fl = true;
253                         }
254                     if( !swap_fl )
255                         break;
256                 }
257 
258                 best_val.i = 0;
259                 for( j = 1; j <= k1; j++ )
260                     if( j == k1 || sort_buf[j].i != sort_buf[j-1].i )
261                     {
262                         cur_count = j - prev_start;
263                         if( best_count < cur_count )
264                         {
265                             best_count = cur_count;
266                             best_val.i = sort_buf[j-1].i;
267                         }
268                         prev_start = j;
269                     }
270                 r = best_val.f;
271             }
272 
273             if( start+i == 0 )
274                 result = r;
275 
276             if( _results )
277                 _results->data.fl[(start + i)*rstep] = r;
278         }
279 
280         if( _neighbor_responses )
281         {
282             dst = (float*)(_neighbor_responses->data.ptr +
283                 (start + i)*_neighbor_responses->step);
284             for( j = 0; j < k1; j++ )
285                 dst[j] = nr[j].f;
286             for( ; j < k; j++ )
287                 dst[j] = 0.f;
288         }
289 
290         if( _dist )
291         {
292             dst = (float*)(_dist->data.ptr + (start + i)*_dist->step);
293             for( j = 0; j < k1; j++ )
294                 dst[j] = dist[j + i*k];
295             for( ; j < k; j++ )
296                 dst[j] = 0.f;
297         }
298     }
299 
300     return result;
301 }
302 
303 
304 
find_nearest(const CvMat * _samples,int k,CvMat * _results,const float ** _neighbors,CvMat * _neighbor_responses,CvMat * _dist) const305 float CvKNearest::find_nearest( const CvMat* _samples, int k, CvMat* _results,
306     const float** _neighbors, CvMat* _neighbor_responses, CvMat* _dist ) const
307 {
308     float result = 0.f;
309     bool local_alloc = false;
310     float* buf = 0;
311     const int max_blk_count = 128, max_buf_sz = 1 << 12;
312 
313     CV_FUNCNAME( "CvKNearest::find_nearest" );
314 
315     __BEGIN__;
316 
317     int i, count, count_scale, blk_count0, blk_count = 0, buf_sz, k1;
318 
319     if( !samples )
320         CV_ERROR( CV_StsError, "The search tree must be constructed first using train method" );
321 
322     if( !CV_IS_MAT(_samples) ||
323         CV_MAT_TYPE(_samples->type) != CV_32FC1 ||
324         _samples->cols != var_count )
325         CV_ERROR( CV_StsBadArg, "Input samples must be floating-point matrix (<num_samples>x<var_count>)" );
326 
327     if( _results && (!CV_IS_MAT(_results) ||
328         _results->cols != 1 && _results->rows != 1 ||
329         _results->cols + _results->rows - 1 != _samples->rows) )
330         CV_ERROR( CV_StsBadArg,
331         "The results must be 1d vector containing as much elements as the number of samples" );
332 
333     if( _results && CV_MAT_TYPE(_results->type) != CV_32FC1 &&
334         (CV_MAT_TYPE(_results->type) != CV_32SC1 || regression))
335         CV_ERROR( CV_StsUnsupportedFormat,
336         "The results must be floating-point or integer (in case of classification) vector" );
337 
338     if( k < 1 || k > max_k )
339         CV_ERROR( CV_StsOutOfRange, "k must be within 1..max_k range" );
340 
341     if( _neighbor_responses )
342     {
343         if( !CV_IS_MAT(_neighbor_responses) || CV_MAT_TYPE(_neighbor_responses->type) != CV_32FC1 ||
344             _neighbor_responses->rows != _samples->rows || _neighbor_responses->cols != k )
345             CV_ERROR( CV_StsBadArg,
346             "The neighbor responses (if present) must be floating-point matrix of <num_samples> x <k> size" );
347     }
348 
349     if( _dist )
350     {
351         if( !CV_IS_MAT(_dist) || CV_MAT_TYPE(_dist->type) != CV_32FC1 ||
352             _dist->rows != _samples->rows || _dist->cols != k )
353             CV_ERROR( CV_StsBadArg,
354             "The distances from the neighbors (if present) must be floating-point matrix of <num_samples> x <k> size" );
355     }
356 
357     count = _samples->rows;
358     count_scale = k*2*sizeof(float);
359     blk_count0 = MIN( count, max_blk_count );
360     buf_sz = MIN( blk_count0 * count_scale, max_buf_sz );
361     blk_count0 = MAX( buf_sz/count_scale, 1 );
362     blk_count0 += blk_count0 % 2;
363     blk_count0 = MIN( blk_count0, count );
364     buf_sz = blk_count0 * count_scale + k*sizeof(float);
365     k1 = get_sample_count();
366     k1 = MIN( k1, k );
367 
368     if( buf_sz <= CV_MAX_LOCAL_SIZE )
369     {
370         buf = (float*)cvStackAlloc( buf_sz );
371         local_alloc = true;
372     }
373     else
374         CV_CALL( buf = (float*)cvAlloc( buf_sz ));
375 
376     for( i = 0; i < count; i += blk_count )
377     {
378         blk_count = MIN( count - i, blk_count0 );
379         float* neighbor_responses = buf;
380         float* dist = buf + blk_count*k;
381         Cv32suf* sort_buf = (Cv32suf*)(dist + blk_count*k);
382 
383         find_neighbors_direct( _samples, k, i, i + blk_count,
384                     neighbor_responses, _neighbors, dist );
385 
386         float r = write_results( k, k1, i, i + blk_count, neighbor_responses, dist,
387                                  _results, _neighbor_responses, _dist, sort_buf );
388         if( i == 0 )
389             result = r;
390     }
391 
392     __END__;
393 
394     if( !local_alloc )
395         cvFree( &buf );
396 
397     return result;
398 }
399 
400 /* End of file */
401 
402