1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #if V8_TARGET_ARCH_ARM
8
9 #include "src/code-stubs.h"
10 #include "src/cpu-profiler.h"
11 #include "src/log.h"
12 #include "src/macro-assembler.h"
13 #include "src/regexp-macro-assembler.h"
14 #include "src/regexp-stack.h"
15 #include "src/unicode.h"
16
17 #include "src/arm/regexp-macro-assembler-arm.h"
18
19 namespace v8 {
20 namespace internal {
21
22 #ifndef V8_INTERPRETED_REGEXP
23 /*
24 * This assembler uses the following register assignment convention
25 * - r4 : Temporarily stores the index of capture start after a matching pass
26 * for a global regexp.
27 * - r5 : Pointer to current code object (Code*) including heap object tag.
28 * - r6 : Current position in input, as negative offset from end of string.
29 * Please notice that this is the byte offset, not the character offset!
30 * - r7 : Currently loaded character. Must be loaded using
31 * LoadCurrentCharacter before using any of the dispatch methods.
32 * - r8 : Points to tip of backtrack stack
33 * - r9 : Unused, might be used by C code and expected unchanged.
34 * - r10 : End of input (points to byte after last character in input).
35 * - r11 : Frame pointer. Used to access arguments, local variables and
36 * RegExp registers.
37 * - r12 : IP register, used by assembler. Very volatile.
38 * - r13/sp : Points to tip of C stack.
39 *
40 * The remaining registers are free for computations.
41 * Each call to a public method should retain this convention.
42 *
43 * The stack will have the following structure:
44 * - fp[56] Isolate* isolate (address of the current isolate)
45 * - fp[52] direct_call (if 1, direct call from JavaScript code,
46 * if 0, call through the runtime system).
47 * - fp[48] stack_area_base (high end of the memory area to use as
48 * backtracking stack).
49 * - fp[44] capture array size (may fit multiple sets of matches)
50 * - fp[40] int* capture_array (int[num_saved_registers_], for output).
51 * - fp[36] secondary link/return address used by native call.
52 * --- sp when called ---
53 * - fp[32] return address (lr).
54 * - fp[28] old frame pointer (r11).
55 * - fp[0..24] backup of registers r4..r10.
56 * --- frame pointer ----
57 * - fp[-4] end of input (address of end of string).
58 * - fp[-8] start of input (address of first character in string).
59 * - fp[-12] start index (character index of start).
60 * - fp[-16] void* input_string (location of a handle containing the string).
61 * - fp[-20] success counter (only for global regexps to count matches).
62 * - fp[-24] Offset of location before start of input (effectively character
63 * position -1). Used to initialize capture registers to a
64 * non-position.
65 * - fp[-28] At start (if 1, we are starting at the start of the
66 * string, otherwise 0)
67 * - fp[-32] register 0 (Only positions must be stored in the first
68 * - register 1 num_saved_registers_ registers)
69 * - ...
70 * - register num_registers-1
71 * --- sp ---
72 *
73 * The first num_saved_registers_ registers are initialized to point to
74 * "character -1" in the string (i.e., char_size() bytes before the first
75 * character of the string). The remaining registers start out as garbage.
76 *
77 * The data up to the return address must be placed there by the calling
78 * code and the remaining arguments are passed in registers, e.g. by calling the
79 * code entry as cast to a function with the signature:
80 * int (*match)(String* input_string,
81 * int start_index,
82 * Address start,
83 * Address end,
84 * Address secondary_return_address, // Only used by native call.
85 * int* capture_output_array,
86 * byte* stack_area_base,
87 * bool direct_call = false)
88 * The call is performed by NativeRegExpMacroAssembler::Execute()
89 * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
90 * in arm/simulator-arm.h.
91 * When calling as a non-direct call (i.e., from C++ code), the return address
92 * area is overwritten with the LR register by the RegExp code. When doing a
93 * direct call from generated code, the return address is placed there by
94 * the calling code, as in a normal exit frame.
95 */
96
97 #define __ ACCESS_MASM(masm_)
98
RegExpMacroAssemblerARM(Mode mode,int registers_to_save,Zone * zone)99 RegExpMacroAssemblerARM::RegExpMacroAssemblerARM(
100 Mode mode,
101 int registers_to_save,
102 Zone* zone)
103 : NativeRegExpMacroAssembler(zone),
104 masm_(new MacroAssembler(zone->isolate(), NULL, kRegExpCodeSize)),
105 mode_(mode),
106 num_registers_(registers_to_save),
107 num_saved_registers_(registers_to_save),
108 entry_label_(),
109 start_label_(),
110 success_label_(),
111 backtrack_label_(),
112 exit_label_() {
113 DCHECK_EQ(0, registers_to_save % 2);
114 __ jmp(&entry_label_); // We'll write the entry code later.
115 __ bind(&start_label_); // And then continue from here.
116 }
117
118
~RegExpMacroAssemblerARM()119 RegExpMacroAssemblerARM::~RegExpMacroAssemblerARM() {
120 delete masm_;
121 // Unuse labels in case we throw away the assembler without calling GetCode.
122 entry_label_.Unuse();
123 start_label_.Unuse();
124 success_label_.Unuse();
125 backtrack_label_.Unuse();
126 exit_label_.Unuse();
127 check_preempt_label_.Unuse();
128 stack_overflow_label_.Unuse();
129 }
130
131
stack_limit_slack()132 int RegExpMacroAssemblerARM::stack_limit_slack() {
133 return RegExpStack::kStackLimitSlack;
134 }
135
136
AdvanceCurrentPosition(int by)137 void RegExpMacroAssemblerARM::AdvanceCurrentPosition(int by) {
138 if (by != 0) {
139 __ add(current_input_offset(),
140 current_input_offset(), Operand(by * char_size()));
141 }
142 }
143
144
AdvanceRegister(int reg,int by)145 void RegExpMacroAssemblerARM::AdvanceRegister(int reg, int by) {
146 DCHECK(reg >= 0);
147 DCHECK(reg < num_registers_);
148 if (by != 0) {
149 __ ldr(r0, register_location(reg));
150 __ add(r0, r0, Operand(by));
151 __ str(r0, register_location(reg));
152 }
153 }
154
155
Backtrack()156 void RegExpMacroAssemblerARM::Backtrack() {
157 CheckPreemption();
158 // Pop Code* offset from backtrack stack, add Code* and jump to location.
159 Pop(r0);
160 __ add(pc, r0, Operand(code_pointer()));
161 }
162
163
Bind(Label * label)164 void RegExpMacroAssemblerARM::Bind(Label* label) {
165 __ bind(label);
166 }
167
168
CheckCharacter(uint32_t c,Label * on_equal)169 void RegExpMacroAssemblerARM::CheckCharacter(uint32_t c, Label* on_equal) {
170 __ cmp(current_character(), Operand(c));
171 BranchOrBacktrack(eq, on_equal);
172 }
173
174
CheckCharacterGT(uc16 limit,Label * on_greater)175 void RegExpMacroAssemblerARM::CheckCharacterGT(uc16 limit, Label* on_greater) {
176 __ cmp(current_character(), Operand(limit));
177 BranchOrBacktrack(gt, on_greater);
178 }
179
180
CheckAtStart(Label * on_at_start)181 void RegExpMacroAssemblerARM::CheckAtStart(Label* on_at_start) {
182 Label not_at_start;
183 // Did we start the match at the start of the string at all?
184 __ ldr(r0, MemOperand(frame_pointer(), kStartIndex));
185 __ cmp(r0, Operand::Zero());
186 BranchOrBacktrack(ne, ¬_at_start);
187
188 // If we did, are we still at the start of the input?
189 __ ldr(r1, MemOperand(frame_pointer(), kInputStart));
190 __ add(r0, end_of_input_address(), Operand(current_input_offset()));
191 __ cmp(r0, r1);
192 BranchOrBacktrack(eq, on_at_start);
193 __ bind(¬_at_start);
194 }
195
196
CheckNotAtStart(Label * on_not_at_start)197 void RegExpMacroAssemblerARM::CheckNotAtStart(Label* on_not_at_start) {
198 // Did we start the match at the start of the string at all?
199 __ ldr(r0, MemOperand(frame_pointer(), kStartIndex));
200 __ cmp(r0, Operand::Zero());
201 BranchOrBacktrack(ne, on_not_at_start);
202 // If we did, are we still at the start of the input?
203 __ ldr(r1, MemOperand(frame_pointer(), kInputStart));
204 __ add(r0, end_of_input_address(), Operand(current_input_offset()));
205 __ cmp(r0, r1);
206 BranchOrBacktrack(ne, on_not_at_start);
207 }
208
209
CheckCharacterLT(uc16 limit,Label * on_less)210 void RegExpMacroAssemblerARM::CheckCharacterLT(uc16 limit, Label* on_less) {
211 __ cmp(current_character(), Operand(limit));
212 BranchOrBacktrack(lt, on_less);
213 }
214
215
CheckGreedyLoop(Label * on_equal)216 void RegExpMacroAssemblerARM::CheckGreedyLoop(Label* on_equal) {
217 __ ldr(r0, MemOperand(backtrack_stackpointer(), 0));
218 __ cmp(current_input_offset(), r0);
219 __ add(backtrack_stackpointer(),
220 backtrack_stackpointer(), Operand(kPointerSize), LeaveCC, eq);
221 BranchOrBacktrack(eq, on_equal);
222 }
223
224
CheckNotBackReferenceIgnoreCase(int start_reg,Label * on_no_match)225 void RegExpMacroAssemblerARM::CheckNotBackReferenceIgnoreCase(
226 int start_reg,
227 Label* on_no_match) {
228 Label fallthrough;
229 __ ldr(r0, register_location(start_reg)); // Index of start of capture
230 __ ldr(r1, register_location(start_reg + 1)); // Index of end of capture
231 __ sub(r1, r1, r0, SetCC); // Length of capture.
232
233 // If length is zero, either the capture is empty or it is not participating.
234 // In either case succeed immediately.
235 __ b(eq, &fallthrough);
236
237 // Check that there are enough characters left in the input.
238 __ cmn(r1, Operand(current_input_offset()));
239 BranchOrBacktrack(gt, on_no_match);
240
241 if (mode_ == LATIN1) {
242 Label success;
243 Label fail;
244 Label loop_check;
245
246 // r0 - offset of start of capture
247 // r1 - length of capture
248 __ add(r0, r0, Operand(end_of_input_address()));
249 __ add(r2, end_of_input_address(), Operand(current_input_offset()));
250 __ add(r1, r0, Operand(r1));
251
252 // r0 - Address of start of capture.
253 // r1 - Address of end of capture
254 // r2 - Address of current input position.
255
256 Label loop;
257 __ bind(&loop);
258 __ ldrb(r3, MemOperand(r0, char_size(), PostIndex));
259 __ ldrb(r4, MemOperand(r2, char_size(), PostIndex));
260 __ cmp(r4, r3);
261 __ b(eq, &loop_check);
262
263 // Mismatch, try case-insensitive match (converting letters to lower-case).
264 __ orr(r3, r3, Operand(0x20)); // Convert capture character to lower-case.
265 __ orr(r4, r4, Operand(0x20)); // Also convert input character.
266 __ cmp(r4, r3);
267 __ b(ne, &fail);
268 __ sub(r3, r3, Operand('a'));
269 __ cmp(r3, Operand('z' - 'a')); // Is r3 a lowercase letter?
270 __ b(ls, &loop_check); // In range 'a'-'z'.
271 // Latin-1: Check for values in range [224,254] but not 247.
272 __ sub(r3, r3, Operand(224 - 'a'));
273 __ cmp(r3, Operand(254 - 224));
274 __ b(hi, &fail); // Weren't Latin-1 letters.
275 __ cmp(r3, Operand(247 - 224)); // Check for 247.
276 __ b(eq, &fail);
277
278 __ bind(&loop_check);
279 __ cmp(r0, r1);
280 __ b(lt, &loop);
281 __ jmp(&success);
282
283 __ bind(&fail);
284 BranchOrBacktrack(al, on_no_match);
285
286 __ bind(&success);
287 // Compute new value of character position after the matched part.
288 __ sub(current_input_offset(), r2, end_of_input_address());
289 } else {
290 DCHECK(mode_ == UC16);
291 int argument_count = 4;
292 __ PrepareCallCFunction(argument_count, r2);
293
294 // r0 - offset of start of capture
295 // r1 - length of capture
296
297 // Put arguments into arguments registers.
298 // Parameters are
299 // r0: Address byte_offset1 - Address captured substring's start.
300 // r1: Address byte_offset2 - Address of current character position.
301 // r2: size_t byte_length - length of capture in bytes(!)
302 // r3: Isolate* isolate
303
304 // Address of start of capture.
305 __ add(r0, r0, Operand(end_of_input_address()));
306 // Length of capture.
307 __ mov(r2, Operand(r1));
308 // Save length in callee-save register for use on return.
309 __ mov(r4, Operand(r1));
310 // Address of current input position.
311 __ add(r1, current_input_offset(), Operand(end_of_input_address()));
312 // Isolate.
313 __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
314
315 {
316 AllowExternalCallThatCantCauseGC scope(masm_);
317 ExternalReference function =
318 ExternalReference::re_case_insensitive_compare_uc16(isolate());
319 __ CallCFunction(function, argument_count);
320 }
321
322 // Check if function returned non-zero for success or zero for failure.
323 __ cmp(r0, Operand::Zero());
324 BranchOrBacktrack(eq, on_no_match);
325 // On success, increment position by length of capture.
326 __ add(current_input_offset(), current_input_offset(), Operand(r4));
327 }
328
329 __ bind(&fallthrough);
330 }
331
332
CheckNotBackReference(int start_reg,Label * on_no_match)333 void RegExpMacroAssemblerARM::CheckNotBackReference(
334 int start_reg,
335 Label* on_no_match) {
336 Label fallthrough;
337 Label success;
338
339 // Find length of back-referenced capture.
340 __ ldr(r0, register_location(start_reg));
341 __ ldr(r1, register_location(start_reg + 1));
342 __ sub(r1, r1, r0, SetCC); // Length to check.
343 // Succeed on empty capture (including no capture).
344 __ b(eq, &fallthrough);
345
346 // Check that there are enough characters left in the input.
347 __ cmn(r1, Operand(current_input_offset()));
348 BranchOrBacktrack(gt, on_no_match);
349
350 // Compute pointers to match string and capture string
351 __ add(r0, r0, Operand(end_of_input_address()));
352 __ add(r2, end_of_input_address(), Operand(current_input_offset()));
353 __ add(r1, r1, Operand(r0));
354
355 Label loop;
356 __ bind(&loop);
357 if (mode_ == LATIN1) {
358 __ ldrb(r3, MemOperand(r0, char_size(), PostIndex));
359 __ ldrb(r4, MemOperand(r2, char_size(), PostIndex));
360 } else {
361 DCHECK(mode_ == UC16);
362 __ ldrh(r3, MemOperand(r0, char_size(), PostIndex));
363 __ ldrh(r4, MemOperand(r2, char_size(), PostIndex));
364 }
365 __ cmp(r3, r4);
366 BranchOrBacktrack(ne, on_no_match);
367 __ cmp(r0, r1);
368 __ b(lt, &loop);
369
370 // Move current character position to position after match.
371 __ sub(current_input_offset(), r2, end_of_input_address());
372 __ bind(&fallthrough);
373 }
374
375
CheckNotCharacter(unsigned c,Label * on_not_equal)376 void RegExpMacroAssemblerARM::CheckNotCharacter(unsigned c,
377 Label* on_not_equal) {
378 __ cmp(current_character(), Operand(c));
379 BranchOrBacktrack(ne, on_not_equal);
380 }
381
382
CheckCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_equal)383 void RegExpMacroAssemblerARM::CheckCharacterAfterAnd(uint32_t c,
384 uint32_t mask,
385 Label* on_equal) {
386 if (c == 0) {
387 __ tst(current_character(), Operand(mask));
388 } else {
389 __ and_(r0, current_character(), Operand(mask));
390 __ cmp(r0, Operand(c));
391 }
392 BranchOrBacktrack(eq, on_equal);
393 }
394
395
CheckNotCharacterAfterAnd(unsigned c,unsigned mask,Label * on_not_equal)396 void RegExpMacroAssemblerARM::CheckNotCharacterAfterAnd(unsigned c,
397 unsigned mask,
398 Label* on_not_equal) {
399 if (c == 0) {
400 __ tst(current_character(), Operand(mask));
401 } else {
402 __ and_(r0, current_character(), Operand(mask));
403 __ cmp(r0, Operand(c));
404 }
405 BranchOrBacktrack(ne, on_not_equal);
406 }
407
408
CheckNotCharacterAfterMinusAnd(uc16 c,uc16 minus,uc16 mask,Label * on_not_equal)409 void RegExpMacroAssemblerARM::CheckNotCharacterAfterMinusAnd(
410 uc16 c,
411 uc16 minus,
412 uc16 mask,
413 Label* on_not_equal) {
414 DCHECK(minus < String::kMaxUtf16CodeUnit);
415 __ sub(r0, current_character(), Operand(minus));
416 __ and_(r0, r0, Operand(mask));
417 __ cmp(r0, Operand(c));
418 BranchOrBacktrack(ne, on_not_equal);
419 }
420
421
CheckCharacterInRange(uc16 from,uc16 to,Label * on_in_range)422 void RegExpMacroAssemblerARM::CheckCharacterInRange(
423 uc16 from,
424 uc16 to,
425 Label* on_in_range) {
426 __ sub(r0, current_character(), Operand(from));
427 __ cmp(r0, Operand(to - from));
428 BranchOrBacktrack(ls, on_in_range); // Unsigned lower-or-same condition.
429 }
430
431
CheckCharacterNotInRange(uc16 from,uc16 to,Label * on_not_in_range)432 void RegExpMacroAssemblerARM::CheckCharacterNotInRange(
433 uc16 from,
434 uc16 to,
435 Label* on_not_in_range) {
436 __ sub(r0, current_character(), Operand(from));
437 __ cmp(r0, Operand(to - from));
438 BranchOrBacktrack(hi, on_not_in_range); // Unsigned higher condition.
439 }
440
441
CheckBitInTable(Handle<ByteArray> table,Label * on_bit_set)442 void RegExpMacroAssemblerARM::CheckBitInTable(
443 Handle<ByteArray> table,
444 Label* on_bit_set) {
445 __ mov(r0, Operand(table));
446 if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
447 __ and_(r1, current_character(), Operand(kTableSize - 1));
448 __ add(r1, r1, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
449 } else {
450 __ add(r1,
451 current_character(),
452 Operand(ByteArray::kHeaderSize - kHeapObjectTag));
453 }
454 __ ldrb(r0, MemOperand(r0, r1));
455 __ cmp(r0, Operand::Zero());
456 BranchOrBacktrack(ne, on_bit_set);
457 }
458
459
CheckSpecialCharacterClass(uc16 type,Label * on_no_match)460 bool RegExpMacroAssemblerARM::CheckSpecialCharacterClass(uc16 type,
461 Label* on_no_match) {
462 // Range checks (c in min..max) are generally implemented by an unsigned
463 // (c - min) <= (max - min) check
464 switch (type) {
465 case 's':
466 // Match space-characters
467 if (mode_ == LATIN1) {
468 // One byte space characters are '\t'..'\r', ' ' and \u00a0.
469 Label success;
470 __ cmp(current_character(), Operand(' '));
471 __ b(eq, &success);
472 // Check range 0x09..0x0d
473 __ sub(r0, current_character(), Operand('\t'));
474 __ cmp(r0, Operand('\r' - '\t'));
475 __ b(ls, &success);
476 // \u00a0 (NBSP).
477 __ cmp(r0, Operand(0x00a0 - '\t'));
478 BranchOrBacktrack(ne, on_no_match);
479 __ bind(&success);
480 return true;
481 }
482 return false;
483 case 'S':
484 // The emitted code for generic character classes is good enough.
485 return false;
486 case 'd':
487 // Match ASCII digits ('0'..'9')
488 __ sub(r0, current_character(), Operand('0'));
489 __ cmp(r0, Operand('9' - '0'));
490 BranchOrBacktrack(hi, on_no_match);
491 return true;
492 case 'D':
493 // Match non ASCII-digits
494 __ sub(r0, current_character(), Operand('0'));
495 __ cmp(r0, Operand('9' - '0'));
496 BranchOrBacktrack(ls, on_no_match);
497 return true;
498 case '.': {
499 // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
500 __ eor(r0, current_character(), Operand(0x01));
501 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
502 __ sub(r0, r0, Operand(0x0b));
503 __ cmp(r0, Operand(0x0c - 0x0b));
504 BranchOrBacktrack(ls, on_no_match);
505 if (mode_ == UC16) {
506 // Compare original value to 0x2028 and 0x2029, using the already
507 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
508 // 0x201d (0x2028 - 0x0b) or 0x201e.
509 __ sub(r0, r0, Operand(0x2028 - 0x0b));
510 __ cmp(r0, Operand(1));
511 BranchOrBacktrack(ls, on_no_match);
512 }
513 return true;
514 }
515 case 'n': {
516 // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
517 __ eor(r0, current_character(), Operand(0x01));
518 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
519 __ sub(r0, r0, Operand(0x0b));
520 __ cmp(r0, Operand(0x0c - 0x0b));
521 if (mode_ == LATIN1) {
522 BranchOrBacktrack(hi, on_no_match);
523 } else {
524 Label done;
525 __ b(ls, &done);
526 // Compare original value to 0x2028 and 0x2029, using the already
527 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
528 // 0x201d (0x2028 - 0x0b) or 0x201e.
529 __ sub(r0, r0, Operand(0x2028 - 0x0b));
530 __ cmp(r0, Operand(1));
531 BranchOrBacktrack(hi, on_no_match);
532 __ bind(&done);
533 }
534 return true;
535 }
536 case 'w': {
537 if (mode_ != LATIN1) {
538 // Table is 256 entries, so all Latin1 characters can be tested.
539 __ cmp(current_character(), Operand('z'));
540 BranchOrBacktrack(hi, on_no_match);
541 }
542 ExternalReference map = ExternalReference::re_word_character_map();
543 __ mov(r0, Operand(map));
544 __ ldrb(r0, MemOperand(r0, current_character()));
545 __ cmp(r0, Operand::Zero());
546 BranchOrBacktrack(eq, on_no_match);
547 return true;
548 }
549 case 'W': {
550 Label done;
551 if (mode_ != LATIN1) {
552 // Table is 256 entries, so all Latin1 characters can be tested.
553 __ cmp(current_character(), Operand('z'));
554 __ b(hi, &done);
555 }
556 ExternalReference map = ExternalReference::re_word_character_map();
557 __ mov(r0, Operand(map));
558 __ ldrb(r0, MemOperand(r0, current_character()));
559 __ cmp(r0, Operand::Zero());
560 BranchOrBacktrack(ne, on_no_match);
561 if (mode_ != LATIN1) {
562 __ bind(&done);
563 }
564 return true;
565 }
566 case '*':
567 // Match any character.
568 return true;
569 // No custom implementation (yet): s(UC16), S(UC16).
570 default:
571 return false;
572 }
573 }
574
575
Fail()576 void RegExpMacroAssemblerARM::Fail() {
577 __ mov(r0, Operand(FAILURE));
578 __ jmp(&exit_label_);
579 }
580
581
GetCode(Handle<String> source)582 Handle<HeapObject> RegExpMacroAssemblerARM::GetCode(Handle<String> source) {
583 Label return_r0;
584 // Finalize code - write the entry point code now we know how many
585 // registers we need.
586
587 // Entry code:
588 __ bind(&entry_label_);
589
590 // Tell the system that we have a stack frame. Because the type is MANUAL, no
591 // is generated.
592 FrameScope scope(masm_, StackFrame::MANUAL);
593
594 // Actually emit code to start a new stack frame.
595 // Push arguments
596 // Save callee-save registers.
597 // Start new stack frame.
598 // Store link register in existing stack-cell.
599 // Order here should correspond to order of offset constants in header file.
600 RegList registers_to_retain = r4.bit() | r5.bit() | r6.bit() |
601 r7.bit() | r8.bit() | r9.bit() | r10.bit() | fp.bit();
602 RegList argument_registers = r0.bit() | r1.bit() | r2.bit() | r3.bit();
603 __ stm(db_w, sp, argument_registers | registers_to_retain | lr.bit());
604 // Set frame pointer in space for it if this is not a direct call
605 // from generated code.
606 __ add(frame_pointer(), sp, Operand(4 * kPointerSize));
607 __ mov(r0, Operand::Zero());
608 __ push(r0); // Make room for success counter and initialize it to 0.
609 __ push(r0); // Make room for "position - 1" constant (value is irrelevant).
610 // Check if we have space on the stack for registers.
611 Label stack_limit_hit;
612 Label stack_ok;
613
614 ExternalReference stack_limit =
615 ExternalReference::address_of_stack_limit(isolate());
616 __ mov(r0, Operand(stack_limit));
617 __ ldr(r0, MemOperand(r0));
618 __ sub(r0, sp, r0, SetCC);
619 // Handle it if the stack pointer is already below the stack limit.
620 __ b(ls, &stack_limit_hit);
621 // Check if there is room for the variable number of registers above
622 // the stack limit.
623 __ cmp(r0, Operand(num_registers_ * kPointerSize));
624 __ b(hs, &stack_ok);
625 // Exit with OutOfMemory exception. There is not enough space on the stack
626 // for our working registers.
627 __ mov(r0, Operand(EXCEPTION));
628 __ jmp(&return_r0);
629
630 __ bind(&stack_limit_hit);
631 CallCheckStackGuardState(r0);
632 __ cmp(r0, Operand::Zero());
633 // If returned value is non-zero, we exit with the returned value as result.
634 __ b(ne, &return_r0);
635
636 __ bind(&stack_ok);
637
638 // Allocate space on stack for registers.
639 __ sub(sp, sp, Operand(num_registers_ * kPointerSize));
640 // Load string end.
641 __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
642 // Load input start.
643 __ ldr(r0, MemOperand(frame_pointer(), kInputStart));
644 // Find negative length (offset of start relative to end).
645 __ sub(current_input_offset(), r0, end_of_input_address());
646 // Set r0 to address of char before start of the input string
647 // (effectively string position -1).
648 __ ldr(r1, MemOperand(frame_pointer(), kStartIndex));
649 __ sub(r0, current_input_offset(), Operand(char_size()));
650 __ sub(r0, r0, Operand(r1, LSL, (mode_ == UC16) ? 1 : 0));
651 // Store this value in a local variable, for use when clearing
652 // position registers.
653 __ str(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
654
655 // Initialize code pointer register
656 __ mov(code_pointer(), Operand(masm_->CodeObject()));
657
658 Label load_char_start_regexp, start_regexp;
659 // Load newline if index is at start, previous character otherwise.
660 __ cmp(r1, Operand::Zero());
661 __ b(ne, &load_char_start_regexp);
662 __ mov(current_character(), Operand('\n'), LeaveCC, eq);
663 __ jmp(&start_regexp);
664
665 // Global regexp restarts matching here.
666 __ bind(&load_char_start_regexp);
667 // Load previous char as initial value of current character register.
668 LoadCurrentCharacterUnchecked(-1, 1);
669 __ bind(&start_regexp);
670
671 // Initialize on-stack registers.
672 if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
673 // Fill saved registers with initial value = start offset - 1
674 if (num_saved_registers_ > 8) {
675 // Address of register 0.
676 __ add(r1, frame_pointer(), Operand(kRegisterZero));
677 __ mov(r2, Operand(num_saved_registers_));
678 Label init_loop;
679 __ bind(&init_loop);
680 __ str(r0, MemOperand(r1, kPointerSize, NegPostIndex));
681 __ sub(r2, r2, Operand(1), SetCC);
682 __ b(ne, &init_loop);
683 } else {
684 for (int i = 0; i < num_saved_registers_; i++) {
685 __ str(r0, register_location(i));
686 }
687 }
688 }
689
690 // Initialize backtrack stack pointer.
691 __ ldr(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
692
693 __ jmp(&start_label_);
694
695 // Exit code:
696 if (success_label_.is_linked()) {
697 // Save captures when successful.
698 __ bind(&success_label_);
699 if (num_saved_registers_ > 0) {
700 // copy captures to output
701 __ ldr(r1, MemOperand(frame_pointer(), kInputStart));
702 __ ldr(r0, MemOperand(frame_pointer(), kRegisterOutput));
703 __ ldr(r2, MemOperand(frame_pointer(), kStartIndex));
704 __ sub(r1, end_of_input_address(), r1);
705 // r1 is length of input in bytes.
706 if (mode_ == UC16) {
707 __ mov(r1, Operand(r1, LSR, 1));
708 }
709 // r1 is length of input in characters.
710 __ add(r1, r1, Operand(r2));
711 // r1 is length of string in characters.
712
713 DCHECK_EQ(0, num_saved_registers_ % 2);
714 // Always an even number of capture registers. This allows us to
715 // unroll the loop once to add an operation between a load of a register
716 // and the following use of that register.
717 for (int i = 0; i < num_saved_registers_; i += 2) {
718 __ ldr(r2, register_location(i));
719 __ ldr(r3, register_location(i + 1));
720 if (i == 0 && global_with_zero_length_check()) {
721 // Keep capture start in r4 for the zero-length check later.
722 __ mov(r4, r2);
723 }
724 if (mode_ == UC16) {
725 __ add(r2, r1, Operand(r2, ASR, 1));
726 __ add(r3, r1, Operand(r3, ASR, 1));
727 } else {
728 __ add(r2, r1, Operand(r2));
729 __ add(r3, r1, Operand(r3));
730 }
731 __ str(r2, MemOperand(r0, kPointerSize, PostIndex));
732 __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
733 }
734 }
735
736 if (global()) {
737 // Restart matching if the regular expression is flagged as global.
738 __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
739 __ ldr(r1, MemOperand(frame_pointer(), kNumOutputRegisters));
740 __ ldr(r2, MemOperand(frame_pointer(), kRegisterOutput));
741 // Increment success counter.
742 __ add(r0, r0, Operand(1));
743 __ str(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
744 // Capture results have been stored, so the number of remaining global
745 // output registers is reduced by the number of stored captures.
746 __ sub(r1, r1, Operand(num_saved_registers_));
747 // Check whether we have enough room for another set of capture results.
748 __ cmp(r1, Operand(num_saved_registers_));
749 __ b(lt, &return_r0);
750
751 __ str(r1, MemOperand(frame_pointer(), kNumOutputRegisters));
752 // Advance the location for output.
753 __ add(r2, r2, Operand(num_saved_registers_ * kPointerSize));
754 __ str(r2, MemOperand(frame_pointer(), kRegisterOutput));
755
756 // Prepare r0 to initialize registers with its value in the next run.
757 __ ldr(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
758
759 if (global_with_zero_length_check()) {
760 // Special case for zero-length matches.
761 // r4: capture start index
762 __ cmp(current_input_offset(), r4);
763 // Not a zero-length match, restart.
764 __ b(ne, &load_char_start_regexp);
765 // Offset from the end is zero if we already reached the end.
766 __ cmp(current_input_offset(), Operand::Zero());
767 __ b(eq, &exit_label_);
768 // Advance current position after a zero-length match.
769 __ add(current_input_offset(),
770 current_input_offset(),
771 Operand((mode_ == UC16) ? 2 : 1));
772 }
773
774 __ b(&load_char_start_regexp);
775 } else {
776 __ mov(r0, Operand(SUCCESS));
777 }
778 }
779
780 // Exit and return r0
781 __ bind(&exit_label_);
782 if (global()) {
783 __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
784 }
785
786 __ bind(&return_r0);
787 // Skip sp past regexp registers and local variables..
788 __ mov(sp, frame_pointer());
789 // Restore registers r4..r11 and return (restoring lr to pc).
790 __ ldm(ia_w, sp, registers_to_retain | pc.bit());
791
792 // Backtrack code (branch target for conditional backtracks).
793 if (backtrack_label_.is_linked()) {
794 __ bind(&backtrack_label_);
795 Backtrack();
796 }
797
798 Label exit_with_exception;
799
800 // Preempt-code
801 if (check_preempt_label_.is_linked()) {
802 SafeCallTarget(&check_preempt_label_);
803
804 CallCheckStackGuardState(r0);
805 __ cmp(r0, Operand::Zero());
806 // If returning non-zero, we should end execution with the given
807 // result as return value.
808 __ b(ne, &return_r0);
809
810 // String might have moved: Reload end of string from frame.
811 __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
812 SafeReturn();
813 }
814
815 // Backtrack stack overflow code.
816 if (stack_overflow_label_.is_linked()) {
817 SafeCallTarget(&stack_overflow_label_);
818 // Reached if the backtrack-stack limit has been hit.
819 Label grow_failed;
820
821 // Call GrowStack(backtrack_stackpointer(), &stack_base)
822 static const int num_arguments = 3;
823 __ PrepareCallCFunction(num_arguments, r0);
824 __ mov(r0, backtrack_stackpointer());
825 __ add(r1, frame_pointer(), Operand(kStackHighEnd));
826 __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
827 ExternalReference grow_stack =
828 ExternalReference::re_grow_stack(isolate());
829 __ CallCFunction(grow_stack, num_arguments);
830 // If return NULL, we have failed to grow the stack, and
831 // must exit with a stack-overflow exception.
832 __ cmp(r0, Operand::Zero());
833 __ b(eq, &exit_with_exception);
834 // Otherwise use return value as new stack pointer.
835 __ mov(backtrack_stackpointer(), r0);
836 // Restore saved registers and continue.
837 SafeReturn();
838 }
839
840 if (exit_with_exception.is_linked()) {
841 // If any of the code above needed to exit with an exception.
842 __ bind(&exit_with_exception);
843 // Exit with Result EXCEPTION(-1) to signal thrown exception.
844 __ mov(r0, Operand(EXCEPTION));
845 __ jmp(&return_r0);
846 }
847
848 CodeDesc code_desc;
849 masm_->GetCode(&code_desc);
850 Handle<Code> code = isolate()->factory()->NewCode(
851 code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
852 PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
853 return Handle<HeapObject>::cast(code);
854 }
855
856
GoTo(Label * to)857 void RegExpMacroAssemblerARM::GoTo(Label* to) {
858 BranchOrBacktrack(al, to);
859 }
860
861
IfRegisterGE(int reg,int comparand,Label * if_ge)862 void RegExpMacroAssemblerARM::IfRegisterGE(int reg,
863 int comparand,
864 Label* if_ge) {
865 __ ldr(r0, register_location(reg));
866 __ cmp(r0, Operand(comparand));
867 BranchOrBacktrack(ge, if_ge);
868 }
869
870
IfRegisterLT(int reg,int comparand,Label * if_lt)871 void RegExpMacroAssemblerARM::IfRegisterLT(int reg,
872 int comparand,
873 Label* if_lt) {
874 __ ldr(r0, register_location(reg));
875 __ cmp(r0, Operand(comparand));
876 BranchOrBacktrack(lt, if_lt);
877 }
878
879
IfRegisterEqPos(int reg,Label * if_eq)880 void RegExpMacroAssemblerARM::IfRegisterEqPos(int reg,
881 Label* if_eq) {
882 __ ldr(r0, register_location(reg));
883 __ cmp(r0, Operand(current_input_offset()));
884 BranchOrBacktrack(eq, if_eq);
885 }
886
887
888 RegExpMacroAssembler::IrregexpImplementation
Implementation()889 RegExpMacroAssemblerARM::Implementation() {
890 return kARMImplementation;
891 }
892
893
LoadCurrentCharacter(int cp_offset,Label * on_end_of_input,bool check_bounds,int characters)894 void RegExpMacroAssemblerARM::LoadCurrentCharacter(int cp_offset,
895 Label* on_end_of_input,
896 bool check_bounds,
897 int characters) {
898 DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
899 DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works)
900 if (check_bounds) {
901 CheckPosition(cp_offset + characters - 1, on_end_of_input);
902 }
903 LoadCurrentCharacterUnchecked(cp_offset, characters);
904 }
905
906
PopCurrentPosition()907 void RegExpMacroAssemblerARM::PopCurrentPosition() {
908 Pop(current_input_offset());
909 }
910
911
PopRegister(int register_index)912 void RegExpMacroAssemblerARM::PopRegister(int register_index) {
913 Pop(r0);
914 __ str(r0, register_location(register_index));
915 }
916
917
PushBacktrack(Label * label)918 void RegExpMacroAssemblerARM::PushBacktrack(Label* label) {
919 __ mov_label_offset(r0, label);
920 Push(r0);
921 CheckStackLimit();
922 }
923
924
PushCurrentPosition()925 void RegExpMacroAssemblerARM::PushCurrentPosition() {
926 Push(current_input_offset());
927 }
928
929
PushRegister(int register_index,StackCheckFlag check_stack_limit)930 void RegExpMacroAssemblerARM::PushRegister(int register_index,
931 StackCheckFlag check_stack_limit) {
932 __ ldr(r0, register_location(register_index));
933 Push(r0);
934 if (check_stack_limit) CheckStackLimit();
935 }
936
937
ReadCurrentPositionFromRegister(int reg)938 void RegExpMacroAssemblerARM::ReadCurrentPositionFromRegister(int reg) {
939 __ ldr(current_input_offset(), register_location(reg));
940 }
941
942
ReadStackPointerFromRegister(int reg)943 void RegExpMacroAssemblerARM::ReadStackPointerFromRegister(int reg) {
944 __ ldr(backtrack_stackpointer(), register_location(reg));
945 __ ldr(r0, MemOperand(frame_pointer(), kStackHighEnd));
946 __ add(backtrack_stackpointer(), backtrack_stackpointer(), Operand(r0));
947 }
948
949
SetCurrentPositionFromEnd(int by)950 void RegExpMacroAssemblerARM::SetCurrentPositionFromEnd(int by) {
951 Label after_position;
952 __ cmp(current_input_offset(), Operand(-by * char_size()));
953 __ b(ge, &after_position);
954 __ mov(current_input_offset(), Operand(-by * char_size()));
955 // On RegExp code entry (where this operation is used), the character before
956 // the current position is expected to be already loaded.
957 // We have advanced the position, so it's safe to read backwards.
958 LoadCurrentCharacterUnchecked(-1, 1);
959 __ bind(&after_position);
960 }
961
962
SetRegister(int register_index,int to)963 void RegExpMacroAssemblerARM::SetRegister(int register_index, int to) {
964 DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
965 __ mov(r0, Operand(to));
966 __ str(r0, register_location(register_index));
967 }
968
969
Succeed()970 bool RegExpMacroAssemblerARM::Succeed() {
971 __ jmp(&success_label_);
972 return global();
973 }
974
975
WriteCurrentPositionToRegister(int reg,int cp_offset)976 void RegExpMacroAssemblerARM::WriteCurrentPositionToRegister(int reg,
977 int cp_offset) {
978 if (cp_offset == 0) {
979 __ str(current_input_offset(), register_location(reg));
980 } else {
981 __ add(r0, current_input_offset(), Operand(cp_offset * char_size()));
982 __ str(r0, register_location(reg));
983 }
984 }
985
986
ClearRegisters(int reg_from,int reg_to)987 void RegExpMacroAssemblerARM::ClearRegisters(int reg_from, int reg_to) {
988 DCHECK(reg_from <= reg_to);
989 __ ldr(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
990 for (int reg = reg_from; reg <= reg_to; reg++) {
991 __ str(r0, register_location(reg));
992 }
993 }
994
995
WriteStackPointerToRegister(int reg)996 void RegExpMacroAssemblerARM::WriteStackPointerToRegister(int reg) {
997 __ ldr(r1, MemOperand(frame_pointer(), kStackHighEnd));
998 __ sub(r0, backtrack_stackpointer(), r1);
999 __ str(r0, register_location(reg));
1000 }
1001
1002
1003 // Private methods:
1004
CallCheckStackGuardState(Register scratch)1005 void RegExpMacroAssemblerARM::CallCheckStackGuardState(Register scratch) {
1006 __ PrepareCallCFunction(3, scratch);
1007
1008 // RegExp code frame pointer.
1009 __ mov(r2, frame_pointer());
1010 // Code* of self.
1011 __ mov(r1, Operand(masm_->CodeObject()));
1012
1013 // We need to make room for the return address on the stack.
1014 int stack_alignment = base::OS::ActivationFrameAlignment();
1015 DCHECK(IsAligned(stack_alignment, kPointerSize));
1016 __ sub(sp, sp, Operand(stack_alignment));
1017
1018 // r0 will point to the return address, placed by DirectCEntry.
1019 __ mov(r0, sp);
1020
1021 ExternalReference stack_guard_check =
1022 ExternalReference::re_check_stack_guard_state(isolate());
1023 __ mov(ip, Operand(stack_guard_check));
1024 DirectCEntryStub stub(isolate());
1025 stub.GenerateCall(masm_, ip);
1026
1027 // Drop the return address from the stack.
1028 __ add(sp, sp, Operand(stack_alignment));
1029
1030 DCHECK(stack_alignment != 0);
1031 __ ldr(sp, MemOperand(sp, 0));
1032
1033 __ mov(code_pointer(), Operand(masm_->CodeObject()));
1034 }
1035
1036
1037 // Helper function for reading a value out of a stack frame.
1038 template <typename T>
frame_entry(Address re_frame,int frame_offset)1039 static T& frame_entry(Address re_frame, int frame_offset) {
1040 return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1041 }
1042
1043
CheckStackGuardState(Address * return_address,Code * re_code,Address re_frame)1044 int RegExpMacroAssemblerARM::CheckStackGuardState(Address* return_address,
1045 Code* re_code,
1046 Address re_frame) {
1047 Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
1048 StackLimitCheck check(isolate);
1049 if (check.JsHasOverflowed()) {
1050 isolate->StackOverflow();
1051 return EXCEPTION;
1052 }
1053
1054 // If not real stack overflow the stack guard was used to interrupt
1055 // execution for another purpose.
1056
1057 // If this is a direct call from JavaScript retry the RegExp forcing the call
1058 // through the runtime system. Currently the direct call cannot handle a GC.
1059 if (frame_entry<int>(re_frame, kDirectCall) == 1) {
1060 return RETRY;
1061 }
1062
1063 // Prepare for possible GC.
1064 HandleScope handles(isolate);
1065 Handle<Code> code_handle(re_code);
1066
1067 Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
1068
1069 // Current string.
1070 bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
1071
1072 DCHECK(re_code->instruction_start() <= *return_address);
1073 DCHECK(*return_address <=
1074 re_code->instruction_start() + re_code->instruction_size());
1075
1076 Object* result = isolate->stack_guard()->HandleInterrupts();
1077
1078 if (*code_handle != re_code) { // Return address no longer valid
1079 int delta = code_handle->address() - re_code->address();
1080 // Overwrite the return address on the stack.
1081 *return_address += delta;
1082 }
1083
1084 if (result->IsException()) {
1085 return EXCEPTION;
1086 }
1087
1088 Handle<String> subject_tmp = subject;
1089 int slice_offset = 0;
1090
1091 // Extract the underlying string and the slice offset.
1092 if (StringShape(*subject_tmp).IsCons()) {
1093 subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
1094 } else if (StringShape(*subject_tmp).IsSliced()) {
1095 SlicedString* slice = SlicedString::cast(*subject_tmp);
1096 subject_tmp = Handle<String>(slice->parent());
1097 slice_offset = slice->offset();
1098 }
1099
1100 // String might have changed.
1101 if (subject_tmp->IsOneByteRepresentation() != is_one_byte) {
1102 // If we changed between an Latin1 and an UC16 string, the specialized
1103 // code cannot be used, and we need to restart regexp matching from
1104 // scratch (including, potentially, compiling a new version of the code).
1105 return RETRY;
1106 }
1107
1108 // Otherwise, the content of the string might have moved. It must still
1109 // be a sequential or external string with the same content.
1110 // Update the start and end pointers in the stack frame to the current
1111 // location (whether it has actually moved or not).
1112 DCHECK(StringShape(*subject_tmp).IsSequential() ||
1113 StringShape(*subject_tmp).IsExternal());
1114
1115 // The original start address of the characters to match.
1116 const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
1117
1118 // Find the current start address of the same character at the current string
1119 // position.
1120 int start_index = frame_entry<int>(re_frame, kStartIndex);
1121 const byte* new_address = StringCharacterPosition(*subject_tmp,
1122 start_index + slice_offset);
1123
1124 if (start_address != new_address) {
1125 // If there is a difference, update the object pointer and start and end
1126 // addresses in the RegExp stack frame to match the new value.
1127 const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
1128 int byte_length = static_cast<int>(end_address - start_address);
1129 frame_entry<const String*>(re_frame, kInputString) = *subject;
1130 frame_entry<const byte*>(re_frame, kInputStart) = new_address;
1131 frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
1132 } else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
1133 // Subject string might have been a ConsString that underwent
1134 // short-circuiting during GC. That will not change start_address but
1135 // will change pointer inside the subject handle.
1136 frame_entry<const String*>(re_frame, kInputString) = *subject;
1137 }
1138
1139 return 0;
1140 }
1141
1142
register_location(int register_index)1143 MemOperand RegExpMacroAssemblerARM::register_location(int register_index) {
1144 DCHECK(register_index < (1<<30));
1145 if (num_registers_ <= register_index) {
1146 num_registers_ = register_index + 1;
1147 }
1148 return MemOperand(frame_pointer(),
1149 kRegisterZero - register_index * kPointerSize);
1150 }
1151
1152
CheckPosition(int cp_offset,Label * on_outside_input)1153 void RegExpMacroAssemblerARM::CheckPosition(int cp_offset,
1154 Label* on_outside_input) {
1155 __ cmp(current_input_offset(), Operand(-cp_offset * char_size()));
1156 BranchOrBacktrack(ge, on_outside_input);
1157 }
1158
1159
BranchOrBacktrack(Condition condition,Label * to)1160 void RegExpMacroAssemblerARM::BranchOrBacktrack(Condition condition,
1161 Label* to) {
1162 if (condition == al) { // Unconditional.
1163 if (to == NULL) {
1164 Backtrack();
1165 return;
1166 }
1167 __ jmp(to);
1168 return;
1169 }
1170 if (to == NULL) {
1171 __ b(condition, &backtrack_label_);
1172 return;
1173 }
1174 __ b(condition, to);
1175 }
1176
1177
SafeCall(Label * to,Condition cond)1178 void RegExpMacroAssemblerARM::SafeCall(Label* to, Condition cond) {
1179 __ bl(to, cond);
1180 }
1181
1182
SafeReturn()1183 void RegExpMacroAssemblerARM::SafeReturn() {
1184 __ pop(lr);
1185 __ add(pc, lr, Operand(masm_->CodeObject()));
1186 }
1187
1188
SafeCallTarget(Label * name)1189 void RegExpMacroAssemblerARM::SafeCallTarget(Label* name) {
1190 __ bind(name);
1191 __ sub(lr, lr, Operand(masm_->CodeObject()));
1192 __ push(lr);
1193 }
1194
1195
Push(Register source)1196 void RegExpMacroAssemblerARM::Push(Register source) {
1197 DCHECK(!source.is(backtrack_stackpointer()));
1198 __ str(source,
1199 MemOperand(backtrack_stackpointer(), kPointerSize, NegPreIndex));
1200 }
1201
1202
Pop(Register target)1203 void RegExpMacroAssemblerARM::Pop(Register target) {
1204 DCHECK(!target.is(backtrack_stackpointer()));
1205 __ ldr(target,
1206 MemOperand(backtrack_stackpointer(), kPointerSize, PostIndex));
1207 }
1208
1209
CheckPreemption()1210 void RegExpMacroAssemblerARM::CheckPreemption() {
1211 // Check for preemption.
1212 ExternalReference stack_limit =
1213 ExternalReference::address_of_stack_limit(isolate());
1214 __ mov(r0, Operand(stack_limit));
1215 __ ldr(r0, MemOperand(r0));
1216 __ cmp(sp, r0);
1217 SafeCall(&check_preempt_label_, ls);
1218 }
1219
1220
CheckStackLimit()1221 void RegExpMacroAssemblerARM::CheckStackLimit() {
1222 ExternalReference stack_limit =
1223 ExternalReference::address_of_regexp_stack_limit(isolate());
1224 __ mov(r0, Operand(stack_limit));
1225 __ ldr(r0, MemOperand(r0));
1226 __ cmp(backtrack_stackpointer(), Operand(r0));
1227 SafeCall(&stack_overflow_label_, ls);
1228 }
1229
1230
CanReadUnaligned()1231 bool RegExpMacroAssemblerARM::CanReadUnaligned() {
1232 return CpuFeatures::IsSupported(UNALIGNED_ACCESSES) && !slow_safe();
1233 }
1234
1235
LoadCurrentCharacterUnchecked(int cp_offset,int characters)1236 void RegExpMacroAssemblerARM::LoadCurrentCharacterUnchecked(int cp_offset,
1237 int characters) {
1238 Register offset = current_input_offset();
1239 if (cp_offset != 0) {
1240 // r4 is not being used to store the capture start index at this point.
1241 __ add(r4, current_input_offset(), Operand(cp_offset * char_size()));
1242 offset = r4;
1243 }
1244 // The ldr, str, ldrh, strh instructions can do unaligned accesses, if the CPU
1245 // and the operating system running on the target allow it.
1246 // If unaligned load/stores are not supported then this function must only
1247 // be used to load a single character at a time.
1248 if (!CanReadUnaligned()) {
1249 DCHECK(characters == 1);
1250 }
1251
1252 if (mode_ == LATIN1) {
1253 if (characters == 4) {
1254 __ ldr(current_character(), MemOperand(end_of_input_address(), offset));
1255 } else if (characters == 2) {
1256 __ ldrh(current_character(), MemOperand(end_of_input_address(), offset));
1257 } else {
1258 DCHECK(characters == 1);
1259 __ ldrb(current_character(), MemOperand(end_of_input_address(), offset));
1260 }
1261 } else {
1262 DCHECK(mode_ == UC16);
1263 if (characters == 2) {
1264 __ ldr(current_character(), MemOperand(end_of_input_address(), offset));
1265 } else {
1266 DCHECK(characters == 1);
1267 __ ldrh(current_character(), MemOperand(end_of_input_address(), offset));
1268 }
1269 }
1270 }
1271
1272
1273 #undef __
1274
1275 #endif // V8_INTERPRETED_REGEXP
1276
1277 }} // namespace v8::internal
1278
1279 #endif // V8_TARGET_ARCH_ARM
1280