1 // Copyright (c) 1994-2006 Sun Microsystems Inc. 2 // All Rights Reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // - Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // 11 // - Redistribution in binary form must reproduce the above copyright 12 // notice, this list of conditions and the following disclaimer in the 13 // documentation and/or other materials provided with the distribution. 14 // 15 // - Neither the name of Sun Microsystems or the names of contributors may 16 // be used to endorse or promote products derived from this software without 17 // specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // The original source code covered by the above license above has been 32 // modified significantly by Google Inc. 33 // Copyright 2012 the V8 project authors. All rights reserved. 34 35 36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_ 37 #define V8_MIPS_ASSEMBLER_MIPS_H_ 38 39 #include <stdio.h> 40 41 #include "src/assembler.h" 42 #include "src/mips/constants-mips.h" 43 #include "src/serialize.h" 44 45 namespace v8 { 46 namespace internal { 47 48 // CPU Registers. 49 // 50 // 1) We would prefer to use an enum, but enum values are assignment- 51 // compatible with int, which has caused code-generation bugs. 52 // 53 // 2) We would prefer to use a class instead of a struct but we don't like 54 // the register initialization to depend on the particular initialization 55 // order (which appears to be different on OS X, Linux, and Windows for the 56 // installed versions of C++ we tried). Using a struct permits C-style 57 // "initialization". Also, the Register objects cannot be const as this 58 // forces initialization stubs in MSVC, making us dependent on initialization 59 // order. 60 // 61 // 3) By not using an enum, we are possibly preventing the compiler from 62 // doing certain constant folds, which may significantly reduce the 63 // code generated for some assembly instructions (because they boil down 64 // to a few constants). If this is a problem, we could change the code 65 // such that we use an enum in optimized mode, and the struct in debug 66 // mode. This way we get the compile-time error checking in debug mode 67 // and best performance in optimized code. 68 69 70 // ----------------------------------------------------------------------------- 71 // Implementation of Register and FPURegister. 72 73 // Core register. 74 struct Register { 75 static const int kNumRegisters = v8::internal::kNumRegisters; 76 static const int kMaxNumAllocatableRegisters = 14; // v0 through t6 and cp. 77 static const int kSizeInBytes = 4; 78 static const int kCpRegister = 23; // cp (s7) is the 23rd register. 79 80 #if defined(V8_TARGET_LITTLE_ENDIAN) 81 static const int kMantissaOffset = 0; 82 static const int kExponentOffset = 4; 83 #elif defined(V8_TARGET_BIG_ENDIAN) 84 static const int kMantissaOffset = 4; 85 static const int kExponentOffset = 0; 86 #else 87 #error Unknown endianness 88 #endif 89 90 inline static int NumAllocatableRegisters(); 91 ToAllocationIndexRegister92 static int ToAllocationIndex(Register reg) { 93 DCHECK((reg.code() - 2) < (kMaxNumAllocatableRegisters - 1) || 94 reg.is(from_code(kCpRegister))); 95 return reg.is(from_code(kCpRegister)) ? 96 kMaxNumAllocatableRegisters - 1 : // Return last index for 'cp'. 97 reg.code() - 2; // zero_reg and 'at' are skipped. 98 } 99 FromAllocationIndexRegister100 static Register FromAllocationIndex(int index) { 101 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters); 102 return index == kMaxNumAllocatableRegisters - 1 ? 103 from_code(kCpRegister) : // Last index is always the 'cp' register. 104 from_code(index + 2); // zero_reg and 'at' are skipped. 105 } 106 AllocationIndexToStringRegister107 static const char* AllocationIndexToString(int index) { 108 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters); 109 const char* const names[] = { 110 "v0", 111 "v1", 112 "a0", 113 "a1", 114 "a2", 115 "a3", 116 "t0", 117 "t1", 118 "t2", 119 "t3", 120 "t4", 121 "t5", 122 "t6", 123 "s7", 124 }; 125 return names[index]; 126 } 127 from_codeRegister128 static Register from_code(int code) { 129 Register r = { code }; 130 return r; 131 } 132 is_validRegister133 bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; } isRegister134 bool is(Register reg) const { return code_ == reg.code_; } codeRegister135 int code() const { 136 DCHECK(is_valid()); 137 return code_; 138 } bitRegister139 int bit() const { 140 DCHECK(is_valid()); 141 return 1 << code_; 142 } 143 144 // Unfortunately we can't make this private in a struct. 145 int code_; 146 }; 147 148 #define REGISTER(N, C) \ 149 const int kRegister_ ## N ## _Code = C; \ 150 const Register N = { C } 151 152 REGISTER(no_reg, -1); 153 // Always zero. 154 REGISTER(zero_reg, 0); 155 // at: Reserved for synthetic instructions. 156 REGISTER(at, 1); 157 // v0, v1: Used when returning multiple values from subroutines. 158 REGISTER(v0, 2); 159 REGISTER(v1, 3); 160 // a0 - a4: Used to pass non-FP parameters. 161 REGISTER(a0, 4); 162 REGISTER(a1, 5); 163 REGISTER(a2, 6); 164 REGISTER(a3, 7); 165 // t0 - t9: Can be used without reservation, act as temporary registers and are 166 // allowed to be destroyed by subroutines. 167 REGISTER(t0, 8); 168 REGISTER(t1, 9); 169 REGISTER(t2, 10); 170 REGISTER(t3, 11); 171 REGISTER(t4, 12); 172 REGISTER(t5, 13); 173 REGISTER(t6, 14); 174 REGISTER(t7, 15); 175 // s0 - s7: Subroutine register variables. Subroutines that write to these 176 // registers must restore their values before exiting so that the caller can 177 // expect the values to be preserved. 178 REGISTER(s0, 16); 179 REGISTER(s1, 17); 180 REGISTER(s2, 18); 181 REGISTER(s3, 19); 182 REGISTER(s4, 20); 183 REGISTER(s5, 21); 184 REGISTER(s6, 22); 185 REGISTER(s7, 23); 186 REGISTER(t8, 24); 187 REGISTER(t9, 25); 188 // k0, k1: Reserved for system calls and interrupt handlers. 189 REGISTER(k0, 26); 190 REGISTER(k1, 27); 191 // gp: Reserved. 192 REGISTER(gp, 28); 193 // sp: Stack pointer. 194 REGISTER(sp, 29); 195 // fp: Frame pointer. 196 REGISTER(fp, 30); 197 // ra: Return address pointer. 198 REGISTER(ra, 31); 199 200 #undef REGISTER 201 202 203 int ToNumber(Register reg); 204 205 Register ToRegister(int num); 206 207 // Coprocessor register. 208 struct FPURegister { 209 static const int kMaxNumRegisters = v8::internal::kNumFPURegisters; 210 211 // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers 212 // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to 213 // number of Double regs (64-bit regs, or FPU-reg-pairs). 214 215 // A few double registers are reserved: one as a scratch register and one to 216 // hold 0.0. 217 // f28: 0.0 218 // f30: scratch register. 219 static const int kNumReservedRegisters = 2; 220 static const int kMaxNumAllocatableRegisters = kMaxNumRegisters / 2 - 221 kNumReservedRegisters; 222 223 inline static int NumRegisters(); 224 inline static int NumAllocatableRegisters(); 225 inline static int ToAllocationIndex(FPURegister reg); 226 static const char* AllocationIndexToString(int index); 227 FromAllocationIndexFPURegister228 static FPURegister FromAllocationIndex(int index) { 229 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters); 230 return from_code(index * 2); 231 } 232 from_codeFPURegister233 static FPURegister from_code(int code) { 234 FPURegister r = { code }; 235 return r; 236 } 237 is_validFPURegister238 bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters ; } isFPURegister239 bool is(FPURegister creg) const { return code_ == creg.code_; } lowFPURegister240 FPURegister low() const { 241 // Find low reg of a Double-reg pair, which is the reg itself. 242 DCHECK(code_ % 2 == 0); // Specified Double reg must be even. 243 FPURegister reg; 244 reg.code_ = code_; 245 DCHECK(reg.is_valid()); 246 return reg; 247 } highFPURegister248 FPURegister high() const { 249 // Find high reg of a Doubel-reg pair, which is reg + 1. 250 DCHECK(code_ % 2 == 0); // Specified Double reg must be even. 251 FPURegister reg; 252 reg.code_ = code_ + 1; 253 DCHECK(reg.is_valid()); 254 return reg; 255 } 256 codeFPURegister257 int code() const { 258 DCHECK(is_valid()); 259 return code_; 260 } bitFPURegister261 int bit() const { 262 DCHECK(is_valid()); 263 return 1 << code_; 264 } setcodeFPURegister265 void setcode(int f) { 266 code_ = f; 267 DCHECK(is_valid()); 268 } 269 // Unfortunately we can't make this private in a struct. 270 int code_; 271 }; 272 273 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32 274 // 32-bit registers, f0 through f31. When used as 'double' they are used 275 // in pairs, starting with the even numbered register. So a double operation 276 // on f0 really uses f0 and f1. 277 // (Modern mips hardware also supports 32 64-bit registers, via setting 278 // (priviledged) Status Register FR bit to 1. This is used by the N32 ABI, 279 // but it is not in common use. Someday we will want to support this in v8.) 280 281 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers. 282 typedef FPURegister DoubleRegister; 283 typedef FPURegister FloatRegister; 284 285 const FPURegister no_freg = { -1 }; 286 287 const FPURegister f0 = { 0 }; // Return value in hard float mode. 288 const FPURegister f1 = { 1 }; 289 const FPURegister f2 = { 2 }; 290 const FPURegister f3 = { 3 }; 291 const FPURegister f4 = { 4 }; 292 const FPURegister f5 = { 5 }; 293 const FPURegister f6 = { 6 }; 294 const FPURegister f7 = { 7 }; 295 const FPURegister f8 = { 8 }; 296 const FPURegister f9 = { 9 }; 297 const FPURegister f10 = { 10 }; 298 const FPURegister f11 = { 11 }; 299 const FPURegister f12 = { 12 }; // Arg 0 in hard float mode. 300 const FPURegister f13 = { 13 }; 301 const FPURegister f14 = { 14 }; // Arg 1 in hard float mode. 302 const FPURegister f15 = { 15 }; 303 const FPURegister f16 = { 16 }; 304 const FPURegister f17 = { 17 }; 305 const FPURegister f18 = { 18 }; 306 const FPURegister f19 = { 19 }; 307 const FPURegister f20 = { 20 }; 308 const FPURegister f21 = { 21 }; 309 const FPURegister f22 = { 22 }; 310 const FPURegister f23 = { 23 }; 311 const FPURegister f24 = { 24 }; 312 const FPURegister f25 = { 25 }; 313 const FPURegister f26 = { 26 }; 314 const FPURegister f27 = { 27 }; 315 const FPURegister f28 = { 28 }; 316 const FPURegister f29 = { 29 }; 317 const FPURegister f30 = { 30 }; 318 const FPURegister f31 = { 31 }; 319 320 // Register aliases. 321 // cp is assumed to be a callee saved register. 322 // Defined using #define instead of "static const Register&" because Clang 323 // complains otherwise when a compilation unit that includes this header 324 // doesn't use the variables. 325 #define kRootRegister s6 326 #define cp s7 327 #define kLithiumScratchReg s3 328 #define kLithiumScratchReg2 s4 329 #define kLithiumScratchDouble f30 330 #define kDoubleRegZero f28 331 // Used on mips32r6 for compare operations. 332 #define kDoubleCompareReg f31 333 334 // FPU (coprocessor 1) control registers. 335 // Currently only FCSR (#31) is implemented. 336 struct FPUControlRegister { is_validFPUControlRegister337 bool is_valid() const { return code_ == kFCSRRegister; } isFPUControlRegister338 bool is(FPUControlRegister creg) const { return code_ == creg.code_; } codeFPUControlRegister339 int code() const { 340 DCHECK(is_valid()); 341 return code_; 342 } bitFPUControlRegister343 int bit() const { 344 DCHECK(is_valid()); 345 return 1 << code_; 346 } setcodeFPUControlRegister347 void setcode(int f) { 348 code_ = f; 349 DCHECK(is_valid()); 350 } 351 // Unfortunately we can't make this private in a struct. 352 int code_; 353 }; 354 355 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister }; 356 const FPUControlRegister FCSR = { kFCSRRegister }; 357 358 359 // ----------------------------------------------------------------------------- 360 // Machine instruction Operands. 361 362 // Class Operand represents a shifter operand in data processing instructions. 363 class Operand BASE_EMBEDDED { 364 public: 365 // Immediate. 366 INLINE(explicit Operand(int32_t immediate, 367 RelocInfo::Mode rmode = RelocInfo::NONE32)); 368 INLINE(explicit Operand(const ExternalReference& f)); 369 INLINE(explicit Operand(const char* s)); 370 INLINE(explicit Operand(Object** opp)); 371 INLINE(explicit Operand(Context** cpp)); 372 explicit Operand(Handle<Object> handle); 373 INLINE(explicit Operand(Smi* value)); 374 375 // Register. 376 INLINE(explicit Operand(Register rm)); 377 378 // Return true if this is a register operand. 379 INLINE(bool is_reg() const); 380 immediate()381 inline int32_t immediate() const { 382 DCHECK(!is_reg()); 383 return imm32_; 384 } 385 rm()386 Register rm() const { return rm_; } 387 388 private: 389 Register rm_; 390 int32_t imm32_; // Valid if rm_ == no_reg. 391 RelocInfo::Mode rmode_; 392 393 friend class Assembler; 394 friend class MacroAssembler; 395 }; 396 397 398 // On MIPS we have only one adressing mode with base_reg + offset. 399 // Class MemOperand represents a memory operand in load and store instructions. 400 class MemOperand : public Operand { 401 public: 402 // Immediate value attached to offset. 403 enum OffsetAddend { 404 offset_minus_one = -1, 405 offset_zero = 0 406 }; 407 408 explicit MemOperand(Register rn, int32_t offset = 0); 409 explicit MemOperand(Register rn, int32_t unit, int32_t multiplier, 410 OffsetAddend offset_addend = offset_zero); offset()411 int32_t offset() const { return offset_; } 412 OffsetIsInt16Encodable()413 bool OffsetIsInt16Encodable() const { 414 return is_int16(offset_); 415 } 416 417 private: 418 int32_t offset_; 419 420 friend class Assembler; 421 }; 422 423 424 class Assembler : public AssemblerBase { 425 public: 426 // Create an assembler. Instructions and relocation information are emitted 427 // into a buffer, with the instructions starting from the beginning and the 428 // relocation information starting from the end of the buffer. See CodeDesc 429 // for a detailed comment on the layout (globals.h). 430 // 431 // If the provided buffer is NULL, the assembler allocates and grows its own 432 // buffer, and buffer_size determines the initial buffer size. The buffer is 433 // owned by the assembler and deallocated upon destruction of the assembler. 434 // 435 // If the provided buffer is not NULL, the assembler uses the provided buffer 436 // for code generation and assumes its size to be buffer_size. If the buffer 437 // is too small, a fatal error occurs. No deallocation of the buffer is done 438 // upon destruction of the assembler. 439 Assembler(Isolate* isolate, void* buffer, int buffer_size); ~Assembler()440 virtual ~Assembler() { } 441 442 // GetCode emits any pending (non-emitted) code and fills the descriptor 443 // desc. GetCode() is idempotent; it returns the same result if no other 444 // Assembler functions are invoked in between GetCode() calls. 445 void GetCode(CodeDesc* desc); 446 447 // Label operations & relative jumps (PPUM Appendix D). 448 // 449 // Takes a branch opcode (cc) and a label (L) and generates 450 // either a backward branch or a forward branch and links it 451 // to the label fixup chain. Usage: 452 // 453 // Label L; // unbound label 454 // j(cc, &L); // forward branch to unbound label 455 // bind(&L); // bind label to the current pc 456 // j(cc, &L); // backward branch to bound label 457 // bind(&L); // illegal: a label may be bound only once 458 // 459 // Note: The same Label can be used for forward and backward branches 460 // but it may be bound only once. 461 void bind(Label* L); // Binds an unbound label L to current code position. 462 // Determines if Label is bound and near enough so that branch instruction 463 // can be used to reach it, instead of jump instruction. 464 bool is_near(Label* L); 465 466 // Returns the branch offset to the given label from the current code 467 // position. Links the label to the current position if it is still unbound. 468 // Manages the jump elimination optimization if the second parameter is true. 469 int32_t branch_offset(Label* L, bool jump_elimination_allowed); 470 int32_t branch_offset_compact(Label* L, bool jump_elimination_allowed); 471 int32_t branch_offset21(Label* L, bool jump_elimination_allowed); 472 int32_t branch_offset21_compact(Label* L, bool jump_elimination_allowed); shifted_branch_offset(Label * L,bool jump_elimination_allowed)473 int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) { 474 int32_t o = branch_offset(L, jump_elimination_allowed); 475 DCHECK((o & 3) == 0); // Assert the offset is aligned. 476 return o >> 2; 477 } shifted_branch_offset_compact(Label * L,bool jump_elimination_allowed)478 int32_t shifted_branch_offset_compact(Label* L, 479 bool jump_elimination_allowed) { 480 int32_t o = branch_offset_compact(L, jump_elimination_allowed); 481 DCHECK((o & 3) == 0); // Assert the offset is aligned. 482 return o >> 2; 483 } 484 uint32_t jump_address(Label* L); 485 486 // Puts a labels target address at the given position. 487 // The high 8 bits are set to zero. 488 void label_at_put(Label* L, int at_offset); 489 490 // Read/Modify the code target address in the branch/call instruction at pc. 491 static Address target_address_at(Address pc); 492 static void set_target_address_at(Address pc, 493 Address target, 494 ICacheFlushMode icache_flush_mode = 495 FLUSH_ICACHE_IF_NEEDED); 496 // On MIPS there is no Constant Pool so we skip that parameter. INLINE(static Address target_address_at (Address pc,ConstantPoolArray * constant_pool))497 INLINE(static Address target_address_at(Address pc, 498 ConstantPoolArray* constant_pool)) { 499 return target_address_at(pc); 500 } INLINE(static void set_target_address_at (Address pc,ConstantPoolArray * constant_pool,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))501 INLINE(static void set_target_address_at(Address pc, 502 ConstantPoolArray* constant_pool, 503 Address target, 504 ICacheFlushMode icache_flush_mode = 505 FLUSH_ICACHE_IF_NEEDED)) { 506 set_target_address_at(pc, target, icache_flush_mode); 507 } INLINE(static Address target_address_at (Address pc,Code * code))508 INLINE(static Address target_address_at(Address pc, Code* code)) { 509 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL; 510 return target_address_at(pc, constant_pool); 511 } INLINE(static void set_target_address_at (Address pc,Code * code,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))512 INLINE(static void set_target_address_at(Address pc, 513 Code* code, 514 Address target, 515 ICacheFlushMode icache_flush_mode = 516 FLUSH_ICACHE_IF_NEEDED)) { 517 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL; 518 set_target_address_at(pc, constant_pool, target, icache_flush_mode); 519 } 520 521 // Return the code target address at a call site from the return address 522 // of that call in the instruction stream. 523 inline static Address target_address_from_return_address(Address pc); 524 525 // Return the code target address of the patch debug break slot 526 inline static Address break_address_from_return_address(Address pc); 527 528 static void JumpLabelToJumpRegister(Address pc); 529 530 static void QuietNaN(HeapObject* nan); 531 532 // This sets the branch destination (which gets loaded at the call address). 533 // This is for calls and branches within generated code. The serializer 534 // has already deserialized the lui/ori instructions etc. deserialization_set_special_target_at(Address instruction_payload,Code * code,Address target)535 inline static void deserialization_set_special_target_at( 536 Address instruction_payload, Code* code, Address target) { 537 set_target_address_at( 538 instruction_payload - kInstructionsFor32BitConstant * kInstrSize, 539 code, 540 target); 541 } 542 543 // Size of an instruction. 544 static const int kInstrSize = sizeof(Instr); 545 546 // Difference between address of current opcode and target address offset. 547 static const int kBranchPCOffset = 4; 548 549 // Here we are patching the address in the LUI/ORI instruction pair. 550 // These values are used in the serialization process and must be zero for 551 // MIPS platform, as Code, Embedded Object or External-reference pointers 552 // are split across two consecutive instructions and don't exist separately 553 // in the code, so the serializer should not step forwards in memory after 554 // a target is resolved and written. 555 static const int kSpecialTargetSize = 0; 556 557 // Number of consecutive instructions used to store 32bit constant. 558 // Before jump-optimizations, this constant was used in 559 // RelocInfo::target_address_address() function to tell serializer address of 560 // the instruction that follows LUI/ORI instruction pair. Now, with new jump 561 // optimization, where jump-through-register instruction that usually 562 // follows LUI/ORI pair is substituted with J/JAL, this constant equals 563 // to 3 instructions (LUI+ORI+J/JAL/JR/JALR). 564 static const int kInstructionsFor32BitConstant = 3; 565 566 // Distance between the instruction referring to the address of the call 567 // target and the return address. 568 static const int kCallTargetAddressOffset = 4 * kInstrSize; 569 570 // Distance between start of patched return sequence and the emitted address 571 // to jump to. 572 static const int kPatchReturnSequenceAddressOffset = 0; 573 574 // Distance between start of patched debug break slot and the emitted address 575 // to jump to. 576 static const int kPatchDebugBreakSlotAddressOffset = 0 * kInstrSize; 577 578 // Difference between address of current opcode and value read from pc 579 // register. 580 static const int kPcLoadDelta = 4; 581 582 static const int kPatchDebugBreakSlotReturnOffset = 4 * kInstrSize; 583 584 // Number of instructions used for the JS return sequence. The constant is 585 // used by the debugger to patch the JS return sequence. 586 static const int kJSReturnSequenceInstructions = 7; 587 static const int kDebugBreakSlotInstructions = 4; 588 static const int kDebugBreakSlotLength = 589 kDebugBreakSlotInstructions * kInstrSize; 590 591 592 // --------------------------------------------------------------------------- 593 // Code generation. 594 595 // Insert the smallest number of nop instructions 596 // possible to align the pc offset to a multiple 597 // of m. m must be a power of 2 (>= 4). 598 void Align(int m); 599 // Aligns code to something that's optimal for a jump target for the platform. 600 void CodeTargetAlign(); 601 602 // Different nop operations are used by the code generator to detect certain 603 // states of the generated code. 604 enum NopMarkerTypes { 605 NON_MARKING_NOP = 0, 606 DEBUG_BREAK_NOP, 607 // IC markers. 608 PROPERTY_ACCESS_INLINED, 609 PROPERTY_ACCESS_INLINED_CONTEXT, 610 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE, 611 // Helper values. 612 LAST_CODE_MARKER, 613 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED, 614 // Code aging 615 CODE_AGE_MARKER_NOP = 6, 616 CODE_AGE_SEQUENCE_NOP 617 }; 618 619 // Type == 0 is the default non-marking nop. For mips this is a 620 // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero 621 // marking, to avoid conflict with ssnop and ehb instructions. 622 void nop(unsigned int type = 0) { 623 DCHECK(type < 32); 624 Register nop_rt_reg = (type == 0) ? zero_reg : at; 625 sll(zero_reg, nop_rt_reg, type, true); 626 } 627 628 629 // --------Branch-and-jump-instructions---------- 630 // We don't use likely variant of instructions. 631 void b(int16_t offset); b(Label * L)632 void b(Label* L) { b(branch_offset(L, false)>>2); } 633 void bal(int16_t offset); bal(Label * L)634 void bal(Label* L) { bal(branch_offset(L, false)>>2); } 635 636 void beq(Register rs, Register rt, int16_t offset); beq(Register rs,Register rt,Label * L)637 void beq(Register rs, Register rt, Label* L) { 638 beq(rs, rt, branch_offset(L, false) >> 2); 639 } 640 void bgez(Register rs, int16_t offset); 641 void bgezc(Register rt, int16_t offset); bgezc(Register rt,Label * L)642 void bgezc(Register rt, Label* L) { 643 bgezc(rt, branch_offset_compact(L, false)>>2); 644 } 645 void bgeuc(Register rs, Register rt, int16_t offset); bgeuc(Register rs,Register rt,Label * L)646 void bgeuc(Register rs, Register rt, Label* L) { 647 bgeuc(rs, rt, branch_offset_compact(L, false)>>2); 648 } 649 void bgec(Register rs, Register rt, int16_t offset); bgec(Register rs,Register rt,Label * L)650 void bgec(Register rs, Register rt, Label* L) { 651 bgec(rs, rt, branch_offset_compact(L, false)>>2); 652 } 653 void bgezal(Register rs, int16_t offset); 654 void bgezalc(Register rt, int16_t offset); bgezalc(Register rt,Label * L)655 void bgezalc(Register rt, Label* L) { 656 bgezalc(rt, branch_offset_compact(L, false)>>2); 657 } 658 void bgezall(Register rs, int16_t offset); bgezall(Register rs,Label * L)659 void bgezall(Register rs, Label* L) { 660 bgezall(rs, branch_offset(L, false)>>2); 661 } 662 void bgtz(Register rs, int16_t offset); 663 void bgtzc(Register rt, int16_t offset); bgtzc(Register rt,Label * L)664 void bgtzc(Register rt, Label* L) { 665 bgtzc(rt, branch_offset_compact(L, false)>>2); 666 } 667 void blez(Register rs, int16_t offset); 668 void blezc(Register rt, int16_t offset); blezc(Register rt,Label * L)669 void blezc(Register rt, Label* L) { 670 blezc(rt, branch_offset_compact(L, false)>>2); 671 } 672 void bltz(Register rs, int16_t offset); 673 void bltzc(Register rt, int16_t offset); bltzc(Register rt,Label * L)674 void bltzc(Register rt, Label* L) { 675 bltzc(rt, branch_offset_compact(L, false)>>2); 676 } 677 void bltuc(Register rs, Register rt, int16_t offset); bltuc(Register rs,Register rt,Label * L)678 void bltuc(Register rs, Register rt, Label* L) { 679 bltuc(rs, rt, branch_offset_compact(L, false)>>2); 680 } 681 void bltc(Register rs, Register rt, int16_t offset); bltc(Register rs,Register rt,Label * L)682 void bltc(Register rs, Register rt, Label* L) { 683 bltc(rs, rt, branch_offset_compact(L, false)>>2); 684 } 685 void bltzal(Register rs, int16_t offset); 686 void blezalc(Register rt, int16_t offset); blezalc(Register rt,Label * L)687 void blezalc(Register rt, Label* L) { 688 blezalc(rt, branch_offset_compact(L, false)>>2); 689 } 690 void bltzalc(Register rt, int16_t offset); bltzalc(Register rt,Label * L)691 void bltzalc(Register rt, Label* L) { 692 bltzalc(rt, branch_offset_compact(L, false)>>2); 693 } 694 void bgtzalc(Register rt, int16_t offset); bgtzalc(Register rt,Label * L)695 void bgtzalc(Register rt, Label* L) { 696 bgtzalc(rt, branch_offset_compact(L, false)>>2); 697 } 698 void beqzalc(Register rt, int16_t offset); beqzalc(Register rt,Label * L)699 void beqzalc(Register rt, Label* L) { 700 beqzalc(rt, branch_offset_compact(L, false)>>2); 701 } 702 void beqc(Register rs, Register rt, int16_t offset); beqc(Register rs,Register rt,Label * L)703 void beqc(Register rs, Register rt, Label* L) { 704 beqc(rs, rt, branch_offset_compact(L, false)>>2); 705 } 706 void beqzc(Register rs, int32_t offset); beqzc(Register rs,Label * L)707 void beqzc(Register rs, Label* L) { 708 beqzc(rs, branch_offset21_compact(L, false)>>2); 709 } 710 void bnezalc(Register rt, int16_t offset); bnezalc(Register rt,Label * L)711 void bnezalc(Register rt, Label* L) { 712 bnezalc(rt, branch_offset_compact(L, false)>>2); 713 } 714 void bnec(Register rs, Register rt, int16_t offset); bnec(Register rs,Register rt,Label * L)715 void bnec(Register rs, Register rt, Label* L) { 716 bnec(rs, rt, branch_offset_compact(L, false)>>2); 717 } 718 void bnezc(Register rt, int32_t offset); bnezc(Register rt,Label * L)719 void bnezc(Register rt, Label* L) { 720 bnezc(rt, branch_offset21_compact(L, false)>>2); 721 } 722 void bne(Register rs, Register rt, int16_t offset); bne(Register rs,Register rt,Label * L)723 void bne(Register rs, Register rt, Label* L) { 724 bne(rs, rt, branch_offset(L, false)>>2); 725 } 726 void bovc(Register rs, Register rt, int16_t offset); bovc(Register rs,Register rt,Label * L)727 void bovc(Register rs, Register rt, Label* L) { 728 bovc(rs, rt, branch_offset_compact(L, false)>>2); 729 } 730 void bnvc(Register rs, Register rt, int16_t offset); bnvc(Register rs,Register rt,Label * L)731 void bnvc(Register rs, Register rt, Label* L) { 732 bnvc(rs, rt, branch_offset_compact(L, false)>>2); 733 } 734 735 // Never use the int16_t b(l)cond version with a branch offset 736 // instead of using the Label* version. 737 738 // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits. 739 void j(int32_t target); 740 void jal(int32_t target); 741 void jalr(Register rs, Register rd = ra); 742 void jr(Register target); 743 void j_or_jr(int32_t target, Register rs); 744 void jal_or_jalr(int32_t target, Register rs); 745 746 747 // -------Data-processing-instructions--------- 748 749 // Arithmetic. 750 void addu(Register rd, Register rs, Register rt); 751 void subu(Register rd, Register rs, Register rt); 752 void mult(Register rs, Register rt); 753 void multu(Register rs, Register rt); 754 void div(Register rs, Register rt); 755 void divu(Register rs, Register rt); 756 void div(Register rd, Register rs, Register rt); 757 void divu(Register rd, Register rs, Register rt); 758 void mod(Register rd, Register rs, Register rt); 759 void modu(Register rd, Register rs, Register rt); 760 void mul(Register rd, Register rs, Register rt); 761 void muh(Register rd, Register rs, Register rt); 762 void mulu(Register rd, Register rs, Register rt); 763 void muhu(Register rd, Register rs, Register rt); 764 765 void addiu(Register rd, Register rs, int32_t j); 766 767 // Logical. 768 void and_(Register rd, Register rs, Register rt); 769 void or_(Register rd, Register rs, Register rt); 770 void xor_(Register rd, Register rs, Register rt); 771 void nor(Register rd, Register rs, Register rt); 772 773 void andi(Register rd, Register rs, int32_t j); 774 void ori(Register rd, Register rs, int32_t j); 775 void xori(Register rd, Register rs, int32_t j); 776 void lui(Register rd, int32_t j); 777 void aui(Register rs, Register rt, int32_t j); 778 779 // Shifts. 780 // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop 781 // and may cause problems in normal code. coming_from_nop makes sure this 782 // doesn't happen. 783 void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false); 784 void sllv(Register rd, Register rt, Register rs); 785 void srl(Register rd, Register rt, uint16_t sa); 786 void srlv(Register rd, Register rt, Register rs); 787 void sra(Register rt, Register rd, uint16_t sa); 788 void srav(Register rt, Register rd, Register rs); 789 void rotr(Register rd, Register rt, uint16_t sa); 790 void rotrv(Register rd, Register rt, Register rs); 791 792 793 // ------------Memory-instructions------------- 794 795 void lb(Register rd, const MemOperand& rs); 796 void lbu(Register rd, const MemOperand& rs); 797 void lh(Register rd, const MemOperand& rs); 798 void lhu(Register rd, const MemOperand& rs); 799 void lw(Register rd, const MemOperand& rs); 800 void lwl(Register rd, const MemOperand& rs); 801 void lwr(Register rd, const MemOperand& rs); 802 void sb(Register rd, const MemOperand& rs); 803 void sh(Register rd, const MemOperand& rs); 804 void sw(Register rd, const MemOperand& rs); 805 void swl(Register rd, const MemOperand& rs); 806 void swr(Register rd, const MemOperand& rs); 807 808 809 // ----------------Prefetch-------------------- 810 811 void pref(int32_t hint, const MemOperand& rs); 812 813 814 // -------------Misc-instructions-------------- 815 816 // Break / Trap instructions. 817 void break_(uint32_t code, bool break_as_stop = false); 818 void stop(const char* msg, uint32_t code = kMaxStopCode); 819 void tge(Register rs, Register rt, uint16_t code); 820 void tgeu(Register rs, Register rt, uint16_t code); 821 void tlt(Register rs, Register rt, uint16_t code); 822 void tltu(Register rs, Register rt, uint16_t code); 823 void teq(Register rs, Register rt, uint16_t code); 824 void tne(Register rs, Register rt, uint16_t code); 825 826 // Move from HI/LO register. 827 void mfhi(Register rd); 828 void mflo(Register rd); 829 830 // Set on less than. 831 void slt(Register rd, Register rs, Register rt); 832 void sltu(Register rd, Register rs, Register rt); 833 void slti(Register rd, Register rs, int32_t j); 834 void sltiu(Register rd, Register rs, int32_t j); 835 836 // Conditional move. 837 void movz(Register rd, Register rs, Register rt); 838 void movn(Register rd, Register rs, Register rt); 839 void movt(Register rd, Register rs, uint16_t cc = 0); 840 void movf(Register rd, Register rs, uint16_t cc = 0); 841 842 void sel(SecondaryField fmt, FPURegister fd, FPURegister ft, 843 FPURegister fs, uint8_t sel); 844 void seleqz(Register rs, Register rt, Register rd); 845 void seleqz(SecondaryField fmt, FPURegister fd, FPURegister ft, 846 FPURegister fs); 847 void selnez(Register rs, Register rt, Register rd); 848 void selnez(SecondaryField fmt, FPURegister fd, FPURegister ft, 849 FPURegister fs); 850 851 // Bit twiddling. 852 void clz(Register rd, Register rs); 853 void ins_(Register rt, Register rs, uint16_t pos, uint16_t size); 854 void ext_(Register rt, Register rs, uint16_t pos, uint16_t size); 855 856 // --------Coprocessor-instructions---------------- 857 858 // Load, store, and move. 859 void lwc1(FPURegister fd, const MemOperand& src); 860 void ldc1(FPURegister fd, const MemOperand& src); 861 862 void swc1(FPURegister fs, const MemOperand& dst); 863 void sdc1(FPURegister fs, const MemOperand& dst); 864 865 void mtc1(Register rt, FPURegister fs); 866 void mthc1(Register rt, FPURegister fs); 867 868 void mfc1(Register rt, FPURegister fs); 869 void mfhc1(Register rt, FPURegister fs); 870 871 void ctc1(Register rt, FPUControlRegister fs); 872 void cfc1(Register rt, FPUControlRegister fs); 873 874 // Arithmetic. 875 void add_d(FPURegister fd, FPURegister fs, FPURegister ft); 876 void sub_d(FPURegister fd, FPURegister fs, FPURegister ft); 877 void mul_d(FPURegister fd, FPURegister fs, FPURegister ft); 878 void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); 879 void div_d(FPURegister fd, FPURegister fs, FPURegister ft); 880 void abs_d(FPURegister fd, FPURegister fs); 881 void mov_d(FPURegister fd, FPURegister fs); 882 void neg_d(FPURegister fd, FPURegister fs); 883 void sqrt_d(FPURegister fd, FPURegister fs); 884 885 // Conversion. 886 void cvt_w_s(FPURegister fd, FPURegister fs); 887 void cvt_w_d(FPURegister fd, FPURegister fs); 888 void trunc_w_s(FPURegister fd, FPURegister fs); 889 void trunc_w_d(FPURegister fd, FPURegister fs); 890 void round_w_s(FPURegister fd, FPURegister fs); 891 void round_w_d(FPURegister fd, FPURegister fs); 892 void floor_w_s(FPURegister fd, FPURegister fs); 893 void floor_w_d(FPURegister fd, FPURegister fs); 894 void ceil_w_s(FPURegister fd, FPURegister fs); 895 void ceil_w_d(FPURegister fd, FPURegister fs); 896 897 void cvt_l_s(FPURegister fd, FPURegister fs); 898 void cvt_l_d(FPURegister fd, FPURegister fs); 899 void trunc_l_s(FPURegister fd, FPURegister fs); 900 void trunc_l_d(FPURegister fd, FPURegister fs); 901 void round_l_s(FPURegister fd, FPURegister fs); 902 void round_l_d(FPURegister fd, FPURegister fs); 903 void floor_l_s(FPURegister fd, FPURegister fs); 904 void floor_l_d(FPURegister fd, FPURegister fs); 905 void ceil_l_s(FPURegister fd, FPURegister fs); 906 void ceil_l_d(FPURegister fd, FPURegister fs); 907 908 void min(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs); 909 void mina(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs); 910 void max(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs); 911 void maxa(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs); 912 913 void cvt_s_w(FPURegister fd, FPURegister fs); 914 void cvt_s_l(FPURegister fd, FPURegister fs); 915 void cvt_s_d(FPURegister fd, FPURegister fs); 916 917 void cvt_d_w(FPURegister fd, FPURegister fs); 918 void cvt_d_l(FPURegister fd, FPURegister fs); 919 void cvt_d_s(FPURegister fd, FPURegister fs); 920 921 // Conditions and branches for MIPSr6. 922 void cmp(FPUCondition cond, SecondaryField fmt, 923 FPURegister fd, FPURegister ft, FPURegister fs); 924 925 void bc1eqz(int16_t offset, FPURegister ft); bc1eqz(Label * L,FPURegister ft)926 void bc1eqz(Label* L, FPURegister ft) { 927 bc1eqz(branch_offset(L, false)>>2, ft); 928 } 929 void bc1nez(int16_t offset, FPURegister ft); bc1nez(Label * L,FPURegister ft)930 void bc1nez(Label* L, FPURegister ft) { 931 bc1nez(branch_offset(L, false)>>2, ft); 932 } 933 934 // Conditions and branches for non MIPSr6. 935 void c(FPUCondition cond, SecondaryField fmt, 936 FPURegister ft, FPURegister fs, uint16_t cc = 0); 937 938 void bc1f(int16_t offset, uint16_t cc = 0); 939 void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); } 940 void bc1t(int16_t offset, uint16_t cc = 0); 941 void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); } 942 void fcmp(FPURegister src1, const double src2, FPUCondition cond); 943 944 // Check the code size generated from label to here. SizeOfCodeGeneratedSince(Label * label)945 int SizeOfCodeGeneratedSince(Label* label) { 946 return pc_offset() - label->pos(); 947 } 948 949 // Check the number of instructions generated from label to here. InstructionsGeneratedSince(Label * label)950 int InstructionsGeneratedSince(Label* label) { 951 return SizeOfCodeGeneratedSince(label) / kInstrSize; 952 } 953 954 // Class for scoping postponing the trampoline pool generation. 955 class BlockTrampolinePoolScope { 956 public: BlockTrampolinePoolScope(Assembler * assem)957 explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) { 958 assem_->StartBlockTrampolinePool(); 959 } ~BlockTrampolinePoolScope()960 ~BlockTrampolinePoolScope() { 961 assem_->EndBlockTrampolinePool(); 962 } 963 964 private: 965 Assembler* assem_; 966 967 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope); 968 }; 969 970 // Class for postponing the assembly buffer growth. Typically used for 971 // sequences of instructions that must be emitted as a unit, before 972 // buffer growth (and relocation) can occur. 973 // This blocking scope is not nestable. 974 class BlockGrowBufferScope { 975 public: BlockGrowBufferScope(Assembler * assem)976 explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) { 977 assem_->StartBlockGrowBuffer(); 978 } ~BlockGrowBufferScope()979 ~BlockGrowBufferScope() { 980 assem_->EndBlockGrowBuffer(); 981 } 982 983 private: 984 Assembler* assem_; 985 986 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope); 987 }; 988 989 // Debugging. 990 991 // Mark address of the ExitJSFrame code. 992 void RecordJSReturn(); 993 994 // Mark address of a debug break slot. 995 void RecordDebugBreakSlot(); 996 997 // Record the AST id of the CallIC being compiled, so that it can be placed 998 // in the relocation information. SetRecordedAstId(TypeFeedbackId ast_id)999 void SetRecordedAstId(TypeFeedbackId ast_id) { 1000 DCHECK(recorded_ast_id_.IsNone()); 1001 recorded_ast_id_ = ast_id; 1002 } 1003 RecordedAstId()1004 TypeFeedbackId RecordedAstId() { 1005 DCHECK(!recorded_ast_id_.IsNone()); 1006 return recorded_ast_id_; 1007 } 1008 ClearRecordedAstId()1009 void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); } 1010 1011 // Record a comment relocation entry that can be used by a disassembler. 1012 // Use --code-comments to enable. 1013 void RecordComment(const char* msg); 1014 1015 static int RelocateInternalReference(byte* pc, intptr_t pc_delta); 1016 1017 // Writes a single byte or word of data in the code stream. Used for 1018 // inline tables, e.g., jump-tables. 1019 void db(uint8_t data); 1020 void dd(uint32_t data); 1021 1022 // Emits the address of the code stub's first instruction. 1023 void emit_code_stub_address(Code* stub); 1024 positions_recorder()1025 PositionsRecorder* positions_recorder() { return &positions_recorder_; } 1026 1027 // Postpone the generation of the trampoline pool for the specified number of 1028 // instructions. 1029 void BlockTrampolinePoolFor(int instructions); 1030 1031 // Check if there is less than kGap bytes available in the buffer. 1032 // If this is the case, we need to grow the buffer before emitting 1033 // an instruction or relocation information. overflow()1034 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } 1035 1036 // Get the number of bytes available in the buffer. available_space()1037 inline int available_space() const { return reloc_info_writer.pos() - pc_; } 1038 1039 // Read/patch instructions. instr_at(byte * pc)1040 static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); } instr_at_put(byte * pc,Instr instr)1041 static void instr_at_put(byte* pc, Instr instr) { 1042 *reinterpret_cast<Instr*>(pc) = instr; 1043 } instr_at(int pos)1044 Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); } instr_at_put(int pos,Instr instr)1045 void instr_at_put(int pos, Instr instr) { 1046 *reinterpret_cast<Instr*>(buffer_ + pos) = instr; 1047 } 1048 1049 // Check if an instruction is a branch of some kind. 1050 static bool IsBranch(Instr instr); 1051 static bool IsBeq(Instr instr); 1052 static bool IsBne(Instr instr); 1053 1054 static bool IsJump(Instr instr); 1055 static bool IsJ(Instr instr); 1056 static bool IsLui(Instr instr); 1057 static bool IsOri(Instr instr); 1058 1059 static bool IsJal(Instr instr); 1060 static bool IsJr(Instr instr); 1061 static bool IsJalr(Instr instr); 1062 1063 static bool IsNop(Instr instr, unsigned int type); 1064 static bool IsPop(Instr instr); 1065 static bool IsPush(Instr instr); 1066 static bool IsLwRegFpOffset(Instr instr); 1067 static bool IsSwRegFpOffset(Instr instr); 1068 static bool IsLwRegFpNegOffset(Instr instr); 1069 static bool IsSwRegFpNegOffset(Instr instr); 1070 1071 static Register GetRtReg(Instr instr); 1072 static Register GetRsReg(Instr instr); 1073 static Register GetRdReg(Instr instr); 1074 1075 static uint32_t GetRt(Instr instr); 1076 static uint32_t GetRtField(Instr instr); 1077 static uint32_t GetRs(Instr instr); 1078 static uint32_t GetRsField(Instr instr); 1079 static uint32_t GetRd(Instr instr); 1080 static uint32_t GetRdField(Instr instr); 1081 static uint32_t GetSa(Instr instr); 1082 static uint32_t GetSaField(Instr instr); 1083 static uint32_t GetOpcodeField(Instr instr); 1084 static uint32_t GetFunction(Instr instr); 1085 static uint32_t GetFunctionField(Instr instr); 1086 static uint32_t GetImmediate16(Instr instr); 1087 static uint32_t GetLabelConst(Instr instr); 1088 1089 static int32_t GetBranchOffset(Instr instr); 1090 static bool IsLw(Instr instr); 1091 static int16_t GetLwOffset(Instr instr); 1092 static Instr SetLwOffset(Instr instr, int16_t offset); 1093 1094 static bool IsSw(Instr instr); 1095 static Instr SetSwOffset(Instr instr, int16_t offset); 1096 static bool IsAddImmediate(Instr instr); 1097 static Instr SetAddImmediateOffset(Instr instr, int16_t offset); 1098 1099 static bool IsAndImmediate(Instr instr); 1100 static bool IsEmittedConstant(Instr instr); 1101 1102 void CheckTrampolinePool(); 1103 1104 // Allocate a constant pool of the correct size for the generated code. 1105 Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate); 1106 1107 // Generate the constant pool for the generated code. 1108 void PopulateConstantPool(ConstantPoolArray* constant_pool); 1109 1110 protected: 1111 // Relocation for a type-recording IC has the AST id added to it. This 1112 // member variable is a way to pass the information from the call site to 1113 // the relocation info. 1114 TypeFeedbackId recorded_ast_id_; 1115 buffer_space()1116 int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; } 1117 1118 // Decode branch instruction at pos and return branch target pos. 1119 int target_at(int32_t pos); 1120 1121 // Patch branch instruction at pos to branch to given branch target pos. 1122 void target_at_put(int32_t pos, int32_t target_pos); 1123 1124 // Say if we need to relocate with this mode. 1125 bool MustUseReg(RelocInfo::Mode rmode); 1126 1127 // Record reloc info for current pc_. 1128 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); 1129 1130 // Block the emission of the trampoline pool before pc_offset. BlockTrampolinePoolBefore(int pc_offset)1131 void BlockTrampolinePoolBefore(int pc_offset) { 1132 if (no_trampoline_pool_before_ < pc_offset) 1133 no_trampoline_pool_before_ = pc_offset; 1134 } 1135 StartBlockTrampolinePool()1136 void StartBlockTrampolinePool() { 1137 trampoline_pool_blocked_nesting_++; 1138 } 1139 EndBlockTrampolinePool()1140 void EndBlockTrampolinePool() { 1141 trampoline_pool_blocked_nesting_--; 1142 } 1143 is_trampoline_pool_blocked()1144 bool is_trampoline_pool_blocked() const { 1145 return trampoline_pool_blocked_nesting_ > 0; 1146 } 1147 has_exception()1148 bool has_exception() const { 1149 return internal_trampoline_exception_; 1150 } 1151 1152 void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi); 1153 is_trampoline_emitted()1154 bool is_trampoline_emitted() const { 1155 return trampoline_emitted_; 1156 } 1157 1158 // Temporarily block automatic assembly buffer growth. StartBlockGrowBuffer()1159 void StartBlockGrowBuffer() { 1160 DCHECK(!block_buffer_growth_); 1161 block_buffer_growth_ = true; 1162 } 1163 EndBlockGrowBuffer()1164 void EndBlockGrowBuffer() { 1165 DCHECK(block_buffer_growth_); 1166 block_buffer_growth_ = false; 1167 } 1168 is_buffer_growth_blocked()1169 bool is_buffer_growth_blocked() const { 1170 return block_buffer_growth_; 1171 } 1172 1173 private: 1174 // Buffer size and constant pool distance are checked together at regular 1175 // intervals of kBufferCheckInterval emitted bytes. 1176 static const int kBufferCheckInterval = 1*KB/2; 1177 1178 // Code generation. 1179 // The relocation writer's position is at least kGap bytes below the end of 1180 // the generated instructions. This is so that multi-instruction sequences do 1181 // not have to check for overflow. The same is true for writes of large 1182 // relocation info entries. 1183 static const int kGap = 32; 1184 1185 1186 // Repeated checking whether the trampoline pool should be emitted is rather 1187 // expensive. By default we only check again once a number of instructions 1188 // has been generated. 1189 static const int kCheckConstIntervalInst = 32; 1190 static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize; 1191 1192 int next_buffer_check_; // pc offset of next buffer check. 1193 1194 // Emission of the trampoline pool may be blocked in some code sequences. 1195 int trampoline_pool_blocked_nesting_; // Block emission if this is not zero. 1196 int no_trampoline_pool_before_; // Block emission before this pc offset. 1197 1198 // Keep track of the last emitted pool to guarantee a maximal distance. 1199 int last_trampoline_pool_end_; // pc offset of the end of the last pool. 1200 1201 // Automatic growth of the assembly buffer may be blocked for some sequences. 1202 bool block_buffer_growth_; // Block growth when true. 1203 1204 // Relocation information generation. 1205 // Each relocation is encoded as a variable size value. 1206 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize; 1207 RelocInfoWriter reloc_info_writer; 1208 1209 // The bound position, before this we cannot do instruction elimination. 1210 int last_bound_pos_; 1211 1212 // Code emission. 1213 inline void CheckBuffer(); 1214 void GrowBuffer(); 1215 inline void emit(Instr x); 1216 inline void CheckTrampolinePoolQuick(); 1217 1218 // Instruction generation. 1219 // We have 3 different kind of encoding layout on MIPS. 1220 // However due to many different types of objects encoded in the same fields 1221 // we have quite a few aliases for each mode. 1222 // Using the same structure to refer to Register and FPURegister would spare a 1223 // few aliases, but mixing both does not look clean to me. 1224 // Anyway we could surely implement this differently. 1225 1226 void GenInstrRegister(Opcode opcode, 1227 Register rs, 1228 Register rt, 1229 Register rd, 1230 uint16_t sa = 0, 1231 SecondaryField func = NULLSF); 1232 1233 void GenInstrRegister(Opcode opcode, 1234 Register rs, 1235 Register rt, 1236 uint16_t msb, 1237 uint16_t lsb, 1238 SecondaryField func); 1239 1240 void GenInstrRegister(Opcode opcode, 1241 SecondaryField fmt, 1242 FPURegister ft, 1243 FPURegister fs, 1244 FPURegister fd, 1245 SecondaryField func = NULLSF); 1246 1247 void GenInstrRegister(Opcode opcode, 1248 FPURegister fr, 1249 FPURegister ft, 1250 FPURegister fs, 1251 FPURegister fd, 1252 SecondaryField func = NULLSF); 1253 1254 void GenInstrRegister(Opcode opcode, 1255 SecondaryField fmt, 1256 Register rt, 1257 FPURegister fs, 1258 FPURegister fd, 1259 SecondaryField func = NULLSF); 1260 1261 void GenInstrRegister(Opcode opcode, 1262 SecondaryField fmt, 1263 Register rt, 1264 FPUControlRegister fs, 1265 SecondaryField func = NULLSF); 1266 1267 1268 void GenInstrImmediate(Opcode opcode, 1269 Register rs, 1270 Register rt, 1271 int32_t j); 1272 void GenInstrImmediate(Opcode opcode, 1273 Register rs, 1274 SecondaryField SF, 1275 int32_t j); 1276 void GenInstrImmediate(Opcode opcode, 1277 Register r1, 1278 FPURegister r2, 1279 int32_t j); 1280 1281 1282 void GenInstrJump(Opcode opcode, 1283 uint32_t address); 1284 1285 // Helpers. 1286 void LoadRegPlusOffsetToAt(const MemOperand& src); 1287 1288 // Labels. 1289 void print(Label* L); 1290 void bind_to(Label* L, int pos); 1291 void next(Label* L); 1292 1293 // One trampoline consists of: 1294 // - space for trampoline slots, 1295 // - space for labels. 1296 // 1297 // Space for trampoline slots is equal to slot_count * 2 * kInstrSize. 1298 // Space for trampoline slots preceeds space for labels. Each label is of one 1299 // instruction size, so total amount for labels is equal to 1300 // label_count * kInstrSize. 1301 class Trampoline { 1302 public: Trampoline()1303 Trampoline() { 1304 start_ = 0; 1305 next_slot_ = 0; 1306 free_slot_count_ = 0; 1307 end_ = 0; 1308 } Trampoline(int start,int slot_count)1309 Trampoline(int start, int slot_count) { 1310 start_ = start; 1311 next_slot_ = start; 1312 free_slot_count_ = slot_count; 1313 end_ = start + slot_count * kTrampolineSlotsSize; 1314 } start()1315 int start() { 1316 return start_; 1317 } end()1318 int end() { 1319 return end_; 1320 } take_slot()1321 int take_slot() { 1322 int trampoline_slot = kInvalidSlotPos; 1323 if (free_slot_count_ <= 0) { 1324 // We have run out of space on trampolines. 1325 // Make sure we fail in debug mode, so we become aware of each case 1326 // when this happens. 1327 DCHECK(0); 1328 // Internal exception will be caught. 1329 } else { 1330 trampoline_slot = next_slot_; 1331 free_slot_count_--; 1332 next_slot_ += kTrampolineSlotsSize; 1333 } 1334 return trampoline_slot; 1335 } 1336 1337 private: 1338 int start_; 1339 int end_; 1340 int next_slot_; 1341 int free_slot_count_; 1342 }; 1343 1344 int32_t get_trampoline_entry(int32_t pos); 1345 int unbound_labels_count_; 1346 // If trampoline is emitted, generated code is becoming large. As this is 1347 // already a slow case which can possibly break our code generation for the 1348 // extreme case, we use this information to trigger different mode of 1349 // branch instruction generation, where we use jump instructions rather 1350 // than regular branch instructions. 1351 bool trampoline_emitted_; 1352 static const int kTrampolineSlotsSize = 4 * kInstrSize; 1353 static const int kMaxBranchOffset = (1 << (18 - 1)) - 1; 1354 static const int kInvalidSlotPos = -1; 1355 1356 Trampoline trampoline_; 1357 bool internal_trampoline_exception_; 1358 1359 friend class RegExpMacroAssemblerMIPS; 1360 friend class RelocInfo; 1361 friend class CodePatcher; 1362 friend class BlockTrampolinePoolScope; 1363 1364 PositionsRecorder positions_recorder_; 1365 friend class PositionsRecorder; 1366 friend class EnsureSpace; 1367 }; 1368 1369 1370 class EnsureSpace BASE_EMBEDDED { 1371 public: EnsureSpace(Assembler * assembler)1372 explicit EnsureSpace(Assembler* assembler) { 1373 assembler->CheckBuffer(); 1374 } 1375 }; 1376 1377 } } // namespace v8::internal 1378 1379 #endif // V8_ARM_ASSEMBLER_MIPS_H_ 1380