1 /*
2 **
3 ** Copyright 2007, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18 //#define LOG_NDEBUG 0
19 #define LOG_TAG "AudioTrack"
20
21 #include <inttypes.h>
22 #include <math.h>
23 #include <sys/resource.h>
24
25 #include <audio_utils/primitives.h>
26 #include <binder/IPCThreadState.h>
27 #include <media/AudioTrack.h>
28 #include <utils/Log.h>
29 #include <private/media/AudioTrackShared.h>
30 #include <media/IAudioFlinger.h>
31 #include <media/AudioPolicyHelper.h>
32 #include <media/AudioResamplerPublic.h>
33
34 #define WAIT_PERIOD_MS 10
35 #define WAIT_STREAM_END_TIMEOUT_SEC 120
36 static const int kMaxLoopCountNotifications = 32;
37
38 namespace android {
39 // ---------------------------------------------------------------------------
40
41 // TODO: Move to a separate .h
42
43 template <typename T>
min(const T & x,const T & y)44 static inline const T &min(const T &x, const T &y) {
45 return x < y ? x : y;
46 }
47
48 template <typename T>
max(const T & x,const T & y)49 static inline const T &max(const T &x, const T &y) {
50 return x > y ? x : y;
51 }
52
framesToNanoseconds(ssize_t frames,uint32_t sampleRate,float speed)53 static inline nsecs_t framesToNanoseconds(ssize_t frames, uint32_t sampleRate, float speed)
54 {
55 return ((double)frames * 1000000000) / ((double)sampleRate * speed);
56 }
57
convertTimespecToUs(const struct timespec & tv)58 static int64_t convertTimespecToUs(const struct timespec &tv)
59 {
60 return tv.tv_sec * 1000000ll + tv.tv_nsec / 1000;
61 }
62
63 // current monotonic time in microseconds.
getNowUs()64 static int64_t getNowUs()
65 {
66 struct timespec tv;
67 (void) clock_gettime(CLOCK_MONOTONIC, &tv);
68 return convertTimespecToUs(tv);
69 }
70
71 // FIXME: we don't use the pitch setting in the time stretcher (not working);
72 // instead we emulate it using our sample rate converter.
73 static const bool kFixPitch = true; // enable pitch fix
adjustSampleRate(uint32_t sampleRate,float pitch)74 static inline uint32_t adjustSampleRate(uint32_t sampleRate, float pitch)
75 {
76 return kFixPitch ? (sampleRate * pitch + 0.5) : sampleRate;
77 }
78
adjustSpeed(float speed,float pitch)79 static inline float adjustSpeed(float speed, float pitch)
80 {
81 return kFixPitch ? speed / max(pitch, AUDIO_TIMESTRETCH_PITCH_MIN_DELTA) : speed;
82 }
83
adjustPitch(float pitch)84 static inline float adjustPitch(float pitch)
85 {
86 return kFixPitch ? AUDIO_TIMESTRETCH_PITCH_NORMAL : pitch;
87 }
88
89 // Must match similar computation in createTrack_l in Threads.cpp.
90 // TODO: Move to a common library
calculateMinFrameCount(uint32_t afLatencyMs,uint32_t afFrameCount,uint32_t afSampleRate,uint32_t sampleRate,float speed)91 static size_t calculateMinFrameCount(
92 uint32_t afLatencyMs, uint32_t afFrameCount, uint32_t afSampleRate,
93 uint32_t sampleRate, float speed)
94 {
95 // Ensure that buffer depth covers at least audio hardware latency
96 uint32_t minBufCount = afLatencyMs / ((1000 * afFrameCount) / afSampleRate);
97 if (minBufCount < 2) {
98 minBufCount = 2;
99 }
100 ALOGV("calculateMinFrameCount afLatency %u afFrameCount %u afSampleRate %u "
101 "sampleRate %u speed %f minBufCount: %u",
102 afLatencyMs, afFrameCount, afSampleRate, sampleRate, speed, minBufCount);
103 return minBufCount * sourceFramesNeededWithTimestretch(
104 sampleRate, afFrameCount, afSampleRate, speed);
105 }
106
107 // static
getMinFrameCount(size_t * frameCount,audio_stream_type_t streamType,uint32_t sampleRate)108 status_t AudioTrack::getMinFrameCount(
109 size_t* frameCount,
110 audio_stream_type_t streamType,
111 uint32_t sampleRate)
112 {
113 if (frameCount == NULL) {
114 return BAD_VALUE;
115 }
116
117 // FIXME handle in server, like createTrack_l(), possible missing info:
118 // audio_io_handle_t output
119 // audio_format_t format
120 // audio_channel_mask_t channelMask
121 // audio_output_flags_t flags (FAST)
122 uint32_t afSampleRate;
123 status_t status;
124 status = AudioSystem::getOutputSamplingRate(&afSampleRate, streamType);
125 if (status != NO_ERROR) {
126 ALOGE("Unable to query output sample rate for stream type %d; status %d",
127 streamType, status);
128 return status;
129 }
130 size_t afFrameCount;
131 status = AudioSystem::getOutputFrameCount(&afFrameCount, streamType);
132 if (status != NO_ERROR) {
133 ALOGE("Unable to query output frame count for stream type %d; status %d",
134 streamType, status);
135 return status;
136 }
137 uint32_t afLatency;
138 status = AudioSystem::getOutputLatency(&afLatency, streamType);
139 if (status != NO_ERROR) {
140 ALOGE("Unable to query output latency for stream type %d; status %d",
141 streamType, status);
142 return status;
143 }
144
145 // When called from createTrack, speed is 1.0f (normal speed).
146 // This is rechecked again on setting playback rate (TODO: on setting sample rate, too).
147 *frameCount = calculateMinFrameCount(afLatency, afFrameCount, afSampleRate, sampleRate, 1.0f);
148
149 // The formula above should always produce a non-zero value under normal circumstances:
150 // AudioTrack.SAMPLE_RATE_HZ_MIN <= sampleRate <= AudioTrack.SAMPLE_RATE_HZ_MAX.
151 // Return error in the unlikely event that it does not, as that's part of the API contract.
152 if (*frameCount == 0) {
153 ALOGE("AudioTrack::getMinFrameCount failed for streamType %d, sampleRate %u",
154 streamType, sampleRate);
155 return BAD_VALUE;
156 }
157 ALOGV("getMinFrameCount=%zu: afFrameCount=%zu, afSampleRate=%u, afLatency=%u",
158 *frameCount, afFrameCount, afSampleRate, afLatency);
159 return NO_ERROR;
160 }
161
162 // ---------------------------------------------------------------------------
163
AudioTrack()164 AudioTrack::AudioTrack()
165 : mStatus(NO_INIT),
166 mIsTimed(false),
167 mPreviousPriority(ANDROID_PRIORITY_NORMAL),
168 mPreviousSchedulingGroup(SP_DEFAULT),
169 mPausedPosition(0),
170 mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE)
171 {
172 mAttributes.content_type = AUDIO_CONTENT_TYPE_UNKNOWN;
173 mAttributes.usage = AUDIO_USAGE_UNKNOWN;
174 mAttributes.flags = 0x0;
175 strcpy(mAttributes.tags, "");
176 }
177
AudioTrack(audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t frameCount,audio_output_flags_t flags,callback_t cbf,void * user,uint32_t notificationFrames,int sessionId,transfer_type transferType,const audio_offload_info_t * offloadInfo,int uid,pid_t pid,const audio_attributes_t * pAttributes,bool doNotReconnect)178 AudioTrack::AudioTrack(
179 audio_stream_type_t streamType,
180 uint32_t sampleRate,
181 audio_format_t format,
182 audio_channel_mask_t channelMask,
183 size_t frameCount,
184 audio_output_flags_t flags,
185 callback_t cbf,
186 void* user,
187 uint32_t notificationFrames,
188 int sessionId,
189 transfer_type transferType,
190 const audio_offload_info_t *offloadInfo,
191 int uid,
192 pid_t pid,
193 const audio_attributes_t* pAttributes,
194 bool doNotReconnect)
195 : mStatus(NO_INIT),
196 mIsTimed(false),
197 mPreviousPriority(ANDROID_PRIORITY_NORMAL),
198 mPreviousSchedulingGroup(SP_DEFAULT),
199 mPausedPosition(0),
200 mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE)
201 {
202 mStatus = set(streamType, sampleRate, format, channelMask,
203 frameCount, flags, cbf, user, notificationFrames,
204 0 /*sharedBuffer*/, false /*threadCanCallJava*/, sessionId, transferType,
205 offloadInfo, uid, pid, pAttributes, doNotReconnect);
206 }
207
AudioTrack(audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,const sp<IMemory> & sharedBuffer,audio_output_flags_t flags,callback_t cbf,void * user,uint32_t notificationFrames,int sessionId,transfer_type transferType,const audio_offload_info_t * offloadInfo,int uid,pid_t pid,const audio_attributes_t * pAttributes,bool doNotReconnect)208 AudioTrack::AudioTrack(
209 audio_stream_type_t streamType,
210 uint32_t sampleRate,
211 audio_format_t format,
212 audio_channel_mask_t channelMask,
213 const sp<IMemory>& sharedBuffer,
214 audio_output_flags_t flags,
215 callback_t cbf,
216 void* user,
217 uint32_t notificationFrames,
218 int sessionId,
219 transfer_type transferType,
220 const audio_offload_info_t *offloadInfo,
221 int uid,
222 pid_t pid,
223 const audio_attributes_t* pAttributes,
224 bool doNotReconnect)
225 : mStatus(NO_INIT),
226 mIsTimed(false),
227 mPreviousPriority(ANDROID_PRIORITY_NORMAL),
228 mPreviousSchedulingGroup(SP_DEFAULT),
229 mPausedPosition(0),
230 mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE)
231 {
232 mStatus = set(streamType, sampleRate, format, channelMask,
233 0 /*frameCount*/, flags, cbf, user, notificationFrames,
234 sharedBuffer, false /*threadCanCallJava*/, sessionId, transferType, offloadInfo,
235 uid, pid, pAttributes, doNotReconnect);
236 }
237
~AudioTrack()238 AudioTrack::~AudioTrack()
239 {
240 if (mStatus == NO_ERROR) {
241 // Make sure that callback function exits in the case where
242 // it is looping on buffer full condition in obtainBuffer().
243 // Otherwise the callback thread will never exit.
244 stop();
245 if (mAudioTrackThread != 0) {
246 mProxy->interrupt();
247 mAudioTrackThread->requestExit(); // see comment in AudioTrack.h
248 mAudioTrackThread->requestExitAndWait();
249 mAudioTrackThread.clear();
250 }
251 // No lock here: worst case we remove a NULL callback which will be a nop
252 if (mDeviceCallback != 0 && mOutput != AUDIO_IO_HANDLE_NONE) {
253 AudioSystem::removeAudioDeviceCallback(mDeviceCallback, mOutput);
254 }
255 IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this);
256 mAudioTrack.clear();
257 mCblkMemory.clear();
258 mSharedBuffer.clear();
259 IPCThreadState::self()->flushCommands();
260 ALOGV("~AudioTrack, releasing session id %d from %d on behalf of %d",
261 mSessionId, IPCThreadState::self()->getCallingPid(), mClientPid);
262 AudioSystem::releaseAudioSessionId(mSessionId, mClientPid);
263 }
264 }
265
set(audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t frameCount,audio_output_flags_t flags,callback_t cbf,void * user,uint32_t notificationFrames,const sp<IMemory> & sharedBuffer,bool threadCanCallJava,int sessionId,transfer_type transferType,const audio_offload_info_t * offloadInfo,int uid,pid_t pid,const audio_attributes_t * pAttributes,bool doNotReconnect)266 status_t AudioTrack::set(
267 audio_stream_type_t streamType,
268 uint32_t sampleRate,
269 audio_format_t format,
270 audio_channel_mask_t channelMask,
271 size_t frameCount,
272 audio_output_flags_t flags,
273 callback_t cbf,
274 void* user,
275 uint32_t notificationFrames,
276 const sp<IMemory>& sharedBuffer,
277 bool threadCanCallJava,
278 int sessionId,
279 transfer_type transferType,
280 const audio_offload_info_t *offloadInfo,
281 int uid,
282 pid_t pid,
283 const audio_attributes_t* pAttributes,
284 bool doNotReconnect)
285 {
286 ALOGV("set(): streamType %d, sampleRate %u, format %#x, channelMask %#x, frameCount %zu, "
287 "flags #%x, notificationFrames %u, sessionId %d, transferType %d, uid %d, pid %d",
288 streamType, sampleRate, format, channelMask, frameCount, flags, notificationFrames,
289 sessionId, transferType, uid, pid);
290
291 switch (transferType) {
292 case TRANSFER_DEFAULT:
293 if (sharedBuffer != 0) {
294 transferType = TRANSFER_SHARED;
295 } else if (cbf == NULL || threadCanCallJava) {
296 transferType = TRANSFER_SYNC;
297 } else {
298 transferType = TRANSFER_CALLBACK;
299 }
300 break;
301 case TRANSFER_CALLBACK:
302 if (cbf == NULL || sharedBuffer != 0) {
303 ALOGE("Transfer type TRANSFER_CALLBACK but cbf == NULL || sharedBuffer != 0");
304 return BAD_VALUE;
305 }
306 break;
307 case TRANSFER_OBTAIN:
308 case TRANSFER_SYNC:
309 if (sharedBuffer != 0) {
310 ALOGE("Transfer type TRANSFER_OBTAIN but sharedBuffer != 0");
311 return BAD_VALUE;
312 }
313 break;
314 case TRANSFER_SHARED:
315 if (sharedBuffer == 0) {
316 ALOGE("Transfer type TRANSFER_SHARED but sharedBuffer == 0");
317 return BAD_VALUE;
318 }
319 break;
320 default:
321 ALOGE("Invalid transfer type %d", transferType);
322 return BAD_VALUE;
323 }
324 mSharedBuffer = sharedBuffer;
325 mTransfer = transferType;
326 mDoNotReconnect = doNotReconnect;
327
328 ALOGV_IF(sharedBuffer != 0, "sharedBuffer: %p, size: %zu", sharedBuffer->pointer(),
329 sharedBuffer->size());
330
331 ALOGV("set() streamType %d frameCount %zu flags %04x", streamType, frameCount, flags);
332
333 // invariant that mAudioTrack != 0 is true only after set() returns successfully
334 if (mAudioTrack != 0) {
335 ALOGE("Track already in use");
336 return INVALID_OPERATION;
337 }
338
339 // handle default values first.
340 if (streamType == AUDIO_STREAM_DEFAULT) {
341 streamType = AUDIO_STREAM_MUSIC;
342 }
343 if (pAttributes == NULL) {
344 if (uint32_t(streamType) >= AUDIO_STREAM_PUBLIC_CNT) {
345 ALOGE("Invalid stream type %d", streamType);
346 return BAD_VALUE;
347 }
348 mStreamType = streamType;
349
350 } else {
351 // stream type shouldn't be looked at, this track has audio attributes
352 memcpy(&mAttributes, pAttributes, sizeof(audio_attributes_t));
353 ALOGV("Building AudioTrack with attributes: usage=%d content=%d flags=0x%x tags=[%s]",
354 mAttributes.usage, mAttributes.content_type, mAttributes.flags, mAttributes.tags);
355 mStreamType = AUDIO_STREAM_DEFAULT;
356 if ((mAttributes.flags & AUDIO_FLAG_HW_AV_SYNC) != 0) {
357 flags = (audio_output_flags_t)(flags | AUDIO_OUTPUT_FLAG_HW_AV_SYNC);
358 }
359 }
360
361 // these below should probably come from the audioFlinger too...
362 if (format == AUDIO_FORMAT_DEFAULT) {
363 format = AUDIO_FORMAT_PCM_16_BIT;
364 }
365
366 // validate parameters
367 if (!audio_is_valid_format(format)) {
368 ALOGE("Invalid format %#x", format);
369 return BAD_VALUE;
370 }
371 mFormat = format;
372
373 if (!audio_is_output_channel(channelMask)) {
374 ALOGE("Invalid channel mask %#x", channelMask);
375 return BAD_VALUE;
376 }
377 mChannelMask = channelMask;
378 uint32_t channelCount = audio_channel_count_from_out_mask(channelMask);
379 mChannelCount = channelCount;
380
381 // force direct flag if format is not linear PCM
382 // or offload was requested
383 if ((flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD)
384 || !audio_is_linear_pcm(format)) {
385 ALOGV( (flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD)
386 ? "Offload request, forcing to Direct Output"
387 : "Not linear PCM, forcing to Direct Output");
388 flags = (audio_output_flags_t)
389 // FIXME why can't we allow direct AND fast?
390 ((flags | AUDIO_OUTPUT_FLAG_DIRECT) & ~AUDIO_OUTPUT_FLAG_FAST);
391 }
392
393 // force direct flag if HW A/V sync requested
394 if ((flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) != 0) {
395 flags = (audio_output_flags_t)(flags | AUDIO_OUTPUT_FLAG_DIRECT);
396 }
397
398 if (flags & AUDIO_OUTPUT_FLAG_DIRECT) {
399 if (audio_is_linear_pcm(format)) {
400 mFrameSize = channelCount * audio_bytes_per_sample(format);
401 } else {
402 mFrameSize = sizeof(uint8_t);
403 }
404 } else {
405 ALOG_ASSERT(audio_is_linear_pcm(format));
406 mFrameSize = channelCount * audio_bytes_per_sample(format);
407 // createTrack will return an error if PCM format is not supported by server,
408 // so no need to check for specific PCM formats here
409 }
410
411 // sampling rate must be specified for direct outputs
412 if (sampleRate == 0 && (flags & AUDIO_OUTPUT_FLAG_DIRECT) != 0) {
413 return BAD_VALUE;
414 }
415 mSampleRate = sampleRate;
416 mOriginalSampleRate = sampleRate;
417 mPlaybackRate = AUDIO_PLAYBACK_RATE_DEFAULT;
418
419 // Make copy of input parameter offloadInfo so that in the future:
420 // (a) createTrack_l doesn't need it as an input parameter
421 // (b) we can support re-creation of offloaded tracks
422 if (offloadInfo != NULL) {
423 mOffloadInfoCopy = *offloadInfo;
424 mOffloadInfo = &mOffloadInfoCopy;
425 } else {
426 mOffloadInfo = NULL;
427 }
428
429 mVolume[AUDIO_INTERLEAVE_LEFT] = 1.0f;
430 mVolume[AUDIO_INTERLEAVE_RIGHT] = 1.0f;
431 mSendLevel = 0.0f;
432 // mFrameCount is initialized in createTrack_l
433 mReqFrameCount = frameCount;
434 mNotificationFramesReq = notificationFrames;
435 mNotificationFramesAct = 0;
436 if (sessionId == AUDIO_SESSION_ALLOCATE) {
437 mSessionId = AudioSystem::newAudioUniqueId();
438 } else {
439 mSessionId = sessionId;
440 }
441 int callingpid = IPCThreadState::self()->getCallingPid();
442 int mypid = getpid();
443 if (uid == -1 || (callingpid != mypid)) {
444 mClientUid = IPCThreadState::self()->getCallingUid();
445 } else {
446 mClientUid = uid;
447 }
448 if (pid == -1 || (callingpid != mypid)) {
449 mClientPid = callingpid;
450 } else {
451 mClientPid = pid;
452 }
453 mAuxEffectId = 0;
454 mFlags = flags;
455 mCbf = cbf;
456
457 if (cbf != NULL) {
458 mAudioTrackThread = new AudioTrackThread(*this, threadCanCallJava);
459 mAudioTrackThread->run("AudioTrack", ANDROID_PRIORITY_AUDIO, 0 /*stack*/);
460 // thread begins in paused state, and will not reference us until start()
461 }
462
463 // create the IAudioTrack
464 status_t status = createTrack_l();
465
466 if (status != NO_ERROR) {
467 if (mAudioTrackThread != 0) {
468 mAudioTrackThread->requestExit(); // see comment in AudioTrack.h
469 mAudioTrackThread->requestExitAndWait();
470 mAudioTrackThread.clear();
471 }
472 return status;
473 }
474
475 mStatus = NO_ERROR;
476 mState = STATE_STOPPED;
477 mUserData = user;
478 mLoopCount = 0;
479 mLoopStart = 0;
480 mLoopEnd = 0;
481 mLoopCountNotified = 0;
482 mMarkerPosition = 0;
483 mMarkerReached = false;
484 mNewPosition = 0;
485 mUpdatePeriod = 0;
486 mPosition = 0;
487 mReleased = 0;
488 mStartUs = 0;
489 AudioSystem::acquireAudioSessionId(mSessionId, mClientPid);
490 mSequence = 1;
491 mObservedSequence = mSequence;
492 mInUnderrun = false;
493 mPreviousTimestampValid = false;
494 mTimestampStartupGlitchReported = false;
495 mRetrogradeMotionReported = false;
496
497 return NO_ERROR;
498 }
499
500 // -------------------------------------------------------------------------
501
start()502 status_t AudioTrack::start()
503 {
504 AutoMutex lock(mLock);
505
506 if (mState == STATE_ACTIVE) {
507 return INVALID_OPERATION;
508 }
509
510 mInUnderrun = true;
511
512 State previousState = mState;
513 if (previousState == STATE_PAUSED_STOPPING) {
514 mState = STATE_STOPPING;
515 } else {
516 mState = STATE_ACTIVE;
517 }
518 (void) updateAndGetPosition_l();
519 if (previousState == STATE_STOPPED || previousState == STATE_FLUSHED) {
520 // reset current position as seen by client to 0
521 mPosition = 0;
522 mPreviousTimestampValid = false;
523 mTimestampStartupGlitchReported = false;
524 mRetrogradeMotionReported = false;
525
526 // If previousState == STATE_STOPPED, we reactivate markers (mMarkerPosition != 0)
527 // as the position is reset to 0. This is legacy behavior. This is not done
528 // in stop() to avoid a race condition where the last marker event is issued twice.
529 // Note: the if is technically unnecessary because previousState == STATE_FLUSHED
530 // is only for streaming tracks, and mMarkerReached is already set to false.
531 if (previousState == STATE_STOPPED) {
532 mMarkerReached = false;
533 }
534
535 // For offloaded tracks, we don't know if the hardware counters are really zero here,
536 // since the flush is asynchronous and stop may not fully drain.
537 // We save the time when the track is started to later verify whether
538 // the counters are realistic (i.e. start from zero after this time).
539 mStartUs = getNowUs();
540
541 // force refresh of remaining frames by processAudioBuffer() as last
542 // write before stop could be partial.
543 mRefreshRemaining = true;
544 }
545 mNewPosition = mPosition + mUpdatePeriod;
546 int32_t flags = android_atomic_and(~CBLK_DISABLED, &mCblk->mFlags);
547
548 sp<AudioTrackThread> t = mAudioTrackThread;
549 if (t != 0) {
550 if (previousState == STATE_STOPPING) {
551 mProxy->interrupt();
552 } else {
553 t->resume();
554 }
555 } else {
556 mPreviousPriority = getpriority(PRIO_PROCESS, 0);
557 get_sched_policy(0, &mPreviousSchedulingGroup);
558 androidSetThreadPriority(0, ANDROID_PRIORITY_AUDIO);
559 }
560
561 status_t status = NO_ERROR;
562 if (!(flags & CBLK_INVALID)) {
563 status = mAudioTrack->start();
564 if (status == DEAD_OBJECT) {
565 flags |= CBLK_INVALID;
566 }
567 }
568 if (flags & CBLK_INVALID) {
569 status = restoreTrack_l("start");
570 }
571
572 if (status != NO_ERROR) {
573 ALOGE("start() status %d", status);
574 mState = previousState;
575 if (t != 0) {
576 if (previousState != STATE_STOPPING) {
577 t->pause();
578 }
579 } else {
580 setpriority(PRIO_PROCESS, 0, mPreviousPriority);
581 set_sched_policy(0, mPreviousSchedulingGroup);
582 }
583 }
584
585 return status;
586 }
587
stop()588 void AudioTrack::stop()
589 {
590 AutoMutex lock(mLock);
591 if (mState != STATE_ACTIVE && mState != STATE_PAUSED) {
592 return;
593 }
594
595 if (isOffloaded_l()) {
596 mState = STATE_STOPPING;
597 } else {
598 mState = STATE_STOPPED;
599 mReleased = 0;
600 }
601
602 mProxy->interrupt();
603 mAudioTrack->stop();
604
605 // Note: legacy handling - stop does not clear playback marker
606 // and periodic update counter, but flush does for streaming tracks.
607
608 if (mSharedBuffer != 0) {
609 // clear buffer position and loop count.
610 mStaticProxy->setBufferPositionAndLoop(0 /* position */,
611 0 /* loopStart */, 0 /* loopEnd */, 0 /* loopCount */);
612 }
613
614 sp<AudioTrackThread> t = mAudioTrackThread;
615 if (t != 0) {
616 if (!isOffloaded_l()) {
617 t->pause();
618 }
619 } else {
620 setpriority(PRIO_PROCESS, 0, mPreviousPriority);
621 set_sched_policy(0, mPreviousSchedulingGroup);
622 }
623 }
624
stopped() const625 bool AudioTrack::stopped() const
626 {
627 AutoMutex lock(mLock);
628 return mState != STATE_ACTIVE;
629 }
630
flush()631 void AudioTrack::flush()
632 {
633 if (mSharedBuffer != 0) {
634 return;
635 }
636 AutoMutex lock(mLock);
637 if (mState == STATE_ACTIVE || mState == STATE_FLUSHED) {
638 return;
639 }
640 flush_l();
641 }
642
flush_l()643 void AudioTrack::flush_l()
644 {
645 ALOG_ASSERT(mState != STATE_ACTIVE);
646
647 // clear playback marker and periodic update counter
648 mMarkerPosition = 0;
649 mMarkerReached = false;
650 mUpdatePeriod = 0;
651 mRefreshRemaining = true;
652
653 mState = STATE_FLUSHED;
654 mReleased = 0;
655 if (isOffloaded_l()) {
656 mProxy->interrupt();
657 }
658 mProxy->flush();
659 mAudioTrack->flush();
660 }
661
pause()662 void AudioTrack::pause()
663 {
664 AutoMutex lock(mLock);
665 if (mState == STATE_ACTIVE) {
666 mState = STATE_PAUSED;
667 } else if (mState == STATE_STOPPING) {
668 mState = STATE_PAUSED_STOPPING;
669 } else {
670 return;
671 }
672 mProxy->interrupt();
673 mAudioTrack->pause();
674
675 if (isOffloaded_l()) {
676 if (mOutput != AUDIO_IO_HANDLE_NONE) {
677 // An offload output can be re-used between two audio tracks having
678 // the same configuration. A timestamp query for a paused track
679 // while the other is running would return an incorrect time.
680 // To fix this, cache the playback position on a pause() and return
681 // this time when requested until the track is resumed.
682
683 // OffloadThread sends HAL pause in its threadLoop. Time saved
684 // here can be slightly off.
685
686 // TODO: check return code for getRenderPosition.
687
688 uint32_t halFrames;
689 AudioSystem::getRenderPosition(mOutput, &halFrames, &mPausedPosition);
690 ALOGV("AudioTrack::pause for offload, cache current position %u", mPausedPosition);
691 }
692 }
693 }
694
setVolume(float left,float right)695 status_t AudioTrack::setVolume(float left, float right)
696 {
697 // This duplicates a test by AudioTrack JNI, but that is not the only caller
698 if (isnanf(left) || left < GAIN_FLOAT_ZERO || left > GAIN_FLOAT_UNITY ||
699 isnanf(right) || right < GAIN_FLOAT_ZERO || right > GAIN_FLOAT_UNITY) {
700 return BAD_VALUE;
701 }
702
703 AutoMutex lock(mLock);
704 mVolume[AUDIO_INTERLEAVE_LEFT] = left;
705 mVolume[AUDIO_INTERLEAVE_RIGHT] = right;
706
707 mProxy->setVolumeLR(gain_minifloat_pack(gain_from_float(left), gain_from_float(right)));
708
709 if (isOffloaded_l()) {
710 mAudioTrack->signal();
711 }
712 return NO_ERROR;
713 }
714
setVolume(float volume)715 status_t AudioTrack::setVolume(float volume)
716 {
717 return setVolume(volume, volume);
718 }
719
setAuxEffectSendLevel(float level)720 status_t AudioTrack::setAuxEffectSendLevel(float level)
721 {
722 // This duplicates a test by AudioTrack JNI, but that is not the only caller
723 if (isnanf(level) || level < GAIN_FLOAT_ZERO || level > GAIN_FLOAT_UNITY) {
724 return BAD_VALUE;
725 }
726
727 AutoMutex lock(mLock);
728 mSendLevel = level;
729 mProxy->setSendLevel(level);
730
731 return NO_ERROR;
732 }
733
getAuxEffectSendLevel(float * level) const734 void AudioTrack::getAuxEffectSendLevel(float* level) const
735 {
736 if (level != NULL) {
737 *level = mSendLevel;
738 }
739 }
740
setSampleRate(uint32_t rate)741 status_t AudioTrack::setSampleRate(uint32_t rate)
742 {
743 AutoMutex lock(mLock);
744 if (rate == mSampleRate) {
745 return NO_ERROR;
746 }
747 if (mIsTimed || isOffloadedOrDirect_l() || (mFlags & AUDIO_OUTPUT_FLAG_FAST)) {
748 return INVALID_OPERATION;
749 }
750 if (mOutput == AUDIO_IO_HANDLE_NONE) {
751 return NO_INIT;
752 }
753 // NOTE: it is theoretically possible, but highly unlikely, that a device change
754 // could mean a previously allowed sampling rate is no longer allowed.
755 uint32_t afSamplingRate;
756 if (AudioSystem::getSamplingRate(mOutput, &afSamplingRate) != NO_ERROR) {
757 return NO_INIT;
758 }
759 // pitch is emulated by adjusting speed and sampleRate
760 const uint32_t effectiveSampleRate = adjustSampleRate(rate, mPlaybackRate.mPitch);
761 if (rate == 0 || effectiveSampleRate > afSamplingRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
762 return BAD_VALUE;
763 }
764 // TODO: Should we also check if the buffer size is compatible?
765
766 mSampleRate = rate;
767 mProxy->setSampleRate(effectiveSampleRate);
768
769 return NO_ERROR;
770 }
771
getSampleRate() const772 uint32_t AudioTrack::getSampleRate() const
773 {
774 if (mIsTimed) {
775 return 0;
776 }
777
778 AutoMutex lock(mLock);
779
780 // sample rate can be updated during playback by the offloaded decoder so we need to
781 // query the HAL and update if needed.
782 // FIXME use Proxy return channel to update the rate from server and avoid polling here
783 if (isOffloadedOrDirect_l()) {
784 if (mOutput != AUDIO_IO_HANDLE_NONE) {
785 uint32_t sampleRate = 0;
786 status_t status = AudioSystem::getSamplingRate(mOutput, &sampleRate);
787 if (status == NO_ERROR) {
788 mSampleRate = sampleRate;
789 }
790 }
791 }
792 return mSampleRate;
793 }
794
getOriginalSampleRate() const795 uint32_t AudioTrack::getOriginalSampleRate() const
796 {
797 if (mIsTimed) {
798 return 0;
799 }
800
801 return mOriginalSampleRate;
802 }
803
setPlaybackRate(const AudioPlaybackRate & playbackRate)804 status_t AudioTrack::setPlaybackRate(const AudioPlaybackRate &playbackRate)
805 {
806 AutoMutex lock(mLock);
807 if (isAudioPlaybackRateEqual(playbackRate, mPlaybackRate)) {
808 return NO_ERROR;
809 }
810 if (mIsTimed || isOffloadedOrDirect_l()) {
811 return INVALID_OPERATION;
812 }
813 if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
814 return INVALID_OPERATION;
815 }
816 // pitch is emulated by adjusting speed and sampleRate
817 const uint32_t effectiveRate = adjustSampleRate(mSampleRate, playbackRate.mPitch);
818 const float effectiveSpeed = adjustSpeed(playbackRate.mSpeed, playbackRate.mPitch);
819 const float effectivePitch = adjustPitch(playbackRate.mPitch);
820 AudioPlaybackRate playbackRateTemp = playbackRate;
821 playbackRateTemp.mSpeed = effectiveSpeed;
822 playbackRateTemp.mPitch = effectivePitch;
823
824 if (!isAudioPlaybackRateValid(playbackRateTemp)) {
825 return BAD_VALUE;
826 }
827 // Check if the buffer size is compatible.
828 if (!isSampleRateSpeedAllowed_l(effectiveRate, effectiveSpeed)) {
829 ALOGV("setPlaybackRate(%f, %f) failed", playbackRate.mSpeed, playbackRate.mPitch);
830 return BAD_VALUE;
831 }
832
833 // Check resampler ratios are within bounds
834 if (effectiveRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
835 ALOGV("setPlaybackRate(%f, %f) failed. Resample rate exceeds max accepted value",
836 playbackRate.mSpeed, playbackRate.mPitch);
837 return BAD_VALUE;
838 }
839
840 if (effectiveRate * AUDIO_RESAMPLER_UP_RATIO_MAX < mSampleRate) {
841 ALOGV("setPlaybackRate(%f, %f) failed. Resample rate below min accepted value",
842 playbackRate.mSpeed, playbackRate.mPitch);
843 return BAD_VALUE;
844 }
845 mPlaybackRate = playbackRate;
846 //set effective rates
847 mProxy->setPlaybackRate(playbackRateTemp);
848 mProxy->setSampleRate(effectiveRate); // FIXME: not quite "atomic" with setPlaybackRate
849 return NO_ERROR;
850 }
851
getPlaybackRate() const852 const AudioPlaybackRate& AudioTrack::getPlaybackRate() const
853 {
854 AutoMutex lock(mLock);
855 return mPlaybackRate;
856 }
857
setLoop(uint32_t loopStart,uint32_t loopEnd,int loopCount)858 status_t AudioTrack::setLoop(uint32_t loopStart, uint32_t loopEnd, int loopCount)
859 {
860 if (mSharedBuffer == 0 || mIsTimed || isOffloadedOrDirect()) {
861 return INVALID_OPERATION;
862 }
863
864 if (loopCount == 0) {
865 ;
866 } else if (loopCount >= -1 && loopStart < loopEnd && loopEnd <= mFrameCount &&
867 loopEnd - loopStart >= MIN_LOOP) {
868 ;
869 } else {
870 return BAD_VALUE;
871 }
872
873 AutoMutex lock(mLock);
874 // See setPosition() regarding setting parameters such as loop points or position while active
875 if (mState == STATE_ACTIVE) {
876 return INVALID_OPERATION;
877 }
878 setLoop_l(loopStart, loopEnd, loopCount);
879 return NO_ERROR;
880 }
881
setLoop_l(uint32_t loopStart,uint32_t loopEnd,int loopCount)882 void AudioTrack::setLoop_l(uint32_t loopStart, uint32_t loopEnd, int loopCount)
883 {
884 // We do not update the periodic notification point.
885 // mNewPosition = updateAndGetPosition_l() + mUpdatePeriod;
886 mLoopCount = loopCount;
887 mLoopEnd = loopEnd;
888 mLoopStart = loopStart;
889 mLoopCountNotified = loopCount;
890 mStaticProxy->setLoop(loopStart, loopEnd, loopCount);
891
892 // Waking the AudioTrackThread is not needed as this cannot be called when active.
893 }
894
setMarkerPosition(uint32_t marker)895 status_t AudioTrack::setMarkerPosition(uint32_t marker)
896 {
897 // The only purpose of setting marker position is to get a callback
898 if (mCbf == NULL || isOffloadedOrDirect()) {
899 return INVALID_OPERATION;
900 }
901
902 AutoMutex lock(mLock);
903 mMarkerPosition = marker;
904 mMarkerReached = false;
905
906 sp<AudioTrackThread> t = mAudioTrackThread;
907 if (t != 0) {
908 t->wake();
909 }
910 return NO_ERROR;
911 }
912
getMarkerPosition(uint32_t * marker) const913 status_t AudioTrack::getMarkerPosition(uint32_t *marker) const
914 {
915 if (isOffloadedOrDirect()) {
916 return INVALID_OPERATION;
917 }
918 if (marker == NULL) {
919 return BAD_VALUE;
920 }
921
922 AutoMutex lock(mLock);
923 *marker = mMarkerPosition;
924
925 return NO_ERROR;
926 }
927
setPositionUpdatePeriod(uint32_t updatePeriod)928 status_t AudioTrack::setPositionUpdatePeriod(uint32_t updatePeriod)
929 {
930 // The only purpose of setting position update period is to get a callback
931 if (mCbf == NULL || isOffloadedOrDirect()) {
932 return INVALID_OPERATION;
933 }
934
935 AutoMutex lock(mLock);
936 mNewPosition = updateAndGetPosition_l() + updatePeriod;
937 mUpdatePeriod = updatePeriod;
938
939 sp<AudioTrackThread> t = mAudioTrackThread;
940 if (t != 0) {
941 t->wake();
942 }
943 return NO_ERROR;
944 }
945
getPositionUpdatePeriod(uint32_t * updatePeriod) const946 status_t AudioTrack::getPositionUpdatePeriod(uint32_t *updatePeriod) const
947 {
948 if (isOffloadedOrDirect()) {
949 return INVALID_OPERATION;
950 }
951 if (updatePeriod == NULL) {
952 return BAD_VALUE;
953 }
954
955 AutoMutex lock(mLock);
956 *updatePeriod = mUpdatePeriod;
957
958 return NO_ERROR;
959 }
960
setPosition(uint32_t position)961 status_t AudioTrack::setPosition(uint32_t position)
962 {
963 if (mSharedBuffer == 0 || mIsTimed || isOffloadedOrDirect()) {
964 return INVALID_OPERATION;
965 }
966 if (position > mFrameCount) {
967 return BAD_VALUE;
968 }
969
970 AutoMutex lock(mLock);
971 // Currently we require that the player is inactive before setting parameters such as position
972 // or loop points. Otherwise, there could be a race condition: the application could read the
973 // current position, compute a new position or loop parameters, and then set that position or
974 // loop parameters but it would do the "wrong" thing since the position has continued to advance
975 // in the mean time. If we ever provide a sequencer in server, we could allow a way for the app
976 // to specify how it wants to handle such scenarios.
977 if (mState == STATE_ACTIVE) {
978 return INVALID_OPERATION;
979 }
980 // After setting the position, use full update period before notification.
981 mNewPosition = updateAndGetPosition_l() + mUpdatePeriod;
982 mStaticProxy->setBufferPosition(position);
983
984 // Waking the AudioTrackThread is not needed as this cannot be called when active.
985 return NO_ERROR;
986 }
987
getPosition(uint32_t * position)988 status_t AudioTrack::getPosition(uint32_t *position)
989 {
990 if (position == NULL) {
991 return BAD_VALUE;
992 }
993
994 AutoMutex lock(mLock);
995 if (isOffloadedOrDirect_l()) {
996 uint32_t dspFrames = 0;
997
998 if (isOffloaded_l() && ((mState == STATE_PAUSED) || (mState == STATE_PAUSED_STOPPING))) {
999 ALOGV("getPosition called in paused state, return cached position %u", mPausedPosition);
1000 *position = mPausedPosition;
1001 return NO_ERROR;
1002 }
1003
1004 if (mOutput != AUDIO_IO_HANDLE_NONE) {
1005 uint32_t halFrames; // actually unused
1006 (void) AudioSystem::getRenderPosition(mOutput, &halFrames, &dspFrames);
1007 // FIXME: on getRenderPosition() error, we return OK with frame position 0.
1008 }
1009 // FIXME: dspFrames may not be zero in (mState == STATE_STOPPED || mState == STATE_FLUSHED)
1010 // due to hardware latency. We leave this behavior for now.
1011 *position = dspFrames;
1012 } else {
1013 if (mCblk->mFlags & CBLK_INVALID) {
1014 (void) restoreTrack_l("getPosition");
1015 // FIXME: for compatibility with the Java API we ignore the restoreTrack_l()
1016 // error here (e.g. DEAD_OBJECT) and return OK with the last recorded server position.
1017 }
1018
1019 // IAudioTrack::stop() isn't synchronous; we don't know when presentation completes
1020 *position = (mState == STATE_STOPPED || mState == STATE_FLUSHED) ?
1021 0 : updateAndGetPosition_l();
1022 }
1023 return NO_ERROR;
1024 }
1025
getBufferPosition(uint32_t * position)1026 status_t AudioTrack::getBufferPosition(uint32_t *position)
1027 {
1028 if (mSharedBuffer == 0 || mIsTimed) {
1029 return INVALID_OPERATION;
1030 }
1031 if (position == NULL) {
1032 return BAD_VALUE;
1033 }
1034
1035 AutoMutex lock(mLock);
1036 *position = mStaticProxy->getBufferPosition();
1037 return NO_ERROR;
1038 }
1039
reload()1040 status_t AudioTrack::reload()
1041 {
1042 if (mSharedBuffer == 0 || mIsTimed || isOffloadedOrDirect()) {
1043 return INVALID_OPERATION;
1044 }
1045
1046 AutoMutex lock(mLock);
1047 // See setPosition() regarding setting parameters such as loop points or position while active
1048 if (mState == STATE_ACTIVE) {
1049 return INVALID_OPERATION;
1050 }
1051 mNewPosition = mUpdatePeriod;
1052 (void) updateAndGetPosition_l();
1053 mPosition = 0;
1054 mPreviousTimestampValid = false;
1055 #if 0
1056 // The documentation is not clear on the behavior of reload() and the restoration
1057 // of loop count. Historically we have not restored loop count, start, end,
1058 // but it makes sense if one desires to repeat playing a particular sound.
1059 if (mLoopCount != 0) {
1060 mLoopCountNotified = mLoopCount;
1061 mStaticProxy->setLoop(mLoopStart, mLoopEnd, mLoopCount);
1062 }
1063 #endif
1064 mStaticProxy->setBufferPosition(0);
1065 return NO_ERROR;
1066 }
1067
getOutput() const1068 audio_io_handle_t AudioTrack::getOutput() const
1069 {
1070 AutoMutex lock(mLock);
1071 return mOutput;
1072 }
1073
setOutputDevice(audio_port_handle_t deviceId)1074 status_t AudioTrack::setOutputDevice(audio_port_handle_t deviceId) {
1075 AutoMutex lock(mLock);
1076 if (mSelectedDeviceId != deviceId) {
1077 mSelectedDeviceId = deviceId;
1078 android_atomic_or(CBLK_INVALID, &mCblk->mFlags);
1079 }
1080 return NO_ERROR;
1081 }
1082
getOutputDevice()1083 audio_port_handle_t AudioTrack::getOutputDevice() {
1084 AutoMutex lock(mLock);
1085 return mSelectedDeviceId;
1086 }
1087
getRoutedDeviceId()1088 audio_port_handle_t AudioTrack::getRoutedDeviceId() {
1089 AutoMutex lock(mLock);
1090 if (mOutput == AUDIO_IO_HANDLE_NONE) {
1091 return AUDIO_PORT_HANDLE_NONE;
1092 }
1093 return AudioSystem::getDeviceIdForIo(mOutput);
1094 }
1095
attachAuxEffect(int effectId)1096 status_t AudioTrack::attachAuxEffect(int effectId)
1097 {
1098 AutoMutex lock(mLock);
1099 status_t status = mAudioTrack->attachAuxEffect(effectId);
1100 if (status == NO_ERROR) {
1101 mAuxEffectId = effectId;
1102 }
1103 return status;
1104 }
1105
streamType() const1106 audio_stream_type_t AudioTrack::streamType() const
1107 {
1108 if (mStreamType == AUDIO_STREAM_DEFAULT) {
1109 return audio_attributes_to_stream_type(&mAttributes);
1110 }
1111 return mStreamType;
1112 }
1113
1114 // -------------------------------------------------------------------------
1115
1116 // must be called with mLock held
createTrack_l()1117 status_t AudioTrack::createTrack_l()
1118 {
1119 const sp<IAudioFlinger>& audioFlinger = AudioSystem::get_audio_flinger();
1120 if (audioFlinger == 0) {
1121 ALOGE("Could not get audioflinger");
1122 return NO_INIT;
1123 }
1124
1125 if (mDeviceCallback != 0 && mOutput != AUDIO_IO_HANDLE_NONE) {
1126 AudioSystem::removeAudioDeviceCallback(mDeviceCallback, mOutput);
1127 }
1128 audio_io_handle_t output;
1129 audio_stream_type_t streamType = mStreamType;
1130 audio_attributes_t *attr = (mStreamType == AUDIO_STREAM_DEFAULT) ? &mAttributes : NULL;
1131
1132 status_t status;
1133 status = AudioSystem::getOutputForAttr(attr, &output,
1134 (audio_session_t)mSessionId, &streamType, mClientUid,
1135 mSampleRate, mFormat, mChannelMask,
1136 mFlags, mSelectedDeviceId, mOffloadInfo);
1137
1138 if (status != NO_ERROR || output == AUDIO_IO_HANDLE_NONE) {
1139 ALOGE("Could not get audio output for session %d, stream type %d, usage %d, sample rate %u, format %#x,"
1140 " channel mask %#x, flags %#x",
1141 mSessionId, streamType, mAttributes.usage, mSampleRate, mFormat, mChannelMask, mFlags);
1142 return BAD_VALUE;
1143 }
1144 {
1145 // Now that we have a reference to an I/O handle and have not yet handed it off to AudioFlinger,
1146 // we must release it ourselves if anything goes wrong.
1147
1148 // Not all of these values are needed under all conditions, but it is easier to get them all
1149 status = AudioSystem::getLatency(output, &mAfLatency);
1150 if (status != NO_ERROR) {
1151 ALOGE("getLatency(%d) failed status %d", output, status);
1152 goto release;
1153 }
1154 ALOGV("createTrack_l() output %d afLatency %u", output, mAfLatency);
1155
1156 status = AudioSystem::getFrameCount(output, &mAfFrameCount);
1157 if (status != NO_ERROR) {
1158 ALOGE("getFrameCount(output=%d) status %d", output, status);
1159 goto release;
1160 }
1161
1162 status = AudioSystem::getSamplingRate(output, &mAfSampleRate);
1163 if (status != NO_ERROR) {
1164 ALOGE("getSamplingRate(output=%d) status %d", output, status);
1165 goto release;
1166 }
1167 if (mSampleRate == 0) {
1168 mSampleRate = mAfSampleRate;
1169 mOriginalSampleRate = mAfSampleRate;
1170 }
1171 // Client decides whether the track is TIMED (see below), but can only express a preference
1172 // for FAST. Server will perform additional tests.
1173 if ((mFlags & AUDIO_OUTPUT_FLAG_FAST) && !((
1174 // either of these use cases:
1175 // use case 1: shared buffer
1176 (mSharedBuffer != 0) ||
1177 // use case 2: callback transfer mode
1178 (mTransfer == TRANSFER_CALLBACK) ||
1179 // use case 3: obtain/release mode
1180 (mTransfer == TRANSFER_OBTAIN)) &&
1181 // matching sample rate
1182 (mSampleRate == mAfSampleRate))) {
1183 ALOGW("AUDIO_OUTPUT_FLAG_FAST denied by client; transfer %d, track %u Hz, output %u Hz",
1184 mTransfer, mSampleRate, mAfSampleRate);
1185 // once denied, do not request again if IAudioTrack is re-created
1186 mFlags = (audio_output_flags_t) (mFlags & ~AUDIO_OUTPUT_FLAG_FAST);
1187 }
1188
1189 // The client's AudioTrack buffer is divided into n parts for purpose of wakeup by server, where
1190 // n = 1 fast track with single buffering; nBuffering is ignored
1191 // n = 2 fast track with double buffering
1192 // n = 2 normal track, (including those with sample rate conversion)
1193 // n >= 3 very high latency or very small notification interval (unused).
1194 const uint32_t nBuffering = 2;
1195
1196 mNotificationFramesAct = mNotificationFramesReq;
1197
1198 size_t frameCount = mReqFrameCount;
1199 if (!audio_is_linear_pcm(mFormat)) {
1200
1201 if (mSharedBuffer != 0) {
1202 // Same comment as below about ignoring frameCount parameter for set()
1203 frameCount = mSharedBuffer->size();
1204 } else if (frameCount == 0) {
1205 frameCount = mAfFrameCount;
1206 }
1207 if (mNotificationFramesAct != frameCount) {
1208 mNotificationFramesAct = frameCount;
1209 }
1210 } else if (mSharedBuffer != 0) {
1211 // FIXME: Ensure client side memory buffers need
1212 // not have additional alignment beyond sample
1213 // (e.g. 16 bit stereo accessed as 32 bit frame).
1214 size_t alignment = audio_bytes_per_sample(mFormat);
1215 if (alignment & 1) {
1216 // for AUDIO_FORMAT_PCM_24_BIT_PACKED (not exposed through Java).
1217 alignment = 1;
1218 }
1219 if (mChannelCount > 1) {
1220 // More than 2 channels does not require stronger alignment than stereo
1221 alignment <<= 1;
1222 }
1223 if (((uintptr_t)mSharedBuffer->pointer() & (alignment - 1)) != 0) {
1224 ALOGE("Invalid buffer alignment: address %p, channel count %u",
1225 mSharedBuffer->pointer(), mChannelCount);
1226 status = BAD_VALUE;
1227 goto release;
1228 }
1229
1230 // When initializing a shared buffer AudioTrack via constructors,
1231 // there's no frameCount parameter.
1232 // But when initializing a shared buffer AudioTrack via set(),
1233 // there _is_ a frameCount parameter. We silently ignore it.
1234 frameCount = mSharedBuffer->size() / mFrameSize;
1235 } else {
1236 // For fast tracks the frame count calculations and checks are done by server
1237
1238 if ((mFlags & AUDIO_OUTPUT_FLAG_FAST) == 0) {
1239 // for normal tracks precompute the frame count based on speed.
1240 const size_t minFrameCount = calculateMinFrameCount(
1241 mAfLatency, mAfFrameCount, mAfSampleRate, mSampleRate,
1242 mPlaybackRate.mSpeed);
1243 if (frameCount < minFrameCount) {
1244 frameCount = minFrameCount;
1245 }
1246 }
1247 }
1248
1249 IAudioFlinger::track_flags_t trackFlags = IAudioFlinger::TRACK_DEFAULT;
1250 if (mIsTimed) {
1251 trackFlags |= IAudioFlinger::TRACK_TIMED;
1252 }
1253
1254 pid_t tid = -1;
1255 if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1256 trackFlags |= IAudioFlinger::TRACK_FAST;
1257 if (mAudioTrackThread != 0) {
1258 tid = mAudioTrackThread->getTid();
1259 }
1260 }
1261
1262 if (mFlags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD) {
1263 trackFlags |= IAudioFlinger::TRACK_OFFLOAD;
1264 }
1265
1266 if (mFlags & AUDIO_OUTPUT_FLAG_DIRECT) {
1267 trackFlags |= IAudioFlinger::TRACK_DIRECT;
1268 }
1269
1270 size_t temp = frameCount; // temp may be replaced by a revised value of frameCount,
1271 // but we will still need the original value also
1272 int originalSessionId = mSessionId;
1273 sp<IAudioTrack> track = audioFlinger->createTrack(streamType,
1274 mSampleRate,
1275 mFormat,
1276 mChannelMask,
1277 &temp,
1278 &trackFlags,
1279 mSharedBuffer,
1280 output,
1281 tid,
1282 &mSessionId,
1283 mClientUid,
1284 &status);
1285 ALOGE_IF(originalSessionId != AUDIO_SESSION_ALLOCATE && mSessionId != originalSessionId,
1286 "session ID changed from %d to %d", originalSessionId, mSessionId);
1287
1288 if (status != NO_ERROR) {
1289 ALOGE("AudioFlinger could not create track, status: %d", status);
1290 goto release;
1291 }
1292 ALOG_ASSERT(track != 0);
1293
1294 // AudioFlinger now owns the reference to the I/O handle,
1295 // so we are no longer responsible for releasing it.
1296
1297 sp<IMemory> iMem = track->getCblk();
1298 if (iMem == 0) {
1299 ALOGE("Could not get control block");
1300 return NO_INIT;
1301 }
1302 void *iMemPointer = iMem->pointer();
1303 if (iMemPointer == NULL) {
1304 ALOGE("Could not get control block pointer");
1305 return NO_INIT;
1306 }
1307 // invariant that mAudioTrack != 0 is true only after set() returns successfully
1308 if (mAudioTrack != 0) {
1309 IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this);
1310 mDeathNotifier.clear();
1311 }
1312 mAudioTrack = track;
1313 mCblkMemory = iMem;
1314 IPCThreadState::self()->flushCommands();
1315
1316 audio_track_cblk_t* cblk = static_cast<audio_track_cblk_t*>(iMemPointer);
1317 mCblk = cblk;
1318 // note that temp is the (possibly revised) value of frameCount
1319 if (temp < frameCount || (frameCount == 0 && temp == 0)) {
1320 // In current design, AudioTrack client checks and ensures frame count validity before
1321 // passing it to AudioFlinger so AudioFlinger should not return a different value except
1322 // for fast track as it uses a special method of assigning frame count.
1323 ALOGW("Requested frameCount %zu but received frameCount %zu", frameCount, temp);
1324 }
1325 frameCount = temp;
1326
1327 mAwaitBoost = false;
1328 if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1329 if (trackFlags & IAudioFlinger::TRACK_FAST) {
1330 ALOGV("AUDIO_OUTPUT_FLAG_FAST successful; frameCount %zu", frameCount);
1331 mAwaitBoost = true;
1332 } else {
1333 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied by server; frameCount %zu", frameCount);
1334 // once denied, do not request again if IAudioTrack is re-created
1335 mFlags = (audio_output_flags_t) (mFlags & ~AUDIO_OUTPUT_FLAG_FAST);
1336 }
1337 }
1338 if (mFlags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD) {
1339 if (trackFlags & IAudioFlinger::TRACK_OFFLOAD) {
1340 ALOGV("AUDIO_OUTPUT_FLAG_OFFLOAD successful");
1341 } else {
1342 ALOGW("AUDIO_OUTPUT_FLAG_OFFLOAD denied by server");
1343 mFlags = (audio_output_flags_t) (mFlags & ~AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD);
1344 // FIXME This is a warning, not an error, so don't return error status
1345 //return NO_INIT;
1346 }
1347 }
1348 if (mFlags & AUDIO_OUTPUT_FLAG_DIRECT) {
1349 if (trackFlags & IAudioFlinger::TRACK_DIRECT) {
1350 ALOGV("AUDIO_OUTPUT_FLAG_DIRECT successful");
1351 } else {
1352 ALOGW("AUDIO_OUTPUT_FLAG_DIRECT denied by server");
1353 mFlags = (audio_output_flags_t) (mFlags & ~AUDIO_OUTPUT_FLAG_DIRECT);
1354 // FIXME This is a warning, not an error, so don't return error status
1355 //return NO_INIT;
1356 }
1357 }
1358 // Make sure that application is notified with sufficient margin before underrun
1359 if (mSharedBuffer == 0 && audio_is_linear_pcm(mFormat)) {
1360 // Theoretically double-buffering is not required for fast tracks,
1361 // due to tighter scheduling. But in practice, to accommodate kernels with
1362 // scheduling jitter, and apps with computation jitter, we use double-buffering
1363 // for fast tracks just like normal streaming tracks.
1364 if (mNotificationFramesAct == 0 || mNotificationFramesAct > frameCount / nBuffering) {
1365 mNotificationFramesAct = frameCount / nBuffering;
1366 }
1367 }
1368
1369 // We retain a copy of the I/O handle, but don't own the reference
1370 mOutput = output;
1371 mRefreshRemaining = true;
1372
1373 // Starting address of buffers in shared memory. If there is a shared buffer, buffers
1374 // is the value of pointer() for the shared buffer, otherwise buffers points
1375 // immediately after the control block. This address is for the mapping within client
1376 // address space. AudioFlinger::TrackBase::mBuffer is for the server address space.
1377 void* buffers;
1378 if (mSharedBuffer == 0) {
1379 buffers = cblk + 1;
1380 } else {
1381 buffers = mSharedBuffer->pointer();
1382 if (buffers == NULL) {
1383 ALOGE("Could not get buffer pointer");
1384 return NO_INIT;
1385 }
1386 }
1387
1388 mAudioTrack->attachAuxEffect(mAuxEffectId);
1389 // FIXME doesn't take into account speed or future sample rate changes (until restoreTrack)
1390 // FIXME don't believe this lie
1391 mLatency = mAfLatency + (1000*frameCount) / mSampleRate;
1392
1393 mFrameCount = frameCount;
1394 // If IAudioTrack is re-created, don't let the requested frameCount
1395 // decrease. This can confuse clients that cache frameCount().
1396 if (frameCount > mReqFrameCount) {
1397 mReqFrameCount = frameCount;
1398 }
1399
1400 // reset server position to 0 as we have new cblk.
1401 mServer = 0;
1402
1403 // update proxy
1404 if (mSharedBuffer == 0) {
1405 mStaticProxy.clear();
1406 mProxy = new AudioTrackClientProxy(cblk, buffers, frameCount, mFrameSize);
1407 } else {
1408 mStaticProxy = new StaticAudioTrackClientProxy(cblk, buffers, frameCount, mFrameSize);
1409 mProxy = mStaticProxy;
1410 }
1411
1412 mProxy->setVolumeLR(gain_minifloat_pack(
1413 gain_from_float(mVolume[AUDIO_INTERLEAVE_LEFT]),
1414 gain_from_float(mVolume[AUDIO_INTERLEAVE_RIGHT])));
1415
1416 mProxy->setSendLevel(mSendLevel);
1417 const uint32_t effectiveSampleRate = adjustSampleRate(mSampleRate, mPlaybackRate.mPitch);
1418 const float effectiveSpeed = adjustSpeed(mPlaybackRate.mSpeed, mPlaybackRate.mPitch);
1419 const float effectivePitch = adjustPitch(mPlaybackRate.mPitch);
1420 mProxy->setSampleRate(effectiveSampleRate);
1421
1422 AudioPlaybackRate playbackRateTemp = mPlaybackRate;
1423 playbackRateTemp.mSpeed = effectiveSpeed;
1424 playbackRateTemp.mPitch = effectivePitch;
1425 mProxy->setPlaybackRate(playbackRateTemp);
1426 mProxy->setMinimum(mNotificationFramesAct);
1427
1428 mDeathNotifier = new DeathNotifier(this);
1429 IInterface::asBinder(mAudioTrack)->linkToDeath(mDeathNotifier, this);
1430
1431 if (mDeviceCallback != 0) {
1432 AudioSystem::addAudioDeviceCallback(mDeviceCallback, mOutput);
1433 }
1434
1435 return NO_ERROR;
1436 }
1437
1438 release:
1439 AudioSystem::releaseOutput(output, streamType, (audio_session_t)mSessionId);
1440 if (status == NO_ERROR) {
1441 status = NO_INIT;
1442 }
1443 return status;
1444 }
1445
obtainBuffer(Buffer * audioBuffer,int32_t waitCount,size_t * nonContig)1446 status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, int32_t waitCount, size_t *nonContig)
1447 {
1448 if (audioBuffer == NULL) {
1449 if (nonContig != NULL) {
1450 *nonContig = 0;
1451 }
1452 return BAD_VALUE;
1453 }
1454 if (mTransfer != TRANSFER_OBTAIN) {
1455 audioBuffer->frameCount = 0;
1456 audioBuffer->size = 0;
1457 audioBuffer->raw = NULL;
1458 if (nonContig != NULL) {
1459 *nonContig = 0;
1460 }
1461 return INVALID_OPERATION;
1462 }
1463
1464 const struct timespec *requested;
1465 struct timespec timeout;
1466 if (waitCount == -1) {
1467 requested = &ClientProxy::kForever;
1468 } else if (waitCount == 0) {
1469 requested = &ClientProxy::kNonBlocking;
1470 } else if (waitCount > 0) {
1471 long long ms = WAIT_PERIOD_MS * (long long) waitCount;
1472 timeout.tv_sec = ms / 1000;
1473 timeout.tv_nsec = (int) (ms % 1000) * 1000000;
1474 requested = &timeout;
1475 } else {
1476 ALOGE("%s invalid waitCount %d", __func__, waitCount);
1477 requested = NULL;
1478 }
1479 return obtainBuffer(audioBuffer, requested, NULL /*elapsed*/, nonContig);
1480 }
1481
obtainBuffer(Buffer * audioBuffer,const struct timespec * requested,struct timespec * elapsed,size_t * nonContig)1482 status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, const struct timespec *requested,
1483 struct timespec *elapsed, size_t *nonContig)
1484 {
1485 // previous and new IAudioTrack sequence numbers are used to detect track re-creation
1486 uint32_t oldSequence = 0;
1487 uint32_t newSequence;
1488
1489 Proxy::Buffer buffer;
1490 status_t status = NO_ERROR;
1491
1492 static const int32_t kMaxTries = 5;
1493 int32_t tryCounter = kMaxTries;
1494
1495 do {
1496 // obtainBuffer() is called with mutex unlocked, so keep extra references to these fields to
1497 // keep them from going away if another thread re-creates the track during obtainBuffer()
1498 sp<AudioTrackClientProxy> proxy;
1499 sp<IMemory> iMem;
1500
1501 { // start of lock scope
1502 AutoMutex lock(mLock);
1503
1504 newSequence = mSequence;
1505 // did previous obtainBuffer() fail due to media server death or voluntary invalidation?
1506 if (status == DEAD_OBJECT) {
1507 // re-create track, unless someone else has already done so
1508 if (newSequence == oldSequence) {
1509 status = restoreTrack_l("obtainBuffer");
1510 if (status != NO_ERROR) {
1511 buffer.mFrameCount = 0;
1512 buffer.mRaw = NULL;
1513 buffer.mNonContig = 0;
1514 break;
1515 }
1516 }
1517 }
1518 oldSequence = newSequence;
1519
1520 // Keep the extra references
1521 proxy = mProxy;
1522 iMem = mCblkMemory;
1523
1524 if (mState == STATE_STOPPING) {
1525 status = -EINTR;
1526 buffer.mFrameCount = 0;
1527 buffer.mRaw = NULL;
1528 buffer.mNonContig = 0;
1529 break;
1530 }
1531
1532 // Non-blocking if track is stopped or paused
1533 if (mState != STATE_ACTIVE) {
1534 requested = &ClientProxy::kNonBlocking;
1535 }
1536
1537 } // end of lock scope
1538
1539 buffer.mFrameCount = audioBuffer->frameCount;
1540 // FIXME starts the requested timeout and elapsed over from scratch
1541 status = proxy->obtainBuffer(&buffer, requested, elapsed);
1542
1543 } while ((status == DEAD_OBJECT) && (tryCounter-- > 0));
1544
1545 audioBuffer->frameCount = buffer.mFrameCount;
1546 audioBuffer->size = buffer.mFrameCount * mFrameSize;
1547 audioBuffer->raw = buffer.mRaw;
1548 if (nonContig != NULL) {
1549 *nonContig = buffer.mNonContig;
1550 }
1551 return status;
1552 }
1553
releaseBuffer(const Buffer * audioBuffer)1554 void AudioTrack::releaseBuffer(const Buffer* audioBuffer)
1555 {
1556 // FIXME add error checking on mode, by adding an internal version
1557 if (mTransfer == TRANSFER_SHARED) {
1558 return;
1559 }
1560
1561 size_t stepCount = audioBuffer->size / mFrameSize;
1562 if (stepCount == 0) {
1563 return;
1564 }
1565
1566 Proxy::Buffer buffer;
1567 buffer.mFrameCount = stepCount;
1568 buffer.mRaw = audioBuffer->raw;
1569
1570 AutoMutex lock(mLock);
1571 mReleased += stepCount;
1572 mInUnderrun = false;
1573 mProxy->releaseBuffer(&buffer);
1574
1575 // restart track if it was disabled by audioflinger due to previous underrun
1576 if (mState == STATE_ACTIVE) {
1577 audio_track_cblk_t* cblk = mCblk;
1578 if (android_atomic_and(~CBLK_DISABLED, &cblk->mFlags) & CBLK_DISABLED) {
1579 ALOGW("releaseBuffer() track %p disabled due to previous underrun, restarting", this);
1580 // FIXME ignoring status
1581 mAudioTrack->start();
1582 }
1583 }
1584 }
1585
1586 // -------------------------------------------------------------------------
1587
write(const void * buffer,size_t userSize,bool blocking)1588 ssize_t AudioTrack::write(const void* buffer, size_t userSize, bool blocking)
1589 {
1590 if (mTransfer != TRANSFER_SYNC || mIsTimed) {
1591 return INVALID_OPERATION;
1592 }
1593
1594 if (isDirect()) {
1595 AutoMutex lock(mLock);
1596 int32_t flags = android_atomic_and(
1597 ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END),
1598 &mCblk->mFlags);
1599 if (flags & CBLK_INVALID) {
1600 return DEAD_OBJECT;
1601 }
1602 }
1603
1604 if (ssize_t(userSize) < 0 || (buffer == NULL && userSize != 0)) {
1605 // Sanity-check: user is most-likely passing an error code, and it would
1606 // make the return value ambiguous (actualSize vs error).
1607 ALOGE("AudioTrack::write(buffer=%p, size=%zu (%zd)", buffer, userSize, userSize);
1608 return BAD_VALUE;
1609 }
1610
1611 size_t written = 0;
1612 Buffer audioBuffer;
1613
1614 while (userSize >= mFrameSize) {
1615 audioBuffer.frameCount = userSize / mFrameSize;
1616
1617 status_t err = obtainBuffer(&audioBuffer,
1618 blocking ? &ClientProxy::kForever : &ClientProxy::kNonBlocking);
1619 if (err < 0) {
1620 if (written > 0) {
1621 break;
1622 }
1623 return ssize_t(err);
1624 }
1625
1626 size_t toWrite = audioBuffer.size;
1627 memcpy(audioBuffer.i8, buffer, toWrite);
1628 buffer = ((const char *) buffer) + toWrite;
1629 userSize -= toWrite;
1630 written += toWrite;
1631
1632 releaseBuffer(&audioBuffer);
1633 }
1634
1635 return written;
1636 }
1637
1638 // -------------------------------------------------------------------------
1639
TimedAudioTrack()1640 TimedAudioTrack::TimedAudioTrack() {
1641 mIsTimed = true;
1642 }
1643
allocateTimedBuffer(size_t size,sp<IMemory> * buffer)1644 status_t TimedAudioTrack::allocateTimedBuffer(size_t size, sp<IMemory>* buffer)
1645 {
1646 AutoMutex lock(mLock);
1647 status_t result = UNKNOWN_ERROR;
1648
1649 #if 1
1650 // acquire a strong reference on the IMemory and IAudioTrack so that they cannot be destroyed
1651 // while we are accessing the cblk
1652 sp<IAudioTrack> audioTrack = mAudioTrack;
1653 sp<IMemory> iMem = mCblkMemory;
1654 #endif
1655
1656 // If the track is not invalid already, try to allocate a buffer. alloc
1657 // fails indicating that the server is dead, flag the track as invalid so
1658 // we can attempt to restore in just a bit.
1659 audio_track_cblk_t* cblk = mCblk;
1660 if (!(cblk->mFlags & CBLK_INVALID)) {
1661 result = mAudioTrack->allocateTimedBuffer(size, buffer);
1662 if (result == DEAD_OBJECT) {
1663 android_atomic_or(CBLK_INVALID, &cblk->mFlags);
1664 }
1665 }
1666
1667 // If the track is invalid at this point, attempt to restore it. and try the
1668 // allocation one more time.
1669 if (cblk->mFlags & CBLK_INVALID) {
1670 result = restoreTrack_l("allocateTimedBuffer");
1671
1672 if (result == NO_ERROR) {
1673 result = mAudioTrack->allocateTimedBuffer(size, buffer);
1674 }
1675 }
1676
1677 return result;
1678 }
1679
queueTimedBuffer(const sp<IMemory> & buffer,int64_t pts)1680 status_t TimedAudioTrack::queueTimedBuffer(const sp<IMemory>& buffer,
1681 int64_t pts)
1682 {
1683 status_t status = mAudioTrack->queueTimedBuffer(buffer, pts);
1684 {
1685 AutoMutex lock(mLock);
1686 audio_track_cblk_t* cblk = mCblk;
1687 // restart track if it was disabled by audioflinger due to previous underrun
1688 if (buffer->size() != 0 && status == NO_ERROR &&
1689 (mState == STATE_ACTIVE) && (cblk->mFlags & CBLK_DISABLED)) {
1690 android_atomic_and(~CBLK_DISABLED, &cblk->mFlags);
1691 ALOGW("queueTimedBuffer() track %p disabled, restarting", this);
1692 // FIXME ignoring status
1693 mAudioTrack->start();
1694 }
1695 }
1696 return status;
1697 }
1698
setMediaTimeTransform(const LinearTransform & xform,TargetTimeline target)1699 status_t TimedAudioTrack::setMediaTimeTransform(const LinearTransform& xform,
1700 TargetTimeline target)
1701 {
1702 return mAudioTrack->setMediaTimeTransform(xform, target);
1703 }
1704
1705 // -------------------------------------------------------------------------
1706
processAudioBuffer()1707 nsecs_t AudioTrack::processAudioBuffer()
1708 {
1709 // Currently the AudioTrack thread is not created if there are no callbacks.
1710 // Would it ever make sense to run the thread, even without callbacks?
1711 // If so, then replace this by checks at each use for mCbf != NULL.
1712 LOG_ALWAYS_FATAL_IF(mCblk == NULL);
1713
1714 mLock.lock();
1715 if (mAwaitBoost) {
1716 mAwaitBoost = false;
1717 mLock.unlock();
1718 static const int32_t kMaxTries = 5;
1719 int32_t tryCounter = kMaxTries;
1720 uint32_t pollUs = 10000;
1721 do {
1722 int policy = sched_getscheduler(0);
1723 if (policy == SCHED_FIFO || policy == SCHED_RR) {
1724 break;
1725 }
1726 usleep(pollUs);
1727 pollUs <<= 1;
1728 } while (tryCounter-- > 0);
1729 if (tryCounter < 0) {
1730 ALOGE("did not receive expected priority boost on time");
1731 }
1732 // Run again immediately
1733 return 0;
1734 }
1735
1736 // Can only reference mCblk while locked
1737 int32_t flags = android_atomic_and(
1738 ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END), &mCblk->mFlags);
1739
1740 // Check for track invalidation
1741 if (flags & CBLK_INVALID) {
1742 // for offloaded tracks restoreTrack_l() will just update the sequence and clear
1743 // AudioSystem cache. We should not exit here but after calling the callback so
1744 // that the upper layers can recreate the track
1745 if (!isOffloadedOrDirect_l() || (mSequence == mObservedSequence)) {
1746 status_t status __unused = restoreTrack_l("processAudioBuffer");
1747 // FIXME unused status
1748 // after restoration, continue below to make sure that the loop and buffer events
1749 // are notified because they have been cleared from mCblk->mFlags above.
1750 }
1751 }
1752
1753 bool waitStreamEnd = mState == STATE_STOPPING;
1754 bool active = mState == STATE_ACTIVE;
1755
1756 // Manage underrun callback, must be done under lock to avoid race with releaseBuffer()
1757 bool newUnderrun = false;
1758 if (flags & CBLK_UNDERRUN) {
1759 #if 0
1760 // Currently in shared buffer mode, when the server reaches the end of buffer,
1761 // the track stays active in continuous underrun state. It's up to the application
1762 // to pause or stop the track, or set the position to a new offset within buffer.
1763 // This was some experimental code to auto-pause on underrun. Keeping it here
1764 // in "if 0" so we can re-visit this if we add a real sequencer for shared memory content.
1765 if (mTransfer == TRANSFER_SHARED) {
1766 mState = STATE_PAUSED;
1767 active = false;
1768 }
1769 #endif
1770 if (!mInUnderrun) {
1771 mInUnderrun = true;
1772 newUnderrun = true;
1773 }
1774 }
1775
1776 // Get current position of server
1777 size_t position = updateAndGetPosition_l();
1778
1779 // Manage marker callback
1780 bool markerReached = false;
1781 size_t markerPosition = mMarkerPosition;
1782 // FIXME fails for wraparound, need 64 bits
1783 if (!mMarkerReached && (markerPosition > 0) && (position >= markerPosition)) {
1784 mMarkerReached = markerReached = true;
1785 }
1786
1787 // Determine number of new position callback(s) that will be needed, while locked
1788 size_t newPosCount = 0;
1789 size_t newPosition = mNewPosition;
1790 size_t updatePeriod = mUpdatePeriod;
1791 // FIXME fails for wraparound, need 64 bits
1792 if (updatePeriod > 0 && position >= newPosition) {
1793 newPosCount = ((position - newPosition) / updatePeriod) + 1;
1794 mNewPosition += updatePeriod * newPosCount;
1795 }
1796
1797 // Cache other fields that will be needed soon
1798 uint32_t sampleRate = mSampleRate;
1799 float speed = mPlaybackRate.mSpeed;
1800 const uint32_t notificationFrames = mNotificationFramesAct;
1801 if (mRefreshRemaining) {
1802 mRefreshRemaining = false;
1803 mRemainingFrames = notificationFrames;
1804 mRetryOnPartialBuffer = false;
1805 }
1806 size_t misalignment = mProxy->getMisalignment();
1807 uint32_t sequence = mSequence;
1808 sp<AudioTrackClientProxy> proxy = mProxy;
1809
1810 // Determine the number of new loop callback(s) that will be needed, while locked.
1811 int loopCountNotifications = 0;
1812 uint32_t loopPeriod = 0; // time in frames for next EVENT_LOOP_END or EVENT_BUFFER_END
1813
1814 if (mLoopCount > 0) {
1815 int loopCount;
1816 size_t bufferPosition;
1817 mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount);
1818 loopPeriod = ((loopCount > 0) ? mLoopEnd : mFrameCount) - bufferPosition;
1819 loopCountNotifications = min(mLoopCountNotified - loopCount, kMaxLoopCountNotifications);
1820 mLoopCountNotified = loopCount; // discard any excess notifications
1821 } else if (mLoopCount < 0) {
1822 // FIXME: We're not accurate with notification count and position with infinite looping
1823 // since loopCount from server side will always return -1 (we could decrement it).
1824 size_t bufferPosition = mStaticProxy->getBufferPosition();
1825 loopCountNotifications = int((flags & (CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL)) != 0);
1826 loopPeriod = mLoopEnd - bufferPosition;
1827 } else if (/* mLoopCount == 0 && */ mSharedBuffer != 0) {
1828 size_t bufferPosition = mStaticProxy->getBufferPosition();
1829 loopPeriod = mFrameCount - bufferPosition;
1830 }
1831
1832 // These fields don't need to be cached, because they are assigned only by set():
1833 // mTransfer, mCbf, mUserData, mFormat, mFrameSize, mFlags
1834 // mFlags is also assigned by createTrack_l(), but not the bit we care about.
1835
1836 mLock.unlock();
1837
1838 // get anchor time to account for callbacks.
1839 const nsecs_t timeBeforeCallbacks = systemTime();
1840
1841 if (waitStreamEnd) {
1842 // FIXME: Instead of blocking in proxy->waitStreamEndDone(), Callback thread
1843 // should wait on proxy futex and handle CBLK_STREAM_END_DONE within this function
1844 // (and make sure we don't callback for more data while we're stopping).
1845 // This helps with position, marker notifications, and track invalidation.
1846 struct timespec timeout;
1847 timeout.tv_sec = WAIT_STREAM_END_TIMEOUT_SEC;
1848 timeout.tv_nsec = 0;
1849
1850 status_t status = proxy->waitStreamEndDone(&timeout);
1851 switch (status) {
1852 case NO_ERROR:
1853 case DEAD_OBJECT:
1854 case TIMED_OUT:
1855 if (status != DEAD_OBJECT) {
1856 // for DEAD_OBJECT, we do not send a EVENT_STREAM_END after stop();
1857 // instead, the application should handle the EVENT_NEW_IAUDIOTRACK.
1858 mCbf(EVENT_STREAM_END, mUserData, NULL);
1859 }
1860 {
1861 AutoMutex lock(mLock);
1862 // The previously assigned value of waitStreamEnd is no longer valid,
1863 // since the mutex has been unlocked and either the callback handler
1864 // or another thread could have re-started the AudioTrack during that time.
1865 waitStreamEnd = mState == STATE_STOPPING;
1866 if (waitStreamEnd) {
1867 mState = STATE_STOPPED;
1868 mReleased = 0;
1869 }
1870 }
1871 if (waitStreamEnd && status != DEAD_OBJECT) {
1872 return NS_INACTIVE;
1873 }
1874 break;
1875 }
1876 return 0;
1877 }
1878
1879 // perform callbacks while unlocked
1880 if (newUnderrun) {
1881 mCbf(EVENT_UNDERRUN, mUserData, NULL);
1882 }
1883 while (loopCountNotifications > 0) {
1884 mCbf(EVENT_LOOP_END, mUserData, NULL);
1885 --loopCountNotifications;
1886 }
1887 if (flags & CBLK_BUFFER_END) {
1888 mCbf(EVENT_BUFFER_END, mUserData, NULL);
1889 }
1890 if (markerReached) {
1891 mCbf(EVENT_MARKER, mUserData, &markerPosition);
1892 }
1893 while (newPosCount > 0) {
1894 size_t temp = newPosition;
1895 mCbf(EVENT_NEW_POS, mUserData, &temp);
1896 newPosition += updatePeriod;
1897 newPosCount--;
1898 }
1899
1900 if (mObservedSequence != sequence) {
1901 mObservedSequence = sequence;
1902 mCbf(EVENT_NEW_IAUDIOTRACK, mUserData, NULL);
1903 // for offloaded tracks, just wait for the upper layers to recreate the track
1904 if (isOffloadedOrDirect()) {
1905 return NS_INACTIVE;
1906 }
1907 }
1908
1909 // if inactive, then don't run me again until re-started
1910 if (!active) {
1911 return NS_INACTIVE;
1912 }
1913
1914 // Compute the estimated time until the next timed event (position, markers, loops)
1915 // FIXME only for non-compressed audio
1916 uint32_t minFrames = ~0;
1917 if (!markerReached && position < markerPosition) {
1918 minFrames = markerPosition - position;
1919 }
1920 if (loopPeriod > 0 && loopPeriod < minFrames) {
1921 // loopPeriod is already adjusted for actual position.
1922 minFrames = loopPeriod;
1923 }
1924 if (updatePeriod > 0) {
1925 minFrames = min(minFrames, uint32_t(newPosition - position));
1926 }
1927
1928 // If > 0, poll periodically to recover from a stuck server. A good value is 2.
1929 static const uint32_t kPoll = 0;
1930 if (kPoll > 0 && mTransfer == TRANSFER_CALLBACK && kPoll * notificationFrames < minFrames) {
1931 minFrames = kPoll * notificationFrames;
1932 }
1933
1934 // This "fudge factor" avoids soaking CPU, and compensates for late progress by server
1935 static const nsecs_t kWaitPeriodNs = WAIT_PERIOD_MS * 1000000LL;
1936 const nsecs_t timeAfterCallbacks = systemTime();
1937
1938 // Convert frame units to time units
1939 nsecs_t ns = NS_WHENEVER;
1940 if (minFrames != (uint32_t) ~0) {
1941 ns = framesToNanoseconds(minFrames, sampleRate, speed) + kWaitPeriodNs;
1942 ns -= (timeAfterCallbacks - timeBeforeCallbacks); // account for callback time
1943 // TODO: Should we warn if the callback time is too long?
1944 if (ns < 0) ns = 0;
1945 }
1946
1947 // If not supplying data by EVENT_MORE_DATA, then we're done
1948 if (mTransfer != TRANSFER_CALLBACK) {
1949 return ns;
1950 }
1951
1952 // EVENT_MORE_DATA callback handling.
1953 // Timing for linear pcm audio data formats can be derived directly from the
1954 // buffer fill level.
1955 // Timing for compressed data is not directly available from the buffer fill level,
1956 // rather indirectly from waiting for blocking mode callbacks or waiting for obtain()
1957 // to return a certain fill level.
1958
1959 struct timespec timeout;
1960 const struct timespec *requested = &ClientProxy::kForever;
1961 if (ns != NS_WHENEVER) {
1962 timeout.tv_sec = ns / 1000000000LL;
1963 timeout.tv_nsec = ns % 1000000000LL;
1964 ALOGV("timeout %ld.%03d", timeout.tv_sec, (int) timeout.tv_nsec / 1000000);
1965 requested = &timeout;
1966 }
1967
1968 while (mRemainingFrames > 0) {
1969
1970 Buffer audioBuffer;
1971 audioBuffer.frameCount = mRemainingFrames;
1972 size_t nonContig;
1973 status_t err = obtainBuffer(&audioBuffer, requested, NULL, &nonContig);
1974 LOG_ALWAYS_FATAL_IF((err != NO_ERROR) != (audioBuffer.frameCount == 0),
1975 "obtainBuffer() err=%d frameCount=%zu", err, audioBuffer.frameCount);
1976 requested = &ClientProxy::kNonBlocking;
1977 size_t avail = audioBuffer.frameCount + nonContig;
1978 ALOGV("obtainBuffer(%u) returned %zu = %zu + %zu err %d",
1979 mRemainingFrames, avail, audioBuffer.frameCount, nonContig, err);
1980 if (err != NO_ERROR) {
1981 if (err == TIMED_OUT || err == WOULD_BLOCK || err == -EINTR ||
1982 (isOffloaded() && (err == DEAD_OBJECT))) {
1983 // FIXME bug 25195759
1984 return 1000000;
1985 }
1986 ALOGE("Error %d obtaining an audio buffer, giving up.", err);
1987 return NS_NEVER;
1988 }
1989
1990 if (mRetryOnPartialBuffer && audio_is_linear_pcm(mFormat)) {
1991 mRetryOnPartialBuffer = false;
1992 if (avail < mRemainingFrames) {
1993 if (ns > 0) { // account for obtain time
1994 const nsecs_t timeNow = systemTime();
1995 ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks));
1996 }
1997 nsecs_t myns = framesToNanoseconds(mRemainingFrames - avail, sampleRate, speed);
1998 if (ns < 0 /* NS_WHENEVER */ || myns < ns) {
1999 ns = myns;
2000 }
2001 return ns;
2002 }
2003 }
2004
2005 size_t reqSize = audioBuffer.size;
2006 mCbf(EVENT_MORE_DATA, mUserData, &audioBuffer);
2007 size_t writtenSize = audioBuffer.size;
2008
2009 // Sanity check on returned size
2010 if (ssize_t(writtenSize) < 0 || writtenSize > reqSize) {
2011 ALOGE("EVENT_MORE_DATA requested %zu bytes but callback returned %zd bytes",
2012 reqSize, ssize_t(writtenSize));
2013 return NS_NEVER;
2014 }
2015
2016 if (writtenSize == 0) {
2017 // The callback is done filling buffers
2018 // Keep this thread going to handle timed events and
2019 // still try to get more data in intervals of WAIT_PERIOD_MS
2020 // but don't just loop and block the CPU, so wait
2021
2022 // mCbf(EVENT_MORE_DATA, ...) might either
2023 // (1) Block until it can fill the buffer, returning 0 size on EOS.
2024 // (2) Block until it can fill the buffer, returning 0 data (silence) on EOS.
2025 // (3) Return 0 size when no data is available, does not wait for more data.
2026 //
2027 // (1) and (2) occurs with AudioPlayer/AwesomePlayer; (3) occurs with NuPlayer.
2028 // We try to compute the wait time to avoid a tight sleep-wait cycle,
2029 // especially for case (3).
2030 //
2031 // The decision to support (1) and (2) affect the sizing of mRemainingFrames
2032 // and this loop; whereas for case (3) we could simply check once with the full
2033 // buffer size and skip the loop entirely.
2034
2035 nsecs_t myns;
2036 if (audio_is_linear_pcm(mFormat)) {
2037 // time to wait based on buffer occupancy
2038 const nsecs_t datans = mRemainingFrames <= avail ? 0 :
2039 framesToNanoseconds(mRemainingFrames - avail, sampleRate, speed);
2040 // audio flinger thread buffer size (TODO: adjust for fast tracks)
2041 const nsecs_t afns = framesToNanoseconds(mAfFrameCount, mAfSampleRate, speed);
2042 // add a half the AudioFlinger buffer time to avoid soaking CPU if datans is 0.
2043 myns = datans + (afns / 2);
2044 } else {
2045 // FIXME: This could ping quite a bit if the buffer isn't full.
2046 // Note that when mState is stopping we waitStreamEnd, so it never gets here.
2047 myns = kWaitPeriodNs;
2048 }
2049 if (ns > 0) { // account for obtain and callback time
2050 const nsecs_t timeNow = systemTime();
2051 ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks));
2052 }
2053 if (ns < 0 /* NS_WHENEVER */ || myns < ns) {
2054 ns = myns;
2055 }
2056 return ns;
2057 }
2058
2059 size_t releasedFrames = writtenSize / mFrameSize;
2060 audioBuffer.frameCount = releasedFrames;
2061 mRemainingFrames -= releasedFrames;
2062 if (misalignment >= releasedFrames) {
2063 misalignment -= releasedFrames;
2064 } else {
2065 misalignment = 0;
2066 }
2067
2068 releaseBuffer(&audioBuffer);
2069
2070 // FIXME here is where we would repeat EVENT_MORE_DATA again on same advanced buffer
2071 // if callback doesn't like to accept the full chunk
2072 if (writtenSize < reqSize) {
2073 continue;
2074 }
2075
2076 // There could be enough non-contiguous frames available to satisfy the remaining request
2077 if (mRemainingFrames <= nonContig) {
2078 continue;
2079 }
2080
2081 #if 0
2082 // This heuristic tries to collapse a series of EVENT_MORE_DATA that would total to a
2083 // sum <= notificationFrames. It replaces that series by at most two EVENT_MORE_DATA
2084 // that total to a sum == notificationFrames.
2085 if (0 < misalignment && misalignment <= mRemainingFrames) {
2086 mRemainingFrames = misalignment;
2087 return ((double)mRemainingFrames * 1100000000) / ((double)sampleRate * speed);
2088 }
2089 #endif
2090
2091 }
2092 mRemainingFrames = notificationFrames;
2093 mRetryOnPartialBuffer = true;
2094
2095 // A lot has transpired since ns was calculated, so run again immediately and re-calculate
2096 return 0;
2097 }
2098
restoreTrack_l(const char * from)2099 status_t AudioTrack::restoreTrack_l(const char *from)
2100 {
2101 ALOGW("dead IAudioTrack, %s, creating a new one from %s()",
2102 isOffloadedOrDirect_l() ? "Offloaded or Direct" : "PCM", from);
2103 ++mSequence;
2104
2105 // refresh the audio configuration cache in this process to make sure we get new
2106 // output parameters and new IAudioFlinger in createTrack_l()
2107 AudioSystem::clearAudioConfigCache();
2108
2109 if (isOffloadedOrDirect_l() || mDoNotReconnect) {
2110 // FIXME re-creation of offloaded and direct tracks is not yet implemented;
2111 // reconsider enabling for linear PCM encodings when position can be preserved.
2112 return DEAD_OBJECT;
2113 }
2114
2115 // save the old static buffer position
2116 size_t bufferPosition = 0;
2117 int loopCount = 0;
2118 if (mStaticProxy != 0) {
2119 mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount);
2120 }
2121
2122 // If a new IAudioTrack is successfully created, createTrack_l() will modify the
2123 // following member variables: mAudioTrack, mCblkMemory and mCblk.
2124 // It will also delete the strong references on previous IAudioTrack and IMemory.
2125 // If a new IAudioTrack cannot be created, the previous (dead) instance will be left intact.
2126 status_t result = createTrack_l();
2127
2128 if (result == NO_ERROR) {
2129 // take the frames that will be lost by track recreation into account in saved position
2130 // For streaming tracks, this is the amount we obtained from the user/client
2131 // (not the number actually consumed at the server - those are already lost).
2132 if (mStaticProxy == 0) {
2133 mPosition = mReleased;
2134 }
2135 // Continue playback from last known position and restore loop.
2136 if (mStaticProxy != 0) {
2137 if (loopCount != 0) {
2138 mStaticProxy->setBufferPositionAndLoop(bufferPosition,
2139 mLoopStart, mLoopEnd, loopCount);
2140 } else {
2141 mStaticProxy->setBufferPosition(bufferPosition);
2142 if (bufferPosition == mFrameCount) {
2143 ALOGD("restoring track at end of static buffer");
2144 }
2145 }
2146 }
2147 if (mState == STATE_ACTIVE) {
2148 result = mAudioTrack->start();
2149 }
2150 }
2151 if (result != NO_ERROR) {
2152 ALOGW("restoreTrack_l() failed status %d", result);
2153 mState = STATE_STOPPED;
2154 mReleased = 0;
2155 }
2156
2157 return result;
2158 }
2159
updateAndGetPosition_l()2160 uint32_t AudioTrack::updateAndGetPosition_l()
2161 {
2162 // This is the sole place to read server consumed frames
2163 uint32_t newServer = mProxy->getPosition();
2164 int32_t delta = newServer - mServer;
2165 mServer = newServer;
2166 // TODO There is controversy about whether there can be "negative jitter" in server position.
2167 // This should be investigated further, and if possible, it should be addressed.
2168 // A more definite failure mode is infrequent polling by client.
2169 // One could call (void)getPosition_l() in releaseBuffer(),
2170 // so mReleased and mPosition are always lock-step as best possible.
2171 // That should ensure delta never goes negative for infrequent polling
2172 // unless the server has more than 2^31 frames in its buffer,
2173 // in which case the use of uint32_t for these counters has bigger issues.
2174 if (delta < 0) {
2175 ALOGE("detected illegal retrograde motion by the server: mServer advanced by %d", delta);
2176 delta = 0;
2177 }
2178 return mPosition += (uint32_t) delta;
2179 }
2180
isSampleRateSpeedAllowed_l(uint32_t sampleRate,float speed) const2181 bool AudioTrack::isSampleRateSpeedAllowed_l(uint32_t sampleRate, float speed) const
2182 {
2183 // applicable for mixing tracks only (not offloaded or direct)
2184 if (mStaticProxy != 0) {
2185 return true; // static tracks do not have issues with buffer sizing.
2186 }
2187 const size_t minFrameCount =
2188 calculateMinFrameCount(mAfLatency, mAfFrameCount, mAfSampleRate, sampleRate, speed);
2189 ALOGV("isSampleRateSpeedAllowed_l mFrameCount %zu minFrameCount %zu",
2190 mFrameCount, minFrameCount);
2191 return mFrameCount >= minFrameCount;
2192 }
2193
setParameters(const String8 & keyValuePairs)2194 status_t AudioTrack::setParameters(const String8& keyValuePairs)
2195 {
2196 AutoMutex lock(mLock);
2197 return mAudioTrack->setParameters(keyValuePairs);
2198 }
2199
getTimestamp(AudioTimestamp & timestamp)2200 status_t AudioTrack::getTimestamp(AudioTimestamp& timestamp)
2201 {
2202 AutoMutex lock(mLock);
2203
2204 bool previousTimestampValid = mPreviousTimestampValid;
2205 // Set false here to cover all the error return cases.
2206 mPreviousTimestampValid = false;
2207
2208 // FIXME not implemented for fast tracks; should use proxy and SSQ
2209 if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
2210 return INVALID_OPERATION;
2211 }
2212
2213 switch (mState) {
2214 case STATE_ACTIVE:
2215 case STATE_PAUSED:
2216 break; // handle below
2217 case STATE_FLUSHED:
2218 case STATE_STOPPED:
2219 return WOULD_BLOCK;
2220 case STATE_STOPPING:
2221 case STATE_PAUSED_STOPPING:
2222 if (!isOffloaded_l()) {
2223 return INVALID_OPERATION;
2224 }
2225 break; // offloaded tracks handled below
2226 default:
2227 LOG_ALWAYS_FATAL("Invalid mState in getTimestamp(): %d", mState);
2228 break;
2229 }
2230
2231 if (mCblk->mFlags & CBLK_INVALID) {
2232 const status_t status = restoreTrack_l("getTimestamp");
2233 if (status != OK) {
2234 // per getTimestamp() API doc in header, we return DEAD_OBJECT here,
2235 // recommending that the track be recreated.
2236 return DEAD_OBJECT;
2237 }
2238 }
2239
2240 // The presented frame count must always lag behind the consumed frame count.
2241 // To avoid a race, read the presented frames first. This ensures that presented <= consumed.
2242 status_t status = mAudioTrack->getTimestamp(timestamp);
2243 if (status != NO_ERROR) {
2244 ALOGV_IF(status != WOULD_BLOCK, "getTimestamp error:%#x", status);
2245 return status;
2246 }
2247 if (isOffloadedOrDirect_l()) {
2248 if (isOffloaded_l() && (mState == STATE_PAUSED || mState == STATE_PAUSED_STOPPING)) {
2249 // use cached paused position in case another offloaded track is running.
2250 timestamp.mPosition = mPausedPosition;
2251 clock_gettime(CLOCK_MONOTONIC, ×tamp.mTime);
2252 return NO_ERROR;
2253 }
2254
2255 // Check whether a pending flush or stop has completed, as those commands may
2256 // be asynchronous or return near finish or exhibit glitchy behavior.
2257 //
2258 // Originally this showed up as the first timestamp being a continuation of
2259 // the previous song under gapless playback.
2260 // However, we sometimes see zero timestamps, then a glitch of
2261 // the previous song's position, and then correct timestamps afterwards.
2262 if (mStartUs != 0 && mSampleRate != 0) {
2263 static const int kTimeJitterUs = 100000; // 100 ms
2264 static const int k1SecUs = 1000000;
2265
2266 const int64_t timeNow = getNowUs();
2267
2268 if (timeNow < mStartUs + k1SecUs) { // within first second of starting
2269 const int64_t timestampTimeUs = convertTimespecToUs(timestamp.mTime);
2270 if (timestampTimeUs < mStartUs) {
2271 return WOULD_BLOCK; // stale timestamp time, occurs before start.
2272 }
2273 const int64_t deltaTimeUs = timestampTimeUs - mStartUs;
2274 const int64_t deltaPositionByUs = (double)timestamp.mPosition * 1000000
2275 / ((double)mSampleRate * mPlaybackRate.mSpeed);
2276
2277 if (deltaPositionByUs > deltaTimeUs + kTimeJitterUs) {
2278 // Verify that the counter can't count faster than the sample rate
2279 // since the start time. If greater, then that means we may have failed
2280 // to completely flush or stop the previous playing track.
2281 ALOGW_IF(!mTimestampStartupGlitchReported,
2282 "getTimestamp startup glitch detected"
2283 " deltaTimeUs(%lld) deltaPositionUs(%lld) tsmPosition(%u)",
2284 (long long)deltaTimeUs, (long long)deltaPositionByUs,
2285 timestamp.mPosition);
2286 mTimestampStartupGlitchReported = true;
2287 if (previousTimestampValid
2288 && mPreviousTimestamp.mPosition == 0 /* should be true if valid */) {
2289 timestamp = mPreviousTimestamp;
2290 mPreviousTimestampValid = true;
2291 return NO_ERROR;
2292 }
2293 return WOULD_BLOCK;
2294 }
2295 if (deltaPositionByUs != 0) {
2296 mStartUs = 0; // don't check again, we got valid nonzero position.
2297 }
2298 } else {
2299 mStartUs = 0; // don't check again, start time expired.
2300 }
2301 mTimestampStartupGlitchReported = false;
2302 }
2303 } else {
2304 // Update the mapping between local consumed (mPosition) and server consumed (mServer)
2305 (void) updateAndGetPosition_l();
2306 // Server consumed (mServer) and presented both use the same server time base,
2307 // and server consumed is always >= presented.
2308 // The delta between these represents the number of frames in the buffer pipeline.
2309 // If this delta between these is greater than the client position, it means that
2310 // actually presented is still stuck at the starting line (figuratively speaking),
2311 // waiting for the first frame to go by. So we can't report a valid timestamp yet.
2312 if ((uint32_t) (mServer - timestamp.mPosition) > mPosition) {
2313 return INVALID_OPERATION;
2314 }
2315 // Convert timestamp position from server time base to client time base.
2316 // TODO The following code should work OK now because timestamp.mPosition is 32-bit.
2317 // But if we change it to 64-bit then this could fail.
2318 // If (mPosition - mServer) can be negative then should use:
2319 // (int32_t)(mPosition - mServer)
2320 timestamp.mPosition += mPosition - mServer;
2321 // Immediately after a call to getPosition_l(), mPosition and
2322 // mServer both represent the same frame position. mPosition is
2323 // in client's point of view, and mServer is in server's point of
2324 // view. So the difference between them is the "fudge factor"
2325 // between client and server views due to stop() and/or new
2326 // IAudioTrack. And timestamp.mPosition is initially in server's
2327 // point of view, so we need to apply the same fudge factor to it.
2328 }
2329
2330 // Prevent retrograde motion in timestamp.
2331 // This is sometimes caused by erratic reports of the available space in the ALSA drivers.
2332 if (status == NO_ERROR) {
2333 if (previousTimestampValid) {
2334 #define TIME_TO_NANOS(time) ((uint64_t)time.tv_sec * 1000000000 + time.tv_nsec)
2335 const uint64_t previousTimeNanos = TIME_TO_NANOS(mPreviousTimestamp.mTime);
2336 const uint64_t currentTimeNanos = TIME_TO_NANOS(timestamp.mTime);
2337 #undef TIME_TO_NANOS
2338 if (currentTimeNanos < previousTimeNanos) {
2339 ALOGW("retrograde timestamp time");
2340 // FIXME Consider blocking this from propagating upwards.
2341 }
2342
2343 // Looking at signed delta will work even when the timestamps
2344 // are wrapping around.
2345 int32_t deltaPosition = static_cast<int32_t>(timestamp.mPosition
2346 - mPreviousTimestamp.mPosition);
2347 // position can bobble slightly as an artifact; this hides the bobble
2348 static const int32_t MINIMUM_POSITION_DELTA = 8;
2349 if (deltaPosition < 0) {
2350 // Only report once per position instead of spamming the log.
2351 if (!mRetrogradeMotionReported) {
2352 ALOGW("retrograde timestamp position corrected, %d = %u - %u",
2353 deltaPosition,
2354 timestamp.mPosition,
2355 mPreviousTimestamp.mPosition);
2356 mRetrogradeMotionReported = true;
2357 }
2358 } else {
2359 mRetrogradeMotionReported = false;
2360 }
2361 if (deltaPosition < MINIMUM_POSITION_DELTA) {
2362 timestamp = mPreviousTimestamp; // Use last valid timestamp.
2363 }
2364 }
2365 mPreviousTimestamp = timestamp;
2366 mPreviousTimestampValid = true;
2367 }
2368
2369 return status;
2370 }
2371
getParameters(const String8 & keys)2372 String8 AudioTrack::getParameters(const String8& keys)
2373 {
2374 audio_io_handle_t output = getOutput();
2375 if (output != AUDIO_IO_HANDLE_NONE) {
2376 return AudioSystem::getParameters(output, keys);
2377 } else {
2378 return String8::empty();
2379 }
2380 }
2381
isOffloaded() const2382 bool AudioTrack::isOffloaded() const
2383 {
2384 AutoMutex lock(mLock);
2385 return isOffloaded_l();
2386 }
2387
isDirect() const2388 bool AudioTrack::isDirect() const
2389 {
2390 AutoMutex lock(mLock);
2391 return isDirect_l();
2392 }
2393
isOffloadedOrDirect() const2394 bool AudioTrack::isOffloadedOrDirect() const
2395 {
2396 AutoMutex lock(mLock);
2397 return isOffloadedOrDirect_l();
2398 }
2399
2400
dump(int fd,const Vector<String16> & args __unused) const2401 status_t AudioTrack::dump(int fd, const Vector<String16>& args __unused) const
2402 {
2403
2404 const size_t SIZE = 256;
2405 char buffer[SIZE];
2406 String8 result;
2407
2408 result.append(" AudioTrack::dump\n");
2409 snprintf(buffer, 255, " stream type(%d), left - right volume(%f, %f)\n", mStreamType,
2410 mVolume[AUDIO_INTERLEAVE_LEFT], mVolume[AUDIO_INTERLEAVE_RIGHT]);
2411 result.append(buffer);
2412 snprintf(buffer, 255, " format(%d), channel count(%d), frame count(%zu)\n", mFormat,
2413 mChannelCount, mFrameCount);
2414 result.append(buffer);
2415 snprintf(buffer, 255, " sample rate(%u), speed(%f), status(%d)\n",
2416 mSampleRate, mPlaybackRate.mSpeed, mStatus);
2417 result.append(buffer);
2418 snprintf(buffer, 255, " state(%d), latency (%d)\n", mState, mLatency);
2419 result.append(buffer);
2420 ::write(fd, result.string(), result.size());
2421 return NO_ERROR;
2422 }
2423
getUnderrunFrames() const2424 uint32_t AudioTrack::getUnderrunFrames() const
2425 {
2426 AutoMutex lock(mLock);
2427 return mProxy->getUnderrunFrames();
2428 }
2429
addAudioDeviceCallback(const sp<AudioSystem::AudioDeviceCallback> & callback)2430 status_t AudioTrack::addAudioDeviceCallback(const sp<AudioSystem::AudioDeviceCallback>& callback)
2431 {
2432 if (callback == 0) {
2433 ALOGW("%s adding NULL callback!", __FUNCTION__);
2434 return BAD_VALUE;
2435 }
2436 AutoMutex lock(mLock);
2437 if (mDeviceCallback == callback) {
2438 ALOGW("%s adding same callback!", __FUNCTION__);
2439 return INVALID_OPERATION;
2440 }
2441 status_t status = NO_ERROR;
2442 if (mOutput != AUDIO_IO_HANDLE_NONE) {
2443 if (mDeviceCallback != 0) {
2444 ALOGW("%s callback already present!", __FUNCTION__);
2445 AudioSystem::removeAudioDeviceCallback(mDeviceCallback, mOutput);
2446 }
2447 status = AudioSystem::addAudioDeviceCallback(callback, mOutput);
2448 }
2449 mDeviceCallback = callback;
2450 return status;
2451 }
2452
removeAudioDeviceCallback(const sp<AudioSystem::AudioDeviceCallback> & callback)2453 status_t AudioTrack::removeAudioDeviceCallback(
2454 const sp<AudioSystem::AudioDeviceCallback>& callback)
2455 {
2456 if (callback == 0) {
2457 ALOGW("%s removing NULL callback!", __FUNCTION__);
2458 return BAD_VALUE;
2459 }
2460 AutoMutex lock(mLock);
2461 if (mDeviceCallback != callback) {
2462 ALOGW("%s removing different callback!", __FUNCTION__);
2463 return INVALID_OPERATION;
2464 }
2465 if (mOutput != AUDIO_IO_HANDLE_NONE) {
2466 AudioSystem::removeAudioDeviceCallback(mDeviceCallback, mOutput);
2467 }
2468 mDeviceCallback = 0;
2469 return NO_ERROR;
2470 }
2471
2472 // =========================================================================
2473
binderDied(const wp<IBinder> & who __unused)2474 void AudioTrack::DeathNotifier::binderDied(const wp<IBinder>& who __unused)
2475 {
2476 sp<AudioTrack> audioTrack = mAudioTrack.promote();
2477 if (audioTrack != 0) {
2478 AutoMutex lock(audioTrack->mLock);
2479 audioTrack->mProxy->binderDied();
2480 }
2481 }
2482
2483 // =========================================================================
2484
AudioTrackThread(AudioTrack & receiver,bool bCanCallJava)2485 AudioTrack::AudioTrackThread::AudioTrackThread(AudioTrack& receiver, bool bCanCallJava)
2486 : Thread(bCanCallJava), mReceiver(receiver), mPaused(true), mPausedInt(false), mPausedNs(0LL),
2487 mIgnoreNextPausedInt(false)
2488 {
2489 }
2490
~AudioTrackThread()2491 AudioTrack::AudioTrackThread::~AudioTrackThread()
2492 {
2493 }
2494
threadLoop()2495 bool AudioTrack::AudioTrackThread::threadLoop()
2496 {
2497 {
2498 AutoMutex _l(mMyLock);
2499 if (mPaused) {
2500 mMyCond.wait(mMyLock);
2501 // caller will check for exitPending()
2502 return true;
2503 }
2504 if (mIgnoreNextPausedInt) {
2505 mIgnoreNextPausedInt = false;
2506 mPausedInt = false;
2507 }
2508 if (mPausedInt) {
2509 if (mPausedNs > 0) {
2510 (void) mMyCond.waitRelative(mMyLock, mPausedNs);
2511 } else {
2512 mMyCond.wait(mMyLock);
2513 }
2514 mPausedInt = false;
2515 return true;
2516 }
2517 }
2518 if (exitPending()) {
2519 return false;
2520 }
2521 nsecs_t ns = mReceiver.processAudioBuffer();
2522 switch (ns) {
2523 case 0:
2524 return true;
2525 case NS_INACTIVE:
2526 pauseInternal();
2527 return true;
2528 case NS_NEVER:
2529 return false;
2530 case NS_WHENEVER:
2531 // Event driven: call wake() when callback notifications conditions change.
2532 ns = INT64_MAX;
2533 // fall through
2534 default:
2535 LOG_ALWAYS_FATAL_IF(ns < 0, "processAudioBuffer() returned %" PRId64, ns);
2536 pauseInternal(ns);
2537 return true;
2538 }
2539 }
2540
requestExit()2541 void AudioTrack::AudioTrackThread::requestExit()
2542 {
2543 // must be in this order to avoid a race condition
2544 Thread::requestExit();
2545 resume();
2546 }
2547
pause()2548 void AudioTrack::AudioTrackThread::pause()
2549 {
2550 AutoMutex _l(mMyLock);
2551 mPaused = true;
2552 }
2553
resume()2554 void AudioTrack::AudioTrackThread::resume()
2555 {
2556 AutoMutex _l(mMyLock);
2557 mIgnoreNextPausedInt = true;
2558 if (mPaused || mPausedInt) {
2559 mPaused = false;
2560 mPausedInt = false;
2561 mMyCond.signal();
2562 }
2563 }
2564
wake()2565 void AudioTrack::AudioTrackThread::wake()
2566 {
2567 AutoMutex _l(mMyLock);
2568 if (!mPaused) {
2569 // wake() might be called while servicing a callback - ignore the next
2570 // pause time and call processAudioBuffer.
2571 mIgnoreNextPausedInt = true;
2572 if (mPausedInt && mPausedNs > 0) {
2573 // audio track is active and internally paused with timeout.
2574 mPausedInt = false;
2575 mMyCond.signal();
2576 }
2577 }
2578 }
2579
pauseInternal(nsecs_t ns)2580 void AudioTrack::AudioTrackThread::pauseInternal(nsecs_t ns)
2581 {
2582 AutoMutex _l(mMyLock);
2583 mPausedInt = true;
2584 mPausedNs = ns;
2585 }
2586
2587 } // namespace android
2588