1 //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes implement wrappers around llvm::Value in order to 11 // fully represent the range of values for C L- and R- values. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H 16 #define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H 17 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/Type.h" 21 #include "llvm/IR/Value.h" 22 #include "llvm/IR/Type.h" 23 24 namespace llvm { 25 class Constant; 26 class MDNode; 27 } 28 29 namespace clang { 30 namespace CodeGen { 31 class AggValueSlot; 32 struct CGBitFieldInfo; 33 34 /// RValue - This trivial value class is used to represent the result of an 35 /// expression that is evaluated. It can be one of three things: either a 36 /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the 37 /// address of an aggregate value in memory. 38 class RValue { 39 enum Flavor { Scalar, Complex, Aggregate }; 40 41 // Stores first value and flavor. 42 llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1; 43 // Stores second value and volatility. 44 llvm::PointerIntPair<llvm::Value *, 1, bool> V2; 45 46 public: isScalar()47 bool isScalar() const { return V1.getInt() == Scalar; } isComplex()48 bool isComplex() const { return V1.getInt() == Complex; } isAggregate()49 bool isAggregate() const { return V1.getInt() == Aggregate; } 50 isVolatileQualified()51 bool isVolatileQualified() const { return V2.getInt(); } 52 53 /// getScalarVal() - Return the Value* of this scalar value. getScalarVal()54 llvm::Value *getScalarVal() const { 55 assert(isScalar() && "Not a scalar!"); 56 return V1.getPointer(); 57 } 58 59 /// getComplexVal - Return the real/imag components of this complex value. 60 /// getComplexVal()61 std::pair<llvm::Value *, llvm::Value *> getComplexVal() const { 62 return std::make_pair(V1.getPointer(), V2.getPointer()); 63 } 64 65 /// getAggregateAddr() - Return the Value* of the address of the aggregate. getAggregateAddr()66 llvm::Value *getAggregateAddr() const { 67 assert(isAggregate() && "Not an aggregate!"); 68 return V1.getPointer(); 69 } 70 get(llvm::Value * V)71 static RValue get(llvm::Value *V) { 72 RValue ER; 73 ER.V1.setPointer(V); 74 ER.V1.setInt(Scalar); 75 ER.V2.setInt(false); 76 return ER; 77 } getComplex(llvm::Value * V1,llvm::Value * V2)78 static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { 79 RValue ER; 80 ER.V1.setPointer(V1); 81 ER.V2.setPointer(V2); 82 ER.V1.setInt(Complex); 83 ER.V2.setInt(false); 84 return ER; 85 } getComplex(const std::pair<llvm::Value *,llvm::Value * > & C)86 static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) { 87 return getComplex(C.first, C.second); 88 } 89 // FIXME: Aggregate rvalues need to retain information about whether they are 90 // volatile or not. Remove default to find all places that probably get this 91 // wrong. 92 static RValue getAggregate(llvm::Value *V, bool Volatile = false) { 93 RValue ER; 94 ER.V1.setPointer(V); 95 ER.V1.setInt(Aggregate); 96 ER.V2.setInt(Volatile); 97 return ER; 98 } 99 }; 100 101 /// Does an ARC strong l-value have precise lifetime? 102 enum ARCPreciseLifetime_t { 103 ARCImpreciseLifetime, ARCPreciseLifetime 104 }; 105 106 /// LValue - This represents an lvalue references. Because C/C++ allow 107 /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a 108 /// bitrange. 109 class LValue { 110 enum { 111 Simple, // This is a normal l-value, use getAddress(). 112 VectorElt, // This is a vector element l-value (V[i]), use getVector* 113 BitField, // This is a bitfield l-value, use getBitfield*. 114 ExtVectorElt, // This is an extended vector subset, use getExtVectorComp 115 GlobalReg // This is a register l-value, use getGlobalReg() 116 } LVType; 117 118 llvm::Value *V; 119 120 union { 121 // Index into a vector subscript: V[i] 122 llvm::Value *VectorIdx; 123 124 // ExtVector element subset: V.xyx 125 llvm::Constant *VectorElts; 126 127 // BitField start bit and size 128 const CGBitFieldInfo *BitFieldInfo; 129 }; 130 131 QualType Type; 132 133 // 'const' is unused here 134 Qualifiers Quals; 135 136 // The alignment to use when accessing this lvalue. (For vector elements, 137 // this is the alignment of the whole vector.) 138 int64_t Alignment; 139 140 // objective-c's ivar 141 bool Ivar:1; 142 143 // objective-c's ivar is an array 144 bool ObjIsArray:1; 145 146 // LValue is non-gc'able for any reason, including being a parameter or local 147 // variable. 148 bool NonGC: 1; 149 150 // Lvalue is a global reference of an objective-c object 151 bool GlobalObjCRef : 1; 152 153 // Lvalue is a thread local reference 154 bool ThreadLocalRef : 1; 155 156 // Lvalue has ARC imprecise lifetime. We store this inverted to try 157 // to make the default bitfield pattern all-zeroes. 158 bool ImpreciseLifetime : 1; 159 160 Expr *BaseIvarExp; 161 162 /// Used by struct-path-aware TBAA. 163 QualType TBAABaseType; 164 /// Offset relative to the base type. 165 uint64_t TBAAOffset; 166 167 /// TBAAInfo - TBAA information to attach to dereferences of this LValue. 168 llvm::MDNode *TBAAInfo; 169 170 private: 171 void Initialize(QualType Type, Qualifiers Quals, 172 CharUnits Alignment, 173 llvm::MDNode *TBAAInfo = nullptr) { 174 this->Type = Type; 175 this->Quals = Quals; 176 this->Alignment = Alignment.getQuantity(); 177 assert(this->Alignment == Alignment.getQuantity() && 178 "Alignment exceeds allowed max!"); 179 180 // Initialize Objective-C flags. 181 this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false; 182 this->ImpreciseLifetime = false; 183 this->ThreadLocalRef = false; 184 this->BaseIvarExp = nullptr; 185 186 // Initialize fields for TBAA. 187 this->TBAABaseType = Type; 188 this->TBAAOffset = 0; 189 this->TBAAInfo = TBAAInfo; 190 } 191 192 public: isSimple()193 bool isSimple() const { return LVType == Simple; } isVectorElt()194 bool isVectorElt() const { return LVType == VectorElt; } isBitField()195 bool isBitField() const { return LVType == BitField; } isExtVectorElt()196 bool isExtVectorElt() const { return LVType == ExtVectorElt; } isGlobalReg()197 bool isGlobalReg() const { return LVType == GlobalReg; } 198 isVolatileQualified()199 bool isVolatileQualified() const { return Quals.hasVolatile(); } isRestrictQualified()200 bool isRestrictQualified() const { return Quals.hasRestrict(); } getVRQualifiers()201 unsigned getVRQualifiers() const { 202 return Quals.getCVRQualifiers() & ~Qualifiers::Const; 203 } 204 getType()205 QualType getType() const { return Type; } 206 getObjCLifetime()207 Qualifiers::ObjCLifetime getObjCLifetime() const { 208 return Quals.getObjCLifetime(); 209 } 210 isObjCIvar()211 bool isObjCIvar() const { return Ivar; } setObjCIvar(bool Value)212 void setObjCIvar(bool Value) { Ivar = Value; } 213 isObjCArray()214 bool isObjCArray() const { return ObjIsArray; } setObjCArray(bool Value)215 void setObjCArray(bool Value) { ObjIsArray = Value; } 216 isNonGC()217 bool isNonGC () const { return NonGC; } setNonGC(bool Value)218 void setNonGC(bool Value) { NonGC = Value; } 219 isGlobalObjCRef()220 bool isGlobalObjCRef() const { return GlobalObjCRef; } setGlobalObjCRef(bool Value)221 void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; } 222 isThreadLocalRef()223 bool isThreadLocalRef() const { return ThreadLocalRef; } setThreadLocalRef(bool Value)224 void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;} 225 isARCPreciseLifetime()226 ARCPreciseLifetime_t isARCPreciseLifetime() const { 227 return ARCPreciseLifetime_t(!ImpreciseLifetime); 228 } setARCPreciseLifetime(ARCPreciseLifetime_t value)229 void setARCPreciseLifetime(ARCPreciseLifetime_t value) { 230 ImpreciseLifetime = (value == ARCImpreciseLifetime); 231 } 232 isObjCWeak()233 bool isObjCWeak() const { 234 return Quals.getObjCGCAttr() == Qualifiers::Weak; 235 } isObjCStrong()236 bool isObjCStrong() const { 237 return Quals.getObjCGCAttr() == Qualifiers::Strong; 238 } 239 isVolatile()240 bool isVolatile() const { 241 return Quals.hasVolatile(); 242 } 243 getBaseIvarExp()244 Expr *getBaseIvarExp() const { return BaseIvarExp; } setBaseIvarExp(Expr * V)245 void setBaseIvarExp(Expr *V) { BaseIvarExp = V; } 246 getTBAABaseType()247 QualType getTBAABaseType() const { return TBAABaseType; } setTBAABaseType(QualType T)248 void setTBAABaseType(QualType T) { TBAABaseType = T; } 249 getTBAAOffset()250 uint64_t getTBAAOffset() const { return TBAAOffset; } setTBAAOffset(uint64_t O)251 void setTBAAOffset(uint64_t O) { TBAAOffset = O; } 252 getTBAAInfo()253 llvm::MDNode *getTBAAInfo() const { return TBAAInfo; } setTBAAInfo(llvm::MDNode * N)254 void setTBAAInfo(llvm::MDNode *N) { TBAAInfo = N; } 255 getQuals()256 const Qualifiers &getQuals() const { return Quals; } getQuals()257 Qualifiers &getQuals() { return Quals; } 258 getAddressSpace()259 unsigned getAddressSpace() const { return Quals.getAddressSpace(); } 260 getAlignment()261 CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); } setAlignment(CharUnits A)262 void setAlignment(CharUnits A) { Alignment = A.getQuantity(); } 263 264 // simple lvalue getAddress()265 llvm::Value *getAddress() const { assert(isSimple()); return V; } setAddress(llvm::Value * address)266 void setAddress(llvm::Value *address) { 267 assert(isSimple()); 268 V = address; 269 } 270 271 // vector elt lvalue getVectorAddr()272 llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; } getVectorIdx()273 llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; } 274 275 // extended vector elements. getExtVectorAddr()276 llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; } getExtVectorElts()277 llvm::Constant *getExtVectorElts() const { 278 assert(isExtVectorElt()); 279 return VectorElts; 280 } 281 282 // bitfield lvalue getBitFieldAddr()283 llvm::Value *getBitFieldAddr() const { 284 assert(isBitField()); 285 return V; 286 } getBitFieldInfo()287 const CGBitFieldInfo &getBitFieldInfo() const { 288 assert(isBitField()); 289 return *BitFieldInfo; 290 } 291 292 // global register lvalue getGlobalReg()293 llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; } 294 295 static LValue MakeAddr(llvm::Value *address, QualType type, 296 CharUnits alignment, ASTContext &Context, 297 llvm::MDNode *TBAAInfo = nullptr) { 298 Qualifiers qs = type.getQualifiers(); 299 qs.setObjCGCAttr(Context.getObjCGCAttrKind(type)); 300 301 LValue R; 302 R.LVType = Simple; 303 assert(address->getType()->isPointerTy()); 304 R.V = address; 305 R.Initialize(type, qs, alignment, TBAAInfo); 306 return R; 307 } 308 MakeVectorElt(llvm::Value * Vec,llvm::Value * Idx,QualType type,CharUnits Alignment)309 static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx, 310 QualType type, CharUnits Alignment) { 311 LValue R; 312 R.LVType = VectorElt; 313 R.V = Vec; 314 R.VectorIdx = Idx; 315 R.Initialize(type, type.getQualifiers(), Alignment); 316 return R; 317 } 318 MakeExtVectorElt(llvm::Value * Vec,llvm::Constant * Elts,QualType type,CharUnits Alignment)319 static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts, 320 QualType type, CharUnits Alignment) { 321 LValue R; 322 R.LVType = ExtVectorElt; 323 R.V = Vec; 324 R.VectorElts = Elts; 325 R.Initialize(type, type.getQualifiers(), Alignment); 326 return R; 327 } 328 329 /// \brief Create a new object to represent a bit-field access. 330 /// 331 /// \param Addr - The base address of the bit-field sequence this 332 /// bit-field refers to. 333 /// \param Info - The information describing how to perform the bit-field 334 /// access. MakeBitfield(llvm::Value * Addr,const CGBitFieldInfo & Info,QualType type,CharUnits Alignment)335 static LValue MakeBitfield(llvm::Value *Addr, 336 const CGBitFieldInfo &Info, 337 QualType type, CharUnits Alignment) { 338 LValue R; 339 R.LVType = BitField; 340 R.V = Addr; 341 R.BitFieldInfo = &Info; 342 R.Initialize(type, type.getQualifiers(), Alignment); 343 return R; 344 } 345 MakeGlobalReg(llvm::Value * Reg,QualType type,CharUnits Alignment)346 static LValue MakeGlobalReg(llvm::Value *Reg, 347 QualType type, 348 CharUnits Alignment) { 349 LValue R; 350 R.LVType = GlobalReg; 351 R.V = Reg; 352 R.Initialize(type, type.getQualifiers(), Alignment); 353 return R; 354 } 355 asAggregateRValue()356 RValue asAggregateRValue() const { 357 // FIMXE: Alignment 358 return RValue::getAggregate(getAddress(), isVolatileQualified()); 359 } 360 }; 361 362 /// An aggregate value slot. 363 class AggValueSlot { 364 /// The address. 365 llvm::Value *Addr; 366 367 // Qualifiers 368 Qualifiers Quals; 369 370 unsigned short Alignment; 371 372 /// DestructedFlag - This is set to true if some external code is 373 /// responsible for setting up a destructor for the slot. Otherwise 374 /// the code which constructs it should push the appropriate cleanup. 375 bool DestructedFlag : 1; 376 377 /// ObjCGCFlag - This is set to true if writing to the memory in the 378 /// slot might require calling an appropriate Objective-C GC 379 /// barrier. The exact interaction here is unnecessarily mysterious. 380 bool ObjCGCFlag : 1; 381 382 /// ZeroedFlag - This is set to true if the memory in the slot is 383 /// known to be zero before the assignment into it. This means that 384 /// zero fields don't need to be set. 385 bool ZeroedFlag : 1; 386 387 /// AliasedFlag - This is set to true if the slot might be aliased 388 /// and it's not undefined behavior to access it through such an 389 /// alias. Note that it's always undefined behavior to access a C++ 390 /// object that's under construction through an alias derived from 391 /// outside the construction process. 392 /// 393 /// This flag controls whether calls that produce the aggregate 394 /// value may be evaluated directly into the slot, or whether they 395 /// must be evaluated into an unaliased temporary and then memcpy'ed 396 /// over. Since it's invalid in general to memcpy a non-POD C++ 397 /// object, it's important that this flag never be set when 398 /// evaluating an expression which constructs such an object. 399 bool AliasedFlag : 1; 400 401 public: 402 enum IsAliased_t { IsNotAliased, IsAliased }; 403 enum IsDestructed_t { IsNotDestructed, IsDestructed }; 404 enum IsZeroed_t { IsNotZeroed, IsZeroed }; 405 enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers }; 406 407 /// ignored - Returns an aggregate value slot indicating that the 408 /// aggregate value is being ignored. ignored()409 static AggValueSlot ignored() { 410 return forAddr(nullptr, CharUnits(), Qualifiers(), IsNotDestructed, 411 DoesNotNeedGCBarriers, IsNotAliased); 412 } 413 414 /// forAddr - Make a slot for an aggregate value. 415 /// 416 /// \param quals - The qualifiers that dictate how the slot should 417 /// be initialied. Only 'volatile' and the Objective-C lifetime 418 /// qualifiers matter. 419 /// 420 /// \param isDestructed - true if something else is responsible 421 /// for calling destructors on this object 422 /// \param needsGC - true if the slot is potentially located 423 /// somewhere that ObjC GC calls should be emitted for 424 static AggValueSlot forAddr(llvm::Value *addr, CharUnits align, 425 Qualifiers quals, 426 IsDestructed_t isDestructed, 427 NeedsGCBarriers_t needsGC, 428 IsAliased_t isAliased, 429 IsZeroed_t isZeroed = IsNotZeroed) { 430 AggValueSlot AV; 431 AV.Addr = addr; 432 AV.Alignment = align.getQuantity(); 433 AV.Quals = quals; 434 AV.DestructedFlag = isDestructed; 435 AV.ObjCGCFlag = needsGC; 436 AV.ZeroedFlag = isZeroed; 437 AV.AliasedFlag = isAliased; 438 return AV; 439 } 440 441 static AggValueSlot forLValue(const LValue &LV, 442 IsDestructed_t isDestructed, 443 NeedsGCBarriers_t needsGC, 444 IsAliased_t isAliased, 445 IsZeroed_t isZeroed = IsNotZeroed) { 446 return forAddr(LV.getAddress(), LV.getAlignment(), 447 LV.getQuals(), isDestructed, needsGC, isAliased, isZeroed); 448 } 449 isExternallyDestructed()450 IsDestructed_t isExternallyDestructed() const { 451 return IsDestructed_t(DestructedFlag); 452 } 453 void setExternallyDestructed(bool destructed = true) { 454 DestructedFlag = destructed; 455 } 456 getQualifiers()457 Qualifiers getQualifiers() const { return Quals; } 458 isVolatile()459 bool isVolatile() const { 460 return Quals.hasVolatile(); 461 } 462 setVolatile(bool flag)463 void setVolatile(bool flag) { 464 Quals.setVolatile(flag); 465 } 466 getObjCLifetime()467 Qualifiers::ObjCLifetime getObjCLifetime() const { 468 return Quals.getObjCLifetime(); 469 } 470 requiresGCollection()471 NeedsGCBarriers_t requiresGCollection() const { 472 return NeedsGCBarriers_t(ObjCGCFlag); 473 } 474 getAddr()475 llvm::Value *getAddr() const { 476 return Addr; 477 } 478 isIgnored()479 bool isIgnored() const { 480 return Addr == nullptr; 481 } 482 getAlignment()483 CharUnits getAlignment() const { 484 return CharUnits::fromQuantity(Alignment); 485 } 486 isPotentiallyAliased()487 IsAliased_t isPotentiallyAliased() const { 488 return IsAliased_t(AliasedFlag); 489 } 490 491 // FIXME: Alignment? asRValue()492 RValue asRValue() const { 493 return RValue::getAggregate(getAddr(), isVolatile()); 494 } 495 496 void setZeroed(bool V = true) { ZeroedFlag = V; } isZeroed()497 IsZeroed_t isZeroed() const { 498 return IsZeroed_t(ZeroedFlag); 499 } 500 }; 501 502 } // end namespace CodeGen 503 } // end namespace clang 504 505 #endif 506