1 //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass deletes dead arguments from internal functions. Dead argument
11 // elimination removes arguments which are directly dead, as well as arguments
12 // only passed into function calls as dead arguments of other functions. This
13 // pass also deletes dead return values in a similar way.
14 //
15 // This pass is often useful as a cleanup pass to run after aggressive
16 // interprocedural passes, which add possibly-dead arguments or return values.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "llvm/Transforms/IPO.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/DIBuilder.h"
29 #include "llvm/IR/DebugInfo.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <map>
39 #include <set>
40 #include <tuple>
41 using namespace llvm;
42
43 #define DEBUG_TYPE "deadargelim"
44
45 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
46 STATISTIC(NumRetValsEliminated , "Number of unused return values removed");
47 STATISTIC(NumArgumentsReplacedWithUndef,
48 "Number of unread args replaced with undef");
49 namespace {
50 /// DAE - The dead argument elimination pass.
51 ///
52 class DAE : public ModulePass {
53 public:
54
55 /// Struct that represents (part of) either a return value or a function
56 /// argument. Used so that arguments and return values can be used
57 /// interchangeably.
58 struct RetOrArg {
RetOrArg__anon7448e5710111::DAE::RetOrArg59 RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
60 IsArg(IsArg) {}
61 const Function *F;
62 unsigned Idx;
63 bool IsArg;
64
65 /// Make RetOrArg comparable, so we can put it into a map.
operator <__anon7448e5710111::DAE::RetOrArg66 bool operator<(const RetOrArg &O) const {
67 return std::tie(F, Idx, IsArg) < std::tie(O.F, O.Idx, O.IsArg);
68 }
69
70 /// Make RetOrArg comparable, so we can easily iterate the multimap.
operator ==__anon7448e5710111::DAE::RetOrArg71 bool operator==(const RetOrArg &O) const {
72 return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
73 }
74
getDescription__anon7448e5710111::DAE::RetOrArg75 std::string getDescription() const {
76 return (Twine(IsArg ? "Argument #" : "Return value #") + utostr(Idx) +
77 " of function " + F->getName()).str();
78 }
79 };
80
81 /// Liveness enum - During our initial pass over the program, we determine
82 /// that things are either alive or maybe alive. We don't mark anything
83 /// explicitly dead (even if we know they are), since anything not alive
84 /// with no registered uses (in Uses) will never be marked alive and will
85 /// thus become dead in the end.
86 enum Liveness { Live, MaybeLive };
87
88 /// Convenience wrapper
CreateRet(const Function * F,unsigned Idx)89 RetOrArg CreateRet(const Function *F, unsigned Idx) {
90 return RetOrArg(F, Idx, false);
91 }
92 /// Convenience wrapper
CreateArg(const Function * F,unsigned Idx)93 RetOrArg CreateArg(const Function *F, unsigned Idx) {
94 return RetOrArg(F, Idx, true);
95 }
96
97 typedef std::multimap<RetOrArg, RetOrArg> UseMap;
98 /// This maps a return value or argument to any MaybeLive return values or
99 /// arguments it uses. This allows the MaybeLive values to be marked live
100 /// when any of its users is marked live.
101 /// For example (indices are left out for clarity):
102 /// - Uses[ret F] = ret G
103 /// This means that F calls G, and F returns the value returned by G.
104 /// - Uses[arg F] = ret G
105 /// This means that some function calls G and passes its result as an
106 /// argument to F.
107 /// - Uses[ret F] = arg F
108 /// This means that F returns one of its own arguments.
109 /// - Uses[arg F] = arg G
110 /// This means that G calls F and passes one of its own (G's) arguments
111 /// directly to F.
112 UseMap Uses;
113
114 typedef std::set<RetOrArg> LiveSet;
115 typedef std::set<const Function*> LiveFuncSet;
116
117 /// This set contains all values that have been determined to be live.
118 LiveSet LiveValues;
119 /// This set contains all values that are cannot be changed in any way.
120 LiveFuncSet LiveFunctions;
121
122 typedef SmallVector<RetOrArg, 5> UseVector;
123
124 // Map each LLVM function to corresponding metadata with debug info. If
125 // the function is replaced with another one, we should patch the pointer
126 // to LLVM function in metadata.
127 // As the code generation for module is finished (and DIBuilder is
128 // finalized) we assume that subprogram descriptors won't be changed, and
129 // they are stored in map for short duration anyway.
130 DenseMap<const Function *, DISubprogram> FunctionDIs;
131
132 protected:
133 // DAH uses this to specify a different ID.
DAE(char & ID)134 explicit DAE(char &ID) : ModulePass(ID) {}
135
136 public:
137 static char ID; // Pass identification, replacement for typeid
DAE()138 DAE() : ModulePass(ID) {
139 initializeDAEPass(*PassRegistry::getPassRegistry());
140 }
141
142 bool runOnModule(Module &M) override;
143
ShouldHackArguments() const144 virtual bool ShouldHackArguments() const { return false; }
145
146 private:
147 Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
148 Liveness SurveyUse(const Use *U, UseVector &MaybeLiveUses,
149 unsigned RetValNum = -1U);
150 Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
151
152 void SurveyFunction(const Function &F);
153 void MarkValue(const RetOrArg &RA, Liveness L,
154 const UseVector &MaybeLiveUses);
155 void MarkLive(const RetOrArg &RA);
156 void MarkLive(const Function &F);
157 void PropagateLiveness(const RetOrArg &RA);
158 bool RemoveDeadStuffFromFunction(Function *F);
159 bool DeleteDeadVarargs(Function &Fn);
160 bool RemoveDeadArgumentsFromCallers(Function &Fn);
161 };
162 }
163
164
165 char DAE::ID = 0;
166 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
167
168 namespace {
169 /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
170 /// deletes arguments to functions which are external. This is only for use
171 /// by bugpoint.
172 struct DAH : public DAE {
173 static char ID;
DAH__anon7448e5710211::DAH174 DAH() : DAE(ID) {}
175
ShouldHackArguments__anon7448e5710211::DAH176 bool ShouldHackArguments() const override { return true; }
177 };
178 }
179
180 char DAH::ID = 0;
181 INITIALIZE_PASS(DAH, "deadarghaX0r",
182 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
183 false, false)
184
185 /// createDeadArgEliminationPass - This pass removes arguments from functions
186 /// which are not used by the body of the function.
187 ///
createDeadArgEliminationPass()188 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
createDeadArgHackingPass()189 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
190
191 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
192 /// llvm.vastart is never called, the varargs list is dead for the function.
DeleteDeadVarargs(Function & Fn)193 bool DAE::DeleteDeadVarargs(Function &Fn) {
194 assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
195 if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
196
197 // Ensure that the function is only directly called.
198 if (Fn.hasAddressTaken())
199 return false;
200
201 // Okay, we know we can transform this function if safe. Scan its body
202 // looking for calls marked musttail or calls to llvm.vastart.
203 for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
204 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
205 CallInst *CI = dyn_cast<CallInst>(I);
206 if (!CI)
207 continue;
208 if (CI->isMustTailCall())
209 return false;
210 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
211 if (II->getIntrinsicID() == Intrinsic::vastart)
212 return false;
213 }
214 }
215 }
216
217 // If we get here, there are no calls to llvm.vastart in the function body,
218 // remove the "..." and adjust all the calls.
219
220 // Start by computing a new prototype for the function, which is the same as
221 // the old function, but doesn't have isVarArg set.
222 FunctionType *FTy = Fn.getFunctionType();
223
224 std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
225 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
226 Params, false);
227 unsigned NumArgs = Params.size();
228
229 // Create the new function body and insert it into the module...
230 Function *NF = Function::Create(NFTy, Fn.getLinkage());
231 NF->copyAttributesFrom(&Fn);
232 Fn.getParent()->getFunctionList().insert(&Fn, NF);
233 NF->takeName(&Fn);
234
235 // Loop over all of the callers of the function, transforming the call sites
236 // to pass in a smaller number of arguments into the new function.
237 //
238 std::vector<Value*> Args;
239 for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
240 CallSite CS(*I++);
241 if (!CS)
242 continue;
243 Instruction *Call = CS.getInstruction();
244
245 // Pass all the same arguments.
246 Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
247
248 // Drop any attributes that were on the vararg arguments.
249 AttributeSet PAL = CS.getAttributes();
250 if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
251 SmallVector<AttributeSet, 8> AttributesVec;
252 for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
253 AttributesVec.push_back(PAL.getSlotAttributes(i));
254 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
255 AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
256 PAL.getFnAttributes()));
257 PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
258 }
259
260 Instruction *New;
261 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
262 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
263 Args, "", Call);
264 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
265 cast<InvokeInst>(New)->setAttributes(PAL);
266 } else {
267 New = CallInst::Create(NF, Args, "", Call);
268 cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
269 cast<CallInst>(New)->setAttributes(PAL);
270 if (cast<CallInst>(Call)->isTailCall())
271 cast<CallInst>(New)->setTailCall();
272 }
273 New->setDebugLoc(Call->getDebugLoc());
274
275 Args.clear();
276
277 if (!Call->use_empty())
278 Call->replaceAllUsesWith(New);
279
280 New->takeName(Call);
281
282 // Finally, remove the old call from the program, reducing the use-count of
283 // F.
284 Call->eraseFromParent();
285 }
286
287 // Since we have now created the new function, splice the body of the old
288 // function right into the new function, leaving the old rotting hulk of the
289 // function empty.
290 NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
291
292 // Loop over the argument list, transferring uses of the old arguments over to
293 // the new arguments, also transferring over the names as well. While we're at
294 // it, remove the dead arguments from the DeadArguments list.
295 //
296 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
297 I2 = NF->arg_begin(); I != E; ++I, ++I2) {
298 // Move the name and users over to the new version.
299 I->replaceAllUsesWith(I2);
300 I2->takeName(I);
301 }
302
303 // Patch the pointer to LLVM function in debug info descriptor.
304 auto DI = FunctionDIs.find(&Fn);
305 if (DI != FunctionDIs.end()) {
306 DISubprogram SP = DI->second;
307 SP->replaceFunction(NF);
308 // Ensure the map is updated so it can be reused on non-varargs argument
309 // eliminations of the same function.
310 FunctionDIs.erase(DI);
311 FunctionDIs[NF] = SP;
312 }
313
314 // Fix up any BlockAddresses that refer to the function.
315 Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
316 // Delete the bitcast that we just created, so that NF does not
317 // appear to be address-taken.
318 NF->removeDeadConstantUsers();
319 // Finally, nuke the old function.
320 Fn.eraseFromParent();
321 return true;
322 }
323
324 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
325 /// arguments that are unused, and changes the caller parameters to be undefined
326 /// instead.
RemoveDeadArgumentsFromCallers(Function & Fn)327 bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
328 {
329 if (Fn.isDeclaration() || Fn.mayBeOverridden())
330 return false;
331
332 // Functions with local linkage should already have been handled, except the
333 // fragile (variadic) ones which we can improve here.
334 if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
335 return false;
336
337 // If a function seen at compile time is not necessarily the one linked to
338 // the binary being built, it is illegal to change the actual arguments
339 // passed to it. These functions can be captured by isWeakForLinker().
340 // *NOTE* that mayBeOverridden() is insufficient for this purpose as it
341 // doesn't include linkage types like AvailableExternallyLinkage and
342 // LinkOnceODRLinkage. Take link_odr* as an example, it indicates a set of
343 // *EQUIVALENT* globals that can be merged at link-time. However, the
344 // semantic of *EQUIVALENT*-functions includes parameters. Changing
345 // parameters breaks this assumption.
346 //
347 if (Fn.isWeakForLinker())
348 return false;
349
350 if (Fn.use_empty())
351 return false;
352
353 SmallVector<unsigned, 8> UnusedArgs;
354 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
355 I != E; ++I) {
356 Argument *Arg = I;
357
358 if (Arg->use_empty() && !Arg->hasByValOrInAllocaAttr())
359 UnusedArgs.push_back(Arg->getArgNo());
360 }
361
362 if (UnusedArgs.empty())
363 return false;
364
365 bool Changed = false;
366
367 for (Use &U : Fn.uses()) {
368 CallSite CS(U.getUser());
369 if (!CS || !CS.isCallee(&U))
370 continue;
371
372 // Now go through all unused args and replace them with "undef".
373 for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
374 unsigned ArgNo = UnusedArgs[I];
375
376 Value *Arg = CS.getArgument(ArgNo);
377 CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
378 ++NumArgumentsReplacedWithUndef;
379 Changed = true;
380 }
381 }
382
383 return Changed;
384 }
385
386 /// Convenience function that returns the number of return values. It returns 0
387 /// for void functions and 1 for functions not returning a struct. It returns
388 /// the number of struct elements for functions returning a struct.
NumRetVals(const Function * F)389 static unsigned NumRetVals(const Function *F) {
390 Type *RetTy = F->getReturnType();
391 if (RetTy->isVoidTy())
392 return 0;
393 else if (StructType *STy = dyn_cast<StructType>(RetTy))
394 return STy->getNumElements();
395 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
396 return ATy->getNumElements();
397 else
398 return 1;
399 }
400
401 /// Returns the sub-type a function will return at a given Idx. Should
402 /// correspond to the result type of an ExtractValue instruction executed with
403 /// just that one Idx (i.e. only top-level structure is considered).
getRetComponentType(const Function * F,unsigned Idx)404 static Type *getRetComponentType(const Function *F, unsigned Idx) {
405 Type *RetTy = F->getReturnType();
406 assert(!RetTy->isVoidTy() && "void type has no subtype");
407
408 if (StructType *STy = dyn_cast<StructType>(RetTy))
409 return STy->getElementType(Idx);
410 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
411 return ATy->getElementType();
412 else
413 return RetTy;
414 }
415
416 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
417 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
418 /// liveness of Use.
MarkIfNotLive(RetOrArg Use,UseVector & MaybeLiveUses)419 DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
420 // We're live if our use or its Function is already marked as live.
421 if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
422 return Live;
423
424 // We're maybe live otherwise, but remember that we must become live if
425 // Use becomes live.
426 MaybeLiveUses.push_back(Use);
427 return MaybeLive;
428 }
429
430
431 /// SurveyUse - This looks at a single use of an argument or return value
432 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
433 /// if it causes the used value to become MaybeLive.
434 ///
435 /// RetValNum is the return value number to use when this use is used in a
436 /// return instruction. This is used in the recursion, you should always leave
437 /// it at 0.
SurveyUse(const Use * U,UseVector & MaybeLiveUses,unsigned RetValNum)438 DAE::Liveness DAE::SurveyUse(const Use *U,
439 UseVector &MaybeLiveUses, unsigned RetValNum) {
440 const User *V = U->getUser();
441 if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
442 // The value is returned from a function. It's only live when the
443 // function's return value is live. We use RetValNum here, for the case
444 // that U is really a use of an insertvalue instruction that uses the
445 // original Use.
446 const Function *F = RI->getParent()->getParent();
447 if (RetValNum != -1U) {
448 RetOrArg Use = CreateRet(F, RetValNum);
449 // We might be live, depending on the liveness of Use.
450 return MarkIfNotLive(Use, MaybeLiveUses);
451 } else {
452 DAE::Liveness Result = MaybeLive;
453 for (unsigned i = 0; i < NumRetVals(F); ++i) {
454 RetOrArg Use = CreateRet(F, i);
455 // We might be live, depending on the liveness of Use. If any
456 // sub-value is live, then the entire value is considered live. This
457 // is a conservative choice, and better tracking is possible.
458 DAE::Liveness SubResult = MarkIfNotLive(Use, MaybeLiveUses);
459 if (Result != Live)
460 Result = SubResult;
461 }
462 return Result;
463 }
464 }
465 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
466 if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
467 && IV->hasIndices())
468 // The use we are examining is inserted into an aggregate. Our liveness
469 // depends on all uses of that aggregate, but if it is used as a return
470 // value, only index at which we were inserted counts.
471 RetValNum = *IV->idx_begin();
472
473 // Note that if we are used as the aggregate operand to the insertvalue,
474 // we don't change RetValNum, but do survey all our uses.
475
476 Liveness Result = MaybeLive;
477 for (const Use &UU : IV->uses()) {
478 Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
479 if (Result == Live)
480 break;
481 }
482 return Result;
483 }
484
485 if (auto CS = ImmutableCallSite(V)) {
486 const Function *F = CS.getCalledFunction();
487 if (F) {
488 // Used in a direct call.
489
490 // Find the argument number. We know for sure that this use is an
491 // argument, since if it was the function argument this would be an
492 // indirect call and the we know can't be looking at a value of the
493 // label type (for the invoke instruction).
494 unsigned ArgNo = CS.getArgumentNo(U);
495
496 if (ArgNo >= F->getFunctionType()->getNumParams())
497 // The value is passed in through a vararg! Must be live.
498 return Live;
499
500 assert(CS.getArgument(ArgNo)
501 == CS->getOperand(U->getOperandNo())
502 && "Argument is not where we expected it");
503
504 // Value passed to a normal call. It's only live when the corresponding
505 // argument to the called function turns out live.
506 RetOrArg Use = CreateArg(F, ArgNo);
507 return MarkIfNotLive(Use, MaybeLiveUses);
508 }
509 }
510 // Used in any other way? Value must be live.
511 return Live;
512 }
513
514 /// SurveyUses - This looks at all the uses of the given value
515 /// Returns the Liveness deduced from the uses of this value.
516 ///
517 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
518 /// the result is Live, MaybeLiveUses might be modified but its content should
519 /// be ignored (since it might not be complete).
SurveyUses(const Value * V,UseVector & MaybeLiveUses)520 DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
521 // Assume it's dead (which will only hold if there are no uses at all..).
522 Liveness Result = MaybeLive;
523 // Check each use.
524 for (const Use &U : V->uses()) {
525 Result = SurveyUse(&U, MaybeLiveUses);
526 if (Result == Live)
527 break;
528 }
529 return Result;
530 }
531
532 // SurveyFunction - This performs the initial survey of the specified function,
533 // checking out whether or not it uses any of its incoming arguments or whether
534 // any callers use the return value. This fills in the LiveValues set and Uses
535 // map.
536 //
537 // We consider arguments of non-internal functions to be intrinsically alive as
538 // well as arguments to functions which have their "address taken".
539 //
SurveyFunction(const Function & F)540 void DAE::SurveyFunction(const Function &F) {
541 // Functions with inalloca parameters are expecting args in a particular
542 // register and memory layout.
543 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
544 MarkLive(F);
545 return;
546 }
547
548 unsigned RetCount = NumRetVals(&F);
549 // Assume all return values are dead
550 typedef SmallVector<Liveness, 5> RetVals;
551 RetVals RetValLiveness(RetCount, MaybeLive);
552
553 typedef SmallVector<UseVector, 5> RetUses;
554 // These vectors map each return value to the uses that make it MaybeLive, so
555 // we can add those to the Uses map if the return value really turns out to be
556 // MaybeLive. Initialized to a list of RetCount empty lists.
557 RetUses MaybeLiveRetUses(RetCount);
558
559 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
560 if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
561 if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
562 != F.getFunctionType()->getReturnType()) {
563 // We don't support old style multiple return values.
564 MarkLive(F);
565 return;
566 }
567
568 if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
569 MarkLive(F);
570 return;
571 }
572
573 DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
574 // Keep track of the number of live retvals, so we can skip checks once all
575 // of them turn out to be live.
576 unsigned NumLiveRetVals = 0;
577 // Loop all uses of the function.
578 for (const Use &U : F.uses()) {
579 // If the function is PASSED IN as an argument, its address has been
580 // taken.
581 ImmutableCallSite CS(U.getUser());
582 if (!CS || !CS.isCallee(&U)) {
583 MarkLive(F);
584 return;
585 }
586
587 // If this use is anything other than a call site, the function is alive.
588 const Instruction *TheCall = CS.getInstruction();
589 if (!TheCall) { // Not a direct call site?
590 MarkLive(F);
591 return;
592 }
593
594 // If we end up here, we are looking at a direct call to our function.
595
596 // Now, check how our return value(s) is/are used in this caller. Don't
597 // bother checking return values if all of them are live already.
598 if (NumLiveRetVals == RetCount)
599 continue;
600
601 // Check all uses of the return value.
602 for (const Use &U : TheCall->uses()) {
603 if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
604 // This use uses a part of our return value, survey the uses of
605 // that part and store the results for this index only.
606 unsigned Idx = *Ext->idx_begin();
607 if (RetValLiveness[Idx] != Live) {
608 RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
609 if (RetValLiveness[Idx] == Live)
610 NumLiveRetVals++;
611 }
612 } else {
613 // Used by something else than extractvalue. Survey, but assume that the
614 // result applies to all sub-values.
615 UseVector MaybeLiveAggregateUses;
616 if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
617 NumLiveRetVals = RetCount;
618 RetValLiveness.assign(RetCount, Live);
619 break;
620 } else {
621 for (unsigned i = 0; i != RetCount; ++i) {
622 if (RetValLiveness[i] != Live)
623 MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(),
624 MaybeLiveAggregateUses.end());
625 }
626 }
627 }
628 }
629 }
630
631 // Now we've inspected all callers, record the liveness of our return values.
632 for (unsigned i = 0; i != RetCount; ++i)
633 MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
634
635 DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
636
637 // Now, check all of our arguments.
638 unsigned i = 0;
639 UseVector MaybeLiveArgUses;
640 for (Function::const_arg_iterator AI = F.arg_begin(),
641 E = F.arg_end(); AI != E; ++AI, ++i) {
642 Liveness Result;
643 if (F.getFunctionType()->isVarArg()) {
644 // Variadic functions will already have a va_arg function expanded inside
645 // them, making them potentially very sensitive to ABI changes resulting
646 // from removing arguments entirely, so don't. For example AArch64 handles
647 // register and stack HFAs very differently, and this is reflected in the
648 // IR which has already been generated.
649 Result = Live;
650 } else {
651 // See what the effect of this use is (recording any uses that cause
652 // MaybeLive in MaybeLiveArgUses).
653 Result = SurveyUses(AI, MaybeLiveArgUses);
654 }
655
656 // Mark the result.
657 MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
658 // Clear the vector again for the next iteration.
659 MaybeLiveArgUses.clear();
660 }
661 }
662
663 /// MarkValue - This function marks the liveness of RA depending on L. If L is
664 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
665 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
666 /// live later on.
MarkValue(const RetOrArg & RA,Liveness L,const UseVector & MaybeLiveUses)667 void DAE::MarkValue(const RetOrArg &RA, Liveness L,
668 const UseVector &MaybeLiveUses) {
669 switch (L) {
670 case Live: MarkLive(RA); break;
671 case MaybeLive:
672 {
673 // Note any uses of this value, so this return value can be
674 // marked live whenever one of the uses becomes live.
675 for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
676 UE = MaybeLiveUses.end(); UI != UE; ++UI)
677 Uses.insert(std::make_pair(*UI, RA));
678 break;
679 }
680 }
681 }
682
683 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
684 /// changed in any way. Additionally,
685 /// mark any values that are used as this function's parameters or by its return
686 /// values (according to Uses) live as well.
MarkLive(const Function & F)687 void DAE::MarkLive(const Function &F) {
688 DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
689 // Mark the function as live.
690 LiveFunctions.insert(&F);
691 // Mark all arguments as live.
692 for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
693 PropagateLiveness(CreateArg(&F, i));
694 // Mark all return values as live.
695 for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
696 PropagateLiveness(CreateRet(&F, i));
697 }
698
699 /// MarkLive - Mark the given return value or argument as live. Additionally,
700 /// mark any values that are used by this value (according to Uses) live as
701 /// well.
MarkLive(const RetOrArg & RA)702 void DAE::MarkLive(const RetOrArg &RA) {
703 if (LiveFunctions.count(RA.F))
704 return; // Function was already marked Live.
705
706 if (!LiveValues.insert(RA).second)
707 return; // We were already marked Live.
708
709 DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
710 PropagateLiveness(RA);
711 }
712
713 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
714 /// to any other values it uses (according to Uses).
PropagateLiveness(const RetOrArg & RA)715 void DAE::PropagateLiveness(const RetOrArg &RA) {
716 // We don't use upper_bound (or equal_range) here, because our recursive call
717 // to ourselves is likely to cause the upper_bound (which is the first value
718 // not belonging to RA) to become erased and the iterator invalidated.
719 UseMap::iterator Begin = Uses.lower_bound(RA);
720 UseMap::iterator E = Uses.end();
721 UseMap::iterator I;
722 for (I = Begin; I != E && I->first == RA; ++I)
723 MarkLive(I->second);
724
725 // Erase RA from the Uses map (from the lower bound to wherever we ended up
726 // after the loop).
727 Uses.erase(Begin, I);
728 }
729
730 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
731 // that are not in LiveValues. Transform the function and all of the callees of
732 // the function to not have these arguments and return values.
733 //
RemoveDeadStuffFromFunction(Function * F)734 bool DAE::RemoveDeadStuffFromFunction(Function *F) {
735 // Don't modify fully live functions
736 if (LiveFunctions.count(F))
737 return false;
738
739 // Start by computing a new prototype for the function, which is the same as
740 // the old function, but has fewer arguments and a different return type.
741 FunctionType *FTy = F->getFunctionType();
742 std::vector<Type*> Params;
743
744 // Keep track of if we have a live 'returned' argument
745 bool HasLiveReturnedArg = false;
746
747 // Set up to build a new list of parameter attributes.
748 SmallVector<AttributeSet, 8> AttributesVec;
749 const AttributeSet &PAL = F->getAttributes();
750
751 // Remember which arguments are still alive.
752 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
753 // Construct the new parameter list from non-dead arguments. Also construct
754 // a new set of parameter attributes to correspond. Skip the first parameter
755 // attribute, since that belongs to the return value.
756 unsigned i = 0;
757 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
758 I != E; ++I, ++i) {
759 RetOrArg Arg = CreateArg(F, i);
760 if (LiveValues.erase(Arg)) {
761 Params.push_back(I->getType());
762 ArgAlive[i] = true;
763
764 // Get the original parameter attributes (skipping the first one, that is
765 // for the return value.
766 if (PAL.hasAttributes(i + 1)) {
767 AttrBuilder B(PAL, i + 1);
768 if (B.contains(Attribute::Returned))
769 HasLiveReturnedArg = true;
770 AttributesVec.
771 push_back(AttributeSet::get(F->getContext(), Params.size(), B));
772 }
773 } else {
774 ++NumArgumentsEliminated;
775 DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
776 << ") from " << F->getName() << "\n");
777 }
778 }
779
780 // Find out the new return value.
781 Type *RetTy = FTy->getReturnType();
782 Type *NRetTy = nullptr;
783 unsigned RetCount = NumRetVals(F);
784
785 // -1 means unused, other numbers are the new index
786 SmallVector<int, 5> NewRetIdxs(RetCount, -1);
787 std::vector<Type*> RetTypes;
788
789 // If there is a function with a live 'returned' argument but a dead return
790 // value, then there are two possible actions:
791 // 1) Eliminate the return value and take off the 'returned' attribute on the
792 // argument.
793 // 2) Retain the 'returned' attribute and treat the return value (but not the
794 // entire function) as live so that it is not eliminated.
795 //
796 // It's not clear in the general case which option is more profitable because,
797 // even in the absence of explicit uses of the return value, code generation
798 // is free to use the 'returned' attribute to do things like eliding
799 // save/restores of registers across calls. Whether or not this happens is
800 // target and ABI-specific as well as depending on the amount of register
801 // pressure, so there's no good way for an IR-level pass to figure this out.
802 //
803 // Fortunately, the only places where 'returned' is currently generated by
804 // the FE are places where 'returned' is basically free and almost always a
805 // performance win, so the second option can just be used always for now.
806 //
807 // This should be revisited if 'returned' is ever applied more liberally.
808 if (RetTy->isVoidTy() || HasLiveReturnedArg) {
809 NRetTy = RetTy;
810 } else {
811 // Look at each of the original return values individually.
812 for (unsigned i = 0; i != RetCount; ++i) {
813 RetOrArg Ret = CreateRet(F, i);
814 if (LiveValues.erase(Ret)) {
815 RetTypes.push_back(getRetComponentType(F, i));
816 NewRetIdxs[i] = RetTypes.size() - 1;
817 } else {
818 ++NumRetValsEliminated;
819 DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
820 << F->getName() << "\n");
821 }
822 }
823 if (RetTypes.size() > 1) {
824 // More than one return type? Reduce it down to size.
825 if (StructType *STy = dyn_cast<StructType>(RetTy)) {
826 // Make the new struct packed if we used to return a packed struct
827 // already.
828 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
829 } else {
830 assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
831 NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
832 }
833 } else if (RetTypes.size() == 1)
834 // One return type? Just a simple value then, but only if we didn't use to
835 // return a struct with that simple value before.
836 NRetTy = RetTypes.front();
837 else if (RetTypes.size() == 0)
838 // No return types? Make it void, but only if we didn't use to return {}.
839 NRetTy = Type::getVoidTy(F->getContext());
840 }
841
842 assert(NRetTy && "No new return type found?");
843
844 // The existing function return attributes.
845 AttributeSet RAttrs = PAL.getRetAttributes();
846
847 // Remove any incompatible attributes, but only if we removed all return
848 // values. Otherwise, ensure that we don't have any conflicting attributes
849 // here. Currently, this should not be possible, but special handling might be
850 // required when new return value attributes are added.
851 if (NRetTy->isVoidTy())
852 RAttrs =
853 AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex,
854 AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
855 removeAttributes(AttributeFuncs::
856 typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
857 AttributeSet::ReturnIndex));
858 else
859 assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
860 hasAttributes(AttributeFuncs::
861 typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
862 AttributeSet::ReturnIndex) &&
863 "Return attributes no longer compatible?");
864
865 if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
866 AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
867
868 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
869 AttributesVec.push_back(AttributeSet::get(F->getContext(),
870 PAL.getFnAttributes()));
871
872 // Reconstruct the AttributesList based on the vector we constructed.
873 AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
874
875 // Create the new function type based on the recomputed parameters.
876 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
877
878 // No change?
879 if (NFTy == FTy)
880 return false;
881
882 // Create the new function body and insert it into the module...
883 Function *NF = Function::Create(NFTy, F->getLinkage());
884 NF->copyAttributesFrom(F);
885 NF->setAttributes(NewPAL);
886 // Insert the new function before the old function, so we won't be processing
887 // it again.
888 F->getParent()->getFunctionList().insert(F, NF);
889 NF->takeName(F);
890
891 // Loop over all of the callers of the function, transforming the call sites
892 // to pass in a smaller number of arguments into the new function.
893 //
894 std::vector<Value*> Args;
895 while (!F->use_empty()) {
896 CallSite CS(F->user_back());
897 Instruction *Call = CS.getInstruction();
898
899 AttributesVec.clear();
900 const AttributeSet &CallPAL = CS.getAttributes();
901
902 // The call return attributes.
903 AttributeSet RAttrs = CallPAL.getRetAttributes();
904
905 // Adjust in case the function was changed to return void.
906 RAttrs =
907 AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex,
908 AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
909 removeAttributes(AttributeFuncs::
910 typeIncompatible(NF->getReturnType(),
911 AttributeSet::ReturnIndex),
912 AttributeSet::ReturnIndex));
913 if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
914 AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
915
916 // Declare these outside of the loops, so we can reuse them for the second
917 // loop, which loops the varargs.
918 CallSite::arg_iterator I = CS.arg_begin();
919 unsigned i = 0;
920 // Loop over those operands, corresponding to the normal arguments to the
921 // original function, and add those that are still alive.
922 for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
923 if (ArgAlive[i]) {
924 Args.push_back(*I);
925 // Get original parameter attributes, but skip return attributes.
926 if (CallPAL.hasAttributes(i + 1)) {
927 AttrBuilder B(CallPAL, i + 1);
928 // If the return type has changed, then get rid of 'returned' on the
929 // call site. The alternative is to make all 'returned' attributes on
930 // call sites keep the return value alive just like 'returned'
931 // attributes on function declaration but it's less clearly a win
932 // and this is not an expected case anyway
933 if (NRetTy != RetTy && B.contains(Attribute::Returned))
934 B.removeAttribute(Attribute::Returned);
935 AttributesVec.
936 push_back(AttributeSet::get(F->getContext(), Args.size(), B));
937 }
938 }
939
940 // Push any varargs arguments on the list. Don't forget their attributes.
941 for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
942 Args.push_back(*I);
943 if (CallPAL.hasAttributes(i + 1)) {
944 AttrBuilder B(CallPAL, i + 1);
945 AttributesVec.
946 push_back(AttributeSet::get(F->getContext(), Args.size(), B));
947 }
948 }
949
950 if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
951 AttributesVec.push_back(AttributeSet::get(Call->getContext(),
952 CallPAL.getFnAttributes()));
953
954 // Reconstruct the AttributesList based on the vector we constructed.
955 AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
956
957 Instruction *New;
958 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
959 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
960 Args, "", Call);
961 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
962 cast<InvokeInst>(New)->setAttributes(NewCallPAL);
963 } else {
964 New = CallInst::Create(NF, Args, "", Call);
965 cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
966 cast<CallInst>(New)->setAttributes(NewCallPAL);
967 if (cast<CallInst>(Call)->isTailCall())
968 cast<CallInst>(New)->setTailCall();
969 }
970 New->setDebugLoc(Call->getDebugLoc());
971
972 Args.clear();
973
974 if (!Call->use_empty()) {
975 if (New->getType() == Call->getType()) {
976 // Return type not changed? Just replace users then.
977 Call->replaceAllUsesWith(New);
978 New->takeName(Call);
979 } else if (New->getType()->isVoidTy()) {
980 // Our return value has uses, but they will get removed later on.
981 // Replace by null for now.
982 if (!Call->getType()->isX86_MMXTy())
983 Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
984 } else {
985 assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
986 "Return type changed, but not into a void. The old return type"
987 " must have been a struct or an array!");
988 Instruction *InsertPt = Call;
989 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
990 BasicBlock::iterator IP = II->getNormalDest()->begin();
991 while (isa<PHINode>(IP)) ++IP;
992 InsertPt = IP;
993 }
994
995 // We used to return a struct or array. Instead of doing smart stuff
996 // with all the uses, we will just rebuild it using extract/insertvalue
997 // chaining and let instcombine clean that up.
998 //
999 // Start out building up our return value from undef
1000 Value *RetVal = UndefValue::get(RetTy);
1001 for (unsigned i = 0; i != RetCount; ++i)
1002 if (NewRetIdxs[i] != -1) {
1003 Value *V;
1004 if (RetTypes.size() > 1)
1005 // We are still returning a struct, so extract the value from our
1006 // return value
1007 V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
1008 InsertPt);
1009 else
1010 // We are now returning a single element, so just insert that
1011 V = New;
1012 // Insert the value at the old position
1013 RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
1014 }
1015 // Now, replace all uses of the old call instruction with the return
1016 // struct we built
1017 Call->replaceAllUsesWith(RetVal);
1018 New->takeName(Call);
1019 }
1020 }
1021
1022 // Finally, remove the old call from the program, reducing the use-count of
1023 // F.
1024 Call->eraseFromParent();
1025 }
1026
1027 // Since we have now created the new function, splice the body of the old
1028 // function right into the new function, leaving the old rotting hulk of the
1029 // function empty.
1030 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
1031
1032 // Loop over the argument list, transferring uses of the old arguments over to
1033 // the new arguments, also transferring over the names as well.
1034 i = 0;
1035 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1036 I2 = NF->arg_begin(); I != E; ++I, ++i)
1037 if (ArgAlive[i]) {
1038 // If this is a live argument, move the name and users over to the new
1039 // version.
1040 I->replaceAllUsesWith(I2);
1041 I2->takeName(I);
1042 ++I2;
1043 } else {
1044 // If this argument is dead, replace any uses of it with null constants
1045 // (these are guaranteed to become unused later on).
1046 if (!I->getType()->isX86_MMXTy())
1047 I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
1048 }
1049
1050 // If we change the return value of the function we must rewrite any return
1051 // instructions. Check this now.
1052 if (F->getReturnType() != NF->getReturnType())
1053 for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
1054 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1055 Value *RetVal;
1056
1057 if (NFTy->getReturnType()->isVoidTy()) {
1058 RetVal = nullptr;
1059 } else {
1060 assert(RetTy->isStructTy() || RetTy->isArrayTy());
1061 // The original return value was a struct or array, insert
1062 // extractvalue/insertvalue chains to extract only the values we need
1063 // to return and insert them into our new result.
1064 // This does generate messy code, but we'll let it to instcombine to
1065 // clean that up.
1066 Value *OldRet = RI->getOperand(0);
1067 // Start out building up our return value from undef
1068 RetVal = UndefValue::get(NRetTy);
1069 for (unsigned i = 0; i != RetCount; ++i)
1070 if (NewRetIdxs[i] != -1) {
1071 ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
1072 "oldret", RI);
1073 if (RetTypes.size() > 1) {
1074 // We're still returning a struct, so reinsert the value into
1075 // our new return value at the new index
1076
1077 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
1078 "newret", RI);
1079 } else {
1080 // We are now only returning a simple value, so just return the
1081 // extracted value.
1082 RetVal = EV;
1083 }
1084 }
1085 }
1086 // Replace the return instruction with one returning the new return
1087 // value (possibly 0 if we became void).
1088 ReturnInst::Create(F->getContext(), RetVal, RI);
1089 BB->getInstList().erase(RI);
1090 }
1091
1092 // Patch the pointer to LLVM function in debug info descriptor.
1093 auto DI = FunctionDIs.find(F);
1094 if (DI != FunctionDIs.end())
1095 DI->second->replaceFunction(NF);
1096
1097 // Now that the old function is dead, delete it.
1098 F->eraseFromParent();
1099
1100 return true;
1101 }
1102
runOnModule(Module & M)1103 bool DAE::runOnModule(Module &M) {
1104 bool Changed = false;
1105
1106 // Collect debug info descriptors for functions.
1107 FunctionDIs = makeSubprogramMap(M);
1108
1109 // First pass: Do a simple check to see if any functions can have their "..."
1110 // removed. We can do this if they never call va_start. This loop cannot be
1111 // fused with the next loop, because deleting a function invalidates
1112 // information computed while surveying other functions.
1113 DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
1114 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1115 Function &F = *I++;
1116 if (F.getFunctionType()->isVarArg())
1117 Changed |= DeleteDeadVarargs(F);
1118 }
1119
1120 // Second phase:loop through the module, determining which arguments are live.
1121 // We assume all arguments are dead unless proven otherwise (allowing us to
1122 // determine that dead arguments passed into recursive functions are dead).
1123 //
1124 DEBUG(dbgs() << "DAE - Determining liveness\n");
1125 for (auto &F : M)
1126 SurveyFunction(F);
1127
1128 // Now, remove all dead arguments and return values from each function in
1129 // turn.
1130 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1131 // Increment now, because the function will probably get removed (ie.
1132 // replaced by a new one).
1133 Function *F = I++;
1134 Changed |= RemoveDeadStuffFromFunction(F);
1135 }
1136
1137 // Finally, look for any unused parameters in functions with non-local
1138 // linkage and replace the passed in parameters with undef.
1139 for (auto &F : M)
1140 Changed |= RemoveDeadArgumentsFromCallers(F);
1141
1142 return Changed;
1143 }
1144