1 //===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file defines ObjC ARC optimizations. ARC stands for Automatic
11 /// Reference Counting and is a system for managing reference counts for objects
12 /// in Objective C.
13 ///
14 /// The optimizations performed include elimination of redundant, partially
15 /// redundant, and inconsequential reference count operations, elimination of
16 /// redundant weak pointer operations, and numerous minor simplifications.
17 ///
18 /// WARNING: This file knows about certain library functions. It recognizes them
19 /// by name, and hardwires knowledge of their semantics.
20 ///
21 /// WARNING: This file knows about how certain Objective-C library functions are
22 /// used. Naive LLVM IR transformations which would otherwise be
23 /// behavior-preserving may break these assumptions.
24 ///
25 //===----------------------------------------------------------------------===//
26
27 #include "ObjCARC.h"
28 #include "ARCRuntimeEntryPoints.h"
29 #include "BlotMapVector.h"
30 #include "DependencyAnalysis.h"
31 #include "ObjCARCAliasAnalysis.h"
32 #include "ProvenanceAnalysis.h"
33 #include "PtrState.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/DenseSet.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44
45 using namespace llvm;
46 using namespace llvm::objcarc;
47
48 #define DEBUG_TYPE "objc-arc-opts"
49
50 /// \defgroup ARCUtilities Utility declarations/definitions specific to ARC.
51 /// @{
52
53 /// \brief This is similar to GetRCIdentityRoot but it stops as soon
54 /// as it finds a value with multiple uses.
FindSingleUseIdentifiedObject(const Value * Arg)55 static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
56 if (Arg->hasOneUse()) {
57 if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
58 return FindSingleUseIdentifiedObject(BC->getOperand(0));
59 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
60 if (GEP->hasAllZeroIndices())
61 return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
62 if (IsForwarding(GetBasicARCInstKind(Arg)))
63 return FindSingleUseIdentifiedObject(
64 cast<CallInst>(Arg)->getArgOperand(0));
65 if (!IsObjCIdentifiedObject(Arg))
66 return nullptr;
67 return Arg;
68 }
69
70 // If we found an identifiable object but it has multiple uses, but they are
71 // trivial uses, we can still consider this to be a single-use value.
72 if (IsObjCIdentifiedObject(Arg)) {
73 for (const User *U : Arg->users())
74 if (!U->use_empty() || GetRCIdentityRoot(U) != Arg)
75 return nullptr;
76
77 return Arg;
78 }
79
80 return nullptr;
81 }
82
83 /// This is a wrapper around getUnderlyingObjCPtr along the lines of
84 /// GetUnderlyingObjects except that it returns early when it sees the first
85 /// alloca.
AreAnyUnderlyingObjectsAnAlloca(const Value * V,const DataLayout & DL)86 static inline bool AreAnyUnderlyingObjectsAnAlloca(const Value *V,
87 const DataLayout &DL) {
88 SmallPtrSet<const Value *, 4> Visited;
89 SmallVector<const Value *, 4> Worklist;
90 Worklist.push_back(V);
91 do {
92 const Value *P = Worklist.pop_back_val();
93 P = GetUnderlyingObjCPtr(P, DL);
94
95 if (isa<AllocaInst>(P))
96 return true;
97
98 if (!Visited.insert(P).second)
99 continue;
100
101 if (const SelectInst *SI = dyn_cast<const SelectInst>(P)) {
102 Worklist.push_back(SI->getTrueValue());
103 Worklist.push_back(SI->getFalseValue());
104 continue;
105 }
106
107 if (const PHINode *PN = dyn_cast<const PHINode>(P)) {
108 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
109 Worklist.push_back(PN->getIncomingValue(i));
110 continue;
111 }
112 } while (!Worklist.empty());
113
114 return false;
115 }
116
117
118 /// @}
119 ///
120 /// \defgroup ARCOpt ARC Optimization.
121 /// @{
122
123 // TODO: On code like this:
124 //
125 // objc_retain(%x)
126 // stuff_that_cannot_release()
127 // objc_autorelease(%x)
128 // stuff_that_cannot_release()
129 // objc_retain(%x)
130 // stuff_that_cannot_release()
131 // objc_autorelease(%x)
132 //
133 // The second retain and autorelease can be deleted.
134
135 // TODO: It should be possible to delete
136 // objc_autoreleasePoolPush and objc_autoreleasePoolPop
137 // pairs if nothing is actually autoreleased between them. Also, autorelease
138 // calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
139 // after inlining) can be turned into plain release calls.
140
141 // TODO: Critical-edge splitting. If the optimial insertion point is
142 // a critical edge, the current algorithm has to fail, because it doesn't
143 // know how to split edges. It should be possible to make the optimizer
144 // think in terms of edges, rather than blocks, and then split critical
145 // edges on demand.
146
147 // TODO: OptimizeSequences could generalized to be Interprocedural.
148
149 // TODO: Recognize that a bunch of other objc runtime calls have
150 // non-escaping arguments and non-releasing arguments, and may be
151 // non-autoreleasing.
152
153 // TODO: Sink autorelease calls as far as possible. Unfortunately we
154 // usually can't sink them past other calls, which would be the main
155 // case where it would be useful.
156
157 // TODO: The pointer returned from objc_loadWeakRetained is retained.
158
159 // TODO: Delete release+retain pairs (rare).
160
161 STATISTIC(NumNoops, "Number of no-op objc calls eliminated");
162 STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
163 STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
164 STATISTIC(NumRets, "Number of return value forwarding "
165 "retain+autoreleases eliminated");
166 STATISTIC(NumRRs, "Number of retain+release paths eliminated");
167 STATISTIC(NumPeeps, "Number of calls peephole-optimized");
168 #ifndef NDEBUG
169 STATISTIC(NumRetainsBeforeOpt,
170 "Number of retains before optimization");
171 STATISTIC(NumReleasesBeforeOpt,
172 "Number of releases before optimization");
173 STATISTIC(NumRetainsAfterOpt,
174 "Number of retains after optimization");
175 STATISTIC(NumReleasesAfterOpt,
176 "Number of releases after optimization");
177 #endif
178
179 namespace {
180 /// \brief Per-BasicBlock state.
181 class BBState {
182 /// The number of unique control paths from the entry which can reach this
183 /// block.
184 unsigned TopDownPathCount;
185
186 /// The number of unique control paths to exits from this block.
187 unsigned BottomUpPathCount;
188
189 /// The top-down traversal uses this to record information known about a
190 /// pointer at the bottom of each block.
191 BlotMapVector<const Value *, TopDownPtrState> PerPtrTopDown;
192
193 /// The bottom-up traversal uses this to record information known about a
194 /// pointer at the top of each block.
195 BlotMapVector<const Value *, BottomUpPtrState> PerPtrBottomUp;
196
197 /// Effective predecessors of the current block ignoring ignorable edges and
198 /// ignored backedges.
199 SmallVector<BasicBlock *, 2> Preds;
200
201 /// Effective successors of the current block ignoring ignorable edges and
202 /// ignored backedges.
203 SmallVector<BasicBlock *, 2> Succs;
204
205 public:
206 static const unsigned OverflowOccurredValue;
207
BBState()208 BBState() : TopDownPathCount(0), BottomUpPathCount(0) { }
209
210 typedef decltype(PerPtrTopDown)::iterator top_down_ptr_iterator;
211 typedef decltype(PerPtrTopDown)::const_iterator const_top_down_ptr_iterator;
212
top_down_ptr_begin()213 top_down_ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
top_down_ptr_end()214 top_down_ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
top_down_ptr_begin() const215 const_top_down_ptr_iterator top_down_ptr_begin() const {
216 return PerPtrTopDown.begin();
217 }
top_down_ptr_end() const218 const_top_down_ptr_iterator top_down_ptr_end() const {
219 return PerPtrTopDown.end();
220 }
hasTopDownPtrs() const221 bool hasTopDownPtrs() const {
222 return !PerPtrTopDown.empty();
223 }
224
225 typedef decltype(PerPtrBottomUp)::iterator bottom_up_ptr_iterator;
226 typedef decltype(
227 PerPtrBottomUp)::const_iterator const_bottom_up_ptr_iterator;
228
bottom_up_ptr_begin()229 bottom_up_ptr_iterator bottom_up_ptr_begin() {
230 return PerPtrBottomUp.begin();
231 }
bottom_up_ptr_end()232 bottom_up_ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
bottom_up_ptr_begin() const233 const_bottom_up_ptr_iterator bottom_up_ptr_begin() const {
234 return PerPtrBottomUp.begin();
235 }
bottom_up_ptr_end() const236 const_bottom_up_ptr_iterator bottom_up_ptr_end() const {
237 return PerPtrBottomUp.end();
238 }
hasBottomUpPtrs() const239 bool hasBottomUpPtrs() const {
240 return !PerPtrBottomUp.empty();
241 }
242
243 /// Mark this block as being an entry block, which has one path from the
244 /// entry by definition.
SetAsEntry()245 void SetAsEntry() { TopDownPathCount = 1; }
246
247 /// Mark this block as being an exit block, which has one path to an exit by
248 /// definition.
SetAsExit()249 void SetAsExit() { BottomUpPathCount = 1; }
250
251 /// Attempt to find the PtrState object describing the top down state for
252 /// pointer Arg. Return a new initialized PtrState describing the top down
253 /// state for Arg if we do not find one.
getPtrTopDownState(const Value * Arg)254 TopDownPtrState &getPtrTopDownState(const Value *Arg) {
255 return PerPtrTopDown[Arg];
256 }
257
258 /// Attempt to find the PtrState object describing the bottom up state for
259 /// pointer Arg. Return a new initialized PtrState describing the bottom up
260 /// state for Arg if we do not find one.
getPtrBottomUpState(const Value * Arg)261 BottomUpPtrState &getPtrBottomUpState(const Value *Arg) {
262 return PerPtrBottomUp[Arg];
263 }
264
265 /// Attempt to find the PtrState object describing the bottom up state for
266 /// pointer Arg.
findPtrBottomUpState(const Value * Arg)267 bottom_up_ptr_iterator findPtrBottomUpState(const Value *Arg) {
268 return PerPtrBottomUp.find(Arg);
269 }
270
clearBottomUpPointers()271 void clearBottomUpPointers() {
272 PerPtrBottomUp.clear();
273 }
274
clearTopDownPointers()275 void clearTopDownPointers() {
276 PerPtrTopDown.clear();
277 }
278
279 void InitFromPred(const BBState &Other);
280 void InitFromSucc(const BBState &Other);
281 void MergePred(const BBState &Other);
282 void MergeSucc(const BBState &Other);
283
284 /// Compute the number of possible unique paths from an entry to an exit
285 /// which pass through this block. This is only valid after both the
286 /// top-down and bottom-up traversals are complete.
287 ///
288 /// Returns true if overflow occurred. Returns false if overflow did not
289 /// occur.
GetAllPathCountWithOverflow(unsigned & PathCount) const290 bool GetAllPathCountWithOverflow(unsigned &PathCount) const {
291 if (TopDownPathCount == OverflowOccurredValue ||
292 BottomUpPathCount == OverflowOccurredValue)
293 return true;
294 unsigned long long Product =
295 (unsigned long long)TopDownPathCount*BottomUpPathCount;
296 // Overflow occurred if any of the upper bits of Product are set or if all
297 // the lower bits of Product are all set.
298 return (Product >> 32) ||
299 ((PathCount = Product) == OverflowOccurredValue);
300 }
301
302 // Specialized CFG utilities.
303 typedef SmallVectorImpl<BasicBlock *>::const_iterator edge_iterator;
pred_begin() const304 edge_iterator pred_begin() const { return Preds.begin(); }
pred_end() const305 edge_iterator pred_end() const { return Preds.end(); }
succ_begin() const306 edge_iterator succ_begin() const { return Succs.begin(); }
succ_end() const307 edge_iterator succ_end() const { return Succs.end(); }
308
addSucc(BasicBlock * Succ)309 void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
addPred(BasicBlock * Pred)310 void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
311
isExit() const312 bool isExit() const { return Succs.empty(); }
313 };
314
315 const unsigned BBState::OverflowOccurredValue = 0xffffffff;
316 }
317
318 namespace llvm {
319 raw_ostream &operator<<(raw_ostream &OS,
320 BBState &BBState) LLVM_ATTRIBUTE_UNUSED;
321 }
322
InitFromPred(const BBState & Other)323 void BBState::InitFromPred(const BBState &Other) {
324 PerPtrTopDown = Other.PerPtrTopDown;
325 TopDownPathCount = Other.TopDownPathCount;
326 }
327
InitFromSucc(const BBState & Other)328 void BBState::InitFromSucc(const BBState &Other) {
329 PerPtrBottomUp = Other.PerPtrBottomUp;
330 BottomUpPathCount = Other.BottomUpPathCount;
331 }
332
333 /// The top-down traversal uses this to merge information about predecessors to
334 /// form the initial state for a new block.
MergePred(const BBState & Other)335 void BBState::MergePred(const BBState &Other) {
336 if (TopDownPathCount == OverflowOccurredValue)
337 return;
338
339 // Other.TopDownPathCount can be 0, in which case it is either dead or a
340 // loop backedge. Loop backedges are special.
341 TopDownPathCount += Other.TopDownPathCount;
342
343 // In order to be consistent, we clear the top down pointers when by adding
344 // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow
345 // has not occurred.
346 if (TopDownPathCount == OverflowOccurredValue) {
347 clearTopDownPointers();
348 return;
349 }
350
351 // Check for overflow. If we have overflow, fall back to conservative
352 // behavior.
353 if (TopDownPathCount < Other.TopDownPathCount) {
354 TopDownPathCount = OverflowOccurredValue;
355 clearTopDownPointers();
356 return;
357 }
358
359 // For each entry in the other set, if our set has an entry with the same key,
360 // merge the entries. Otherwise, copy the entry and merge it with an empty
361 // entry.
362 for (auto MI = Other.top_down_ptr_begin(), ME = Other.top_down_ptr_end();
363 MI != ME; ++MI) {
364 auto Pair = PerPtrTopDown.insert(*MI);
365 Pair.first->second.Merge(Pair.second ? TopDownPtrState() : MI->second,
366 /*TopDown=*/true);
367 }
368
369 // For each entry in our set, if the other set doesn't have an entry with the
370 // same key, force it to merge with an empty entry.
371 for (auto MI = top_down_ptr_begin(), ME = top_down_ptr_end(); MI != ME; ++MI)
372 if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
373 MI->second.Merge(TopDownPtrState(), /*TopDown=*/true);
374 }
375
376 /// The bottom-up traversal uses this to merge information about successors to
377 /// form the initial state for a new block.
MergeSucc(const BBState & Other)378 void BBState::MergeSucc(const BBState &Other) {
379 if (BottomUpPathCount == OverflowOccurredValue)
380 return;
381
382 // Other.BottomUpPathCount can be 0, in which case it is either dead or a
383 // loop backedge. Loop backedges are special.
384 BottomUpPathCount += Other.BottomUpPathCount;
385
386 // In order to be consistent, we clear the top down pointers when by adding
387 // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow
388 // has not occurred.
389 if (BottomUpPathCount == OverflowOccurredValue) {
390 clearBottomUpPointers();
391 return;
392 }
393
394 // Check for overflow. If we have overflow, fall back to conservative
395 // behavior.
396 if (BottomUpPathCount < Other.BottomUpPathCount) {
397 BottomUpPathCount = OverflowOccurredValue;
398 clearBottomUpPointers();
399 return;
400 }
401
402 // For each entry in the other set, if our set has an entry with the
403 // same key, merge the entries. Otherwise, copy the entry and merge
404 // it with an empty entry.
405 for (auto MI = Other.bottom_up_ptr_begin(), ME = Other.bottom_up_ptr_end();
406 MI != ME; ++MI) {
407 auto Pair = PerPtrBottomUp.insert(*MI);
408 Pair.first->second.Merge(Pair.second ? BottomUpPtrState() : MI->second,
409 /*TopDown=*/false);
410 }
411
412 // For each entry in our set, if the other set doesn't have an entry
413 // with the same key, force it to merge with an empty entry.
414 for (auto MI = bottom_up_ptr_begin(), ME = bottom_up_ptr_end(); MI != ME;
415 ++MI)
416 if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
417 MI->second.Merge(BottomUpPtrState(), /*TopDown=*/false);
418 }
419
operator <<(raw_ostream & OS,BBState & BBInfo)420 raw_ostream &llvm::operator<<(raw_ostream &OS, BBState &BBInfo) {
421 // Dump the pointers we are tracking.
422 OS << " TopDown State:\n";
423 if (!BBInfo.hasTopDownPtrs()) {
424 DEBUG(llvm::dbgs() << " NONE!\n");
425 } else {
426 for (auto I = BBInfo.top_down_ptr_begin(), E = BBInfo.top_down_ptr_end();
427 I != E; ++I) {
428 const PtrState &P = I->second;
429 OS << " Ptr: " << *I->first
430 << "\n KnownSafe: " << (P.IsKnownSafe()?"true":"false")
431 << "\n ImpreciseRelease: "
432 << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
433 << " HasCFGHazards: "
434 << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
435 << " KnownPositive: "
436 << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
437 << " Seq: "
438 << P.GetSeq() << "\n";
439 }
440 }
441
442 OS << " BottomUp State:\n";
443 if (!BBInfo.hasBottomUpPtrs()) {
444 DEBUG(llvm::dbgs() << " NONE!\n");
445 } else {
446 for (auto I = BBInfo.bottom_up_ptr_begin(), E = BBInfo.bottom_up_ptr_end();
447 I != E; ++I) {
448 const PtrState &P = I->second;
449 OS << " Ptr: " << *I->first
450 << "\n KnownSafe: " << (P.IsKnownSafe()?"true":"false")
451 << "\n ImpreciseRelease: "
452 << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
453 << " HasCFGHazards: "
454 << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
455 << " KnownPositive: "
456 << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
457 << " Seq: "
458 << P.GetSeq() << "\n";
459 }
460 }
461
462 return OS;
463 }
464
465 namespace {
466
467 /// \brief The main ARC optimization pass.
468 class ObjCARCOpt : public FunctionPass {
469 bool Changed;
470 ProvenanceAnalysis PA;
471
472 /// A cache of references to runtime entry point constants.
473 ARCRuntimeEntryPoints EP;
474
475 /// A cache of MDKinds that can be passed into other functions to propagate
476 /// MDKind identifiers.
477 ARCMDKindCache MDKindCache;
478
479 // This is used to track if a pointer is stored into an alloca.
480 DenseSet<const Value *> MultiOwnersSet;
481
482 /// A flag indicating whether this optimization pass should run.
483 bool Run;
484
485 /// Flags which determine whether each of the interesting runtine functions
486 /// is in fact used in the current function.
487 unsigned UsedInThisFunction;
488
489 bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
490 void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
491 ARCInstKind &Class);
492 void OptimizeIndividualCalls(Function &F);
493
494 void CheckForCFGHazards(const BasicBlock *BB,
495 DenseMap<const BasicBlock *, BBState> &BBStates,
496 BBState &MyStates) const;
497 bool VisitInstructionBottomUp(Instruction *Inst, BasicBlock *BB,
498 BlotMapVector<Value *, RRInfo> &Retains,
499 BBState &MyStates);
500 bool VisitBottomUp(BasicBlock *BB,
501 DenseMap<const BasicBlock *, BBState> &BBStates,
502 BlotMapVector<Value *, RRInfo> &Retains);
503 bool VisitInstructionTopDown(Instruction *Inst,
504 DenseMap<Value *, RRInfo> &Releases,
505 BBState &MyStates);
506 bool VisitTopDown(BasicBlock *BB,
507 DenseMap<const BasicBlock *, BBState> &BBStates,
508 DenseMap<Value *, RRInfo> &Releases);
509 bool Visit(Function &F, DenseMap<const BasicBlock *, BBState> &BBStates,
510 BlotMapVector<Value *, RRInfo> &Retains,
511 DenseMap<Value *, RRInfo> &Releases);
512
513 void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
514 BlotMapVector<Value *, RRInfo> &Retains,
515 DenseMap<Value *, RRInfo> &Releases,
516 SmallVectorImpl<Instruction *> &DeadInsts, Module *M);
517
518 bool
519 PairUpRetainsAndReleases(DenseMap<const BasicBlock *, BBState> &BBStates,
520 BlotMapVector<Value *, RRInfo> &Retains,
521 DenseMap<Value *, RRInfo> &Releases, Module *M,
522 SmallVectorImpl<Instruction *> &NewRetains,
523 SmallVectorImpl<Instruction *> &NewReleases,
524 SmallVectorImpl<Instruction *> &DeadInsts,
525 RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
526 Value *Arg, bool KnownSafe,
527 bool &AnyPairsCompletelyEliminated);
528
529 bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
530 BlotMapVector<Value *, RRInfo> &Retains,
531 DenseMap<Value *, RRInfo> &Releases, Module *M);
532
533 void OptimizeWeakCalls(Function &F);
534
535 bool OptimizeSequences(Function &F);
536
537 void OptimizeReturns(Function &F);
538
539 #ifndef NDEBUG
540 void GatherStatistics(Function &F, bool AfterOptimization = false);
541 #endif
542
543 void getAnalysisUsage(AnalysisUsage &AU) const override;
544 bool doInitialization(Module &M) override;
545 bool runOnFunction(Function &F) override;
546 void releaseMemory() override;
547
548 public:
549 static char ID;
ObjCARCOpt()550 ObjCARCOpt() : FunctionPass(ID) {
551 initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
552 }
553 };
554 }
555
556 char ObjCARCOpt::ID = 0;
557 INITIALIZE_PASS_BEGIN(ObjCARCOpt,
558 "objc-arc", "ObjC ARC optimization", false, false)
INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)559 INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)
560 INITIALIZE_PASS_END(ObjCARCOpt,
561 "objc-arc", "ObjC ARC optimization", false, false)
562
563 Pass *llvm::createObjCARCOptPass() {
564 return new ObjCARCOpt();
565 }
566
getAnalysisUsage(AnalysisUsage & AU) const567 void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
568 AU.addRequired<ObjCARCAliasAnalysis>();
569 AU.addRequired<AliasAnalysis>();
570 // ARC optimization doesn't currently split critical edges.
571 AU.setPreservesCFG();
572 }
573
574 /// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is
575 /// not a return value. Or, if it can be paired with an
576 /// objc_autoreleaseReturnValue, delete the pair and return true.
577 bool
OptimizeRetainRVCall(Function & F,Instruction * RetainRV)578 ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
579 // Check for the argument being from an immediately preceding call or invoke.
580 const Value *Arg = GetArgRCIdentityRoot(RetainRV);
581 ImmutableCallSite CS(Arg);
582 if (const Instruction *Call = CS.getInstruction()) {
583 if (Call->getParent() == RetainRV->getParent()) {
584 BasicBlock::const_iterator I = Call;
585 ++I;
586 while (IsNoopInstruction(I)) ++I;
587 if (&*I == RetainRV)
588 return false;
589 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
590 BasicBlock *RetainRVParent = RetainRV->getParent();
591 if (II->getNormalDest() == RetainRVParent) {
592 BasicBlock::const_iterator I = RetainRVParent->begin();
593 while (IsNoopInstruction(I)) ++I;
594 if (&*I == RetainRV)
595 return false;
596 }
597 }
598 }
599
600 // Check for being preceded by an objc_autoreleaseReturnValue on the same
601 // pointer. In this case, we can delete the pair.
602 BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin();
603 if (I != Begin) {
604 do --I; while (I != Begin && IsNoopInstruction(I));
605 if (GetBasicARCInstKind(I) == ARCInstKind::AutoreleaseRV &&
606 GetArgRCIdentityRoot(I) == Arg) {
607 Changed = true;
608 ++NumPeeps;
609
610 DEBUG(dbgs() << "Erasing autoreleaseRV,retainRV pair: " << *I << "\n"
611 << "Erasing " << *RetainRV << "\n");
612
613 EraseInstruction(I);
614 EraseInstruction(RetainRV);
615 return true;
616 }
617 }
618
619 // Turn it to a plain objc_retain.
620 Changed = true;
621 ++NumPeeps;
622
623 DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => "
624 "objc_retain since the operand is not a return value.\n"
625 "Old = " << *RetainRV << "\n");
626
627 Constant *NewDecl = EP.get(ARCRuntimeEntryPointKind::Retain);
628 cast<CallInst>(RetainRV)->setCalledFunction(NewDecl);
629
630 DEBUG(dbgs() << "New = " << *RetainRV << "\n");
631
632 return false;
633 }
634
635 /// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not
636 /// used as a return value.
OptimizeAutoreleaseRVCall(Function & F,Instruction * AutoreleaseRV,ARCInstKind & Class)637 void ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F,
638 Instruction *AutoreleaseRV,
639 ARCInstKind &Class) {
640 // Check for a return of the pointer value.
641 const Value *Ptr = GetArgRCIdentityRoot(AutoreleaseRV);
642 SmallVector<const Value *, 2> Users;
643 Users.push_back(Ptr);
644 do {
645 Ptr = Users.pop_back_val();
646 for (const User *U : Ptr->users()) {
647 if (isa<ReturnInst>(U) || GetBasicARCInstKind(U) == ARCInstKind::RetainRV)
648 return;
649 if (isa<BitCastInst>(U))
650 Users.push_back(U);
651 }
652 } while (!Users.empty());
653
654 Changed = true;
655 ++NumPeeps;
656
657 DEBUG(dbgs() << "Transforming objc_autoreleaseReturnValue => "
658 "objc_autorelease since its operand is not used as a return "
659 "value.\n"
660 "Old = " << *AutoreleaseRV << "\n");
661
662 CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV);
663 Constant *NewDecl = EP.get(ARCRuntimeEntryPointKind::Autorelease);
664 AutoreleaseRVCI->setCalledFunction(NewDecl);
665 AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease.
666 Class = ARCInstKind::Autorelease;
667
668 DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n");
669
670 }
671
672 /// Visit each call, one at a time, and make simplifications without doing any
673 /// additional analysis.
OptimizeIndividualCalls(Function & F)674 void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
675 DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n");
676 // Reset all the flags in preparation for recomputing them.
677 UsedInThisFunction = 0;
678
679 // Visit all objc_* calls in F.
680 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
681 Instruction *Inst = &*I++;
682
683 ARCInstKind Class = GetBasicARCInstKind(Inst);
684
685 DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n");
686
687 switch (Class) {
688 default: break;
689
690 // Delete no-op casts. These function calls have special semantics, but
691 // the semantics are entirely implemented via lowering in the front-end,
692 // so by the time they reach the optimizer, they are just no-op calls
693 // which return their argument.
694 //
695 // There are gray areas here, as the ability to cast reference-counted
696 // pointers to raw void* and back allows code to break ARC assumptions,
697 // however these are currently considered to be unimportant.
698 case ARCInstKind::NoopCast:
699 Changed = true;
700 ++NumNoops;
701 DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n");
702 EraseInstruction(Inst);
703 continue;
704
705 // If the pointer-to-weak-pointer is null, it's undefined behavior.
706 case ARCInstKind::StoreWeak:
707 case ARCInstKind::LoadWeak:
708 case ARCInstKind::LoadWeakRetained:
709 case ARCInstKind::InitWeak:
710 case ARCInstKind::DestroyWeak: {
711 CallInst *CI = cast<CallInst>(Inst);
712 if (IsNullOrUndef(CI->getArgOperand(0))) {
713 Changed = true;
714 Type *Ty = CI->getArgOperand(0)->getType();
715 new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
716 Constant::getNullValue(Ty),
717 CI);
718 llvm::Value *NewValue = UndefValue::get(CI->getType());
719 DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
720 "\nOld = " << *CI << "\nNew = " << *NewValue << "\n");
721 CI->replaceAllUsesWith(NewValue);
722 CI->eraseFromParent();
723 continue;
724 }
725 break;
726 }
727 case ARCInstKind::CopyWeak:
728 case ARCInstKind::MoveWeak: {
729 CallInst *CI = cast<CallInst>(Inst);
730 if (IsNullOrUndef(CI->getArgOperand(0)) ||
731 IsNullOrUndef(CI->getArgOperand(1))) {
732 Changed = true;
733 Type *Ty = CI->getArgOperand(0)->getType();
734 new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
735 Constant::getNullValue(Ty),
736 CI);
737
738 llvm::Value *NewValue = UndefValue::get(CI->getType());
739 DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
740 "\nOld = " << *CI << "\nNew = " << *NewValue << "\n");
741
742 CI->replaceAllUsesWith(NewValue);
743 CI->eraseFromParent();
744 continue;
745 }
746 break;
747 }
748 case ARCInstKind::RetainRV:
749 if (OptimizeRetainRVCall(F, Inst))
750 continue;
751 break;
752 case ARCInstKind::AutoreleaseRV:
753 OptimizeAutoreleaseRVCall(F, Inst, Class);
754 break;
755 }
756
757 // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
758 if (IsAutorelease(Class) && Inst->use_empty()) {
759 CallInst *Call = cast<CallInst>(Inst);
760 const Value *Arg = Call->getArgOperand(0);
761 Arg = FindSingleUseIdentifiedObject(Arg);
762 if (Arg) {
763 Changed = true;
764 ++NumAutoreleases;
765
766 // Create the declaration lazily.
767 LLVMContext &C = Inst->getContext();
768
769 Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
770 CallInst *NewCall = CallInst::Create(Decl, Call->getArgOperand(0), "",
771 Call);
772 NewCall->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease),
773 MDNode::get(C, None));
774
775 DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) "
776 "since x is otherwise unused.\nOld: " << *Call << "\nNew: "
777 << *NewCall << "\n");
778
779 EraseInstruction(Call);
780 Inst = NewCall;
781 Class = ARCInstKind::Release;
782 }
783 }
784
785 // For functions which can never be passed stack arguments, add
786 // a tail keyword.
787 if (IsAlwaysTail(Class)) {
788 Changed = true;
789 DEBUG(dbgs() << "Adding tail keyword to function since it can never be "
790 "passed stack args: " << *Inst << "\n");
791 cast<CallInst>(Inst)->setTailCall();
792 }
793
794 // Ensure that functions that can never have a "tail" keyword due to the
795 // semantics of ARC truly do not do so.
796 if (IsNeverTail(Class)) {
797 Changed = true;
798 DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst <<
799 "\n");
800 cast<CallInst>(Inst)->setTailCall(false);
801 }
802
803 // Set nounwind as needed.
804 if (IsNoThrow(Class)) {
805 Changed = true;
806 DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst
807 << "\n");
808 cast<CallInst>(Inst)->setDoesNotThrow();
809 }
810
811 if (!IsNoopOnNull(Class)) {
812 UsedInThisFunction |= 1 << unsigned(Class);
813 continue;
814 }
815
816 const Value *Arg = GetArgRCIdentityRoot(Inst);
817
818 // ARC calls with null are no-ops. Delete them.
819 if (IsNullOrUndef(Arg)) {
820 Changed = true;
821 ++NumNoops;
822 DEBUG(dbgs() << "ARC calls with null are no-ops. Erasing: " << *Inst
823 << "\n");
824 EraseInstruction(Inst);
825 continue;
826 }
827
828 // Keep track of which of retain, release, autorelease, and retain_block
829 // are actually present in this function.
830 UsedInThisFunction |= 1 << unsigned(Class);
831
832 // If Arg is a PHI, and one or more incoming values to the
833 // PHI are null, and the call is control-equivalent to the PHI, and there
834 // are no relevant side effects between the PHI and the call, the call
835 // could be pushed up to just those paths with non-null incoming values.
836 // For now, don't bother splitting critical edges for this.
837 SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
838 Worklist.push_back(std::make_pair(Inst, Arg));
839 do {
840 std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
841 Inst = Pair.first;
842 Arg = Pair.second;
843
844 const PHINode *PN = dyn_cast<PHINode>(Arg);
845 if (!PN) continue;
846
847 // Determine if the PHI has any null operands, or any incoming
848 // critical edges.
849 bool HasNull = false;
850 bool HasCriticalEdges = false;
851 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
852 Value *Incoming =
853 GetRCIdentityRoot(PN->getIncomingValue(i));
854 if (IsNullOrUndef(Incoming))
855 HasNull = true;
856 else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
857 .getNumSuccessors() != 1) {
858 HasCriticalEdges = true;
859 break;
860 }
861 }
862 // If we have null operands and no critical edges, optimize.
863 if (!HasCriticalEdges && HasNull) {
864 SmallPtrSet<Instruction *, 4> DependingInstructions;
865 SmallPtrSet<const BasicBlock *, 4> Visited;
866
867 // Check that there is nothing that cares about the reference
868 // count between the call and the phi.
869 switch (Class) {
870 case ARCInstKind::Retain:
871 case ARCInstKind::RetainBlock:
872 // These can always be moved up.
873 break;
874 case ARCInstKind::Release:
875 // These can't be moved across things that care about the retain
876 // count.
877 FindDependencies(NeedsPositiveRetainCount, Arg,
878 Inst->getParent(), Inst,
879 DependingInstructions, Visited, PA);
880 break;
881 case ARCInstKind::Autorelease:
882 // These can't be moved across autorelease pool scope boundaries.
883 FindDependencies(AutoreleasePoolBoundary, Arg,
884 Inst->getParent(), Inst,
885 DependingInstructions, Visited, PA);
886 break;
887 case ARCInstKind::RetainRV:
888 case ARCInstKind::AutoreleaseRV:
889 // Don't move these; the RV optimization depends on the autoreleaseRV
890 // being tail called, and the retainRV being immediately after a call
891 // (which might still happen if we get lucky with codegen layout, but
892 // it's not worth taking the chance).
893 continue;
894 default:
895 llvm_unreachable("Invalid dependence flavor");
896 }
897
898 if (DependingInstructions.size() == 1 &&
899 *DependingInstructions.begin() == PN) {
900 Changed = true;
901 ++NumPartialNoops;
902 // Clone the call into each predecessor that has a non-null value.
903 CallInst *CInst = cast<CallInst>(Inst);
904 Type *ParamTy = CInst->getArgOperand(0)->getType();
905 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
906 Value *Incoming =
907 GetRCIdentityRoot(PN->getIncomingValue(i));
908 if (!IsNullOrUndef(Incoming)) {
909 CallInst *Clone = cast<CallInst>(CInst->clone());
910 Value *Op = PN->getIncomingValue(i);
911 Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
912 if (Op->getType() != ParamTy)
913 Op = new BitCastInst(Op, ParamTy, "", InsertPos);
914 Clone->setArgOperand(0, Op);
915 Clone->insertBefore(InsertPos);
916
917 DEBUG(dbgs() << "Cloning "
918 << *CInst << "\n"
919 "And inserting clone at " << *InsertPos << "\n");
920 Worklist.push_back(std::make_pair(Clone, Incoming));
921 }
922 }
923 // Erase the original call.
924 DEBUG(dbgs() << "Erasing: " << *CInst << "\n");
925 EraseInstruction(CInst);
926 continue;
927 }
928 }
929 } while (!Worklist.empty());
930 }
931 }
932
933 /// If we have a top down pointer in the S_Use state, make sure that there are
934 /// no CFG hazards by checking the states of various bottom up pointers.
CheckForUseCFGHazard(const Sequence SuccSSeq,const bool SuccSRRIKnownSafe,TopDownPtrState & S,bool & SomeSuccHasSame,bool & AllSuccsHaveSame,bool & NotAllSeqEqualButKnownSafe,bool & ShouldContinue)935 static void CheckForUseCFGHazard(const Sequence SuccSSeq,
936 const bool SuccSRRIKnownSafe,
937 TopDownPtrState &S,
938 bool &SomeSuccHasSame,
939 bool &AllSuccsHaveSame,
940 bool &NotAllSeqEqualButKnownSafe,
941 bool &ShouldContinue) {
942 switch (SuccSSeq) {
943 case S_CanRelease: {
944 if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) {
945 S.ClearSequenceProgress();
946 break;
947 }
948 S.SetCFGHazardAfflicted(true);
949 ShouldContinue = true;
950 break;
951 }
952 case S_Use:
953 SomeSuccHasSame = true;
954 break;
955 case S_Stop:
956 case S_Release:
957 case S_MovableRelease:
958 if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
959 AllSuccsHaveSame = false;
960 else
961 NotAllSeqEqualButKnownSafe = true;
962 break;
963 case S_Retain:
964 llvm_unreachable("bottom-up pointer in retain state!");
965 case S_None:
966 llvm_unreachable("This should have been handled earlier.");
967 }
968 }
969
970 /// If we have a Top Down pointer in the S_CanRelease state, make sure that
971 /// there are no CFG hazards by checking the states of various bottom up
972 /// pointers.
CheckForCanReleaseCFGHazard(const Sequence SuccSSeq,const bool SuccSRRIKnownSafe,TopDownPtrState & S,bool & SomeSuccHasSame,bool & AllSuccsHaveSame,bool & NotAllSeqEqualButKnownSafe)973 static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq,
974 const bool SuccSRRIKnownSafe,
975 TopDownPtrState &S,
976 bool &SomeSuccHasSame,
977 bool &AllSuccsHaveSame,
978 bool &NotAllSeqEqualButKnownSafe) {
979 switch (SuccSSeq) {
980 case S_CanRelease:
981 SomeSuccHasSame = true;
982 break;
983 case S_Stop:
984 case S_Release:
985 case S_MovableRelease:
986 case S_Use:
987 if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
988 AllSuccsHaveSame = false;
989 else
990 NotAllSeqEqualButKnownSafe = true;
991 break;
992 case S_Retain:
993 llvm_unreachable("bottom-up pointer in retain state!");
994 case S_None:
995 llvm_unreachable("This should have been handled earlier.");
996 }
997 }
998
999 /// Check for critical edges, loop boundaries, irreducible control flow, or
1000 /// other CFG structures where moving code across the edge would result in it
1001 /// being executed more.
1002 void
CheckForCFGHazards(const BasicBlock * BB,DenseMap<const BasicBlock *,BBState> & BBStates,BBState & MyStates) const1003 ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
1004 DenseMap<const BasicBlock *, BBState> &BBStates,
1005 BBState &MyStates) const {
1006 // If any top-down local-use or possible-dec has a succ which is earlier in
1007 // the sequence, forget it.
1008 for (auto I = MyStates.top_down_ptr_begin(), E = MyStates.top_down_ptr_end();
1009 I != E; ++I) {
1010 TopDownPtrState &S = I->second;
1011 const Sequence Seq = I->second.GetSeq();
1012
1013 // We only care about S_Retain, S_CanRelease, and S_Use.
1014 if (Seq == S_None)
1015 continue;
1016
1017 // Make sure that if extra top down states are added in the future that this
1018 // code is updated to handle it.
1019 assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) &&
1020 "Unknown top down sequence state.");
1021
1022 const Value *Arg = I->first;
1023 const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
1024 bool SomeSuccHasSame = false;
1025 bool AllSuccsHaveSame = true;
1026 bool NotAllSeqEqualButKnownSafe = false;
1027
1028 succ_const_iterator SI(TI), SE(TI, false);
1029
1030 for (; SI != SE; ++SI) {
1031 // If VisitBottomUp has pointer information for this successor, take
1032 // what we know about it.
1033 const DenseMap<const BasicBlock *, BBState>::iterator BBI =
1034 BBStates.find(*SI);
1035 assert(BBI != BBStates.end());
1036 const BottomUpPtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
1037 const Sequence SuccSSeq = SuccS.GetSeq();
1038
1039 // If bottom up, the pointer is in an S_None state, clear the sequence
1040 // progress since the sequence in the bottom up state finished
1041 // suggesting a mismatch in between retains/releases. This is true for
1042 // all three cases that we are handling here: S_Retain, S_Use, and
1043 // S_CanRelease.
1044 if (SuccSSeq == S_None) {
1045 S.ClearSequenceProgress();
1046 continue;
1047 }
1048
1049 // If we have S_Use or S_CanRelease, perform our check for cfg hazard
1050 // checks.
1051 const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe();
1052
1053 // *NOTE* We do not use Seq from above here since we are allowing for
1054 // S.GetSeq() to change while we are visiting basic blocks.
1055 switch(S.GetSeq()) {
1056 case S_Use: {
1057 bool ShouldContinue = false;
1058 CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame,
1059 AllSuccsHaveSame, NotAllSeqEqualButKnownSafe,
1060 ShouldContinue);
1061 if (ShouldContinue)
1062 continue;
1063 break;
1064 }
1065 case S_CanRelease: {
1066 CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S,
1067 SomeSuccHasSame, AllSuccsHaveSame,
1068 NotAllSeqEqualButKnownSafe);
1069 break;
1070 }
1071 case S_Retain:
1072 case S_None:
1073 case S_Stop:
1074 case S_Release:
1075 case S_MovableRelease:
1076 break;
1077 }
1078 }
1079
1080 // If the state at the other end of any of the successor edges
1081 // matches the current state, require all edges to match. This
1082 // guards against loops in the middle of a sequence.
1083 if (SomeSuccHasSame && !AllSuccsHaveSame) {
1084 S.ClearSequenceProgress();
1085 } else if (NotAllSeqEqualButKnownSafe) {
1086 // If we would have cleared the state foregoing the fact that we are known
1087 // safe, stop code motion. This is because whether or not it is safe to
1088 // remove RR pairs via KnownSafe is an orthogonal concept to whether we
1089 // are allowed to perform code motion.
1090 S.SetCFGHazardAfflicted(true);
1091 }
1092 }
1093 }
1094
VisitInstructionBottomUp(Instruction * Inst,BasicBlock * BB,BlotMapVector<Value *,RRInfo> & Retains,BBState & MyStates)1095 bool ObjCARCOpt::VisitInstructionBottomUp(
1096 Instruction *Inst, BasicBlock *BB, BlotMapVector<Value *, RRInfo> &Retains,
1097 BBState &MyStates) {
1098 bool NestingDetected = false;
1099 ARCInstKind Class = GetARCInstKind(Inst);
1100 const Value *Arg = nullptr;
1101
1102 DEBUG(dbgs() << " Class: " << Class << "\n");
1103
1104 switch (Class) {
1105 case ARCInstKind::Release: {
1106 Arg = GetArgRCIdentityRoot(Inst);
1107
1108 BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
1109 NestingDetected |= S.InitBottomUp(MDKindCache, Inst);
1110 break;
1111 }
1112 case ARCInstKind::RetainBlock:
1113 // In OptimizeIndividualCalls, we have strength reduced all optimizable
1114 // objc_retainBlocks to objc_retains. Thus at this point any
1115 // objc_retainBlocks that we see are not optimizable.
1116 break;
1117 case ARCInstKind::Retain:
1118 case ARCInstKind::RetainRV: {
1119 Arg = GetArgRCIdentityRoot(Inst);
1120 BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
1121 if (S.MatchWithRetain()) {
1122 // Don't do retain+release tracking for ARCInstKind::RetainRV, because
1123 // it's better to let it remain as the first instruction after a call.
1124 if (Class != ARCInstKind::RetainRV) {
1125 DEBUG(llvm::dbgs() << " Matching with: " << *Inst << "\n");
1126 Retains[Inst] = S.GetRRInfo();
1127 }
1128 S.ClearSequenceProgress();
1129 }
1130 // A retain moving bottom up can be a use.
1131 break;
1132 }
1133 case ARCInstKind::AutoreleasepoolPop:
1134 // Conservatively, clear MyStates for all known pointers.
1135 MyStates.clearBottomUpPointers();
1136 return NestingDetected;
1137 case ARCInstKind::AutoreleasepoolPush:
1138 case ARCInstKind::None:
1139 // These are irrelevant.
1140 return NestingDetected;
1141 case ARCInstKind::User:
1142 // If we have a store into an alloca of a pointer we are tracking, the
1143 // pointer has multiple owners implying that we must be more conservative.
1144 //
1145 // This comes up in the context of a pointer being ``KnownSafe''. In the
1146 // presence of a block being initialized, the frontend will emit the
1147 // objc_retain on the original pointer and the release on the pointer loaded
1148 // from the alloca. The optimizer will through the provenance analysis
1149 // realize that the two are related, but since we only require KnownSafe in
1150 // one direction, will match the inner retain on the original pointer with
1151 // the guard release on the original pointer. This is fixed by ensuring that
1152 // in the presence of allocas we only unconditionally remove pointers if
1153 // both our retain and our release are KnownSafe.
1154 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1155 const DataLayout &DL = BB->getModule()->getDataLayout();
1156 if (AreAnyUnderlyingObjectsAnAlloca(SI->getPointerOperand(), DL)) {
1157 auto I = MyStates.findPtrBottomUpState(
1158 GetRCIdentityRoot(SI->getValueOperand()));
1159 if (I != MyStates.bottom_up_ptr_end())
1160 MultiOwnersSet.insert(I->first);
1161 }
1162 }
1163 break;
1164 default:
1165 break;
1166 }
1167
1168 // Consider any other possible effects of this instruction on each
1169 // pointer being tracked.
1170 for (auto MI = MyStates.bottom_up_ptr_begin(),
1171 ME = MyStates.bottom_up_ptr_end();
1172 MI != ME; ++MI) {
1173 const Value *Ptr = MI->first;
1174 if (Ptr == Arg)
1175 continue; // Handled above.
1176 BottomUpPtrState &S = MI->second;
1177
1178 if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
1179 continue;
1180
1181 S.HandlePotentialUse(BB, Inst, Ptr, PA, Class);
1182 }
1183
1184 return NestingDetected;
1185 }
1186
VisitBottomUp(BasicBlock * BB,DenseMap<const BasicBlock *,BBState> & BBStates,BlotMapVector<Value *,RRInfo> & Retains)1187 bool ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
1188 DenseMap<const BasicBlock *, BBState> &BBStates,
1189 BlotMapVector<Value *, RRInfo> &Retains) {
1190
1191 DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n");
1192
1193 bool NestingDetected = false;
1194 BBState &MyStates = BBStates[BB];
1195
1196 // Merge the states from each successor to compute the initial state
1197 // for the current block.
1198 BBState::edge_iterator SI(MyStates.succ_begin()),
1199 SE(MyStates.succ_end());
1200 if (SI != SE) {
1201 const BasicBlock *Succ = *SI;
1202 DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
1203 assert(I != BBStates.end());
1204 MyStates.InitFromSucc(I->second);
1205 ++SI;
1206 for (; SI != SE; ++SI) {
1207 Succ = *SI;
1208 I = BBStates.find(Succ);
1209 assert(I != BBStates.end());
1210 MyStates.MergeSucc(I->second);
1211 }
1212 }
1213
1214 DEBUG(llvm::dbgs() << "Before:\n" << BBStates[BB] << "\n"
1215 << "Performing Dataflow:\n");
1216
1217 // Visit all the instructions, bottom-up.
1218 for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
1219 Instruction *Inst = std::prev(I);
1220
1221 // Invoke instructions are visited as part of their successors (below).
1222 if (isa<InvokeInst>(Inst))
1223 continue;
1224
1225 DEBUG(dbgs() << " Visiting " << *Inst << "\n");
1226
1227 NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
1228 }
1229
1230 // If there's a predecessor with an invoke, visit the invoke as if it were
1231 // part of this block, since we can't insert code after an invoke in its own
1232 // block, and we don't want to split critical edges.
1233 for (BBState::edge_iterator PI(MyStates.pred_begin()),
1234 PE(MyStates.pred_end()); PI != PE; ++PI) {
1235 BasicBlock *Pred = *PI;
1236 if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
1237 NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
1238 }
1239
1240 DEBUG(llvm::dbgs() << "\nFinal State:\n" << BBStates[BB] << "\n");
1241
1242 return NestingDetected;
1243 }
1244
1245 bool
VisitInstructionTopDown(Instruction * Inst,DenseMap<Value *,RRInfo> & Releases,BBState & MyStates)1246 ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
1247 DenseMap<Value *, RRInfo> &Releases,
1248 BBState &MyStates) {
1249 bool NestingDetected = false;
1250 ARCInstKind Class = GetARCInstKind(Inst);
1251 const Value *Arg = nullptr;
1252
1253 DEBUG(llvm::dbgs() << " Class: " << Class << "\n");
1254
1255 switch (Class) {
1256 case ARCInstKind::RetainBlock:
1257 // In OptimizeIndividualCalls, we have strength reduced all optimizable
1258 // objc_retainBlocks to objc_retains. Thus at this point any
1259 // objc_retainBlocks that we see are not optimizable. We need to break since
1260 // a retain can be a potential use.
1261 break;
1262 case ARCInstKind::Retain:
1263 case ARCInstKind::RetainRV: {
1264 Arg = GetArgRCIdentityRoot(Inst);
1265 TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
1266 NestingDetected |= S.InitTopDown(Class, Inst);
1267 // A retain can be a potential use; procede to the generic checking
1268 // code below.
1269 break;
1270 }
1271 case ARCInstKind::Release: {
1272 Arg = GetArgRCIdentityRoot(Inst);
1273 TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
1274 // Try to form a tentative pair in between this release instruction and the
1275 // top down pointers that we are tracking.
1276 if (S.MatchWithRelease(MDKindCache, Inst)) {
1277 // If we succeed, copy S's RRInfo into the Release -> {Retain Set
1278 // Map}. Then we clear S.
1279 DEBUG(llvm::dbgs() << " Matching with: " << *Inst << "\n");
1280 Releases[Inst] = S.GetRRInfo();
1281 S.ClearSequenceProgress();
1282 }
1283 break;
1284 }
1285 case ARCInstKind::AutoreleasepoolPop:
1286 // Conservatively, clear MyStates for all known pointers.
1287 MyStates.clearTopDownPointers();
1288 return false;
1289 case ARCInstKind::AutoreleasepoolPush:
1290 case ARCInstKind::None:
1291 // These can not be uses of
1292 return false;
1293 default:
1294 break;
1295 }
1296
1297 // Consider any other possible effects of this instruction on each
1298 // pointer being tracked.
1299 for (auto MI = MyStates.top_down_ptr_begin(),
1300 ME = MyStates.top_down_ptr_end();
1301 MI != ME; ++MI) {
1302 const Value *Ptr = MI->first;
1303 if (Ptr == Arg)
1304 continue; // Handled above.
1305 TopDownPtrState &S = MI->second;
1306 if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
1307 continue;
1308
1309 S.HandlePotentialUse(Inst, Ptr, PA, Class);
1310 }
1311
1312 return NestingDetected;
1313 }
1314
1315 bool
VisitTopDown(BasicBlock * BB,DenseMap<const BasicBlock *,BBState> & BBStates,DenseMap<Value *,RRInfo> & Releases)1316 ObjCARCOpt::VisitTopDown(BasicBlock *BB,
1317 DenseMap<const BasicBlock *, BBState> &BBStates,
1318 DenseMap<Value *, RRInfo> &Releases) {
1319 DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n");
1320 bool NestingDetected = false;
1321 BBState &MyStates = BBStates[BB];
1322
1323 // Merge the states from each predecessor to compute the initial state
1324 // for the current block.
1325 BBState::edge_iterator PI(MyStates.pred_begin()),
1326 PE(MyStates.pred_end());
1327 if (PI != PE) {
1328 const BasicBlock *Pred = *PI;
1329 DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
1330 assert(I != BBStates.end());
1331 MyStates.InitFromPred(I->second);
1332 ++PI;
1333 for (; PI != PE; ++PI) {
1334 Pred = *PI;
1335 I = BBStates.find(Pred);
1336 assert(I != BBStates.end());
1337 MyStates.MergePred(I->second);
1338 }
1339 }
1340
1341 DEBUG(llvm::dbgs() << "Before:\n" << BBStates[BB] << "\n"
1342 << "Performing Dataflow:\n");
1343
1344 // Visit all the instructions, top-down.
1345 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1346 Instruction *Inst = I;
1347
1348 DEBUG(dbgs() << " Visiting " << *Inst << "\n");
1349
1350 NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates);
1351 }
1352
1353 DEBUG(llvm::dbgs() << "\nState Before Checking for CFG Hazards:\n"
1354 << BBStates[BB] << "\n\n");
1355 CheckForCFGHazards(BB, BBStates, MyStates);
1356 DEBUG(llvm::dbgs() << "Final State:\n" << BBStates[BB] << "\n");
1357 return NestingDetected;
1358 }
1359
1360 static void
ComputePostOrders(Function & F,SmallVectorImpl<BasicBlock * > & PostOrder,SmallVectorImpl<BasicBlock * > & ReverseCFGPostOrder,unsigned NoObjCARCExceptionsMDKind,DenseMap<const BasicBlock *,BBState> & BBStates)1361 ComputePostOrders(Function &F,
1362 SmallVectorImpl<BasicBlock *> &PostOrder,
1363 SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
1364 unsigned NoObjCARCExceptionsMDKind,
1365 DenseMap<const BasicBlock *, BBState> &BBStates) {
1366 /// The visited set, for doing DFS walks.
1367 SmallPtrSet<BasicBlock *, 16> Visited;
1368
1369 // Do DFS, computing the PostOrder.
1370 SmallPtrSet<BasicBlock *, 16> OnStack;
1371 SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
1372
1373 // Functions always have exactly one entry block, and we don't have
1374 // any other block that we treat like an entry block.
1375 BasicBlock *EntryBB = &F.getEntryBlock();
1376 BBState &MyStates = BBStates[EntryBB];
1377 MyStates.SetAsEntry();
1378 TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back());
1379 SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
1380 Visited.insert(EntryBB);
1381 OnStack.insert(EntryBB);
1382 do {
1383 dfs_next_succ:
1384 BasicBlock *CurrBB = SuccStack.back().first;
1385 TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back());
1386 succ_iterator SE(TI, false);
1387
1388 while (SuccStack.back().second != SE) {
1389 BasicBlock *SuccBB = *SuccStack.back().second++;
1390 if (Visited.insert(SuccBB).second) {
1391 TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back());
1392 SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI)));
1393 BBStates[CurrBB].addSucc(SuccBB);
1394 BBState &SuccStates = BBStates[SuccBB];
1395 SuccStates.addPred(CurrBB);
1396 OnStack.insert(SuccBB);
1397 goto dfs_next_succ;
1398 }
1399
1400 if (!OnStack.count(SuccBB)) {
1401 BBStates[CurrBB].addSucc(SuccBB);
1402 BBStates[SuccBB].addPred(CurrBB);
1403 }
1404 }
1405 OnStack.erase(CurrBB);
1406 PostOrder.push_back(CurrBB);
1407 SuccStack.pop_back();
1408 } while (!SuccStack.empty());
1409
1410 Visited.clear();
1411
1412 // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
1413 // Functions may have many exits, and there also blocks which we treat
1414 // as exits due to ignored edges.
1415 SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
1416 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
1417 BasicBlock *ExitBB = I;
1418 BBState &MyStates = BBStates[ExitBB];
1419 if (!MyStates.isExit())
1420 continue;
1421
1422 MyStates.SetAsExit();
1423
1424 PredStack.push_back(std::make_pair(ExitBB, MyStates.pred_begin()));
1425 Visited.insert(ExitBB);
1426 while (!PredStack.empty()) {
1427 reverse_dfs_next_succ:
1428 BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
1429 while (PredStack.back().second != PE) {
1430 BasicBlock *BB = *PredStack.back().second++;
1431 if (Visited.insert(BB).second) {
1432 PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
1433 goto reverse_dfs_next_succ;
1434 }
1435 }
1436 ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
1437 }
1438 }
1439 }
1440
1441 // Visit the function both top-down and bottom-up.
Visit(Function & F,DenseMap<const BasicBlock *,BBState> & BBStates,BlotMapVector<Value *,RRInfo> & Retains,DenseMap<Value *,RRInfo> & Releases)1442 bool ObjCARCOpt::Visit(Function &F,
1443 DenseMap<const BasicBlock *, BBState> &BBStates,
1444 BlotMapVector<Value *, RRInfo> &Retains,
1445 DenseMap<Value *, RRInfo> &Releases) {
1446
1447 // Use reverse-postorder traversals, because we magically know that loops
1448 // will be well behaved, i.e. they won't repeatedly call retain on a single
1449 // pointer without doing a release. We can't use the ReversePostOrderTraversal
1450 // class here because we want the reverse-CFG postorder to consider each
1451 // function exit point, and we want to ignore selected cycle edges.
1452 SmallVector<BasicBlock *, 16> PostOrder;
1453 SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
1454 ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
1455 MDKindCache.get(ARCMDKindID::NoObjCARCExceptions),
1456 BBStates);
1457
1458 // Use reverse-postorder on the reverse CFG for bottom-up.
1459 bool BottomUpNestingDetected = false;
1460 for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
1461 ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend();
1462 I != E; ++I)
1463 BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains);
1464
1465 // Use reverse-postorder for top-down.
1466 bool TopDownNestingDetected = false;
1467 for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
1468 PostOrder.rbegin(), E = PostOrder.rend();
1469 I != E; ++I)
1470 TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases);
1471
1472 return TopDownNestingDetected && BottomUpNestingDetected;
1473 }
1474
1475 /// Move the calls in RetainsToMove and ReleasesToMove.
MoveCalls(Value * Arg,RRInfo & RetainsToMove,RRInfo & ReleasesToMove,BlotMapVector<Value *,RRInfo> & Retains,DenseMap<Value *,RRInfo> & Releases,SmallVectorImpl<Instruction * > & DeadInsts,Module * M)1476 void ObjCARCOpt::MoveCalls(Value *Arg, RRInfo &RetainsToMove,
1477 RRInfo &ReleasesToMove,
1478 BlotMapVector<Value *, RRInfo> &Retains,
1479 DenseMap<Value *, RRInfo> &Releases,
1480 SmallVectorImpl<Instruction *> &DeadInsts,
1481 Module *M) {
1482 Type *ArgTy = Arg->getType();
1483 Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
1484
1485 DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n");
1486
1487 // Insert the new retain and release calls.
1488 for (Instruction *InsertPt : ReleasesToMove.ReverseInsertPts) {
1489 Value *MyArg = ArgTy == ParamTy ? Arg :
1490 new BitCastInst(Arg, ParamTy, "", InsertPt);
1491 Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
1492 CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
1493 Call->setDoesNotThrow();
1494 Call->setTailCall();
1495
1496 DEBUG(dbgs() << "Inserting new Retain: " << *Call << "\n"
1497 "At insertion point: " << *InsertPt << "\n");
1498 }
1499 for (Instruction *InsertPt : RetainsToMove.ReverseInsertPts) {
1500 Value *MyArg = ArgTy == ParamTy ? Arg :
1501 new BitCastInst(Arg, ParamTy, "", InsertPt);
1502 Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
1503 CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
1504 // Attach a clang.imprecise_release metadata tag, if appropriate.
1505 if (MDNode *M = ReleasesToMove.ReleaseMetadata)
1506 Call->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease), M);
1507 Call->setDoesNotThrow();
1508 if (ReleasesToMove.IsTailCallRelease)
1509 Call->setTailCall();
1510
1511 DEBUG(dbgs() << "Inserting new Release: " << *Call << "\n"
1512 "At insertion point: " << *InsertPt << "\n");
1513 }
1514
1515 // Delete the original retain and release calls.
1516 for (Instruction *OrigRetain : RetainsToMove.Calls) {
1517 Retains.blot(OrigRetain);
1518 DeadInsts.push_back(OrigRetain);
1519 DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n");
1520 }
1521 for (Instruction *OrigRelease : ReleasesToMove.Calls) {
1522 Releases.erase(OrigRelease);
1523 DeadInsts.push_back(OrigRelease);
1524 DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n");
1525 }
1526
1527 }
1528
PairUpRetainsAndReleases(DenseMap<const BasicBlock *,BBState> & BBStates,BlotMapVector<Value *,RRInfo> & Retains,DenseMap<Value *,RRInfo> & Releases,Module * M,SmallVectorImpl<Instruction * > & NewRetains,SmallVectorImpl<Instruction * > & NewReleases,SmallVectorImpl<Instruction * > & DeadInsts,RRInfo & RetainsToMove,RRInfo & ReleasesToMove,Value * Arg,bool KnownSafe,bool & AnyPairsCompletelyEliminated)1529 bool ObjCARCOpt::PairUpRetainsAndReleases(
1530 DenseMap<const BasicBlock *, BBState> &BBStates,
1531 BlotMapVector<Value *, RRInfo> &Retains,
1532 DenseMap<Value *, RRInfo> &Releases, Module *M,
1533 SmallVectorImpl<Instruction *> &NewRetains,
1534 SmallVectorImpl<Instruction *> &NewReleases,
1535 SmallVectorImpl<Instruction *> &DeadInsts, RRInfo &RetainsToMove,
1536 RRInfo &ReleasesToMove, Value *Arg, bool KnownSafe,
1537 bool &AnyPairsCompletelyEliminated) {
1538 // If a pair happens in a region where it is known that the reference count
1539 // is already incremented, we can similarly ignore possible decrements unless
1540 // we are dealing with a retainable object with multiple provenance sources.
1541 bool KnownSafeTD = true, KnownSafeBU = true;
1542 bool MultipleOwners = false;
1543 bool CFGHazardAfflicted = false;
1544
1545 // Connect the dots between the top-down-collected RetainsToMove and
1546 // bottom-up-collected ReleasesToMove to form sets of related calls.
1547 // This is an iterative process so that we connect multiple releases
1548 // to multiple retains if needed.
1549 unsigned OldDelta = 0;
1550 unsigned NewDelta = 0;
1551 unsigned OldCount = 0;
1552 unsigned NewCount = 0;
1553 bool FirstRelease = true;
1554 for (;;) {
1555 for (SmallVectorImpl<Instruction *>::const_iterator
1556 NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
1557 Instruction *NewRetain = *NI;
1558 auto It = Retains.find(NewRetain);
1559 assert(It != Retains.end());
1560 const RRInfo &NewRetainRRI = It->second;
1561 KnownSafeTD &= NewRetainRRI.KnownSafe;
1562 MultipleOwners =
1563 MultipleOwners || MultiOwnersSet.count(GetArgRCIdentityRoot(NewRetain));
1564 for (Instruction *NewRetainRelease : NewRetainRRI.Calls) {
1565 auto Jt = Releases.find(NewRetainRelease);
1566 if (Jt == Releases.end())
1567 return false;
1568 const RRInfo &NewRetainReleaseRRI = Jt->second;
1569
1570 // If the release does not have a reference to the retain as well,
1571 // something happened which is unaccounted for. Do not do anything.
1572 //
1573 // This can happen if we catch an additive overflow during path count
1574 // merging.
1575 if (!NewRetainReleaseRRI.Calls.count(NewRetain))
1576 return false;
1577
1578 if (ReleasesToMove.Calls.insert(NewRetainRelease).second) {
1579
1580 // If we overflow when we compute the path count, don't remove/move
1581 // anything.
1582 const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()];
1583 unsigned PathCount = BBState::OverflowOccurredValue;
1584 if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
1585 return false;
1586 assert(PathCount != BBState::OverflowOccurredValue &&
1587 "PathCount at this point can not be "
1588 "OverflowOccurredValue.");
1589 OldDelta -= PathCount;
1590
1591 // Merge the ReleaseMetadata and IsTailCallRelease values.
1592 if (FirstRelease) {
1593 ReleasesToMove.ReleaseMetadata =
1594 NewRetainReleaseRRI.ReleaseMetadata;
1595 ReleasesToMove.IsTailCallRelease =
1596 NewRetainReleaseRRI.IsTailCallRelease;
1597 FirstRelease = false;
1598 } else {
1599 if (ReleasesToMove.ReleaseMetadata !=
1600 NewRetainReleaseRRI.ReleaseMetadata)
1601 ReleasesToMove.ReleaseMetadata = nullptr;
1602 if (ReleasesToMove.IsTailCallRelease !=
1603 NewRetainReleaseRRI.IsTailCallRelease)
1604 ReleasesToMove.IsTailCallRelease = false;
1605 }
1606
1607 // Collect the optimal insertion points.
1608 if (!KnownSafe)
1609 for (Instruction *RIP : NewRetainReleaseRRI.ReverseInsertPts) {
1610 if (ReleasesToMove.ReverseInsertPts.insert(RIP).second) {
1611 // If we overflow when we compute the path count, don't
1612 // remove/move anything.
1613 const BBState &RIPBBState = BBStates[RIP->getParent()];
1614 PathCount = BBState::OverflowOccurredValue;
1615 if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
1616 return false;
1617 assert(PathCount != BBState::OverflowOccurredValue &&
1618 "PathCount at this point can not be "
1619 "OverflowOccurredValue.");
1620 NewDelta -= PathCount;
1621 }
1622 }
1623 NewReleases.push_back(NewRetainRelease);
1624 }
1625 }
1626 }
1627 NewRetains.clear();
1628 if (NewReleases.empty()) break;
1629
1630 // Back the other way.
1631 for (SmallVectorImpl<Instruction *>::const_iterator
1632 NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
1633 Instruction *NewRelease = *NI;
1634 auto It = Releases.find(NewRelease);
1635 assert(It != Releases.end());
1636 const RRInfo &NewReleaseRRI = It->second;
1637 KnownSafeBU &= NewReleaseRRI.KnownSafe;
1638 CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted;
1639 for (Instruction *NewReleaseRetain : NewReleaseRRI.Calls) {
1640 auto Jt = Retains.find(NewReleaseRetain);
1641 if (Jt == Retains.end())
1642 return false;
1643 const RRInfo &NewReleaseRetainRRI = Jt->second;
1644
1645 // If the retain does not have a reference to the release as well,
1646 // something happened which is unaccounted for. Do not do anything.
1647 //
1648 // This can happen if we catch an additive overflow during path count
1649 // merging.
1650 if (!NewReleaseRetainRRI.Calls.count(NewRelease))
1651 return false;
1652
1653 if (RetainsToMove.Calls.insert(NewReleaseRetain).second) {
1654 // If we overflow when we compute the path count, don't remove/move
1655 // anything.
1656 const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()];
1657 unsigned PathCount = BBState::OverflowOccurredValue;
1658 if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
1659 return false;
1660 assert(PathCount != BBState::OverflowOccurredValue &&
1661 "PathCount at this point can not be "
1662 "OverflowOccurredValue.");
1663 OldDelta += PathCount;
1664 OldCount += PathCount;
1665
1666 // Collect the optimal insertion points.
1667 if (!KnownSafe)
1668 for (Instruction *RIP : NewReleaseRetainRRI.ReverseInsertPts) {
1669 if (RetainsToMove.ReverseInsertPts.insert(RIP).second) {
1670 // If we overflow when we compute the path count, don't
1671 // remove/move anything.
1672 const BBState &RIPBBState = BBStates[RIP->getParent()];
1673
1674 PathCount = BBState::OverflowOccurredValue;
1675 if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
1676 return false;
1677 assert(PathCount != BBState::OverflowOccurredValue &&
1678 "PathCount at this point can not be "
1679 "OverflowOccurredValue.");
1680 NewDelta += PathCount;
1681 NewCount += PathCount;
1682 }
1683 }
1684 NewRetains.push_back(NewReleaseRetain);
1685 }
1686 }
1687 }
1688 NewReleases.clear();
1689 if (NewRetains.empty()) break;
1690 }
1691
1692 // We can only remove pointers if we are known safe in both directions.
1693 bool UnconditionallySafe = KnownSafeTD && KnownSafeBU;
1694 if (UnconditionallySafe) {
1695 RetainsToMove.ReverseInsertPts.clear();
1696 ReleasesToMove.ReverseInsertPts.clear();
1697 NewCount = 0;
1698 } else {
1699 // Determine whether the new insertion points we computed preserve the
1700 // balance of retain and release calls through the program.
1701 // TODO: If the fully aggressive solution isn't valid, try to find a
1702 // less aggressive solution which is.
1703 if (NewDelta != 0)
1704 return false;
1705
1706 // At this point, we are not going to remove any RR pairs, but we still are
1707 // able to move RR pairs. If one of our pointers is afflicted with
1708 // CFGHazards, we cannot perform such code motion so exit early.
1709 const bool WillPerformCodeMotion = RetainsToMove.ReverseInsertPts.size() ||
1710 ReleasesToMove.ReverseInsertPts.size();
1711 if (CFGHazardAfflicted && WillPerformCodeMotion)
1712 return false;
1713 }
1714
1715 // Determine whether the original call points are balanced in the retain and
1716 // release calls through the program. If not, conservatively don't touch
1717 // them.
1718 // TODO: It's theoretically possible to do code motion in this case, as
1719 // long as the existing imbalances are maintained.
1720 if (OldDelta != 0)
1721 return false;
1722
1723 Changed = true;
1724 assert(OldCount != 0 && "Unreachable code?");
1725 NumRRs += OldCount - NewCount;
1726 // Set to true if we completely removed any RR pairs.
1727 AnyPairsCompletelyEliminated = NewCount == 0;
1728
1729 // We can move calls!
1730 return true;
1731 }
1732
1733 /// Identify pairings between the retains and releases, and delete and/or move
1734 /// them.
PerformCodePlacement(DenseMap<const BasicBlock *,BBState> & BBStates,BlotMapVector<Value *,RRInfo> & Retains,DenseMap<Value *,RRInfo> & Releases,Module * M)1735 bool ObjCARCOpt::PerformCodePlacement(
1736 DenseMap<const BasicBlock *, BBState> &BBStates,
1737 BlotMapVector<Value *, RRInfo> &Retains,
1738 DenseMap<Value *, RRInfo> &Releases, Module *M) {
1739 DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n");
1740
1741 bool AnyPairsCompletelyEliminated = false;
1742 RRInfo RetainsToMove;
1743 RRInfo ReleasesToMove;
1744 SmallVector<Instruction *, 4> NewRetains;
1745 SmallVector<Instruction *, 4> NewReleases;
1746 SmallVector<Instruction *, 8> DeadInsts;
1747
1748 // Visit each retain.
1749 for (BlotMapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
1750 E = Retains.end();
1751 I != E; ++I) {
1752 Value *V = I->first;
1753 if (!V) continue; // blotted
1754
1755 Instruction *Retain = cast<Instruction>(V);
1756
1757 DEBUG(dbgs() << "Visiting: " << *Retain << "\n");
1758
1759 Value *Arg = GetArgRCIdentityRoot(Retain);
1760
1761 // If the object being released is in static or stack storage, we know it's
1762 // not being managed by ObjC reference counting, so we can delete pairs
1763 // regardless of what possible decrements or uses lie between them.
1764 bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
1765
1766 // A constant pointer can't be pointing to an object on the heap. It may
1767 // be reference-counted, but it won't be deleted.
1768 if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
1769 if (const GlobalVariable *GV =
1770 dyn_cast<GlobalVariable>(
1771 GetRCIdentityRoot(LI->getPointerOperand())))
1772 if (GV->isConstant())
1773 KnownSafe = true;
1774
1775 // Connect the dots between the top-down-collected RetainsToMove and
1776 // bottom-up-collected ReleasesToMove to form sets of related calls.
1777 NewRetains.push_back(Retain);
1778 bool PerformMoveCalls = PairUpRetainsAndReleases(
1779 BBStates, Retains, Releases, M, NewRetains, NewReleases, DeadInsts,
1780 RetainsToMove, ReleasesToMove, Arg, KnownSafe,
1781 AnyPairsCompletelyEliminated);
1782
1783 if (PerformMoveCalls) {
1784 // Ok, everything checks out and we're all set. Let's move/delete some
1785 // code!
1786 MoveCalls(Arg, RetainsToMove, ReleasesToMove,
1787 Retains, Releases, DeadInsts, M);
1788 }
1789
1790 // Clean up state for next retain.
1791 NewReleases.clear();
1792 NewRetains.clear();
1793 RetainsToMove.clear();
1794 ReleasesToMove.clear();
1795 }
1796
1797 // Now that we're done moving everything, we can delete the newly dead
1798 // instructions, as we no longer need them as insert points.
1799 while (!DeadInsts.empty())
1800 EraseInstruction(DeadInsts.pop_back_val());
1801
1802 return AnyPairsCompletelyEliminated;
1803 }
1804
1805 /// Weak pointer optimizations.
OptimizeWeakCalls(Function & F)1806 void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
1807 DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n");
1808
1809 // First, do memdep-style RLE and S2L optimizations. We can't use memdep
1810 // itself because it uses AliasAnalysis and we need to do provenance
1811 // queries instead.
1812 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
1813 Instruction *Inst = &*I++;
1814
1815 DEBUG(dbgs() << "Visiting: " << *Inst << "\n");
1816
1817 ARCInstKind Class = GetBasicARCInstKind(Inst);
1818 if (Class != ARCInstKind::LoadWeak &&
1819 Class != ARCInstKind::LoadWeakRetained)
1820 continue;
1821
1822 // Delete objc_loadWeak calls with no users.
1823 if (Class == ARCInstKind::LoadWeak && Inst->use_empty()) {
1824 Inst->eraseFromParent();
1825 continue;
1826 }
1827
1828 // TODO: For now, just look for an earlier available version of this value
1829 // within the same block. Theoretically, we could do memdep-style non-local
1830 // analysis too, but that would want caching. A better approach would be to
1831 // use the technique that EarlyCSE uses.
1832 inst_iterator Current = std::prev(I);
1833 BasicBlock *CurrentBB = Current.getBasicBlockIterator();
1834 for (BasicBlock::iterator B = CurrentBB->begin(),
1835 J = Current.getInstructionIterator();
1836 J != B; --J) {
1837 Instruction *EarlierInst = &*std::prev(J);
1838 ARCInstKind EarlierClass = GetARCInstKind(EarlierInst);
1839 switch (EarlierClass) {
1840 case ARCInstKind::LoadWeak:
1841 case ARCInstKind::LoadWeakRetained: {
1842 // If this is loading from the same pointer, replace this load's value
1843 // with that one.
1844 CallInst *Call = cast<CallInst>(Inst);
1845 CallInst *EarlierCall = cast<CallInst>(EarlierInst);
1846 Value *Arg = Call->getArgOperand(0);
1847 Value *EarlierArg = EarlierCall->getArgOperand(0);
1848 switch (PA.getAA()->alias(Arg, EarlierArg)) {
1849 case AliasAnalysis::MustAlias:
1850 Changed = true;
1851 // If the load has a builtin retain, insert a plain retain for it.
1852 if (Class == ARCInstKind::LoadWeakRetained) {
1853 Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
1854 CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
1855 CI->setTailCall();
1856 }
1857 // Zap the fully redundant load.
1858 Call->replaceAllUsesWith(EarlierCall);
1859 Call->eraseFromParent();
1860 goto clobbered;
1861 case AliasAnalysis::MayAlias:
1862 case AliasAnalysis::PartialAlias:
1863 goto clobbered;
1864 case AliasAnalysis::NoAlias:
1865 break;
1866 }
1867 break;
1868 }
1869 case ARCInstKind::StoreWeak:
1870 case ARCInstKind::InitWeak: {
1871 // If this is storing to the same pointer and has the same size etc.
1872 // replace this load's value with the stored value.
1873 CallInst *Call = cast<CallInst>(Inst);
1874 CallInst *EarlierCall = cast<CallInst>(EarlierInst);
1875 Value *Arg = Call->getArgOperand(0);
1876 Value *EarlierArg = EarlierCall->getArgOperand(0);
1877 switch (PA.getAA()->alias(Arg, EarlierArg)) {
1878 case AliasAnalysis::MustAlias:
1879 Changed = true;
1880 // If the load has a builtin retain, insert a plain retain for it.
1881 if (Class == ARCInstKind::LoadWeakRetained) {
1882 Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
1883 CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
1884 CI->setTailCall();
1885 }
1886 // Zap the fully redundant load.
1887 Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
1888 Call->eraseFromParent();
1889 goto clobbered;
1890 case AliasAnalysis::MayAlias:
1891 case AliasAnalysis::PartialAlias:
1892 goto clobbered;
1893 case AliasAnalysis::NoAlias:
1894 break;
1895 }
1896 break;
1897 }
1898 case ARCInstKind::MoveWeak:
1899 case ARCInstKind::CopyWeak:
1900 // TOOD: Grab the copied value.
1901 goto clobbered;
1902 case ARCInstKind::AutoreleasepoolPush:
1903 case ARCInstKind::None:
1904 case ARCInstKind::IntrinsicUser:
1905 case ARCInstKind::User:
1906 // Weak pointers are only modified through the weak entry points
1907 // (and arbitrary calls, which could call the weak entry points).
1908 break;
1909 default:
1910 // Anything else could modify the weak pointer.
1911 goto clobbered;
1912 }
1913 }
1914 clobbered:;
1915 }
1916
1917 // Then, for each destroyWeak with an alloca operand, check to see if
1918 // the alloca and all its users can be zapped.
1919 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
1920 Instruction *Inst = &*I++;
1921 ARCInstKind Class = GetBasicARCInstKind(Inst);
1922 if (Class != ARCInstKind::DestroyWeak)
1923 continue;
1924
1925 CallInst *Call = cast<CallInst>(Inst);
1926 Value *Arg = Call->getArgOperand(0);
1927 if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
1928 for (User *U : Alloca->users()) {
1929 const Instruction *UserInst = cast<Instruction>(U);
1930 switch (GetBasicARCInstKind(UserInst)) {
1931 case ARCInstKind::InitWeak:
1932 case ARCInstKind::StoreWeak:
1933 case ARCInstKind::DestroyWeak:
1934 continue;
1935 default:
1936 goto done;
1937 }
1938 }
1939 Changed = true;
1940 for (auto UI = Alloca->user_begin(), UE = Alloca->user_end(); UI != UE;) {
1941 CallInst *UserInst = cast<CallInst>(*UI++);
1942 switch (GetBasicARCInstKind(UserInst)) {
1943 case ARCInstKind::InitWeak:
1944 case ARCInstKind::StoreWeak:
1945 // These functions return their second argument.
1946 UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
1947 break;
1948 case ARCInstKind::DestroyWeak:
1949 // No return value.
1950 break;
1951 default:
1952 llvm_unreachable("alloca really is used!");
1953 }
1954 UserInst->eraseFromParent();
1955 }
1956 Alloca->eraseFromParent();
1957 done:;
1958 }
1959 }
1960 }
1961
1962 /// Identify program paths which execute sequences of retains and releases which
1963 /// can be eliminated.
OptimizeSequences(Function & F)1964 bool ObjCARCOpt::OptimizeSequences(Function &F) {
1965 // Releases, Retains - These are used to store the results of the main flow
1966 // analysis. These use Value* as the key instead of Instruction* so that the
1967 // map stays valid when we get around to rewriting code and calls get
1968 // replaced by arguments.
1969 DenseMap<Value *, RRInfo> Releases;
1970 BlotMapVector<Value *, RRInfo> Retains;
1971
1972 // This is used during the traversal of the function to track the
1973 // states for each identified object at each block.
1974 DenseMap<const BasicBlock *, BBState> BBStates;
1975
1976 // Analyze the CFG of the function, and all instructions.
1977 bool NestingDetected = Visit(F, BBStates, Retains, Releases);
1978
1979 // Transform.
1980 bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains,
1981 Releases,
1982 F.getParent());
1983
1984 // Cleanup.
1985 MultiOwnersSet.clear();
1986
1987 return AnyPairsCompletelyEliminated && NestingDetected;
1988 }
1989
1990 /// Check if there is a dependent call earlier that does not have anything in
1991 /// between the Retain and the call that can affect the reference count of their
1992 /// shared pointer argument. Note that Retain need not be in BB.
1993 static bool
HasSafePathToPredecessorCall(const Value * Arg,Instruction * Retain,SmallPtrSetImpl<Instruction * > & DepInsts,SmallPtrSetImpl<const BasicBlock * > & Visited,ProvenanceAnalysis & PA)1994 HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain,
1995 SmallPtrSetImpl<Instruction *> &DepInsts,
1996 SmallPtrSetImpl<const BasicBlock *> &Visited,
1997 ProvenanceAnalysis &PA) {
1998 FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
1999 DepInsts, Visited, PA);
2000 if (DepInsts.size() != 1)
2001 return false;
2002
2003 auto *Call = dyn_cast_or_null<CallInst>(*DepInsts.begin());
2004
2005 // Check that the pointer is the return value of the call.
2006 if (!Call || Arg != Call)
2007 return false;
2008
2009 // Check that the call is a regular call.
2010 ARCInstKind Class = GetBasicARCInstKind(Call);
2011 if (Class != ARCInstKind::CallOrUser && Class != ARCInstKind::Call)
2012 return false;
2013
2014 return true;
2015 }
2016
2017 /// Find a dependent retain that precedes the given autorelease for which there
2018 /// is nothing in between the two instructions that can affect the ref count of
2019 /// Arg.
2020 static CallInst *
FindPredecessorRetainWithSafePath(const Value * Arg,BasicBlock * BB,Instruction * Autorelease,SmallPtrSetImpl<Instruction * > & DepInsts,SmallPtrSetImpl<const BasicBlock * > & Visited,ProvenanceAnalysis & PA)2021 FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB,
2022 Instruction *Autorelease,
2023 SmallPtrSetImpl<Instruction *> &DepInsts,
2024 SmallPtrSetImpl<const BasicBlock *> &Visited,
2025 ProvenanceAnalysis &PA) {
2026 FindDependencies(CanChangeRetainCount, Arg,
2027 BB, Autorelease, DepInsts, Visited, PA);
2028 if (DepInsts.size() != 1)
2029 return nullptr;
2030
2031 auto *Retain = dyn_cast_or_null<CallInst>(*DepInsts.begin());
2032
2033 // Check that we found a retain with the same argument.
2034 if (!Retain || !IsRetain(GetBasicARCInstKind(Retain)) ||
2035 GetArgRCIdentityRoot(Retain) != Arg) {
2036 return nullptr;
2037 }
2038
2039 return Retain;
2040 }
2041
2042 /// Look for an ``autorelease'' instruction dependent on Arg such that there are
2043 /// no instructions dependent on Arg that need a positive ref count in between
2044 /// the autorelease and the ret.
2045 static CallInst *
FindPredecessorAutoreleaseWithSafePath(const Value * Arg,BasicBlock * BB,ReturnInst * Ret,SmallPtrSetImpl<Instruction * > & DepInsts,SmallPtrSetImpl<const BasicBlock * > & V,ProvenanceAnalysis & PA)2046 FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB,
2047 ReturnInst *Ret,
2048 SmallPtrSetImpl<Instruction *> &DepInsts,
2049 SmallPtrSetImpl<const BasicBlock *> &V,
2050 ProvenanceAnalysis &PA) {
2051 FindDependencies(NeedsPositiveRetainCount, Arg,
2052 BB, Ret, DepInsts, V, PA);
2053 if (DepInsts.size() != 1)
2054 return nullptr;
2055
2056 auto *Autorelease = dyn_cast_or_null<CallInst>(*DepInsts.begin());
2057 if (!Autorelease)
2058 return nullptr;
2059 ARCInstKind AutoreleaseClass = GetBasicARCInstKind(Autorelease);
2060 if (!IsAutorelease(AutoreleaseClass))
2061 return nullptr;
2062 if (GetArgRCIdentityRoot(Autorelease) != Arg)
2063 return nullptr;
2064
2065 return Autorelease;
2066 }
2067
2068 /// Look for this pattern:
2069 /// \code
2070 /// %call = call i8* @something(...)
2071 /// %2 = call i8* @objc_retain(i8* %call)
2072 /// %3 = call i8* @objc_autorelease(i8* %2)
2073 /// ret i8* %3
2074 /// \endcode
2075 /// And delete the retain and autorelease.
OptimizeReturns(Function & F)2076 void ObjCARCOpt::OptimizeReturns(Function &F) {
2077 if (!F.getReturnType()->isPointerTy())
2078 return;
2079
2080 DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n");
2081
2082 SmallPtrSet<Instruction *, 4> DependingInstructions;
2083 SmallPtrSet<const BasicBlock *, 4> Visited;
2084 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
2085 BasicBlock *BB = FI;
2086 ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
2087
2088 DEBUG(dbgs() << "Visiting: " << *Ret << "\n");
2089
2090 if (!Ret)
2091 continue;
2092
2093 const Value *Arg = GetRCIdentityRoot(Ret->getOperand(0));
2094
2095 // Look for an ``autorelease'' instruction that is a predecessor of Ret and
2096 // dependent on Arg such that there are no instructions dependent on Arg
2097 // that need a positive ref count in between the autorelease and Ret.
2098 CallInst *Autorelease =
2099 FindPredecessorAutoreleaseWithSafePath(Arg, BB, Ret,
2100 DependingInstructions, Visited,
2101 PA);
2102 DependingInstructions.clear();
2103 Visited.clear();
2104
2105 if (!Autorelease)
2106 continue;
2107
2108 CallInst *Retain =
2109 FindPredecessorRetainWithSafePath(Arg, BB, Autorelease,
2110 DependingInstructions, Visited, PA);
2111 DependingInstructions.clear();
2112 Visited.clear();
2113
2114 if (!Retain)
2115 continue;
2116
2117 // Check that there is nothing that can affect the reference count
2118 // between the retain and the call. Note that Retain need not be in BB.
2119 bool HasSafePathToCall = HasSafePathToPredecessorCall(Arg, Retain,
2120 DependingInstructions,
2121 Visited, PA);
2122 DependingInstructions.clear();
2123 Visited.clear();
2124
2125 if (!HasSafePathToCall)
2126 continue;
2127
2128 // If so, we can zap the retain and autorelease.
2129 Changed = true;
2130 ++NumRets;
2131 DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: "
2132 << *Autorelease << "\n");
2133 EraseInstruction(Retain);
2134 EraseInstruction(Autorelease);
2135 }
2136 }
2137
2138 #ifndef NDEBUG
2139 void
GatherStatistics(Function & F,bool AfterOptimization)2140 ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) {
2141 llvm::Statistic &NumRetains =
2142 AfterOptimization? NumRetainsAfterOpt : NumRetainsBeforeOpt;
2143 llvm::Statistic &NumReleases =
2144 AfterOptimization? NumReleasesAfterOpt : NumReleasesBeforeOpt;
2145
2146 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2147 Instruction *Inst = &*I++;
2148 switch (GetBasicARCInstKind(Inst)) {
2149 default:
2150 break;
2151 case ARCInstKind::Retain:
2152 ++NumRetains;
2153 break;
2154 case ARCInstKind::Release:
2155 ++NumReleases;
2156 break;
2157 }
2158 }
2159 }
2160 #endif
2161
doInitialization(Module & M)2162 bool ObjCARCOpt::doInitialization(Module &M) {
2163 if (!EnableARCOpts)
2164 return false;
2165
2166 // If nothing in the Module uses ARC, don't do anything.
2167 Run = ModuleHasARC(M);
2168 if (!Run)
2169 return false;
2170
2171 // Intuitively, objc_retain and others are nocapture, however in practice
2172 // they are not, because they return their argument value. And objc_release
2173 // calls finalizers which can have arbitrary side effects.
2174 MDKindCache.init(&M);
2175
2176 // Initialize our runtime entry point cache.
2177 EP.init(&M);
2178
2179 return false;
2180 }
2181
runOnFunction(Function & F)2182 bool ObjCARCOpt::runOnFunction(Function &F) {
2183 if (!EnableARCOpts)
2184 return false;
2185
2186 // If nothing in the Module uses ARC, don't do anything.
2187 if (!Run)
2188 return false;
2189
2190 Changed = false;
2191
2192 DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName() << " >>>"
2193 "\n");
2194
2195 PA.setAA(&getAnalysis<AliasAnalysis>());
2196
2197 #ifndef NDEBUG
2198 if (AreStatisticsEnabled()) {
2199 GatherStatistics(F, false);
2200 }
2201 #endif
2202
2203 // This pass performs several distinct transformations. As a compile-time aid
2204 // when compiling code that isn't ObjC, skip these if the relevant ObjC
2205 // library functions aren't declared.
2206
2207 // Preliminary optimizations. This also computes UsedInThisFunction.
2208 OptimizeIndividualCalls(F);
2209
2210 // Optimizations for weak pointers.
2211 if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::LoadWeak)) |
2212 (1 << unsigned(ARCInstKind::LoadWeakRetained)) |
2213 (1 << unsigned(ARCInstKind::StoreWeak)) |
2214 (1 << unsigned(ARCInstKind::InitWeak)) |
2215 (1 << unsigned(ARCInstKind::CopyWeak)) |
2216 (1 << unsigned(ARCInstKind::MoveWeak)) |
2217 (1 << unsigned(ARCInstKind::DestroyWeak))))
2218 OptimizeWeakCalls(F);
2219
2220 // Optimizations for retain+release pairs.
2221 if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Retain)) |
2222 (1 << unsigned(ARCInstKind::RetainRV)) |
2223 (1 << unsigned(ARCInstKind::RetainBlock))))
2224 if (UsedInThisFunction & (1 << unsigned(ARCInstKind::Release)))
2225 // Run OptimizeSequences until it either stops making changes or
2226 // no retain+release pair nesting is detected.
2227 while (OptimizeSequences(F)) {}
2228
2229 // Optimizations if objc_autorelease is used.
2230 if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Autorelease)) |
2231 (1 << unsigned(ARCInstKind::AutoreleaseRV))))
2232 OptimizeReturns(F);
2233
2234 // Gather statistics after optimization.
2235 #ifndef NDEBUG
2236 if (AreStatisticsEnabled()) {
2237 GatherStatistics(F, true);
2238 }
2239 #endif
2240
2241 DEBUG(dbgs() << "\n");
2242
2243 return Changed;
2244 }
2245
releaseMemory()2246 void ObjCARCOpt::releaseMemory() {
2247 PA.clear();
2248 }
2249
2250 /// @}
2251 ///
2252