• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkChecksum_DEFINED
9 #define SkChecksum_DEFINED
10 
11 #include "SkString.h"
12 #include "SkTLogic.h"
13 #include "SkTypes.h"
14 
15 /**
16  *  Computes a 32bit checksum from a blob of 32bit aligned data. This is meant
17  *  to be very very fast, as it is used internally by the font cache, in
18  *  conjuction with the entire raw key. This algorithm does not generate
19  *  unique values as well as others (e.g. MD5) but it performs much faster.
20  *  Skia's use cases can survive non-unique values (since the entire key is
21  *  always available). Clients should only be used in circumstances where speed
22  *  over uniqueness is at a premium.
23  */
24 class SkChecksum : SkNoncopyable {
25 private:
26     /*
27      *  Our Rotate and Mash helpers are meant to automatically do the right
28      *  thing depending if sizeof(uintptr_t) is 4 or 8.
29      */
30     enum {
31         ROTR = 17,
32         ROTL = sizeof(uintptr_t) * 8 - ROTR,
33         HALFBITS = sizeof(uintptr_t) * 4
34     };
35 
Mash(uintptr_t total,uintptr_t value)36     static inline uintptr_t Mash(uintptr_t total, uintptr_t value) {
37         return ((total >> ROTR) | (total << ROTL)) ^ value;
38     }
39 
40 public:
41     /**
42      * uint32_t -> uint32_t hash, useful for when you're about to trucate this hash but you
43      * suspect its low bits aren't well mixed.
44      *
45      * This is the Murmur3 finalizer.
46      */
Mix(uint32_t hash)47     static uint32_t Mix(uint32_t hash) {
48         hash ^= hash >> 16;
49         hash *= 0x85ebca6b;
50         hash ^= hash >> 13;
51         hash *= 0xc2b2ae35;
52         hash ^= hash >> 16;
53         return hash;
54     }
55 
56     /**
57      * uint32_t -> uint32_t hash, useful for when you're about to trucate this hash but you
58      * suspect its low bits aren't well mixed.
59      *
60      *  This version is 2-lines cheaper than Mix, but seems to be sufficient for the font cache.
61      */
CheapMix(uint32_t hash)62     static uint32_t CheapMix(uint32_t hash) {
63         hash ^= hash >> 16;
64         hash *= 0x85ebca6b;
65         hash ^= hash >> 16;
66         return hash;
67     }
68 
69     /**
70      * Calculate 32-bit Murmur hash (murmur3).
71      * This should take 2-3x longer than SkChecksum::Compute, but is a considerably better hash.
72      * See en.wikipedia.org/wiki/MurmurHash.
73      *
74      *  @param data Memory address of the data block to be processed.
75      *  @param size Size of the data block in bytes.
76      *  @param seed Initial hash seed. (optional)
77      *  @return hash result
78      */
79     static uint32_t Murmur3(const void* data, size_t bytes, uint32_t seed=0) {
80         // Use may_alias to remind the compiler we're intentionally violating strict aliasing,
81         // and so not to apply strict-aliasing-based optimizations.
82         typedef uint32_t SK_ATTRIBUTE(may_alias) aliased_uint32_t;
83         typedef uint8_t SK_ATTRIBUTE(may_alias) aliased_uint8_t;
84 
85         // Handle 4 bytes at a time while possible.
86         const aliased_uint32_t* safe_data = (const aliased_uint32_t*)data;
87         const size_t words = bytes/4;
88         uint32_t hash = seed;
89         for (size_t i = 0; i < words; i++) {
90             uint32_t k = safe_data[i];
91             k *= 0xcc9e2d51;
92             k = (k << 15) | (k >> 17);
93             k *= 0x1b873593;
94 
95             hash ^= k;
96             hash = (hash << 13) | (hash >> 19);
97             hash *= 5;
98             hash += 0xe6546b64;
99         }
100 
101         // Handle last 0-3 bytes.
102         const aliased_uint8_t* safe_tail = (const uint8_t*)(safe_data + words);
103         uint32_t k = 0;
104         switch (bytes & 3) {
105             case 3: k ^= safe_tail[2] << 16;
106             case 2: k ^= safe_tail[1] <<  8;
107             case 1: k ^= safe_tail[0] <<  0;
108                     k *= 0xcc9e2d51;
109                     k = (k << 15) | (k >> 17);
110                     k *= 0x1b873593;
111                     hash ^= k;
112         }
113 
114         hash ^= bytes;
115         return Mix(hash);
116     }
117 
118     /**
119      *  Compute a 32-bit checksum for a given data block
120      *
121      *  WARNING: this algorithm is tuned for efficiency, not backward/forward
122      *  compatibility.  It may change at any time, so a checksum generated with
123      *  one version of the Skia code may not match a checksum generated with
124      *  a different version of the Skia code.
125      *
126      *  @param data Memory address of the data block to be processed. Must be
127      *              32-bit aligned.
128      *  @param size Size of the data block in bytes. Must be a multiple of 4.
129      *  @return checksum result
130      */
Compute(const uint32_t * data,size_t size)131     static uint32_t Compute(const uint32_t* data, size_t size) {
132         // Use may_alias to remind the compiler we're intentionally violating strict aliasing,
133         // and so not to apply strict-aliasing-based optimizations.
134         typedef uint32_t SK_ATTRIBUTE(may_alias) aliased_uint32_t;
135         const aliased_uint32_t* safe_data = (const aliased_uint32_t*)data;
136 
137         SkASSERT(SkIsAlign4(size));
138 
139         /*
140          *  We want to let the compiler use 32bit or 64bit addressing and math
141          *  so we use uintptr_t as our magic type. This makes the code a little
142          *  more obscure (we can't hard-code 32 or 64 anywhere, but have to use
143          *  sizeof()).
144          */
145         uintptr_t result = 0;
146         const uintptr_t* ptr = reinterpret_cast<const uintptr_t*>(safe_data);
147 
148         /*
149          *  count the number of quad element chunks. This takes into account
150          *  if we're on a 32bit or 64bit arch, since we use sizeof(uintptr_t)
151          *  to compute how much to shift-down the size.
152          */
153         size_t n4 = size / (sizeof(uintptr_t) << 2);
154         for (size_t i = 0; i < n4; ++i) {
155             result = Mash(result, *ptr++);
156             result = Mash(result, *ptr++);
157             result = Mash(result, *ptr++);
158             result = Mash(result, *ptr++);
159         }
160         size &= ((sizeof(uintptr_t) << 2) - 1);
161 
162         safe_data = reinterpret_cast<const aliased_uint32_t*>(ptr);
163         const aliased_uint32_t* stop = safe_data + (size >> 2);
164         while (safe_data < stop) {
165             result = Mash(result, *safe_data++);
166         }
167 
168         /*
169          *  smash us down to 32bits if we were 64. Note that when uintptr_t is
170          *  32bits, this code-path should go away, but I still got a warning
171          *  when I wrote
172          *      result ^= result >> 32;
173          *  since >>32 is undefined for 32bit ints, hence the wacky HALFBITS
174          *  define.
175          */
176         if (8 == sizeof(result)) {
177             result ^= result >> HALFBITS;
178         }
179         return static_cast<uint32_t>(result);
180     }
181 };
182 
183 // SkGoodHash should usually be your first choice in hashing data.
184 // It should be both reasonably fast and high quality.
185 
186 template <typename K>
SkGoodHash(const K & k)187 uint32_t SkGoodHash(const K& k) {
188     if (sizeof(K) == 4) {
189         return SkChecksum::Mix(*(const uint32_t*)&k);
190     }
191     return SkChecksum::Murmur3(&k, sizeof(K));
192 }
193 
SkGoodHash(const SkString & k)194 inline uint32_t SkGoodHash(const SkString& k) {
195     return SkChecksum::Murmur3(k.c_str(), k.size());
196 }
197 
198 #endif
199