1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef SkColorPriv_DEFINED
9 #define SkColorPriv_DEFINED
10
11 // turn this own for extra debug checking when blending onto 565
12 #ifdef SK_DEBUG
13 #define CHECK_FOR_565_OVERFLOW
14 #endif
15
16 #include "SkColor.h"
17 #include "SkMath.h"
18
19 //////////////////////////////////////////////////////////////////////////////
20
21 #define SkASSERT_IS_BYTE(x) SkASSERT(0 == ((x) & ~0xFF))
22
23 /*
24 * Skia's 32bit backend only supports 1 sizzle order at a time (compile-time).
25 * This is specified by 4 defines SK_A32_SHIFT, SK_R32_SHIFT, ... for G and B.
26 *
27 * For easier compatibility with Skia's GPU backend, we further restrict these
28 * to either (in memory-byte-order) RGBA or BGRA. Note that this "order" does
29 * not directly correspond to the same shift-order, since we have to take endianess
30 * into account.
31 *
32 * Here we enforce this constraint.
33 */
34
35 #ifdef SK_CPU_BENDIAN
36 #define SK_RGBA_R32_SHIFT 24
37 #define SK_RGBA_G32_SHIFT 16
38 #define SK_RGBA_B32_SHIFT 8
39 #define SK_RGBA_A32_SHIFT 0
40
41 #define SK_BGRA_B32_SHIFT 24
42 #define SK_BGRA_G32_SHIFT 16
43 #define SK_BGRA_R32_SHIFT 8
44 #define SK_BGRA_A32_SHIFT 0
45 #else
46 #define SK_RGBA_R32_SHIFT 0
47 #define SK_RGBA_G32_SHIFT 8
48 #define SK_RGBA_B32_SHIFT 16
49 #define SK_RGBA_A32_SHIFT 24
50
51 #define SK_BGRA_B32_SHIFT 0
52 #define SK_BGRA_G32_SHIFT 8
53 #define SK_BGRA_R32_SHIFT 16
54 #define SK_BGRA_A32_SHIFT 24
55 #endif
56
57 #if defined(SK_PMCOLOR_IS_RGBA) && defined(SK_PMCOLOR_IS_BGRA)
58 #error "can't define PMCOLOR to be RGBA and BGRA"
59 #endif
60
61 #define LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA \
62 (SK_A32_SHIFT == SK_RGBA_A32_SHIFT && \
63 SK_R32_SHIFT == SK_RGBA_R32_SHIFT && \
64 SK_G32_SHIFT == SK_RGBA_G32_SHIFT && \
65 SK_B32_SHIFT == SK_RGBA_B32_SHIFT)
66
67 #define LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA \
68 (SK_A32_SHIFT == SK_BGRA_A32_SHIFT && \
69 SK_R32_SHIFT == SK_BGRA_R32_SHIFT && \
70 SK_G32_SHIFT == SK_BGRA_G32_SHIFT && \
71 SK_B32_SHIFT == SK_BGRA_B32_SHIFT)
72
73
74 #if defined(SK_PMCOLOR_IS_RGBA) && !LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
75 #error "SK_PMCOLOR_IS_RGBA does not match SK_*32_SHIFT values"
76 #endif
77
78 #if defined(SK_PMCOLOR_IS_BGRA) && !LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA
79 #error "SK_PMCOLOR_IS_BGRA does not match SK_*32_SHIFT values"
80 #endif
81
82 #if !defined(SK_PMCOLOR_IS_RGBA) && !defined(SK_PMCOLOR_IS_BGRA)
83 // deduce which to define from the _SHIFT defines
84
85 #if LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
86 #define SK_PMCOLOR_IS_RGBA
87 #elif LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA
88 #define SK_PMCOLOR_IS_BGRA
89 #else
90 #error "need 32bit packing to be either RGBA or BGRA"
91 #endif
92 #endif
93
94 // hide these now that we're done
95 #undef LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
96 #undef LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA
97
98 //////////////////////////////////////////////////////////////////////////////
99
100 // Reverse the bytes coorsponding to RED and BLUE in a packed pixels. Note the
101 // pair of them are in the same 2 slots in both RGBA and BGRA, thus there is
102 // no need to pass in the colortype to this function.
SkSwizzle_RB(uint32_t c)103 static inline uint32_t SkSwizzle_RB(uint32_t c) {
104 static const uint32_t kRBMask = (0xFF << SK_R32_SHIFT) | (0xFF << SK_B32_SHIFT);
105
106 unsigned c0 = (c >> SK_R32_SHIFT) & 0xFF;
107 unsigned c1 = (c >> SK_B32_SHIFT) & 0xFF;
108 return (c & ~kRBMask) | (c0 << SK_B32_SHIFT) | (c1 << SK_R32_SHIFT);
109 }
110
SkPackARGB_as_RGBA(U8CPU a,U8CPU r,U8CPU g,U8CPU b)111 static inline uint32_t SkPackARGB_as_RGBA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
112 SkASSERT_IS_BYTE(a);
113 SkASSERT_IS_BYTE(r);
114 SkASSERT_IS_BYTE(g);
115 SkASSERT_IS_BYTE(b);
116 return (a << SK_RGBA_A32_SHIFT) | (r << SK_RGBA_R32_SHIFT) |
117 (g << SK_RGBA_G32_SHIFT) | (b << SK_RGBA_B32_SHIFT);
118 }
119
SkPackARGB_as_BGRA(U8CPU a,U8CPU r,U8CPU g,U8CPU b)120 static inline uint32_t SkPackARGB_as_BGRA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
121 SkASSERT_IS_BYTE(a);
122 SkASSERT_IS_BYTE(r);
123 SkASSERT_IS_BYTE(g);
124 SkASSERT_IS_BYTE(b);
125 return (a << SK_BGRA_A32_SHIFT) | (r << SK_BGRA_R32_SHIFT) |
126 (g << SK_BGRA_G32_SHIFT) | (b << SK_BGRA_B32_SHIFT);
127 }
128
SkSwizzle_RGBA_to_PMColor(uint32_t c)129 static inline SkPMColor SkSwizzle_RGBA_to_PMColor(uint32_t c) {
130 #ifdef SK_PMCOLOR_IS_RGBA
131 return c;
132 #else
133 return SkSwizzle_RB(c);
134 #endif
135 }
136
SkSwizzle_BGRA_to_PMColor(uint32_t c)137 static inline SkPMColor SkSwizzle_BGRA_to_PMColor(uint32_t c) {
138 #ifdef SK_PMCOLOR_IS_BGRA
139 return c;
140 #else
141 return SkSwizzle_RB(c);
142 #endif
143 }
144
145 //////////////////////////////////////////////////////////////////////////////
146
147 ///@{
148 /** See ITU-R Recommendation BT.709 at http://www.itu.int/rec/R-REC-BT.709/ .*/
149 #define SK_ITU_BT709_LUM_COEFF_R (0.2126f)
150 #define SK_ITU_BT709_LUM_COEFF_G (0.7152f)
151 #define SK_ITU_BT709_LUM_COEFF_B (0.0722f)
152 ///@}
153
154 ///@{
155 /** A float value which specifies this channel's contribution to luminance. */
156 #define SK_LUM_COEFF_R SK_ITU_BT709_LUM_COEFF_R
157 #define SK_LUM_COEFF_G SK_ITU_BT709_LUM_COEFF_G
158 #define SK_LUM_COEFF_B SK_ITU_BT709_LUM_COEFF_B
159 ///@}
160
161 /** Computes the luminance from the given r, g, and b in accordance with
162 SK_LUM_COEFF_X. For correct results, r, g, and b should be in linear space.
163 */
SkComputeLuminance(U8CPU r,U8CPU g,U8CPU b)164 static inline U8CPU SkComputeLuminance(U8CPU r, U8CPU g, U8CPU b) {
165 //The following is
166 //r * SK_LUM_COEFF_R + g * SK_LUM_COEFF_G + b * SK_LUM_COEFF_B
167 //with SK_LUM_COEFF_X in 1.8 fixed point (rounding adjusted to sum to 256).
168 return (r * 54 + g * 183 + b * 19) >> 8;
169 }
170
171 /** Turn 0..255 into 0..256 by adding 1 at the half-way point. Used to turn a
172 byte into a scale value, so that we can say scale * value >> 8 instead of
173 alpha * value / 255.
174
175 In debugging, asserts that alpha is 0..255
176 */
SkAlpha255To256(U8CPU alpha)177 static inline unsigned SkAlpha255To256(U8CPU alpha) {
178 SkASSERT(SkToU8(alpha) == alpha);
179 // this one assues that blending on top of an opaque dst keeps it that way
180 // even though it is less accurate than a+(a>>7) for non-opaque dsts
181 return alpha + 1;
182 }
183
184 /**
185 * Turn a 0..255 value into a 0..256 value, rounding up if the value is >= 0x80.
186 * This is slightly more accurate than SkAlpha255To256.
187 */
Sk255To256(U8CPU value)188 static inline unsigned Sk255To256(U8CPU value) {
189 SkASSERT(SkToU8(value) == value);
190 return value + (value >> 7);
191 }
192
193 /** Multiplify value by 0..256, and shift the result down 8
194 (i.e. return (value * alpha256) >> 8)
195 */
196 #define SkAlphaMul(value, alpha256) (SkMulS16(value, alpha256) >> 8)
197
198 // The caller may want negative values, so keep all params signed (int)
199 // so we don't accidentally slip into unsigned math and lose the sign
200 // extension when we shift (in SkAlphaMul)
SkAlphaBlend(int src,int dst,int scale256)201 static inline int SkAlphaBlend(int src, int dst, int scale256) {
202 SkASSERT((unsigned)scale256 <= 256);
203 return dst + SkAlphaMul(src - dst, scale256);
204 }
205
206 /**
207 * Returns (src * alpha + dst * (255 - alpha)) / 255
208 *
209 * This is more accurate than SkAlphaBlend, but slightly slower
210 */
SkAlphaBlend255(S16CPU src,S16CPU dst,U8CPU alpha)211 static inline int SkAlphaBlend255(S16CPU src, S16CPU dst, U8CPU alpha) {
212 SkASSERT((int16_t)src == src);
213 SkASSERT((int16_t)dst == dst);
214 SkASSERT((uint8_t)alpha == alpha);
215
216 int prod = SkMulS16(src - dst, alpha) + 128;
217 prod = (prod + (prod >> 8)) >> 8;
218 return dst + prod;
219 }
220
221 #define SK_R16_BITS 5
222 #define SK_G16_BITS 6
223 #define SK_B16_BITS 5
224
225 #define SK_R16_SHIFT (SK_B16_BITS + SK_G16_BITS)
226 #define SK_G16_SHIFT (SK_B16_BITS)
227 #define SK_B16_SHIFT 0
228
229 #define SK_R16_MASK ((1 << SK_R16_BITS) - 1)
230 #define SK_G16_MASK ((1 << SK_G16_BITS) - 1)
231 #define SK_B16_MASK ((1 << SK_B16_BITS) - 1)
232
233 #define SkGetPackedR16(color) (((unsigned)(color) >> SK_R16_SHIFT) & SK_R16_MASK)
234 #define SkGetPackedG16(color) (((unsigned)(color) >> SK_G16_SHIFT) & SK_G16_MASK)
235 #define SkGetPackedB16(color) (((unsigned)(color) >> SK_B16_SHIFT) & SK_B16_MASK)
236
237 #define SkR16Assert(r) SkASSERT((unsigned)(r) <= SK_R16_MASK)
238 #define SkG16Assert(g) SkASSERT((unsigned)(g) <= SK_G16_MASK)
239 #define SkB16Assert(b) SkASSERT((unsigned)(b) <= SK_B16_MASK)
240
SkPackRGB16(unsigned r,unsigned g,unsigned b)241 static inline uint16_t SkPackRGB16(unsigned r, unsigned g, unsigned b) {
242 SkASSERT(r <= SK_R16_MASK);
243 SkASSERT(g <= SK_G16_MASK);
244 SkASSERT(b <= SK_B16_MASK);
245
246 return SkToU16((r << SK_R16_SHIFT) | (g << SK_G16_SHIFT) | (b << SK_B16_SHIFT));
247 }
248
249 #define SK_R16_MASK_IN_PLACE (SK_R16_MASK << SK_R16_SHIFT)
250 #define SK_G16_MASK_IN_PLACE (SK_G16_MASK << SK_G16_SHIFT)
251 #define SK_B16_MASK_IN_PLACE (SK_B16_MASK << SK_B16_SHIFT)
252
253 /** Expand the 16bit color into a 32bit value that can be scaled all at once
254 by a value up to 32. Used in conjunction with SkCompact_rgb_16.
255 */
SkExpand_rgb_16(U16CPU c)256 static inline uint32_t SkExpand_rgb_16(U16CPU c) {
257 SkASSERT(c == (uint16_t)c);
258
259 return ((c & SK_G16_MASK_IN_PLACE) << 16) | (c & ~SK_G16_MASK_IN_PLACE);
260 }
261
262 /** Compress an expanded value (from SkExpand_rgb_16) back down to a 16bit
263 color value. The computation yields only 16bits of valid data, but we claim
264 to return 32bits, so that the compiler won't generate extra instructions to
265 "clean" the top 16bits. However, the top 16 can contain garbage, so it is
266 up to the caller to safely ignore them.
267 */
SkCompact_rgb_16(uint32_t c)268 static inline U16CPU SkCompact_rgb_16(uint32_t c) {
269 return ((c >> 16) & SK_G16_MASK_IN_PLACE) | (c & ~SK_G16_MASK_IN_PLACE);
270 }
271
272 /** Scale the 16bit color value by the 0..256 scale parameter.
273 The computation yields only 16bits of valid data, but we claim
274 to return 32bits, so that the compiler won't generate extra instructions to
275 "clean" the top 16bits.
276 */
SkAlphaMulRGB16(U16CPU c,unsigned scale)277 static inline U16CPU SkAlphaMulRGB16(U16CPU c, unsigned scale) {
278 return SkCompact_rgb_16(SkExpand_rgb_16(c) * (scale >> 3) >> 5);
279 }
280
281 // this helper explicitly returns a clean 16bit value (but slower)
282 #define SkAlphaMulRGB16_ToU16(c, s) (uint16_t)SkAlphaMulRGB16(c, s)
283
284 /** Blend pre-expanded RGB32 with 16bit color value by the 0..32 scale parameter.
285 The computation yields only 16bits of valid data, but we claim to return
286 32bits, so that the compiler won't generate extra instructions to "clean"
287 the top 16bits.
288 */
SkBlend32_RGB16(uint32_t src_expand,uint16_t dst,unsigned scale)289 static inline U16CPU SkBlend32_RGB16(uint32_t src_expand, uint16_t dst, unsigned scale) {
290 uint32_t dst_expand = SkExpand_rgb_16(dst) * scale;
291 return SkCompact_rgb_16((src_expand + dst_expand) >> 5);
292 }
293
294 /** Blend src and dst 16bit colors by the 0..256 scale parameter.
295 The computation yields only 16bits of valid data, but we claim
296 to return 32bits, so that the compiler won't generate extra instructions to
297 "clean" the top 16bits.
298 */
SkBlendRGB16(U16CPU src,U16CPU dst,int srcScale)299 static inline U16CPU SkBlendRGB16(U16CPU src, U16CPU dst, int srcScale) {
300 SkASSERT((unsigned)srcScale <= 256);
301
302 srcScale >>= 3;
303
304 uint32_t src32 = SkExpand_rgb_16(src);
305 uint32_t dst32 = SkExpand_rgb_16(dst);
306 return SkCompact_rgb_16(dst32 + ((src32 - dst32) * srcScale >> 5));
307 }
308
SkBlendRGB16(const uint16_t src[],uint16_t dst[],int srcScale,int count)309 static inline void SkBlendRGB16(const uint16_t src[], uint16_t dst[],
310 int srcScale, int count) {
311 SkASSERT(count > 0);
312 SkASSERT((unsigned)srcScale <= 256);
313
314 srcScale >>= 3;
315
316 do {
317 uint32_t src32 = SkExpand_rgb_16(*src++);
318 uint32_t dst32 = SkExpand_rgb_16(*dst);
319 *dst++ = static_cast<uint16_t>(
320 SkCompact_rgb_16(dst32 + ((src32 - dst32) * srcScale >> 5)));
321 } while (--count > 0);
322 }
323
324 #ifdef SK_DEBUG
SkRGB16Add(U16CPU a,U16CPU b)325 static inline U16CPU SkRGB16Add(U16CPU a, U16CPU b) {
326 SkASSERT(SkGetPackedR16(a) + SkGetPackedR16(b) <= SK_R16_MASK);
327 SkASSERT(SkGetPackedG16(a) + SkGetPackedG16(b) <= SK_G16_MASK);
328 SkASSERT(SkGetPackedB16(a) + SkGetPackedB16(b) <= SK_B16_MASK);
329
330 return a + b;
331 }
332 #else
333 #define SkRGB16Add(a, b) ((a) + (b))
334 #endif
335
336 ///////////////////////////////////////////////////////////////////////////////
337
338 #define SK_A32_BITS 8
339 #define SK_R32_BITS 8
340 #define SK_G32_BITS 8
341 #define SK_B32_BITS 8
342
343 #define SK_A32_MASK ((1 << SK_A32_BITS) - 1)
344 #define SK_R32_MASK ((1 << SK_R32_BITS) - 1)
345 #define SK_G32_MASK ((1 << SK_G32_BITS) - 1)
346 #define SK_B32_MASK ((1 << SK_B32_BITS) - 1)
347
348 #define SkGetPackedA32(packed) ((uint32_t)((packed) << (24 - SK_A32_SHIFT)) >> 24)
349 #define SkGetPackedR32(packed) ((uint32_t)((packed) << (24 - SK_R32_SHIFT)) >> 24)
350 #define SkGetPackedG32(packed) ((uint32_t)((packed) << (24 - SK_G32_SHIFT)) >> 24)
351 #define SkGetPackedB32(packed) ((uint32_t)((packed) << (24 - SK_B32_SHIFT)) >> 24)
352
353 #define SkA32Assert(a) SkASSERT((unsigned)(a) <= SK_A32_MASK)
354 #define SkR32Assert(r) SkASSERT((unsigned)(r) <= SK_R32_MASK)
355 #define SkG32Assert(g) SkASSERT((unsigned)(g) <= SK_G32_MASK)
356 #define SkB32Assert(b) SkASSERT((unsigned)(b) <= SK_B32_MASK)
357
358 #ifdef SK_DEBUG
359 #define SkPMColorAssert(color_value) \
360 do { \
361 SkPMColor pm_color_value = (color_value); \
362 uint32_t alpha_color_value = SkGetPackedA32(pm_color_value); \
363 SkA32Assert(alpha_color_value); \
364 SkASSERT(SkGetPackedR32(pm_color_value) <= alpha_color_value); \
365 SkASSERT(SkGetPackedG32(pm_color_value) <= alpha_color_value); \
366 SkASSERT(SkGetPackedB32(pm_color_value) <= alpha_color_value); \
367 } while (false)
368 #else
369 #define SkPMColorAssert(c)
370 #endif
371
372 /**
373 * Pack the components into a SkPMColor, checking (in the debug version) that
374 * the components are 0..255, and are already premultiplied (i.e. alpha >= color)
375 */
SkPackARGB32(U8CPU a,U8CPU r,U8CPU g,U8CPU b)376 static inline SkPMColor SkPackARGB32(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
377 SkA32Assert(a);
378 SkASSERT(r <= a);
379 SkASSERT(g <= a);
380 SkASSERT(b <= a);
381
382 return (a << SK_A32_SHIFT) | (r << SK_R32_SHIFT) |
383 (g << SK_G32_SHIFT) | (b << SK_B32_SHIFT);
384 }
385
SkPackPMColor_as_RGBA(SkPMColor c)386 static inline uint32_t SkPackPMColor_as_RGBA(SkPMColor c) {
387 return SkPackARGB_as_RGBA(SkGetPackedA32(c), SkGetPackedR32(c),
388 SkGetPackedG32(c), SkGetPackedB32(c));
389 }
390
SkPackPMColor_as_BGRA(SkPMColor c)391 static inline uint32_t SkPackPMColor_as_BGRA(SkPMColor c) {
392 return SkPackARGB_as_BGRA(SkGetPackedA32(c), SkGetPackedR32(c),
393 SkGetPackedG32(c), SkGetPackedB32(c));
394 }
395
396 /**
397 * Abstract 4-byte interpolation, implemented on top of SkPMColor
398 * utility functions. Third parameter controls blending of the first two:
399 * (src, dst, 0) returns dst
400 * (src, dst, 0xFF) returns src
401 * srcWeight is [0..256], unlike SkFourByteInterp which takes [0..255]
402 */
SkFourByteInterp256(SkPMColor src,SkPMColor dst,unsigned scale)403 static inline SkPMColor SkFourByteInterp256(SkPMColor src, SkPMColor dst,
404 unsigned scale) {
405 unsigned a = SkAlphaBlend(SkGetPackedA32(src), SkGetPackedA32(dst), scale);
406 unsigned r = SkAlphaBlend(SkGetPackedR32(src), SkGetPackedR32(dst), scale);
407 unsigned g = SkAlphaBlend(SkGetPackedG32(src), SkGetPackedG32(dst), scale);
408 unsigned b = SkAlphaBlend(SkGetPackedB32(src), SkGetPackedB32(dst), scale);
409
410 return SkPackARGB32(a, r, g, b);
411 }
412
413 /**
414 * Abstract 4-byte interpolation, implemented on top of SkPMColor
415 * utility functions. Third parameter controls blending of the first two:
416 * (src, dst, 0) returns dst
417 * (src, dst, 0xFF) returns src
418 */
SkFourByteInterp(SkPMColor src,SkPMColor dst,U8CPU srcWeight)419 static inline SkPMColor SkFourByteInterp(SkPMColor src, SkPMColor dst,
420 U8CPU srcWeight) {
421 unsigned scale = SkAlpha255To256(srcWeight);
422 return SkFourByteInterp256(src, dst, scale);
423 }
424
425 /**
426 * 0xAARRGGBB -> 0x00AA00GG, 0x00RR00BB
427 */
SkSplay(uint32_t color,uint32_t * ag,uint32_t * rb)428 static inline void SkSplay(uint32_t color, uint32_t* ag, uint32_t* rb) {
429 const uint32_t mask = 0x00FF00FF;
430 *ag = (color >> 8) & mask;
431 *rb = color & mask;
432 }
433
434 /**
435 * 0xAARRGGBB -> 0x00AA00GG00RR00BB
436 * (note, ARGB -> AGRB)
437 */
SkSplay(uint32_t color)438 static inline uint64_t SkSplay(uint32_t color) {
439 const uint32_t mask = 0x00FF00FF;
440 uint64_t agrb = (color >> 8) & mask; // 0x0000000000AA00GG
441 agrb <<= 32; // 0x00AA00GG00000000
442 agrb |= color & mask; // 0x00AA00GG00RR00BB
443 return agrb;
444 }
445
446 /**
447 * 0xAAxxGGxx, 0xRRxxBBxx-> 0xAARRGGBB
448 */
SkUnsplay(uint32_t ag,uint32_t rb)449 static inline uint32_t SkUnsplay(uint32_t ag, uint32_t rb) {
450 const uint32_t mask = 0xFF00FF00;
451 return (ag & mask) | ((rb & mask) >> 8);
452 }
453
454 /**
455 * 0xAAxxGGxxRRxxBBxx -> 0xAARRGGBB
456 * (note, AGRB -> ARGB)
457 */
SkUnsplay(uint64_t agrb)458 static inline uint32_t SkUnsplay(uint64_t agrb) {
459 const uint32_t mask = 0xFF00FF00;
460 return SkPMColor(
461 ((agrb & mask) >> 8) | // 0x00RR00BB
462 ((agrb >> 32) & mask)); // 0xAARRGGBB
463 }
464
SkFastFourByteInterp256_32(SkPMColor src,SkPMColor dst,unsigned scale)465 static inline SkPMColor SkFastFourByteInterp256_32(SkPMColor src, SkPMColor dst, unsigned scale) {
466 SkASSERT(scale <= 256);
467
468 // Two 8-bit blends per two 32-bit registers, with space to make sure the math doesn't collide.
469 uint32_t src_ag, src_rb, dst_ag, dst_rb;
470 SkSplay(src, &src_ag, &src_rb);
471 SkSplay(dst, &dst_ag, &dst_rb);
472
473 const uint32_t ret_ag = src_ag * scale + (256 - scale) * dst_ag;
474 const uint32_t ret_rb = src_rb * scale + (256 - scale) * dst_rb;
475
476 return SkUnsplay(ret_ag, ret_rb);
477 }
478
SkFastFourByteInterp256_64(SkPMColor src,SkPMColor dst,unsigned scale)479 static inline SkPMColor SkFastFourByteInterp256_64(SkPMColor src, SkPMColor dst, unsigned scale) {
480 SkASSERT(scale <= 256);
481 // Four 8-bit blends in one 64-bit register, with space to make sure the math doesn't collide.
482 return SkUnsplay(SkSplay(src) * scale + (256-scale) * SkSplay(dst));
483 }
484
485 // TODO(mtklein): Replace slow versions with fast versions, using scale + (scale>>7) everywhere.
486
487 /**
488 * Same as SkFourByteInterp256, but faster.
489 */
SkFastFourByteInterp256(SkPMColor src,SkPMColor dst,unsigned scale)490 static inline SkPMColor SkFastFourByteInterp256(SkPMColor src, SkPMColor dst, unsigned scale) {
491 // On a 64-bit machine, _64 is about 10% faster than _32, but ~40% slower on a 32-bit machine.
492 if (sizeof(void*) == 4) {
493 return SkFastFourByteInterp256_32(src, dst, scale);
494 } else {
495 return SkFastFourByteInterp256_64(src, dst, scale);
496 }
497 }
498
499 /**
500 * Nearly the same as SkFourByteInterp, but faster and a touch more accurate, due to better
501 * srcWeight scaling to [0, 256].
502 */
SkFastFourByteInterp(SkPMColor src,SkPMColor dst,U8CPU srcWeight)503 static inline SkPMColor SkFastFourByteInterp(SkPMColor src,
504 SkPMColor dst,
505 U8CPU srcWeight) {
506 SkASSERT(srcWeight <= 255);
507 // scale = srcWeight + (srcWeight >> 7) is more accurate than
508 // scale = srcWeight + 1, but 7% slower
509 return SkFastFourByteInterp256(src, dst, srcWeight + (srcWeight >> 7));
510 }
511
512 /**
513 * Same as SkPackARGB32, but this version guarantees to not check that the
514 * values are premultiplied in the debug version.
515 */
SkPackARGB32NoCheck(U8CPU a,U8CPU r,U8CPU g,U8CPU b)516 static inline SkPMColor SkPackARGB32NoCheck(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
517 return (a << SK_A32_SHIFT) | (r << SK_R32_SHIFT) |
518 (g << SK_G32_SHIFT) | (b << SK_B32_SHIFT);
519 }
520
521 static inline
SkPremultiplyARGBInline(U8CPU a,U8CPU r,U8CPU g,U8CPU b)522 SkPMColor SkPremultiplyARGBInline(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
523 SkA32Assert(a);
524 SkR32Assert(r);
525 SkG32Assert(g);
526 SkB32Assert(b);
527
528 if (a != 255) {
529 r = SkMulDiv255Round(r, a);
530 g = SkMulDiv255Round(g, a);
531 b = SkMulDiv255Round(b, a);
532 }
533 return SkPackARGB32(a, r, g, b);
534 }
535
536 // When Android is compiled optimizing for size, SkAlphaMulQ doesn't get
537 // inlined; forcing inlining significantly improves performance.
SkAlphaMulQ(uint32_t c,unsigned scale)538 static SK_ALWAYS_INLINE uint32_t SkAlphaMulQ(uint32_t c, unsigned scale) {
539 uint32_t mask = 0xFF00FF;
540
541 uint32_t rb = ((c & mask) * scale) >> 8;
542 uint32_t ag = ((c >> 8) & mask) * scale;
543 return (rb & mask) | (ag & ~mask);
544 }
545
SkPMSrcOver(SkPMColor src,SkPMColor dst)546 static inline SkPMColor SkPMSrcOver(SkPMColor src, SkPMColor dst) {
547 return src + SkAlphaMulQ(dst, SkAlpha255To256(255 - SkGetPackedA32(src)));
548 }
549
SkBlendARGB32(SkPMColor src,SkPMColor dst,U8CPU aa)550 static inline SkPMColor SkBlendARGB32(SkPMColor src, SkPMColor dst, U8CPU aa) {
551 SkASSERT((unsigned)aa <= 255);
552
553 unsigned src_scale = SkAlpha255To256(aa);
554 unsigned dst_scale = SkAlpha255To256(255 - SkAlphaMul(SkGetPackedA32(src), src_scale));
555
556 return SkAlphaMulQ(src, src_scale) + SkAlphaMulQ(dst, dst_scale);
557 }
558
559 ////////////////////////////////////////////////////////////////////////////////////////////
560 // Convert a 32bit pixel to a 16bit pixel (no dither)
561
562 #define SkR32ToR16_MACRO(r) ((unsigned)(r) >> (SK_R32_BITS - SK_R16_BITS))
563 #define SkG32ToG16_MACRO(g) ((unsigned)(g) >> (SK_G32_BITS - SK_G16_BITS))
564 #define SkB32ToB16_MACRO(b) ((unsigned)(b) >> (SK_B32_BITS - SK_B16_BITS))
565
566 #ifdef SK_DEBUG
SkR32ToR16(unsigned r)567 static inline unsigned SkR32ToR16(unsigned r) {
568 SkR32Assert(r);
569 return SkR32ToR16_MACRO(r);
570 }
SkG32ToG16(unsigned g)571 static inline unsigned SkG32ToG16(unsigned g) {
572 SkG32Assert(g);
573 return SkG32ToG16_MACRO(g);
574 }
SkB32ToB16(unsigned b)575 static inline unsigned SkB32ToB16(unsigned b) {
576 SkB32Assert(b);
577 return SkB32ToB16_MACRO(b);
578 }
579 #else
580 #define SkR32ToR16(r) SkR32ToR16_MACRO(r)
581 #define SkG32ToG16(g) SkG32ToG16_MACRO(g)
582 #define SkB32ToB16(b) SkB32ToB16_MACRO(b)
583 #endif
584
585 #define SkPacked32ToR16(c) (((unsigned)(c) >> (SK_R32_SHIFT + SK_R32_BITS - SK_R16_BITS)) & SK_R16_MASK)
586 #define SkPacked32ToG16(c) (((unsigned)(c) >> (SK_G32_SHIFT + SK_G32_BITS - SK_G16_BITS)) & SK_G16_MASK)
587 #define SkPacked32ToB16(c) (((unsigned)(c) >> (SK_B32_SHIFT + SK_B32_BITS - SK_B16_BITS)) & SK_B16_MASK)
588
SkPixel32ToPixel16(SkPMColor c)589 static inline U16CPU SkPixel32ToPixel16(SkPMColor c) {
590 unsigned r = ((c >> (SK_R32_SHIFT + (8 - SK_R16_BITS))) & SK_R16_MASK) << SK_R16_SHIFT;
591 unsigned g = ((c >> (SK_G32_SHIFT + (8 - SK_G16_BITS))) & SK_G16_MASK) << SK_G16_SHIFT;
592 unsigned b = ((c >> (SK_B32_SHIFT + (8 - SK_B16_BITS))) & SK_B16_MASK) << SK_B16_SHIFT;
593 return r | g | b;
594 }
595
SkPack888ToRGB16(U8CPU r,U8CPU g,U8CPU b)596 static inline U16CPU SkPack888ToRGB16(U8CPU r, U8CPU g, U8CPU b) {
597 return (SkR32ToR16(r) << SK_R16_SHIFT) |
598 (SkG32ToG16(g) << SK_G16_SHIFT) |
599 (SkB32ToB16(b) << SK_B16_SHIFT);
600 }
601
602 #define SkPixel32ToPixel16_ToU16(src) SkToU16(SkPixel32ToPixel16(src))
603
604 /////////////////////////////////////////////////////////////////////////////////////////
605 // Fast dither from 32->16
606
607 #define SkShouldDitherXY(x, y) (((x) ^ (y)) & 1)
608
SkDitherPack888ToRGB16(U8CPU r,U8CPU g,U8CPU b)609 static inline uint16_t SkDitherPack888ToRGB16(U8CPU r, U8CPU g, U8CPU b) {
610 r = ((r << 1) - ((r >> (8 - SK_R16_BITS) << (8 - SK_R16_BITS)) | (r >> SK_R16_BITS))) >> (8 - SK_R16_BITS);
611 g = ((g << 1) - ((g >> (8 - SK_G16_BITS) << (8 - SK_G16_BITS)) | (g >> SK_G16_BITS))) >> (8 - SK_G16_BITS);
612 b = ((b << 1) - ((b >> (8 - SK_B16_BITS) << (8 - SK_B16_BITS)) | (b >> SK_B16_BITS))) >> (8 - SK_B16_BITS);
613
614 return SkPackRGB16(r, g, b);
615 }
616
SkDitherPixel32ToPixel16(SkPMColor c)617 static inline uint16_t SkDitherPixel32ToPixel16(SkPMColor c) {
618 return SkDitherPack888ToRGB16(SkGetPackedR32(c), SkGetPackedG32(c), SkGetPackedB32(c));
619 }
620
621 /* Return c in expanded_rgb_16 format, but also scaled up by 32 (5 bits)
622 It is now suitable for combining with a scaled expanded_rgb_16 color
623 as in SkSrcOver32To16().
624 We must do this 565 high-bit replication, in order for the subsequent add
625 to saturate properly (and not overflow). If we take the 8 bits as is, it is
626 possible to overflow.
627 */
SkPMColorToExpanded16x5(SkPMColor c)628 static inline uint32_t SkPMColorToExpanded16x5(SkPMColor c) {
629 unsigned sr = SkPacked32ToR16(c);
630 unsigned sg = SkPacked32ToG16(c);
631 unsigned sb = SkPacked32ToB16(c);
632
633 sr = (sr << 5) | sr;
634 sg = (sg << 5) | (sg >> 1);
635 sb = (sb << 5) | sb;
636 return (sr << 11) | (sg << 21) | (sb << 0);
637 }
638
639 /* SrcOver the 32bit src color with the 16bit dst, returning a 16bit value
640 (with dirt in the high 16bits, so caller beware).
641 */
SkSrcOver32To16(SkPMColor src,uint16_t dst)642 static inline U16CPU SkSrcOver32To16(SkPMColor src, uint16_t dst) {
643 unsigned sr = SkGetPackedR32(src);
644 unsigned sg = SkGetPackedG32(src);
645 unsigned sb = SkGetPackedB32(src);
646
647 unsigned dr = SkGetPackedR16(dst);
648 unsigned dg = SkGetPackedG16(dst);
649 unsigned db = SkGetPackedB16(dst);
650
651 unsigned isa = 255 - SkGetPackedA32(src);
652
653 dr = (sr + SkMul16ShiftRound(dr, isa, SK_R16_BITS)) >> (8 - SK_R16_BITS);
654 dg = (sg + SkMul16ShiftRound(dg, isa, SK_G16_BITS)) >> (8 - SK_G16_BITS);
655 db = (sb + SkMul16ShiftRound(db, isa, SK_B16_BITS)) >> (8 - SK_B16_BITS);
656
657 return SkPackRGB16(dr, dg, db);
658 }
659
660 ////////////////////////////////////////////////////////////////////////////////////////////
661 // Convert a 16bit pixel to a 32bit pixel
662
SkR16ToR32(unsigned r)663 static inline unsigned SkR16ToR32(unsigned r) {
664 return (r << (8 - SK_R16_BITS)) | (r >> (2 * SK_R16_BITS - 8));
665 }
666
SkG16ToG32(unsigned g)667 static inline unsigned SkG16ToG32(unsigned g) {
668 return (g << (8 - SK_G16_BITS)) | (g >> (2 * SK_G16_BITS - 8));
669 }
670
SkB16ToB32(unsigned b)671 static inline unsigned SkB16ToB32(unsigned b) {
672 return (b << (8 - SK_B16_BITS)) | (b >> (2 * SK_B16_BITS - 8));
673 }
674
675 #define SkPacked16ToR32(c) SkR16ToR32(SkGetPackedR16(c))
676 #define SkPacked16ToG32(c) SkG16ToG32(SkGetPackedG16(c))
677 #define SkPacked16ToB32(c) SkB16ToB32(SkGetPackedB16(c))
678
SkPixel16ToPixel32(U16CPU src)679 static inline SkPMColor SkPixel16ToPixel32(U16CPU src) {
680 SkASSERT(src == SkToU16(src));
681
682 unsigned r = SkPacked16ToR32(src);
683 unsigned g = SkPacked16ToG32(src);
684 unsigned b = SkPacked16ToB32(src);
685
686 SkASSERT((r >> (8 - SK_R16_BITS)) == SkGetPackedR16(src));
687 SkASSERT((g >> (8 - SK_G16_BITS)) == SkGetPackedG16(src));
688 SkASSERT((b >> (8 - SK_B16_BITS)) == SkGetPackedB16(src));
689
690 return SkPackARGB32(0xFF, r, g, b);
691 }
692
693 // similar to SkPixel16ToPixel32, but returns SkColor instead of SkPMColor
SkPixel16ToColor(U16CPU src)694 static inline SkColor SkPixel16ToColor(U16CPU src) {
695 SkASSERT(src == SkToU16(src));
696
697 unsigned r = SkPacked16ToR32(src);
698 unsigned g = SkPacked16ToG32(src);
699 unsigned b = SkPacked16ToB32(src);
700
701 SkASSERT((r >> (8 - SK_R16_BITS)) == SkGetPackedR16(src));
702 SkASSERT((g >> (8 - SK_G16_BITS)) == SkGetPackedG16(src));
703 SkASSERT((b >> (8 - SK_B16_BITS)) == SkGetPackedB16(src));
704
705 return SkColorSetRGB(r, g, b);
706 }
707
708 ///////////////////////////////////////////////////////////////////////////////
709
710 typedef uint16_t SkPMColor16;
711
712 // Put in OpenGL order (r g b a)
713 #define SK_A4444_SHIFT 0
714 #define SK_R4444_SHIFT 12
715 #define SK_G4444_SHIFT 8
716 #define SK_B4444_SHIFT 4
717
718 #define SkA32To4444(a) ((unsigned)(a) >> 4)
719 #define SkR32To4444(r) ((unsigned)(r) >> 4)
720 #define SkG32To4444(g) ((unsigned)(g) >> 4)
721 #define SkB32To4444(b) ((unsigned)(b) >> 4)
722
SkReplicateNibble(unsigned nib)723 static inline U8CPU SkReplicateNibble(unsigned nib) {
724 SkASSERT(nib <= 0xF);
725 return (nib << 4) | nib;
726 }
727
728 #define SkA4444ToA32(a) SkReplicateNibble(a)
729 #define SkR4444ToR32(r) SkReplicateNibble(r)
730 #define SkG4444ToG32(g) SkReplicateNibble(g)
731 #define SkB4444ToB32(b) SkReplicateNibble(b)
732
733 #define SkGetPackedA4444(c) (((unsigned)(c) >> SK_A4444_SHIFT) & 0xF)
734 #define SkGetPackedR4444(c) (((unsigned)(c) >> SK_R4444_SHIFT) & 0xF)
735 #define SkGetPackedG4444(c) (((unsigned)(c) >> SK_G4444_SHIFT) & 0xF)
736 #define SkGetPackedB4444(c) (((unsigned)(c) >> SK_B4444_SHIFT) & 0xF)
737
738 #define SkPacked4444ToA32(c) SkReplicateNibble(SkGetPackedA4444(c))
739 #define SkPacked4444ToR32(c) SkReplicateNibble(SkGetPackedR4444(c))
740 #define SkPacked4444ToG32(c) SkReplicateNibble(SkGetPackedG4444(c))
741 #define SkPacked4444ToB32(c) SkReplicateNibble(SkGetPackedB4444(c))
742
743 #ifdef SK_DEBUG
SkPMColor16Assert(U16CPU c)744 static inline void SkPMColor16Assert(U16CPU c) {
745 unsigned a = SkGetPackedA4444(c);
746 unsigned r = SkGetPackedR4444(c);
747 unsigned g = SkGetPackedG4444(c);
748 unsigned b = SkGetPackedB4444(c);
749
750 SkASSERT(a <= 0xF);
751 SkASSERT(r <= a);
752 SkASSERT(g <= a);
753 SkASSERT(b <= a);
754 }
755 #else
756 #define SkPMColor16Assert(c)
757 #endif
758
SkAlpha15To16(unsigned a)759 static inline unsigned SkAlpha15To16(unsigned a) {
760 SkASSERT(a <= 0xF);
761 return a + (a >> 3);
762 }
763
764 #ifdef SK_DEBUG
SkAlphaMul4(int value,int scale)765 static inline int SkAlphaMul4(int value, int scale) {
766 SkASSERT((unsigned)scale <= 0x10);
767 return value * scale >> 4;
768 }
769 #else
770 #define SkAlphaMul4(value, scale) ((value) * (scale) >> 4)
771 #endif
772
SkR4444ToR565(unsigned r)773 static inline unsigned SkR4444ToR565(unsigned r) {
774 SkASSERT(r <= 0xF);
775 return (r << (SK_R16_BITS - 4)) | (r >> (8 - SK_R16_BITS));
776 }
777
SkG4444ToG565(unsigned g)778 static inline unsigned SkG4444ToG565(unsigned g) {
779 SkASSERT(g <= 0xF);
780 return (g << (SK_G16_BITS - 4)) | (g >> (8 - SK_G16_BITS));
781 }
782
SkB4444ToB565(unsigned b)783 static inline unsigned SkB4444ToB565(unsigned b) {
784 SkASSERT(b <= 0xF);
785 return (b << (SK_B16_BITS - 4)) | (b >> (8 - SK_B16_BITS));
786 }
787
SkPackARGB4444(unsigned a,unsigned r,unsigned g,unsigned b)788 static inline SkPMColor16 SkPackARGB4444(unsigned a, unsigned r,
789 unsigned g, unsigned b) {
790 SkASSERT(a <= 0xF);
791 SkASSERT(r <= a);
792 SkASSERT(g <= a);
793 SkASSERT(b <= a);
794
795 return (SkPMColor16)((a << SK_A4444_SHIFT) | (r << SK_R4444_SHIFT) |
796 (g << SK_G4444_SHIFT) | (b << SK_B4444_SHIFT));
797 }
798
SkAlphaMulQ4(SkPMColor16 c,int scale)799 static inline SkPMColor16 SkAlphaMulQ4(SkPMColor16 c, int scale) {
800 SkASSERT(scale <= 16);
801
802 const unsigned mask = 0xF0F; //gMask_0F0F;
803
804 #if 0
805 unsigned rb = ((c & mask) * scale) >> 4;
806 unsigned ag = ((c >> 4) & mask) * scale;
807 return (rb & mask) | (ag & ~mask);
808 #else
809 unsigned expanded_c = (c & mask) | ((c & (mask << 4)) << 12);
810 unsigned scaled_c = (expanded_c * scale) >> 4;
811 return (scaled_c & mask) | ((scaled_c >> 12) & (mask << 4));
812 #endif
813 }
814
815 /** Expand the SkPMColor16 color into a 32bit value that can be scaled all at
816 once by a value up to 16.
817 */
SkExpand_4444(U16CPU c)818 static inline uint32_t SkExpand_4444(U16CPU c) {
819 SkASSERT(c == (uint16_t)c);
820
821 const unsigned mask = 0xF0F; //gMask_0F0F;
822 return (c & mask) | ((c & ~mask) << 12);
823 }
824
SkSrcOver4444To16(SkPMColor16 s,uint16_t d)825 static inline uint16_t SkSrcOver4444To16(SkPMColor16 s, uint16_t d) {
826 unsigned sa = SkGetPackedA4444(s);
827 unsigned sr = SkR4444ToR565(SkGetPackedR4444(s));
828 unsigned sg = SkG4444ToG565(SkGetPackedG4444(s));
829 unsigned sb = SkB4444ToB565(SkGetPackedB4444(s));
830
831 // To avoid overflow, we have to clear the low bit of the synthetic sg
832 // if the src alpha is <= 7.
833 // to see why, try blending 0x4444 on top of 565-white and watch green
834 // overflow (sum == 64)
835 sg &= ~(~(sa >> 3) & 1);
836
837 unsigned scale = SkAlpha15To16(15 - sa);
838 unsigned dr = SkAlphaMul4(SkGetPackedR16(d), scale);
839 unsigned dg = SkAlphaMul4(SkGetPackedG16(d), scale);
840 unsigned db = SkAlphaMul4(SkGetPackedB16(d), scale);
841
842 #if 0
843 if (sg + dg > 63) {
844 SkDebugf("---- SkSrcOver4444To16 src=%x dst=%x scale=%d, sg=%d dg=%d\n", s, d, scale, sg, dg);
845 }
846 #endif
847 return SkPackRGB16(sr + dr, sg + dg, sb + db);
848 }
849
SkBlend4444To16(SkPMColor16 src,uint16_t dst,int scale16)850 static inline uint16_t SkBlend4444To16(SkPMColor16 src, uint16_t dst, int scale16) {
851 SkASSERT((unsigned)scale16 <= 16);
852
853 return SkSrcOver4444To16(SkAlphaMulQ4(src, scale16), dst);
854 }
855
SkPixel4444ToPixel32(U16CPU c)856 static inline SkPMColor SkPixel4444ToPixel32(U16CPU c) {
857 uint32_t d = (SkGetPackedA4444(c) << SK_A32_SHIFT) |
858 (SkGetPackedR4444(c) << SK_R32_SHIFT) |
859 (SkGetPackedG4444(c) << SK_G32_SHIFT) |
860 (SkGetPackedB4444(c) << SK_B32_SHIFT);
861 return d | (d << 4);
862 }
863
SkPixel32ToPixel4444(SkPMColor c)864 static inline SkPMColor16 SkPixel32ToPixel4444(SkPMColor c) {
865 return (((c >> (SK_A32_SHIFT + 4)) & 0xF) << SK_A4444_SHIFT) |
866 (((c >> (SK_R32_SHIFT + 4)) & 0xF) << SK_R4444_SHIFT) |
867 (((c >> (SK_G32_SHIFT + 4)) & 0xF) << SK_G4444_SHIFT) |
868 (((c >> (SK_B32_SHIFT + 4)) & 0xF) << SK_B4444_SHIFT);
869 }
870
871 // cheap 2x2 dither
SkDitherARGB32To4444(U8CPU a,U8CPU r,U8CPU g,U8CPU b)872 static inline SkPMColor16 SkDitherARGB32To4444(U8CPU a, U8CPU r,
873 U8CPU g, U8CPU b) {
874 // to ensure that we stay a legal premultiplied color, we take the max()
875 // of the truncated and dithered alpha values. If we didn't, cases like
876 // SkDitherARGB32To4444(0x31, 0x2E, ...) would generate SkPackARGB4444(2, 3, ...)
877 // which is not legal premultiplied, since a < color
878 unsigned dithered_a = ((a << 1) - ((a >> 4 << 4) | (a >> 4))) >> 4;
879 a = SkMax32(a >> 4, dithered_a);
880 // these we just dither in place
881 r = ((r << 1) - ((r >> 4 << 4) | (r >> 4))) >> 4;
882 g = ((g << 1) - ((g >> 4 << 4) | (g >> 4))) >> 4;
883 b = ((b << 1) - ((b >> 4 << 4) | (b >> 4))) >> 4;
884
885 return SkPackARGB4444(a, r, g, b);
886 }
887
SkDitherPixel32To4444(SkPMColor c)888 static inline SkPMColor16 SkDitherPixel32To4444(SkPMColor c) {
889 return SkDitherARGB32To4444(SkGetPackedA32(c), SkGetPackedR32(c),
890 SkGetPackedG32(c), SkGetPackedB32(c));
891 }
892
893 /* Assumes 16bit is in standard RGBA order.
894 Transforms a normal ARGB_8888 into the same byte order as
895 expanded ARGB_4444, but keeps each component 8bits
896 */
SkExpand_8888(SkPMColor c)897 static inline uint32_t SkExpand_8888(SkPMColor c) {
898 return (((c >> SK_R32_SHIFT) & 0xFF) << 24) |
899 (((c >> SK_G32_SHIFT) & 0xFF) << 8) |
900 (((c >> SK_B32_SHIFT) & 0xFF) << 16) |
901 (((c >> SK_A32_SHIFT) & 0xFF) << 0);
902 }
903
904 /* Undo the operation of SkExpand_8888, turning the argument back into
905 a SkPMColor.
906 */
SkCompact_8888(uint32_t c)907 static inline SkPMColor SkCompact_8888(uint32_t c) {
908 return (((c >> 24) & 0xFF) << SK_R32_SHIFT) |
909 (((c >> 8) & 0xFF) << SK_G32_SHIFT) |
910 (((c >> 16) & 0xFF) << SK_B32_SHIFT) |
911 (((c >> 0) & 0xFF) << SK_A32_SHIFT);
912 }
913
914 /* Like SkExpand_8888, this transforms a pmcolor into the expanded 4444 format,
915 but this routine just keeps the high 4bits of each component in the low
916 4bits of the result (just like a newly expanded PMColor16).
917 */
SkExpand32_4444(SkPMColor c)918 static inline uint32_t SkExpand32_4444(SkPMColor c) {
919 return (((c >> (SK_R32_SHIFT + 4)) & 0xF) << 24) |
920 (((c >> (SK_G32_SHIFT + 4)) & 0xF) << 8) |
921 (((c >> (SK_B32_SHIFT + 4)) & 0xF) << 16) |
922 (((c >> (SK_A32_SHIFT + 4)) & 0xF) << 0);
923 }
924
925 // takes two values and alternamtes them as part of a memset16
926 // used for cheap 2x2 dithering when the colors are opaque
927 void sk_dither_memset16(uint16_t dst[], uint16_t value, uint16_t other, int n);
928
929 ///////////////////////////////////////////////////////////////////////////////
930
SkUpscale31To32(int value)931 static inline int SkUpscale31To32(int value) {
932 SkASSERT((unsigned)value <= 31);
933 return value + (value >> 4);
934 }
935
SkBlend32(int src,int dst,int scale)936 static inline int SkBlend32(int src, int dst, int scale) {
937 SkASSERT((unsigned)src <= 0xFF);
938 SkASSERT((unsigned)dst <= 0xFF);
939 SkASSERT((unsigned)scale <= 32);
940 return dst + ((src - dst) * scale >> 5);
941 }
942
SkBlendLCD16(int srcA,int srcR,int srcG,int srcB,SkPMColor dst,uint16_t mask)943 static inline SkPMColor SkBlendLCD16(int srcA, int srcR, int srcG, int srcB,
944 SkPMColor dst, uint16_t mask) {
945 if (mask == 0) {
946 return dst;
947 }
948
949 /* We want all of these in 5bits, hence the shifts in case one of them
950 * (green) is 6bits.
951 */
952 int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
953 int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
954 int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
955
956 // Now upscale them to 0..32, so we can use blend32
957 maskR = SkUpscale31To32(maskR);
958 maskG = SkUpscale31To32(maskG);
959 maskB = SkUpscale31To32(maskB);
960
961 // srcA has been upscaled to 256 before passed into this function
962 maskR = maskR * srcA >> 8;
963 maskG = maskG * srcA >> 8;
964 maskB = maskB * srcA >> 8;
965
966 int dstR = SkGetPackedR32(dst);
967 int dstG = SkGetPackedG32(dst);
968 int dstB = SkGetPackedB32(dst);
969
970 // LCD blitting is only supported if the dst is known/required
971 // to be opaque
972 return SkPackARGB32(0xFF,
973 SkBlend32(srcR, dstR, maskR),
974 SkBlend32(srcG, dstG, maskG),
975 SkBlend32(srcB, dstB, maskB));
976 }
977
SkBlendLCD16Opaque(int srcR,int srcG,int srcB,SkPMColor dst,uint16_t mask,SkPMColor opaqueDst)978 static inline SkPMColor SkBlendLCD16Opaque(int srcR, int srcG, int srcB,
979 SkPMColor dst, uint16_t mask,
980 SkPMColor opaqueDst) {
981 if (mask == 0) {
982 return dst;
983 }
984
985 if (0xFFFF == mask) {
986 return opaqueDst;
987 }
988
989 /* We want all of these in 5bits, hence the shifts in case one of them
990 * (green) is 6bits.
991 */
992 int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
993 int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
994 int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
995
996 // Now upscale them to 0..32, so we can use blend32
997 maskR = SkUpscale31To32(maskR);
998 maskG = SkUpscale31To32(maskG);
999 maskB = SkUpscale31To32(maskB);
1000
1001 int dstR = SkGetPackedR32(dst);
1002 int dstG = SkGetPackedG32(dst);
1003 int dstB = SkGetPackedB32(dst);
1004
1005 // LCD blitting is only supported if the dst is known/required
1006 // to be opaque
1007 return SkPackARGB32(0xFF,
1008 SkBlend32(srcR, dstR, maskR),
1009 SkBlend32(srcG, dstG, maskG),
1010 SkBlend32(srcB, dstB, maskB));
1011 }
1012
SkBlitLCD16Row(SkPMColor dst[],const uint16_t mask[],SkColor src,int width,SkPMColor)1013 static inline void SkBlitLCD16Row(SkPMColor dst[], const uint16_t mask[],
1014 SkColor src, int width, SkPMColor) {
1015 int srcA = SkColorGetA(src);
1016 int srcR = SkColorGetR(src);
1017 int srcG = SkColorGetG(src);
1018 int srcB = SkColorGetB(src);
1019
1020 srcA = SkAlpha255To256(srcA);
1021
1022 for (int i = 0; i < width; i++) {
1023 dst[i] = SkBlendLCD16(srcA, srcR, srcG, srcB, dst[i], mask[i]);
1024 }
1025 }
1026
SkBlitLCD16OpaqueRow(SkPMColor dst[],const uint16_t mask[],SkColor src,int width,SkPMColor opaqueDst)1027 static inline void SkBlitLCD16OpaqueRow(SkPMColor dst[], const uint16_t mask[],
1028 SkColor src, int width,
1029 SkPMColor opaqueDst) {
1030 int srcR = SkColorGetR(src);
1031 int srcG = SkColorGetG(src);
1032 int srcB = SkColorGetB(src);
1033
1034 for (int i = 0; i < width; i++) {
1035 dst[i] = SkBlendLCD16Opaque(srcR, srcG, srcB, dst[i], mask[i],
1036 opaqueDst);
1037 }
1038 }
1039
1040 #endif
1041