1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer, a race detector.
11 //
12 // The tool is under development, for the details about previous versions see
13 // http://code.google.com/p/data-race-test
14 //
15 // The instrumentation phase is quite simple:
16 // - Insert calls to run-time library before every memory access.
17 // - Optimizations may apply to avoid instrumenting some of the accesses.
18 // - Insert calls at function entry/exit.
19 // The rest is handled by the run-time library.
20 //===----------------------------------------------------------------------===//
21
22 #include "llvm/Transforms/Instrumentation.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/ModuleUtils.h"
45
46 using namespace llvm;
47
48 #define DEBUG_TYPE "tsan"
49
50 static cl::opt<bool> ClInstrumentMemoryAccesses(
51 "tsan-instrument-memory-accesses", cl::init(true),
52 cl::desc("Instrument memory accesses"), cl::Hidden);
53 static cl::opt<bool> ClInstrumentFuncEntryExit(
54 "tsan-instrument-func-entry-exit", cl::init(true),
55 cl::desc("Instrument function entry and exit"), cl::Hidden);
56 static cl::opt<bool> ClInstrumentAtomics(
57 "tsan-instrument-atomics", cl::init(true),
58 cl::desc("Instrument atomics"), cl::Hidden);
59 static cl::opt<bool> ClInstrumentMemIntrinsics(
60 "tsan-instrument-memintrinsics", cl::init(true),
61 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
62
63 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
64 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
65 STATISTIC(NumOmittedReadsBeforeWrite,
66 "Number of reads ignored due to following writes");
67 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
68 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
69 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
70 STATISTIC(NumOmittedReadsFromConstantGlobals,
71 "Number of reads from constant globals");
72 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
73 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
74
75 namespace {
76
77 /// ThreadSanitizer: instrument the code in module to find races.
78 struct ThreadSanitizer : public FunctionPass {
ThreadSanitizer__anona5ad81a40111::ThreadSanitizer79 ThreadSanitizer() : FunctionPass(ID) {}
80 const char *getPassName() const override;
81 bool runOnFunction(Function &F) override;
82 bool doInitialization(Module &M) override;
83 static char ID; // Pass identification, replacement for typeid.
84
85 private:
86 void initializeCallbacks(Module &M);
87 bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
88 bool instrumentAtomic(Instruction *I, const DataLayout &DL);
89 bool instrumentMemIntrinsic(Instruction *I);
90 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
91 SmallVectorImpl<Instruction *> &All,
92 const DataLayout &DL);
93 bool addrPointsToConstantData(Value *Addr);
94 int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
95
96 Type *IntptrTy;
97 IntegerType *OrdTy;
98 // Callbacks to run-time library are computed in doInitialization.
99 Function *TsanFuncEntry;
100 Function *TsanFuncExit;
101 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
102 static const size_t kNumberOfAccessSizes = 5;
103 Function *TsanRead[kNumberOfAccessSizes];
104 Function *TsanWrite[kNumberOfAccessSizes];
105 Function *TsanUnalignedRead[kNumberOfAccessSizes];
106 Function *TsanUnalignedWrite[kNumberOfAccessSizes];
107 Function *TsanAtomicLoad[kNumberOfAccessSizes];
108 Function *TsanAtomicStore[kNumberOfAccessSizes];
109 Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes];
110 Function *TsanAtomicCAS[kNumberOfAccessSizes];
111 Function *TsanAtomicThreadFence;
112 Function *TsanAtomicSignalFence;
113 Function *TsanVptrUpdate;
114 Function *TsanVptrLoad;
115 Function *MemmoveFn, *MemcpyFn, *MemsetFn;
116 };
117 } // namespace
118
119 char ThreadSanitizer::ID = 0;
120 INITIALIZE_PASS(ThreadSanitizer, "tsan",
121 "ThreadSanitizer: detects data races.",
122 false, false)
123
getPassName() const124 const char *ThreadSanitizer::getPassName() const {
125 return "ThreadSanitizer";
126 }
127
createThreadSanitizerPass()128 FunctionPass *llvm::createThreadSanitizerPass() {
129 return new ThreadSanitizer();
130 }
131
initializeCallbacks(Module & M)132 void ThreadSanitizer::initializeCallbacks(Module &M) {
133 IRBuilder<> IRB(M.getContext());
134 // Initialize the callbacks.
135 TsanFuncEntry = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
136 "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
137 TsanFuncExit = checkSanitizerInterfaceFunction(
138 M.getOrInsertFunction("__tsan_func_exit", IRB.getVoidTy(), nullptr));
139 OrdTy = IRB.getInt32Ty();
140 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
141 const size_t ByteSize = 1 << i;
142 const size_t BitSize = ByteSize * 8;
143 SmallString<32> ReadName("__tsan_read" + itostr(ByteSize));
144 TsanRead[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
145 ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
146
147 SmallString<32> WriteName("__tsan_write" + itostr(ByteSize));
148 TsanWrite[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
149 WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
150
151 SmallString<64> UnalignedReadName("__tsan_unaligned_read" +
152 itostr(ByteSize));
153 TsanUnalignedRead[i] =
154 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
155 UnalignedReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
156
157 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" +
158 itostr(ByteSize));
159 TsanUnalignedWrite[i] =
160 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
161 UnalignedWriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
162
163 Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
164 Type *PtrTy = Ty->getPointerTo();
165 SmallString<32> AtomicLoadName("__tsan_atomic" + itostr(BitSize) +
166 "_load");
167 TsanAtomicLoad[i] = checkSanitizerInterfaceFunction(
168 M.getOrInsertFunction(AtomicLoadName, Ty, PtrTy, OrdTy, nullptr));
169
170 SmallString<32> AtomicStoreName("__tsan_atomic" + itostr(BitSize) +
171 "_store");
172 TsanAtomicStore[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
173 AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy, nullptr));
174
175 for (int op = AtomicRMWInst::FIRST_BINOP;
176 op <= AtomicRMWInst::LAST_BINOP; ++op) {
177 TsanAtomicRMW[op][i] = nullptr;
178 const char *NamePart = nullptr;
179 if (op == AtomicRMWInst::Xchg)
180 NamePart = "_exchange";
181 else if (op == AtomicRMWInst::Add)
182 NamePart = "_fetch_add";
183 else if (op == AtomicRMWInst::Sub)
184 NamePart = "_fetch_sub";
185 else if (op == AtomicRMWInst::And)
186 NamePart = "_fetch_and";
187 else if (op == AtomicRMWInst::Or)
188 NamePart = "_fetch_or";
189 else if (op == AtomicRMWInst::Xor)
190 NamePart = "_fetch_xor";
191 else if (op == AtomicRMWInst::Nand)
192 NamePart = "_fetch_nand";
193 else
194 continue;
195 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
196 TsanAtomicRMW[op][i] = checkSanitizerInterfaceFunction(
197 M.getOrInsertFunction(RMWName, Ty, PtrTy, Ty, OrdTy, nullptr));
198 }
199
200 SmallString<32> AtomicCASName("__tsan_atomic" + itostr(BitSize) +
201 "_compare_exchange_val");
202 TsanAtomicCAS[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
203 AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, nullptr));
204 }
205 TsanVptrUpdate = checkSanitizerInterfaceFunction(
206 M.getOrInsertFunction("__tsan_vptr_update", IRB.getVoidTy(),
207 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), nullptr));
208 TsanVptrLoad = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
209 "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
210 TsanAtomicThreadFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
211 "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, nullptr));
212 TsanAtomicSignalFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
213 "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, nullptr));
214
215 MemmoveFn = checkSanitizerInterfaceFunction(
216 M.getOrInsertFunction("memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
217 IRB.getInt8PtrTy(), IntptrTy, nullptr));
218 MemcpyFn = checkSanitizerInterfaceFunction(
219 M.getOrInsertFunction("memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
220 IRB.getInt8PtrTy(), IntptrTy, nullptr));
221 MemsetFn = checkSanitizerInterfaceFunction(
222 M.getOrInsertFunction("memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
223 IRB.getInt32Ty(), IntptrTy, nullptr));
224 }
225
doInitialization(Module & M)226 bool ThreadSanitizer::doInitialization(Module &M) {
227 const DataLayout &DL = M.getDataLayout();
228
229 // Always insert a call to __tsan_init into the module's CTORs.
230 IRBuilder<> IRB(M.getContext());
231 IntptrTy = IRB.getIntPtrTy(DL);
232 Value *TsanInit = M.getOrInsertFunction("__tsan_init",
233 IRB.getVoidTy(), nullptr);
234 appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
235
236 return true;
237 }
238
isVtableAccess(Instruction * I)239 static bool isVtableAccess(Instruction *I) {
240 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
241 return Tag->isTBAAVtableAccess();
242 return false;
243 }
244
addrPointsToConstantData(Value * Addr)245 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
246 // If this is a GEP, just analyze its pointer operand.
247 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
248 Addr = GEP->getPointerOperand();
249
250 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
251 if (GV->isConstant()) {
252 // Reads from constant globals can not race with any writes.
253 NumOmittedReadsFromConstantGlobals++;
254 return true;
255 }
256 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
257 if (isVtableAccess(L)) {
258 // Reads from a vtable pointer can not race with any writes.
259 NumOmittedReadsFromVtable++;
260 return true;
261 }
262 }
263 return false;
264 }
265
266 // Instrumenting some of the accesses may be proven redundant.
267 // Currently handled:
268 // - read-before-write (within same BB, no calls between)
269 // - not captured variables
270 //
271 // We do not handle some of the patterns that should not survive
272 // after the classic compiler optimizations.
273 // E.g. two reads from the same temp should be eliminated by CSE,
274 // two writes should be eliminated by DSE, etc.
275 //
276 // 'Local' is a vector of insns within the same BB (no calls between).
277 // 'All' is a vector of insns that will be instrumented.
chooseInstructionsToInstrument(SmallVectorImpl<Instruction * > & Local,SmallVectorImpl<Instruction * > & All,const DataLayout & DL)278 void ThreadSanitizer::chooseInstructionsToInstrument(
279 SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All,
280 const DataLayout &DL) {
281 SmallSet<Value*, 8> WriteTargets;
282 // Iterate from the end.
283 for (SmallVectorImpl<Instruction*>::reverse_iterator It = Local.rbegin(),
284 E = Local.rend(); It != E; ++It) {
285 Instruction *I = *It;
286 if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
287 WriteTargets.insert(Store->getPointerOperand());
288 } else {
289 LoadInst *Load = cast<LoadInst>(I);
290 Value *Addr = Load->getPointerOperand();
291 if (WriteTargets.count(Addr)) {
292 // We will write to this temp, so no reason to analyze the read.
293 NumOmittedReadsBeforeWrite++;
294 continue;
295 }
296 if (addrPointsToConstantData(Addr)) {
297 // Addr points to some constant data -- it can not race with any writes.
298 continue;
299 }
300 }
301 Value *Addr = isa<StoreInst>(*I)
302 ? cast<StoreInst>(I)->getPointerOperand()
303 : cast<LoadInst>(I)->getPointerOperand();
304 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
305 !PointerMayBeCaptured(Addr, true, true)) {
306 // The variable is addressable but not captured, so it cannot be
307 // referenced from a different thread and participate in a data race
308 // (see llvm/Analysis/CaptureTracking.h for details).
309 NumOmittedNonCaptured++;
310 continue;
311 }
312 All.push_back(I);
313 }
314 Local.clear();
315 }
316
isAtomic(Instruction * I)317 static bool isAtomic(Instruction *I) {
318 if (LoadInst *LI = dyn_cast<LoadInst>(I))
319 return LI->isAtomic() && LI->getSynchScope() == CrossThread;
320 if (StoreInst *SI = dyn_cast<StoreInst>(I))
321 return SI->isAtomic() && SI->getSynchScope() == CrossThread;
322 if (isa<AtomicRMWInst>(I))
323 return true;
324 if (isa<AtomicCmpXchgInst>(I))
325 return true;
326 if (isa<FenceInst>(I))
327 return true;
328 return false;
329 }
330
runOnFunction(Function & F)331 bool ThreadSanitizer::runOnFunction(Function &F) {
332 initializeCallbacks(*F.getParent());
333 SmallVector<Instruction*, 8> RetVec;
334 SmallVector<Instruction*, 8> AllLoadsAndStores;
335 SmallVector<Instruction*, 8> LocalLoadsAndStores;
336 SmallVector<Instruction*, 8> AtomicAccesses;
337 SmallVector<Instruction*, 8> MemIntrinCalls;
338 bool Res = false;
339 bool HasCalls = false;
340 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
341 const DataLayout &DL = F.getParent()->getDataLayout();
342
343 // Traverse all instructions, collect loads/stores/returns, check for calls.
344 for (auto &BB : F) {
345 for (auto &Inst : BB) {
346 if (isAtomic(&Inst))
347 AtomicAccesses.push_back(&Inst);
348 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
349 LocalLoadsAndStores.push_back(&Inst);
350 else if (isa<ReturnInst>(Inst))
351 RetVec.push_back(&Inst);
352 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
353 if (isa<MemIntrinsic>(Inst))
354 MemIntrinCalls.push_back(&Inst);
355 HasCalls = true;
356 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
357 DL);
358 }
359 }
360 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
361 }
362
363 // We have collected all loads and stores.
364 // FIXME: many of these accesses do not need to be checked for races
365 // (e.g. variables that do not escape, etc).
366
367 // Instrument memory accesses only if we want to report bugs in the function.
368 if (ClInstrumentMemoryAccesses && SanitizeFunction)
369 for (auto Inst : AllLoadsAndStores) {
370 Res |= instrumentLoadOrStore(Inst, DL);
371 }
372
373 // Instrument atomic memory accesses in any case (they can be used to
374 // implement synchronization).
375 if (ClInstrumentAtomics)
376 for (auto Inst : AtomicAccesses) {
377 Res |= instrumentAtomic(Inst, DL);
378 }
379
380 if (ClInstrumentMemIntrinsics && SanitizeFunction)
381 for (auto Inst : MemIntrinCalls) {
382 Res |= instrumentMemIntrinsic(Inst);
383 }
384
385 // Instrument function entry/exit points if there were instrumented accesses.
386 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
387 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
388 Value *ReturnAddress = IRB.CreateCall(
389 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
390 IRB.getInt32(0));
391 IRB.CreateCall(TsanFuncEntry, ReturnAddress);
392 for (auto RetInst : RetVec) {
393 IRBuilder<> IRBRet(RetInst);
394 IRBRet.CreateCall(TsanFuncExit);
395 }
396 Res = true;
397 }
398 return Res;
399 }
400
instrumentLoadOrStore(Instruction * I,const DataLayout & DL)401 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I,
402 const DataLayout &DL) {
403 IRBuilder<> IRB(I);
404 bool IsWrite = isa<StoreInst>(*I);
405 Value *Addr = IsWrite
406 ? cast<StoreInst>(I)->getPointerOperand()
407 : cast<LoadInst>(I)->getPointerOperand();
408 int Idx = getMemoryAccessFuncIndex(Addr, DL);
409 if (Idx < 0)
410 return false;
411 if (IsWrite && isVtableAccess(I)) {
412 DEBUG(dbgs() << " VPTR : " << *I << "\n");
413 Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
414 // StoredValue may be a vector type if we are storing several vptrs at once.
415 // In this case, just take the first element of the vector since this is
416 // enough to find vptr races.
417 if (isa<VectorType>(StoredValue->getType()))
418 StoredValue = IRB.CreateExtractElement(
419 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
420 if (StoredValue->getType()->isIntegerTy())
421 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
422 // Call TsanVptrUpdate.
423 IRB.CreateCall2(TsanVptrUpdate,
424 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
425 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy()));
426 NumInstrumentedVtableWrites++;
427 return true;
428 }
429 if (!IsWrite && isVtableAccess(I)) {
430 IRB.CreateCall(TsanVptrLoad,
431 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
432 NumInstrumentedVtableReads++;
433 return true;
434 }
435 const unsigned Alignment = IsWrite
436 ? cast<StoreInst>(I)->getAlignment()
437 : cast<LoadInst>(I)->getAlignment();
438 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
439 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
440 Value *OnAccessFunc = nullptr;
441 if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0)
442 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
443 else
444 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
445 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
446 if (IsWrite) NumInstrumentedWrites++;
447 else NumInstrumentedReads++;
448 return true;
449 }
450
createOrdering(IRBuilder<> * IRB,AtomicOrdering ord)451 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
452 uint32_t v = 0;
453 switch (ord) {
454 case NotAtomic: llvm_unreachable("unexpected atomic ordering!");
455 case Unordered: // Fall-through.
456 case Monotonic: v = 0; break;
457 // case Consume: v = 1; break; // Not specified yet.
458 case Acquire: v = 2; break;
459 case Release: v = 3; break;
460 case AcquireRelease: v = 4; break;
461 case SequentiallyConsistent: v = 5; break;
462 }
463 return IRB->getInt32(v);
464 }
465
466 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
467 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
468 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
469 // instead we simply replace them with regular function calls, which are then
470 // intercepted by the run-time.
471 // Since tsan is running after everyone else, the calls should not be
472 // replaced back with intrinsics. If that becomes wrong at some point,
473 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
instrumentMemIntrinsic(Instruction * I)474 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
475 IRBuilder<> IRB(I);
476 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
477 IRB.CreateCall3(MemsetFn,
478 IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
479 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
480 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
481 I->eraseFromParent();
482 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
483 IRB.CreateCall3(isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
484 IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
485 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
486 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
487 I->eraseFromParent();
488 }
489 return false;
490 }
491
492 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
493 // standards. For background see C++11 standard. A slightly older, publicly
494 // available draft of the standard (not entirely up-to-date, but close enough
495 // for casual browsing) is available here:
496 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
497 // The following page contains more background information:
498 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
499
instrumentAtomic(Instruction * I,const DataLayout & DL)500 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
501 IRBuilder<> IRB(I);
502 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
503 Value *Addr = LI->getPointerOperand();
504 int Idx = getMemoryAccessFuncIndex(Addr, DL);
505 if (Idx < 0)
506 return false;
507 const size_t ByteSize = 1 << Idx;
508 const size_t BitSize = ByteSize * 8;
509 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
510 Type *PtrTy = Ty->getPointerTo();
511 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
512 createOrdering(&IRB, LI->getOrdering())};
513 CallInst *C = CallInst::Create(TsanAtomicLoad[Idx], Args);
514 ReplaceInstWithInst(I, C);
515
516 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
517 Value *Addr = SI->getPointerOperand();
518 int Idx = getMemoryAccessFuncIndex(Addr, DL);
519 if (Idx < 0)
520 return false;
521 const size_t ByteSize = 1 << Idx;
522 const size_t BitSize = ByteSize * 8;
523 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
524 Type *PtrTy = Ty->getPointerTo();
525 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
526 IRB.CreateIntCast(SI->getValueOperand(), Ty, false),
527 createOrdering(&IRB, SI->getOrdering())};
528 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
529 ReplaceInstWithInst(I, C);
530 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
531 Value *Addr = RMWI->getPointerOperand();
532 int Idx = getMemoryAccessFuncIndex(Addr, DL);
533 if (Idx < 0)
534 return false;
535 Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx];
536 if (!F)
537 return false;
538 const size_t ByteSize = 1 << Idx;
539 const size_t BitSize = ByteSize * 8;
540 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
541 Type *PtrTy = Ty->getPointerTo();
542 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
543 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
544 createOrdering(&IRB, RMWI->getOrdering())};
545 CallInst *C = CallInst::Create(F, Args);
546 ReplaceInstWithInst(I, C);
547 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
548 Value *Addr = CASI->getPointerOperand();
549 int Idx = getMemoryAccessFuncIndex(Addr, DL);
550 if (Idx < 0)
551 return false;
552 const size_t ByteSize = 1 << Idx;
553 const size_t BitSize = ByteSize * 8;
554 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
555 Type *PtrTy = Ty->getPointerTo();
556 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
557 IRB.CreateIntCast(CASI->getCompareOperand(), Ty, false),
558 IRB.CreateIntCast(CASI->getNewValOperand(), Ty, false),
559 createOrdering(&IRB, CASI->getSuccessOrdering()),
560 createOrdering(&IRB, CASI->getFailureOrdering())};
561 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
562 Value *Success = IRB.CreateICmpEQ(C, CASI->getCompareOperand());
563
564 Value *Res = IRB.CreateInsertValue(UndefValue::get(CASI->getType()), C, 0);
565 Res = IRB.CreateInsertValue(Res, Success, 1);
566
567 I->replaceAllUsesWith(Res);
568 I->eraseFromParent();
569 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
570 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
571 Function *F = FI->getSynchScope() == SingleThread ?
572 TsanAtomicSignalFence : TsanAtomicThreadFence;
573 CallInst *C = CallInst::Create(F, Args);
574 ReplaceInstWithInst(I, C);
575 }
576 return true;
577 }
578
getMemoryAccessFuncIndex(Value * Addr,const DataLayout & DL)579 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr,
580 const DataLayout &DL) {
581 Type *OrigPtrTy = Addr->getType();
582 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
583 assert(OrigTy->isSized());
584 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
585 if (TypeSize != 8 && TypeSize != 16 &&
586 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
587 NumAccessesWithBadSize++;
588 // Ignore all unusual sizes.
589 return -1;
590 }
591 size_t Idx = countTrailingZeros(TypeSize / 8);
592 assert(Idx < kNumberOfAccessSizes);
593 return Idx;
594 }
595