• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer, a race detector.
11 //
12 // The tool is under development, for the details about previous versions see
13 // http://code.google.com/p/data-race-test
14 //
15 // The instrumentation phase is quite simple:
16 //   - Insert calls to run-time library before every memory access.
17 //      - Optimizations may apply to avoid instrumenting some of the accesses.
18 //   - Insert calls at function entry/exit.
19 // The rest is handled by the run-time library.
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Instrumentation.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/ModuleUtils.h"
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "tsan"
49 
50 static cl::opt<bool>  ClInstrumentMemoryAccesses(
51     "tsan-instrument-memory-accesses", cl::init(true),
52     cl::desc("Instrument memory accesses"), cl::Hidden);
53 static cl::opt<bool>  ClInstrumentFuncEntryExit(
54     "tsan-instrument-func-entry-exit", cl::init(true),
55     cl::desc("Instrument function entry and exit"), cl::Hidden);
56 static cl::opt<bool>  ClInstrumentAtomics(
57     "tsan-instrument-atomics", cl::init(true),
58     cl::desc("Instrument atomics"), cl::Hidden);
59 static cl::opt<bool>  ClInstrumentMemIntrinsics(
60     "tsan-instrument-memintrinsics", cl::init(true),
61     cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
62 
63 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
64 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
65 STATISTIC(NumOmittedReadsBeforeWrite,
66           "Number of reads ignored due to following writes");
67 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
68 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
69 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
70 STATISTIC(NumOmittedReadsFromConstantGlobals,
71           "Number of reads from constant globals");
72 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
73 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
74 
75 namespace {
76 
77 /// ThreadSanitizer: instrument the code in module to find races.
78 struct ThreadSanitizer : public FunctionPass {
ThreadSanitizer__anona5ad81a40111::ThreadSanitizer79   ThreadSanitizer() : FunctionPass(ID) {}
80   const char *getPassName() const override;
81   bool runOnFunction(Function &F) override;
82   bool doInitialization(Module &M) override;
83   static char ID;  // Pass identification, replacement for typeid.
84 
85  private:
86   void initializeCallbacks(Module &M);
87   bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
88   bool instrumentAtomic(Instruction *I, const DataLayout &DL);
89   bool instrumentMemIntrinsic(Instruction *I);
90   void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
91                                       SmallVectorImpl<Instruction *> &All,
92                                       const DataLayout &DL);
93   bool addrPointsToConstantData(Value *Addr);
94   int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
95 
96   Type *IntptrTy;
97   IntegerType *OrdTy;
98   // Callbacks to run-time library are computed in doInitialization.
99   Function *TsanFuncEntry;
100   Function *TsanFuncExit;
101   // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
102   static const size_t kNumberOfAccessSizes = 5;
103   Function *TsanRead[kNumberOfAccessSizes];
104   Function *TsanWrite[kNumberOfAccessSizes];
105   Function *TsanUnalignedRead[kNumberOfAccessSizes];
106   Function *TsanUnalignedWrite[kNumberOfAccessSizes];
107   Function *TsanAtomicLoad[kNumberOfAccessSizes];
108   Function *TsanAtomicStore[kNumberOfAccessSizes];
109   Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes];
110   Function *TsanAtomicCAS[kNumberOfAccessSizes];
111   Function *TsanAtomicThreadFence;
112   Function *TsanAtomicSignalFence;
113   Function *TsanVptrUpdate;
114   Function *TsanVptrLoad;
115   Function *MemmoveFn, *MemcpyFn, *MemsetFn;
116 };
117 }  // namespace
118 
119 char ThreadSanitizer::ID = 0;
120 INITIALIZE_PASS(ThreadSanitizer, "tsan",
121     "ThreadSanitizer: detects data races.",
122     false, false)
123 
getPassName() const124 const char *ThreadSanitizer::getPassName() const {
125   return "ThreadSanitizer";
126 }
127 
createThreadSanitizerPass()128 FunctionPass *llvm::createThreadSanitizerPass() {
129   return new ThreadSanitizer();
130 }
131 
initializeCallbacks(Module & M)132 void ThreadSanitizer::initializeCallbacks(Module &M) {
133   IRBuilder<> IRB(M.getContext());
134   // Initialize the callbacks.
135   TsanFuncEntry = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
136       "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
137   TsanFuncExit = checkSanitizerInterfaceFunction(
138       M.getOrInsertFunction("__tsan_func_exit", IRB.getVoidTy(), nullptr));
139   OrdTy = IRB.getInt32Ty();
140   for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
141     const size_t ByteSize = 1 << i;
142     const size_t BitSize = ByteSize * 8;
143     SmallString<32> ReadName("__tsan_read" + itostr(ByteSize));
144     TsanRead[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
145         ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
146 
147     SmallString<32> WriteName("__tsan_write" + itostr(ByteSize));
148     TsanWrite[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
149         WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
150 
151     SmallString<64> UnalignedReadName("__tsan_unaligned_read" +
152         itostr(ByteSize));
153     TsanUnalignedRead[i] =
154         checkSanitizerInterfaceFunction(M.getOrInsertFunction(
155             UnalignedReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
156 
157     SmallString<64> UnalignedWriteName("__tsan_unaligned_write" +
158         itostr(ByteSize));
159     TsanUnalignedWrite[i] =
160         checkSanitizerInterfaceFunction(M.getOrInsertFunction(
161             UnalignedWriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
162 
163     Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
164     Type *PtrTy = Ty->getPointerTo();
165     SmallString<32> AtomicLoadName("__tsan_atomic" + itostr(BitSize) +
166                                    "_load");
167     TsanAtomicLoad[i] = checkSanitizerInterfaceFunction(
168         M.getOrInsertFunction(AtomicLoadName, Ty, PtrTy, OrdTy, nullptr));
169 
170     SmallString<32> AtomicStoreName("__tsan_atomic" + itostr(BitSize) +
171                                     "_store");
172     TsanAtomicStore[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
173         AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy, nullptr));
174 
175     for (int op = AtomicRMWInst::FIRST_BINOP;
176         op <= AtomicRMWInst::LAST_BINOP; ++op) {
177       TsanAtomicRMW[op][i] = nullptr;
178       const char *NamePart = nullptr;
179       if (op == AtomicRMWInst::Xchg)
180         NamePart = "_exchange";
181       else if (op == AtomicRMWInst::Add)
182         NamePart = "_fetch_add";
183       else if (op == AtomicRMWInst::Sub)
184         NamePart = "_fetch_sub";
185       else if (op == AtomicRMWInst::And)
186         NamePart = "_fetch_and";
187       else if (op == AtomicRMWInst::Or)
188         NamePart = "_fetch_or";
189       else if (op == AtomicRMWInst::Xor)
190         NamePart = "_fetch_xor";
191       else if (op == AtomicRMWInst::Nand)
192         NamePart = "_fetch_nand";
193       else
194         continue;
195       SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
196       TsanAtomicRMW[op][i] = checkSanitizerInterfaceFunction(
197           M.getOrInsertFunction(RMWName, Ty, PtrTy, Ty, OrdTy, nullptr));
198     }
199 
200     SmallString<32> AtomicCASName("__tsan_atomic" + itostr(BitSize) +
201                                   "_compare_exchange_val");
202     TsanAtomicCAS[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
203         AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, nullptr));
204   }
205   TsanVptrUpdate = checkSanitizerInterfaceFunction(
206       M.getOrInsertFunction("__tsan_vptr_update", IRB.getVoidTy(),
207                             IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), nullptr));
208   TsanVptrLoad = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
209       "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
210   TsanAtomicThreadFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
211       "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, nullptr));
212   TsanAtomicSignalFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
213       "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, nullptr));
214 
215   MemmoveFn = checkSanitizerInterfaceFunction(
216       M.getOrInsertFunction("memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
217                             IRB.getInt8PtrTy(), IntptrTy, nullptr));
218   MemcpyFn = checkSanitizerInterfaceFunction(
219       M.getOrInsertFunction("memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
220                             IRB.getInt8PtrTy(), IntptrTy, nullptr));
221   MemsetFn = checkSanitizerInterfaceFunction(
222       M.getOrInsertFunction("memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
223                             IRB.getInt32Ty(), IntptrTy, nullptr));
224 }
225 
doInitialization(Module & M)226 bool ThreadSanitizer::doInitialization(Module &M) {
227   const DataLayout &DL = M.getDataLayout();
228 
229   // Always insert a call to __tsan_init into the module's CTORs.
230   IRBuilder<> IRB(M.getContext());
231   IntptrTy = IRB.getIntPtrTy(DL);
232   Value *TsanInit = M.getOrInsertFunction("__tsan_init",
233                                           IRB.getVoidTy(), nullptr);
234   appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
235 
236   return true;
237 }
238 
isVtableAccess(Instruction * I)239 static bool isVtableAccess(Instruction *I) {
240   if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
241     return Tag->isTBAAVtableAccess();
242   return false;
243 }
244 
addrPointsToConstantData(Value * Addr)245 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
246   // If this is a GEP, just analyze its pointer operand.
247   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
248     Addr = GEP->getPointerOperand();
249 
250   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
251     if (GV->isConstant()) {
252       // Reads from constant globals can not race with any writes.
253       NumOmittedReadsFromConstantGlobals++;
254       return true;
255     }
256   } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
257     if (isVtableAccess(L)) {
258       // Reads from a vtable pointer can not race with any writes.
259       NumOmittedReadsFromVtable++;
260       return true;
261     }
262   }
263   return false;
264 }
265 
266 // Instrumenting some of the accesses may be proven redundant.
267 // Currently handled:
268 //  - read-before-write (within same BB, no calls between)
269 //  - not captured variables
270 //
271 // We do not handle some of the patterns that should not survive
272 // after the classic compiler optimizations.
273 // E.g. two reads from the same temp should be eliminated by CSE,
274 // two writes should be eliminated by DSE, etc.
275 //
276 // 'Local' is a vector of insns within the same BB (no calls between).
277 // 'All' is a vector of insns that will be instrumented.
chooseInstructionsToInstrument(SmallVectorImpl<Instruction * > & Local,SmallVectorImpl<Instruction * > & All,const DataLayout & DL)278 void ThreadSanitizer::chooseInstructionsToInstrument(
279     SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All,
280     const DataLayout &DL) {
281   SmallSet<Value*, 8> WriteTargets;
282   // Iterate from the end.
283   for (SmallVectorImpl<Instruction*>::reverse_iterator It = Local.rbegin(),
284        E = Local.rend(); It != E; ++It) {
285     Instruction *I = *It;
286     if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
287       WriteTargets.insert(Store->getPointerOperand());
288     } else {
289       LoadInst *Load = cast<LoadInst>(I);
290       Value *Addr = Load->getPointerOperand();
291       if (WriteTargets.count(Addr)) {
292         // We will write to this temp, so no reason to analyze the read.
293         NumOmittedReadsBeforeWrite++;
294         continue;
295       }
296       if (addrPointsToConstantData(Addr)) {
297         // Addr points to some constant data -- it can not race with any writes.
298         continue;
299       }
300     }
301     Value *Addr = isa<StoreInst>(*I)
302         ? cast<StoreInst>(I)->getPointerOperand()
303         : cast<LoadInst>(I)->getPointerOperand();
304     if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
305         !PointerMayBeCaptured(Addr, true, true)) {
306       // The variable is addressable but not captured, so it cannot be
307       // referenced from a different thread and participate in a data race
308       // (see llvm/Analysis/CaptureTracking.h for details).
309       NumOmittedNonCaptured++;
310       continue;
311     }
312     All.push_back(I);
313   }
314   Local.clear();
315 }
316 
isAtomic(Instruction * I)317 static bool isAtomic(Instruction *I) {
318   if (LoadInst *LI = dyn_cast<LoadInst>(I))
319     return LI->isAtomic() && LI->getSynchScope() == CrossThread;
320   if (StoreInst *SI = dyn_cast<StoreInst>(I))
321     return SI->isAtomic() && SI->getSynchScope() == CrossThread;
322   if (isa<AtomicRMWInst>(I))
323     return true;
324   if (isa<AtomicCmpXchgInst>(I))
325     return true;
326   if (isa<FenceInst>(I))
327     return true;
328   return false;
329 }
330 
runOnFunction(Function & F)331 bool ThreadSanitizer::runOnFunction(Function &F) {
332   initializeCallbacks(*F.getParent());
333   SmallVector<Instruction*, 8> RetVec;
334   SmallVector<Instruction*, 8> AllLoadsAndStores;
335   SmallVector<Instruction*, 8> LocalLoadsAndStores;
336   SmallVector<Instruction*, 8> AtomicAccesses;
337   SmallVector<Instruction*, 8> MemIntrinCalls;
338   bool Res = false;
339   bool HasCalls = false;
340   bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
341   const DataLayout &DL = F.getParent()->getDataLayout();
342 
343   // Traverse all instructions, collect loads/stores/returns, check for calls.
344   for (auto &BB : F) {
345     for (auto &Inst : BB) {
346       if (isAtomic(&Inst))
347         AtomicAccesses.push_back(&Inst);
348       else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
349         LocalLoadsAndStores.push_back(&Inst);
350       else if (isa<ReturnInst>(Inst))
351         RetVec.push_back(&Inst);
352       else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
353         if (isa<MemIntrinsic>(Inst))
354           MemIntrinCalls.push_back(&Inst);
355         HasCalls = true;
356         chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
357                                        DL);
358       }
359     }
360     chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
361   }
362 
363   // We have collected all loads and stores.
364   // FIXME: many of these accesses do not need to be checked for races
365   // (e.g. variables that do not escape, etc).
366 
367   // Instrument memory accesses only if we want to report bugs in the function.
368   if (ClInstrumentMemoryAccesses && SanitizeFunction)
369     for (auto Inst : AllLoadsAndStores) {
370       Res |= instrumentLoadOrStore(Inst, DL);
371     }
372 
373   // Instrument atomic memory accesses in any case (they can be used to
374   // implement synchronization).
375   if (ClInstrumentAtomics)
376     for (auto Inst : AtomicAccesses) {
377       Res |= instrumentAtomic(Inst, DL);
378     }
379 
380   if (ClInstrumentMemIntrinsics && SanitizeFunction)
381     for (auto Inst : MemIntrinCalls) {
382       Res |= instrumentMemIntrinsic(Inst);
383     }
384 
385   // Instrument function entry/exit points if there were instrumented accesses.
386   if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
387     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
388     Value *ReturnAddress = IRB.CreateCall(
389         Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
390         IRB.getInt32(0));
391     IRB.CreateCall(TsanFuncEntry, ReturnAddress);
392     for (auto RetInst : RetVec) {
393       IRBuilder<> IRBRet(RetInst);
394       IRBRet.CreateCall(TsanFuncExit);
395     }
396     Res = true;
397   }
398   return Res;
399 }
400 
instrumentLoadOrStore(Instruction * I,const DataLayout & DL)401 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I,
402                                             const DataLayout &DL) {
403   IRBuilder<> IRB(I);
404   bool IsWrite = isa<StoreInst>(*I);
405   Value *Addr = IsWrite
406       ? cast<StoreInst>(I)->getPointerOperand()
407       : cast<LoadInst>(I)->getPointerOperand();
408   int Idx = getMemoryAccessFuncIndex(Addr, DL);
409   if (Idx < 0)
410     return false;
411   if (IsWrite && isVtableAccess(I)) {
412     DEBUG(dbgs() << "  VPTR : " << *I << "\n");
413     Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
414     // StoredValue may be a vector type if we are storing several vptrs at once.
415     // In this case, just take the first element of the vector since this is
416     // enough to find vptr races.
417     if (isa<VectorType>(StoredValue->getType()))
418       StoredValue = IRB.CreateExtractElement(
419           StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
420     if (StoredValue->getType()->isIntegerTy())
421       StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
422     // Call TsanVptrUpdate.
423     IRB.CreateCall2(TsanVptrUpdate,
424                     IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
425                     IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy()));
426     NumInstrumentedVtableWrites++;
427     return true;
428   }
429   if (!IsWrite && isVtableAccess(I)) {
430     IRB.CreateCall(TsanVptrLoad,
431                    IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
432     NumInstrumentedVtableReads++;
433     return true;
434   }
435   const unsigned Alignment = IsWrite
436       ? cast<StoreInst>(I)->getAlignment()
437       : cast<LoadInst>(I)->getAlignment();
438   Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
439   const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
440   Value *OnAccessFunc = nullptr;
441   if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0)
442     OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
443   else
444     OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
445   IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
446   if (IsWrite) NumInstrumentedWrites++;
447   else         NumInstrumentedReads++;
448   return true;
449 }
450 
createOrdering(IRBuilder<> * IRB,AtomicOrdering ord)451 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
452   uint32_t v = 0;
453   switch (ord) {
454     case NotAtomic: llvm_unreachable("unexpected atomic ordering!");
455     case Unordered:              // Fall-through.
456     case Monotonic:              v = 0; break;
457     // case Consume:                v = 1; break;  // Not specified yet.
458     case Acquire:                v = 2; break;
459     case Release:                v = 3; break;
460     case AcquireRelease:         v = 4; break;
461     case SequentiallyConsistent: v = 5; break;
462   }
463   return IRB->getInt32(v);
464 }
465 
466 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
467 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
468 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
469 // instead we simply replace them with regular function calls, which are then
470 // intercepted by the run-time.
471 // Since tsan is running after everyone else, the calls should not be
472 // replaced back with intrinsics. If that becomes wrong at some point,
473 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
instrumentMemIntrinsic(Instruction * I)474 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
475   IRBuilder<> IRB(I);
476   if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
477     IRB.CreateCall3(MemsetFn,
478       IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
479       IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
480       IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
481     I->eraseFromParent();
482   } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
483     IRB.CreateCall3(isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
484       IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
485       IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
486       IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
487     I->eraseFromParent();
488   }
489   return false;
490 }
491 
492 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
493 // standards.  For background see C++11 standard.  A slightly older, publicly
494 // available draft of the standard (not entirely up-to-date, but close enough
495 // for casual browsing) is available here:
496 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
497 // The following page contains more background information:
498 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
499 
instrumentAtomic(Instruction * I,const DataLayout & DL)500 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
501   IRBuilder<> IRB(I);
502   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
503     Value *Addr = LI->getPointerOperand();
504     int Idx = getMemoryAccessFuncIndex(Addr, DL);
505     if (Idx < 0)
506       return false;
507     const size_t ByteSize = 1 << Idx;
508     const size_t BitSize = ByteSize * 8;
509     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
510     Type *PtrTy = Ty->getPointerTo();
511     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
512                      createOrdering(&IRB, LI->getOrdering())};
513     CallInst *C = CallInst::Create(TsanAtomicLoad[Idx], Args);
514     ReplaceInstWithInst(I, C);
515 
516   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
517     Value *Addr = SI->getPointerOperand();
518     int Idx = getMemoryAccessFuncIndex(Addr, DL);
519     if (Idx < 0)
520       return false;
521     const size_t ByteSize = 1 << Idx;
522     const size_t BitSize = ByteSize * 8;
523     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
524     Type *PtrTy = Ty->getPointerTo();
525     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
526                      IRB.CreateIntCast(SI->getValueOperand(), Ty, false),
527                      createOrdering(&IRB, SI->getOrdering())};
528     CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
529     ReplaceInstWithInst(I, C);
530   } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
531     Value *Addr = RMWI->getPointerOperand();
532     int Idx = getMemoryAccessFuncIndex(Addr, DL);
533     if (Idx < 0)
534       return false;
535     Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx];
536     if (!F)
537       return false;
538     const size_t ByteSize = 1 << Idx;
539     const size_t BitSize = ByteSize * 8;
540     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
541     Type *PtrTy = Ty->getPointerTo();
542     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
543                      IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
544                      createOrdering(&IRB, RMWI->getOrdering())};
545     CallInst *C = CallInst::Create(F, Args);
546     ReplaceInstWithInst(I, C);
547   } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
548     Value *Addr = CASI->getPointerOperand();
549     int Idx = getMemoryAccessFuncIndex(Addr, DL);
550     if (Idx < 0)
551       return false;
552     const size_t ByteSize = 1 << Idx;
553     const size_t BitSize = ByteSize * 8;
554     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
555     Type *PtrTy = Ty->getPointerTo();
556     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
557                      IRB.CreateIntCast(CASI->getCompareOperand(), Ty, false),
558                      IRB.CreateIntCast(CASI->getNewValOperand(), Ty, false),
559                      createOrdering(&IRB, CASI->getSuccessOrdering()),
560                      createOrdering(&IRB, CASI->getFailureOrdering())};
561     CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
562     Value *Success = IRB.CreateICmpEQ(C, CASI->getCompareOperand());
563 
564     Value *Res = IRB.CreateInsertValue(UndefValue::get(CASI->getType()), C, 0);
565     Res = IRB.CreateInsertValue(Res, Success, 1);
566 
567     I->replaceAllUsesWith(Res);
568     I->eraseFromParent();
569   } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
570     Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
571     Function *F = FI->getSynchScope() == SingleThread ?
572         TsanAtomicSignalFence : TsanAtomicThreadFence;
573     CallInst *C = CallInst::Create(F, Args);
574     ReplaceInstWithInst(I, C);
575   }
576   return true;
577 }
578 
getMemoryAccessFuncIndex(Value * Addr,const DataLayout & DL)579 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr,
580                                               const DataLayout &DL) {
581   Type *OrigPtrTy = Addr->getType();
582   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
583   assert(OrigTy->isSized());
584   uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
585   if (TypeSize != 8  && TypeSize != 16 &&
586       TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
587     NumAccessesWithBadSize++;
588     // Ignore all unusual sizes.
589     return -1;
590   }
591   size_t Idx = countTrailingZeros(TypeSize / 8);
592   assert(Idx < kNumberOfAccessSizes);
593   return Idx;
594 }
595