1//==--- AttrDocs.td - Attribute documentation ----------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===---------------------------------------------------------------------===// 9 10def GlobalDocumentation { 11 code Intro =[{.. 12 ------------------------------------------------------------------- 13 NOTE: This file is automatically generated by running clang-tblgen 14 -gen-attr-docs. Do not edit this file by hand!! 15 ------------------------------------------------------------------- 16 17=================== 18Attributes in Clang 19=================== 20.. contents:: 21 :local: 22 23Introduction 24============ 25 26This page lists the attributes currently supported by Clang. 27}]; 28} 29 30def SectionDocs : Documentation { 31 let Category = DocCatVariable; 32 let Content = [{ 33The ``section`` attribute allows you to specify a specific section a 34global variable or function should be in after translation. 35 }]; 36 let Heading = "section (gnu::section, __declspec(allocate))"; 37} 38 39def InitSegDocs : Documentation { 40 let Category = DocCatVariable; 41 let Content = [{ 42The attribute applied by ``pragma init_seg()`` controls the section into 43which global initialization function pointers are emitted. It is only 44available with ``-fms-extensions``. Typically, this function pointer is 45emitted into ``.CRT$XCU`` on Windows. The user can change the order of 46initialization by using a different section name with the same 47``.CRT$XC`` prefix and a suffix that sorts lexicographically before or 48after the standard ``.CRT$XCU`` sections. See the init_seg_ 49documentation on MSDN for more information. 50 51.. _init_seg: http://msdn.microsoft.com/en-us/library/7977wcck(v=vs.110).aspx 52 }]; 53} 54 55def TLSModelDocs : Documentation { 56 let Category = DocCatVariable; 57 let Content = [{ 58The ``tls_model`` attribute allows you to specify which thread-local storage 59model to use. It accepts the following strings: 60 61* global-dynamic 62* local-dynamic 63* initial-exec 64* local-exec 65 66TLS models are mutually exclusive. 67 }]; 68} 69 70def ThreadDocs : Documentation { 71 let Category = DocCatVariable; 72 let Content = [{ 73The ``__declspec(thread)`` attribute declares a variable with thread local 74storage. It is available under the ``-fms-extensions`` flag for MSVC 75compatibility. See the documentation for `__declspec(thread)`_ on MSDN. 76 77.. _`__declspec(thread)`: http://msdn.microsoft.com/en-us/library/9w1sdazb.aspx 78 79In Clang, ``__declspec(thread)`` is generally equivalent in functionality to the 80GNU ``__thread`` keyword. The variable must not have a destructor and must have 81a constant initializer, if any. The attribute only applies to variables 82declared with static storage duration, such as globals, class static data 83members, and static locals. 84 }]; 85} 86 87def CarriesDependencyDocs : Documentation { 88 let Category = DocCatFunction; 89 let Content = [{ 90The ``carries_dependency`` attribute specifies dependency propagation into and 91out of functions. 92 93When specified on a function or Objective-C method, the ``carries_dependency`` 94attribute means that the return value carries a dependency out of the function, 95so that the implementation need not constrain ordering upon return from that 96function. Implementations of the function and its caller may choose to preserve 97dependencies instead of emitting memory ordering instructions such as fences. 98 99Note, this attribute does not change the meaning of the program, but may result 100in generation of more efficient code. 101 }]; 102} 103 104def C11NoReturnDocs : Documentation { 105 let Category = DocCatFunction; 106 let Content = [{ 107A function declared as ``_Noreturn`` shall not return to its caller. The 108compiler will generate a diagnostic for a function declared as ``_Noreturn`` 109that appears to be capable of returning to its caller. 110 }]; 111} 112 113def CXX11NoReturnDocs : Documentation { 114 let Category = DocCatFunction; 115 let Content = [{ 116A function declared as ``[[noreturn]]`` shall not return to its caller. The 117compiler will generate a diagnostic for a function declared as ``[[noreturn]]`` 118that appears to be capable of returning to its caller. 119 }]; 120} 121 122def AssertCapabilityDocs : Documentation { 123 let Category = DocCatFunction; 124 let Heading = "assert_capability (assert_shared_capability, clang::assert_capability, clang::assert_shared_capability)"; 125 let Content = [{ 126Marks a function that dynamically tests whether a capability is held, and halts 127the program if it is not held. 128 }]; 129} 130 131def AcquireCapabilityDocs : Documentation { 132 let Category = DocCatFunction; 133 let Heading = "acquire_capability (acquire_shared_capability, clang::acquire_capability, clang::acquire_shared_capability)"; 134 let Content = [{ 135Marks a function as acquiring a capability. 136 }]; 137} 138 139def TryAcquireCapabilityDocs : Documentation { 140 let Category = DocCatFunction; 141 let Heading = "try_acquire_capability (try_acquire_shared_capability, clang::try_acquire_capability, clang::try_acquire_shared_capability)"; 142 let Content = [{ 143Marks a function that attempts to acquire a capability. This function may fail to 144actually acquire the capability; they accept a Boolean value determining 145whether acquiring the capability means success (true), or failing to acquire 146the capability means success (false). 147 }]; 148} 149 150def ReleaseCapabilityDocs : Documentation { 151 let Category = DocCatFunction; 152 let Heading = "release_capability (release_shared_capability, clang::release_capability, clang::release_shared_capability)"; 153 let Content = [{ 154Marks a function as releasing a capability. 155 }]; 156} 157 158def AssumeAlignedDocs : Documentation { 159 let Category = DocCatFunction; 160 let Content = [{ 161Use ``__attribute__((assume_aligned(<alignment>[,<offset>]))`` on a function 162declaration to specify that the return value of the function (which must be a 163pointer type) has the specified offset, in bytes, from an address with the 164specified alignment. The offset is taken to be zero if omitted. 165 166.. code-block:: c++ 167 168 // The returned pointer value has 32-byte alignment. 169 void *a() __attribute__((assume_aligned (32))); 170 171 // The returned pointer value is 4 bytes greater than an address having 172 // 32-byte alignment. 173 void *b() __attribute__((assume_aligned (32, 4))); 174 175Note that this attribute provides information to the compiler regarding a 176condition that the code already ensures is true. It does not cause the compiler 177to enforce the provided alignment assumption. 178 }]; 179} 180 181def EnableIfDocs : Documentation { 182 let Category = DocCatFunction; 183 let Content = [{ 184The ``enable_if`` attribute can be placed on function declarations to control 185which overload is selected based on the values of the function's arguments. 186When combined with the ``overloadable`` attribute, this feature is also 187available in C. 188 189.. code-block:: c++ 190 191 int isdigit(int c); 192 int isdigit(int c) __attribute__((enable_if(c <= -1 || c > 255, "chosen when 'c' is out of range"))) __attribute__((unavailable("'c' must have the value of an unsigned char or EOF"))); 193 194 void foo(char c) { 195 isdigit(c); 196 isdigit(10); 197 isdigit(-10); // results in a compile-time error. 198 } 199 200The enable_if attribute takes two arguments, the first is an expression written 201in terms of the function parameters, the second is a string explaining why this 202overload candidate could not be selected to be displayed in diagnostics. The 203expression is part of the function signature for the purposes of determining 204whether it is a redeclaration (following the rules used when determining 205whether a C++ template specialization is ODR-equivalent), but is not part of 206the type. 207 208The enable_if expression is evaluated as if it were the body of a 209bool-returning constexpr function declared with the arguments of the function 210it is being applied to, then called with the parameters at the call site. If the 211result is false or could not be determined through constant expression 212evaluation, then this overload will not be chosen and the provided string may 213be used in a diagnostic if the compile fails as a result. 214 215Because the enable_if expression is an unevaluated context, there are no global 216state changes, nor the ability to pass information from the enable_if 217expression to the function body. For example, suppose we want calls to 218strnlen(strbuf, maxlen) to resolve to strnlen_chk(strbuf, maxlen, size of 219strbuf) only if the size of strbuf can be determined: 220 221.. code-block:: c++ 222 223 __attribute__((always_inline)) 224 static inline size_t strnlen(const char *s, size_t maxlen) 225 __attribute__((overloadable)) 226 __attribute__((enable_if(__builtin_object_size(s, 0) != -1))), 227 "chosen when the buffer size is known but 'maxlen' is not"))) 228 { 229 return strnlen_chk(s, maxlen, __builtin_object_size(s, 0)); 230 } 231 232Multiple enable_if attributes may be applied to a single declaration. In this 233case, the enable_if expressions are evaluated from left to right in the 234following manner. First, the candidates whose enable_if expressions evaluate to 235false or cannot be evaluated are discarded. If the remaining candidates do not 236share ODR-equivalent enable_if expressions, the overload resolution is 237ambiguous. Otherwise, enable_if overload resolution continues with the next 238enable_if attribute on the candidates that have not been discarded and have 239remaining enable_if attributes. In this way, we pick the most specific 240overload out of a number of viable overloads using enable_if. 241 242.. code-block:: c++ 243 244 void f() __attribute__((enable_if(true, ""))); // #1 245 void f() __attribute__((enable_if(true, ""))) __attribute__((enable_if(true, ""))); // #2 246 247 void g(int i, int j) __attribute__((enable_if(i, ""))); // #1 248 void g(int i, int j) __attribute__((enable_if(j, ""))) __attribute__((enable_if(true))); // #2 249 250In this example, a call to f() is always resolved to #2, as the first enable_if 251expression is ODR-equivalent for both declarations, but #1 does not have another 252enable_if expression to continue evaluating, so the next round of evaluation has 253only a single candidate. In a call to g(1, 1), the call is ambiguous even though 254#2 has more enable_if attributes, because the first enable_if expressions are 255not ODR-equivalent. 256 257Query for this feature with ``__has_attribute(enable_if)``. 258 }]; 259} 260 261def OverloadableDocs : Documentation { 262 let Category = DocCatFunction; 263 let Content = [{ 264Clang provides support for C++ function overloading in C. Function overloading 265in C is introduced using the ``overloadable`` attribute. For example, one 266might provide several overloaded versions of a ``tgsin`` function that invokes 267the appropriate standard function computing the sine of a value with ``float``, 268``double``, or ``long double`` precision: 269 270.. code-block:: c 271 272 #include <math.h> 273 float __attribute__((overloadable)) tgsin(float x) { return sinf(x); } 274 double __attribute__((overloadable)) tgsin(double x) { return sin(x); } 275 long double __attribute__((overloadable)) tgsin(long double x) { return sinl(x); } 276 277Given these declarations, one can call ``tgsin`` with a ``float`` value to 278receive a ``float`` result, with a ``double`` to receive a ``double`` result, 279etc. Function overloading in C follows the rules of C++ function overloading 280to pick the best overload given the call arguments, with a few C-specific 281semantics: 282 283* Conversion from ``float`` or ``double`` to ``long double`` is ranked as a 284 floating-point promotion (per C99) rather than as a floating-point conversion 285 (as in C++). 286 287* A conversion from a pointer of type ``T*`` to a pointer of type ``U*`` is 288 considered a pointer conversion (with conversion rank) if ``T`` and ``U`` are 289 compatible types. 290 291* A conversion from type ``T`` to a value of type ``U`` is permitted if ``T`` 292 and ``U`` are compatible types. This conversion is given "conversion" rank. 293 294The declaration of ``overloadable`` functions is restricted to function 295declarations and definitions. Most importantly, if any function with a given 296name is given the ``overloadable`` attribute, then all function declarations 297and definitions with that name (and in that scope) must have the 298``overloadable`` attribute. This rule even applies to redeclarations of 299functions whose original declaration had the ``overloadable`` attribute, e.g., 300 301.. code-block:: c 302 303 int f(int) __attribute__((overloadable)); 304 float f(float); // error: declaration of "f" must have the "overloadable" attribute 305 306 int g(int) __attribute__((overloadable)); 307 int g(int) { } // error: redeclaration of "g" must also have the "overloadable" attribute 308 309Functions marked ``overloadable`` must have prototypes. Therefore, the 310following code is ill-formed: 311 312.. code-block:: c 313 314 int h() __attribute__((overloadable)); // error: h does not have a prototype 315 316However, ``overloadable`` functions are allowed to use a ellipsis even if there 317are no named parameters (as is permitted in C++). This feature is particularly 318useful when combined with the ``unavailable`` attribute: 319 320.. code-block:: c++ 321 322 void honeypot(...) __attribute__((overloadable, unavailable)); // calling me is an error 323 324Functions declared with the ``overloadable`` attribute have their names mangled 325according to the same rules as C++ function names. For example, the three 326``tgsin`` functions in our motivating example get the mangled names 327``_Z5tgsinf``, ``_Z5tgsind``, and ``_Z5tgsine``, respectively. There are two 328caveats to this use of name mangling: 329 330* Future versions of Clang may change the name mangling of functions overloaded 331 in C, so you should not depend on an specific mangling. To be completely 332 safe, we strongly urge the use of ``static inline`` with ``overloadable`` 333 functions. 334 335* The ``overloadable`` attribute has almost no meaning when used in C++, 336 because names will already be mangled and functions are already overloadable. 337 However, when an ``overloadable`` function occurs within an ``extern "C"`` 338 linkage specification, it's name *will* be mangled in the same way as it 339 would in C. 340 341Query for this feature with ``__has_extension(attribute_overloadable)``. 342 }]; 343} 344 345def ObjCMethodFamilyDocs : Documentation { 346 let Category = DocCatFunction; 347 let Content = [{ 348Many methods in Objective-C have conventional meanings determined by their 349selectors. It is sometimes useful to be able to mark a method as having a 350particular conventional meaning despite not having the right selector, or as 351not having the conventional meaning that its selector would suggest. For these 352use cases, we provide an attribute to specifically describe the "method family" 353that a method belongs to. 354 355**Usage**: ``__attribute__((objc_method_family(X)))``, where ``X`` is one of 356``none``, ``alloc``, ``copy``, ``init``, ``mutableCopy``, or ``new``. This 357attribute can only be placed at the end of a method declaration: 358 359.. code-block:: objc 360 361 - (NSString *)initMyStringValue __attribute__((objc_method_family(none))); 362 363Users who do not wish to change the conventional meaning of a method, and who 364merely want to document its non-standard retain and release semantics, should 365use the retaining behavior attributes (``ns_returns_retained``, 366``ns_returns_not_retained``, etc). 367 368Query for this feature with ``__has_attribute(objc_method_family)``. 369 }]; 370} 371 372def NoDuplicateDocs : Documentation { 373 let Category = DocCatFunction; 374 let Content = [{ 375The ``noduplicate`` attribute can be placed on function declarations to control 376whether function calls to this function can be duplicated or not as a result of 377optimizations. This is required for the implementation of functions with 378certain special requirements, like the OpenCL "barrier" function, that might 379need to be run concurrently by all the threads that are executing in lockstep 380on the hardware. For example this attribute applied on the function 381"nodupfunc" in the code below avoids that: 382 383.. code-block:: c 384 385 void nodupfunc() __attribute__((noduplicate)); 386 // Setting it as a C++11 attribute is also valid 387 // void nodupfunc() [[clang::noduplicate]]; 388 void foo(); 389 void bar(); 390 391 nodupfunc(); 392 if (a > n) { 393 foo(); 394 } else { 395 bar(); 396 } 397 398gets possibly modified by some optimizations into code similar to this: 399 400.. code-block:: c 401 402 if (a > n) { 403 nodupfunc(); 404 foo(); 405 } else { 406 nodupfunc(); 407 bar(); 408 } 409 410where the call to "nodupfunc" is duplicated and sunk into the two branches 411of the condition. 412 }]; 413} 414 415def NoSplitStackDocs : Documentation { 416 let Category = DocCatFunction; 417 let Content = [{ 418The ``no_split_stack`` attribute disables the emission of the split stack 419preamble for a particular function. It has no effect if ``-fsplit-stack`` 420is not specified. 421 }]; 422} 423 424def ObjCRequiresSuperDocs : Documentation { 425 let Category = DocCatFunction; 426 let Content = [{ 427Some Objective-C classes allow a subclass to override a particular method in a 428parent class but expect that the overriding method also calls the overridden 429method in the parent class. For these cases, we provide an attribute to 430designate that a method requires a "call to ``super``" in the overriding 431method in the subclass. 432 433**Usage**: ``__attribute__((objc_requires_super))``. This attribute can only 434be placed at the end of a method declaration: 435 436.. code-block:: objc 437 438 - (void)foo __attribute__((objc_requires_super)); 439 440This attribute can only be applied the method declarations within a class, and 441not a protocol. Currently this attribute does not enforce any placement of 442where the call occurs in the overriding method (such as in the case of 443``-dealloc`` where the call must appear at the end). It checks only that it 444exists. 445 446Note that on both OS X and iOS that the Foundation framework provides a 447convenience macro ``NS_REQUIRES_SUPER`` that provides syntactic sugar for this 448attribute: 449 450.. code-block:: objc 451 452 - (void)foo NS_REQUIRES_SUPER; 453 454This macro is conditionally defined depending on the compiler's support for 455this attribute. If the compiler does not support the attribute the macro 456expands to nothing. 457 458Operationally, when a method has this annotation the compiler will warn if the 459implementation of an override in a subclass does not call super. For example: 460 461.. code-block:: objc 462 463 warning: method possibly missing a [super AnnotMeth] call 464 - (void) AnnotMeth{}; 465 ^ 466 }]; 467} 468 469def ObjCRuntimeNameDocs : Documentation { 470 let Category = DocCatFunction; 471 let Content = [{ 472By default, the Objective-C interface or protocol identifier is used 473in the metadata name for that object. The `objc_runtime_name` 474attribute allows annotated interfaces or protocols to use the 475specified string argument in the object's metadata name instead of the 476default name. 477 478**Usage**: ``__attribute__((objc_runtime_name("MyLocalName")))``. This attribute 479can only be placed before an @protocol or @interface declaration: 480 481.. code-block:: objc 482 483 __attribute__((objc_runtime_name("MyLocalName"))) 484 @interface Message 485 @end 486 487 }]; 488} 489 490def AvailabilityDocs : Documentation { 491 let Category = DocCatFunction; 492 let Content = [{ 493The ``availability`` attribute can be placed on declarations to describe the 494lifecycle of that declaration relative to operating system versions. Consider 495the function declaration for a hypothetical function ``f``: 496 497.. code-block:: c++ 498 499 void f(void) __attribute__((availability(macosx,introduced=10.4,deprecated=10.6,obsoleted=10.7))); 500 501The availability attribute states that ``f`` was introduced in Mac OS X 10.4, 502deprecated in Mac OS X 10.6, and obsoleted in Mac OS X 10.7. This information 503is used by Clang to determine when it is safe to use ``f``: for example, if 504Clang is instructed to compile code for Mac OS X 10.5, a call to ``f()`` 505succeeds. If Clang is instructed to compile code for Mac OS X 10.6, the call 506succeeds but Clang emits a warning specifying that the function is deprecated. 507Finally, if Clang is instructed to compile code for Mac OS X 10.7, the call 508fails because ``f()`` is no longer available. 509 510The availability attribute is a comma-separated list starting with the 511platform name and then including clauses specifying important milestones in the 512declaration's lifetime (in any order) along with additional information. Those 513clauses can be: 514 515introduced=\ *version* 516 The first version in which this declaration was introduced. 517 518deprecated=\ *version* 519 The first version in which this declaration was deprecated, meaning that 520 users should migrate away from this API. 521 522obsoleted=\ *version* 523 The first version in which this declaration was obsoleted, meaning that it 524 was removed completely and can no longer be used. 525 526unavailable 527 This declaration is never available on this platform. 528 529message=\ *string-literal* 530 Additional message text that Clang will provide when emitting a warning or 531 error about use of a deprecated or obsoleted declaration. Useful to direct 532 users to replacement APIs. 533 534Multiple availability attributes can be placed on a declaration, which may 535correspond to different platforms. Only the availability attribute with the 536platform corresponding to the target platform will be used; any others will be 537ignored. If no availability attribute specifies availability for the current 538target platform, the availability attributes are ignored. Supported platforms 539are: 540 541``ios`` 542 Apple's iOS operating system. The minimum deployment target is specified by 543 the ``-mios-version-min=*version*`` or ``-miphoneos-version-min=*version*`` 544 command-line arguments. 545 546``macosx`` 547 Apple's Mac OS X operating system. The minimum deployment target is 548 specified by the ``-mmacosx-version-min=*version*`` command-line argument. 549 550A declaration can be used even when deploying back to a platform version prior 551to when the declaration was introduced. When this happens, the declaration is 552`weakly linked 553<https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPFrameworks/Concepts/WeakLinking.html>`_, 554as if the ``weak_import`` attribute were added to the declaration. A 555weakly-linked declaration may or may not be present a run-time, and a program 556can determine whether the declaration is present by checking whether the 557address of that declaration is non-NULL. 558 559If there are multiple declarations of the same entity, the availability 560attributes must either match on a per-platform basis or later 561declarations must not have availability attributes for that 562platform. For example: 563 564.. code-block:: c 565 566 void g(void) __attribute__((availability(macosx,introduced=10.4))); 567 void g(void) __attribute__((availability(macosx,introduced=10.4))); // okay, matches 568 void g(void) __attribute__((availability(ios,introduced=4.0))); // okay, adds a new platform 569 void g(void); // okay, inherits both macosx and ios availability from above. 570 void g(void) __attribute__((availability(macosx,introduced=10.5))); // error: mismatch 571 572When one method overrides another, the overriding method can be more widely available than the overridden method, e.g.,: 573 574.. code-block:: objc 575 576 @interface A 577 - (id)method __attribute__((availability(macosx,introduced=10.4))); 578 - (id)method2 __attribute__((availability(macosx,introduced=10.4))); 579 @end 580 581 @interface B : A 582 - (id)method __attribute__((availability(macosx,introduced=10.3))); // okay: method moved into base class later 583 - (id)method __attribute__((availability(macosx,introduced=10.5))); // error: this method was available via the base class in 10.4 584 @end 585 }]; 586} 587 588def FallthroughDocs : Documentation { 589 let Category = DocCatStmt; 590 let Content = [{ 591The ``clang::fallthrough`` attribute is used along with the 592``-Wimplicit-fallthrough`` argument to annotate intentional fall-through 593between switch labels. It can only be applied to a null statement placed at a 594point of execution between any statement and the next switch label. It is 595common to mark these places with a specific comment, but this attribute is 596meant to replace comments with a more strict annotation, which can be checked 597by the compiler. This attribute doesn't change semantics of the code and can 598be used wherever an intended fall-through occurs. It is designed to mimic 599control-flow statements like ``break;``, so it can be placed in most places 600where ``break;`` can, but only if there are no statements on the execution path 601between it and the next switch label. 602 603Here is an example: 604 605.. code-block:: c++ 606 607 // compile with -Wimplicit-fallthrough 608 switch (n) { 609 case 22: 610 case 33: // no warning: no statements between case labels 611 f(); 612 case 44: // warning: unannotated fall-through 613 g(); 614 [[clang::fallthrough]]; 615 case 55: // no warning 616 if (x) { 617 h(); 618 break; 619 } 620 else { 621 i(); 622 [[clang::fallthrough]]; 623 } 624 case 66: // no warning 625 p(); 626 [[clang::fallthrough]]; // warning: fallthrough annotation does not 627 // directly precede case label 628 q(); 629 case 77: // warning: unannotated fall-through 630 r(); 631 } 632 }]; 633} 634 635def ARMInterruptDocs : Documentation { 636 let Category = DocCatFunction; 637 let Content = [{ 638Clang supports the GNU style ``__attribute__((interrupt("TYPE")))`` attribute on 639ARM targets. This attribute may be attached to a function definition and 640instructs the backend to generate appropriate function entry/exit code so that 641it can be used directly as an interrupt service routine. 642 643The parameter passed to the interrupt attribute is optional, but if 644provided it must be a string literal with one of the following values: "IRQ", 645"FIQ", "SWI", "ABORT", "UNDEF". 646 647The semantics are as follows: 648 649- If the function is AAPCS, Clang instructs the backend to realign the stack to 650 8 bytes on entry. This is a general requirement of the AAPCS at public 651 interfaces, but may not hold when an exception is taken. Doing this allows 652 other AAPCS functions to be called. 653- If the CPU is M-class this is all that needs to be done since the architecture 654 itself is designed in such a way that functions obeying the normal AAPCS ABI 655 constraints are valid exception handlers. 656- If the CPU is not M-class, the prologue and epilogue are modified to save all 657 non-banked registers that are used, so that upon return the user-mode state 658 will not be corrupted. Note that to avoid unnecessary overhead, only 659 general-purpose (integer) registers are saved in this way. If VFP operations 660 are needed, that state must be saved manually. 661 662 Specifically, interrupt kinds other than "FIQ" will save all core registers 663 except "lr" and "sp". "FIQ" interrupts will save r0-r7. 664- If the CPU is not M-class, the return instruction is changed to one of the 665 canonical sequences permitted by the architecture for exception return. Where 666 possible the function itself will make the necessary "lr" adjustments so that 667 the "preferred return address" is selected. 668 669 Unfortunately the compiler is unable to make this guarantee for an "UNDEF" 670 handler, where the offset from "lr" to the preferred return address depends on 671 the execution state of the code which generated the exception. In this case 672 a sequence equivalent to "movs pc, lr" will be used. 673 }]; 674} 675 676def DocCatAMDGPURegisterAttributes : 677 DocumentationCategory<"AMD GPU Register Attributes"> { 678 let Content = [{ 679Clang supports attributes for controlling register usage on AMD GPU 680targets. These attributes may be attached to a kernel function 681definition and is an optimization hint to the backend for the maximum 682number of registers to use. This is useful in cases where register 683limited occupancy is known to be an important factor for the 684performance for the kernel. 685 686The semantics are as follows: 687 688- The backend will attempt to limit the number of used registers to 689 the specified value, but the exact number used is not 690 guaranteed. The number used may be rounded up to satisfy the 691 allocation requirements or ABI constraints of the subtarget. For 692 example, on Southern Islands VGPRs may only be allocated in 693 increments of 4, so requesting a limit of 39 VGPRs will really 694 attempt to use up to 40. Requesting more registers than the 695 subtarget supports will truncate to the maximum allowed. The backend 696 may also use fewer registers than requested whenever possible. 697 698- 0 implies the default no limit on register usage. 699 700- Ignored on older VLIW subtargets which did not have separate scalar 701 and vector registers, R600 through Northern Islands. 702 703}]; 704} 705 706 707def AMDGPUNumVGPRDocs : Documentation { 708 let Category = DocCatAMDGPURegisterAttributes; 709 let Content = [{ 710Clang supports the 711``__attribute__((amdgpu_num_vgpr(<num_registers>)))`` attribute on AMD 712Southern Islands GPUs and later for controlling the number of vector 713registers. A typical value would be between 4 and 256 in increments 714of 4. 715}]; 716} 717 718def AMDGPUNumSGPRDocs : Documentation { 719 let Category = DocCatAMDGPURegisterAttributes; 720 let Content = [{ 721 722Clang supports the 723``__attribute__((amdgpu_num_sgpr(<num_registers>)))`` attribute on AMD 724Southern Islands GPUs and later for controlling the number of scalar 725registers. A typical value would be between 8 and 104 in increments of 7268. 727 728Due to common instruction constraints, an additional 2-4 SGPRs are 729typically required for internal use depending on features used. This 730value is a hint for the total number of SGPRs to use, and not the 731number of user SGPRs, so no special consideration needs to be given 732for these. 733}]; 734} 735 736def DocCatCallingConvs : DocumentationCategory<"Calling Conventions"> { 737 let Content = [{ 738Clang supports several different calling conventions, depending on the target 739platform and architecture. The calling convention used for a function determines 740how parameters are passed, how results are returned to the caller, and other 741low-level details of calling a function. 742 }]; 743} 744 745def PcsDocs : Documentation { 746 let Category = DocCatCallingConvs; 747 let Content = [{ 748On ARM targets, this attribute can be used to select calling conventions 749similar to ``stdcall`` on x86. Valid parameter values are "aapcs" and 750"aapcs-vfp". 751 }]; 752} 753 754def RegparmDocs : Documentation { 755 let Category = DocCatCallingConvs; 756 let Content = [{ 757On 32-bit x86 targets, the regparm attribute causes the compiler to pass 758the first three integer parameters in EAX, EDX, and ECX instead of on the 759stack. This attribute has no effect on variadic functions, and all parameters 760are passed via the stack as normal. 761 }]; 762} 763 764def SysVABIDocs : Documentation { 765 let Category = DocCatCallingConvs; 766 let Content = [{ 767On Windows x86_64 targets, this attribute changes the calling convention of a 768function to match the default convention used on Sys V targets such as Linux, 769Mac, and BSD. This attribute has no effect on other targets. 770 }]; 771} 772 773def MSABIDocs : Documentation { 774 let Category = DocCatCallingConvs; 775 let Content = [{ 776On non-Windows x86_64 targets, this attribute changes the calling convention of 777a function to match the default convention used on Windows x86_64. This 778attribute has no effect on Windows targets or non-x86_64 targets. 779 }]; 780} 781 782def StdCallDocs : Documentation { 783 let Category = DocCatCallingConvs; 784 let Content = [{ 785On 32-bit x86 targets, this attribute changes the calling convention of a 786function to clear parameters off of the stack on return. This convention does 787not support variadic calls or unprototyped functions in C, and has no effect on 788x86_64 targets. This calling convention is used widely by the Windows API and 789COM applications. See the documentation for `__stdcall`_ on MSDN. 790 791.. _`__stdcall`: http://msdn.microsoft.com/en-us/library/zxk0tw93.aspx 792 }]; 793} 794 795def FastCallDocs : Documentation { 796 let Category = DocCatCallingConvs; 797 let Content = [{ 798On 32-bit x86 targets, this attribute changes the calling convention of a 799function to use ECX and EDX as register parameters and clear parameters off of 800the stack on return. This convention does not support variadic calls or 801unprototyped functions in C, and has no effect on x86_64 targets. This calling 802convention is supported primarily for compatibility with existing code. Users 803seeking register parameters should use the ``regparm`` attribute, which does 804not require callee-cleanup. See the documentation for `__fastcall`_ on MSDN. 805 806.. _`__fastcall`: http://msdn.microsoft.com/en-us/library/6xa169sk.aspx 807 }]; 808} 809 810def ThisCallDocs : Documentation { 811 let Category = DocCatCallingConvs; 812 let Content = [{ 813On 32-bit x86 targets, this attribute changes the calling convention of a 814function to use ECX for the first parameter (typically the implicit ``this`` 815parameter of C++ methods) and clear parameters off of the stack on return. This 816convention does not support variadic calls or unprototyped functions in C, and 817has no effect on x86_64 targets. See the documentation for `__thiscall`_ on 818MSDN. 819 820.. _`__thiscall`: http://msdn.microsoft.com/en-us/library/ek8tkfbw.aspx 821 }]; 822} 823 824def VectorCallDocs : Documentation { 825 let Category = DocCatCallingConvs; 826 let Content = [{ 827On 32-bit x86 *and* x86_64 targets, this attribute changes the calling 828convention of a function to pass vector parameters in SSE registers. 829 830On 32-bit x86 targets, this calling convention is similar to ``__fastcall``. 831The first two integer parameters are passed in ECX and EDX. Subsequent integer 832parameters are passed in memory, and callee clears the stack. On x86_64 833targets, the callee does *not* clear the stack, and integer parameters are 834passed in RCX, RDX, R8, and R9 as is done for the default Windows x64 calling 835convention. 836 837On both 32-bit x86 and x86_64 targets, vector and floating point arguments are 838passed in XMM0-XMM5. Homogenous vector aggregates of up to four elements are 839passed in sequential SSE registers if enough are available. If AVX is enabled, 840256 bit vectors are passed in YMM0-YMM5. Any vector or aggregate type that 841cannot be passed in registers for any reason is passed by reference, which 842allows the caller to align the parameter memory. 843 844See the documentation for `__vectorcall`_ on MSDN for more details. 845 846.. _`__vectorcall`: http://msdn.microsoft.com/en-us/library/dn375768.aspx 847 }]; 848} 849 850def DocCatConsumed : DocumentationCategory<"Consumed Annotation Checking"> { 851 let Content = [{ 852Clang supports additional attributes for checking basic resource management 853properties, specifically for unique objects that have a single owning reference. 854The following attributes are currently supported, although **the implementation 855for these annotations is currently in development and are subject to change.** 856 }]; 857} 858 859def SetTypestateDocs : Documentation { 860 let Category = DocCatConsumed; 861 let Content = [{ 862Annotate methods that transition an object into a new state with 863``__attribute__((set_typestate(new_state)))``. The new state must be 864unconsumed, consumed, or unknown. 865 }]; 866} 867 868def CallableWhenDocs : Documentation { 869 let Category = DocCatConsumed; 870 let Content = [{ 871Use ``__attribute__((callable_when(...)))`` to indicate what states a method 872may be called in. Valid states are unconsumed, consumed, or unknown. Each 873argument to this attribute must be a quoted string. E.g.: 874 875``__attribute__((callable_when("unconsumed", "unknown")))`` 876 }]; 877} 878 879def TestTypestateDocs : Documentation { 880 let Category = DocCatConsumed; 881 let Content = [{ 882Use ``__attribute__((test_typestate(tested_state)))`` to indicate that a method 883returns true if the object is in the specified state.. 884 }]; 885} 886 887def ParamTypestateDocs : Documentation { 888 let Category = DocCatConsumed; 889 let Content = [{ 890This attribute specifies expectations about function parameters. Calls to an 891function with annotated parameters will issue a warning if the corresponding 892argument isn't in the expected state. The attribute is also used to set the 893initial state of the parameter when analyzing the function's body. 894 }]; 895} 896 897def ReturnTypestateDocs : Documentation { 898 let Category = DocCatConsumed; 899 let Content = [{ 900The ``return_typestate`` attribute can be applied to functions or parameters. 901When applied to a function the attribute specifies the state of the returned 902value. The function's body is checked to ensure that it always returns a value 903in the specified state. On the caller side, values returned by the annotated 904function are initialized to the given state. 905 906When applied to a function parameter it modifies the state of an argument after 907a call to the function returns. The function's body is checked to ensure that 908the parameter is in the expected state before returning. 909 }]; 910} 911 912def ConsumableDocs : Documentation { 913 let Category = DocCatConsumed; 914 let Content = [{ 915Each ``class`` that uses any of the typestate annotations must first be marked 916using the ``consumable`` attribute. Failure to do so will result in a warning. 917 918This attribute accepts a single parameter that must be one of the following: 919``unknown``, ``consumed``, or ``unconsumed``. 920 }]; 921} 922 923def NoSanitizeAddressDocs : Documentation { 924 let Category = DocCatFunction; 925 // This function has multiple distinct spellings, and so it requires a custom 926 // heading to be specified. The most common spelling is sufficient. 927 let Heading = "no_sanitize_address (no_address_safety_analysis, gnu::no_address_safety_analysis, gnu::no_sanitize_address)"; 928 let Content = [{ 929.. _langext-address_sanitizer: 930 931Use ``__attribute__((no_sanitize_address))`` on a function declaration to 932specify that address safety instrumentation (e.g. AddressSanitizer) should 933not be applied to that function. 934 }]; 935} 936 937def NoSanitizeThreadDocs : Documentation { 938 let Category = DocCatFunction; 939 let Content = [{ 940.. _langext-thread_sanitizer: 941 942Use ``__attribute__((no_sanitize_thread))`` on a function declaration to 943specify that checks for data races on plain (non-atomic) memory accesses should 944not be inserted by ThreadSanitizer. The function is still instrumented by the 945tool to avoid false positives and provide meaningful stack traces. 946 }]; 947} 948 949def NoSanitizeMemoryDocs : Documentation { 950 let Category = DocCatFunction; 951 let Content = [{ 952.. _langext-memory_sanitizer: 953 954Use ``__attribute__((no_sanitize_memory))`` on a function declaration to 955specify that checks for uninitialized memory should not be inserted 956(e.g. by MemorySanitizer). The function may still be instrumented by the tool 957to avoid false positives in other places. 958 }]; 959} 960 961def DocCatTypeSafety : DocumentationCategory<"Type Safety Checking"> { 962 let Content = [{ 963Clang supports additional attributes to enable checking type safety properties 964that can't be enforced by the C type system. Use cases include: 965 966* MPI library implementations, where these attributes enable checking that 967 the buffer type matches the passed ``MPI_Datatype``; 968* for HDF5 library there is a similar use case to MPI; 969* checking types of variadic functions' arguments for functions like 970 ``fcntl()`` and ``ioctl()``. 971 972You can detect support for these attributes with ``__has_attribute()``. For 973example: 974 975.. code-block:: c++ 976 977 #if defined(__has_attribute) 978 # if __has_attribute(argument_with_type_tag) && \ 979 __has_attribute(pointer_with_type_tag) && \ 980 __has_attribute(type_tag_for_datatype) 981 # define ATTR_MPI_PWT(buffer_idx, type_idx) __attribute__((pointer_with_type_tag(mpi,buffer_idx,type_idx))) 982 /* ... other macros ... */ 983 # endif 984 #endif 985 986 #if !defined(ATTR_MPI_PWT) 987 # define ATTR_MPI_PWT(buffer_idx, type_idx) 988 #endif 989 990 int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */) 991 ATTR_MPI_PWT(1,3); 992 }]; 993} 994 995def ArgumentWithTypeTagDocs : Documentation { 996 let Category = DocCatTypeSafety; 997 let Heading = "argument_with_type_tag"; 998 let Content = [{ 999Use ``__attribute__((argument_with_type_tag(arg_kind, arg_idx, 1000type_tag_idx)))`` on a function declaration to specify that the function 1001accepts a type tag that determines the type of some other argument. 1002``arg_kind`` is an identifier that should be used when annotating all 1003applicable type tags. 1004 1005This attribute is primarily useful for checking arguments of variadic functions 1006(``pointer_with_type_tag`` can be used in most non-variadic cases). 1007 1008For example: 1009 1010.. code-block:: c++ 1011 1012 int fcntl(int fd, int cmd, ...) 1013 __attribute__(( argument_with_type_tag(fcntl,3,2) )); 1014 }]; 1015} 1016 1017def PointerWithTypeTagDocs : Documentation { 1018 let Category = DocCatTypeSafety; 1019 let Heading = "pointer_with_type_tag"; 1020 let Content = [{ 1021Use ``__attribute__((pointer_with_type_tag(ptr_kind, ptr_idx, type_tag_idx)))`` 1022on a function declaration to specify that the function accepts a type tag that 1023determines the pointee type of some other pointer argument. 1024 1025For example: 1026 1027.. code-block:: c++ 1028 1029 int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */) 1030 __attribute__(( pointer_with_type_tag(mpi,1,3) )); 1031 }]; 1032} 1033 1034def TypeTagForDatatypeDocs : Documentation { 1035 let Category = DocCatTypeSafety; 1036 let Content = [{ 1037Clang supports annotating type tags of two forms. 1038 1039* **Type tag that is an expression containing a reference to some declared 1040 identifier.** Use ``__attribute__((type_tag_for_datatype(kind, type)))`` on a 1041 declaration with that identifier: 1042 1043 .. code-block:: c++ 1044 1045 extern struct mpi_datatype mpi_datatype_int 1046 __attribute__(( type_tag_for_datatype(mpi,int) )); 1047 #define MPI_INT ((MPI_Datatype) &mpi_datatype_int) 1048 1049* **Type tag that is an integral literal.** Introduce a ``static const`` 1050 variable with a corresponding initializer value and attach 1051 ``__attribute__((type_tag_for_datatype(kind, type)))`` on that declaration, 1052 for example: 1053 1054 .. code-block:: c++ 1055 1056 #define MPI_INT ((MPI_Datatype) 42) 1057 static const MPI_Datatype mpi_datatype_int 1058 __attribute__(( type_tag_for_datatype(mpi,int) )) = 42 1059 1060The attribute also accepts an optional third argument that determines how the 1061expression is compared to the type tag. There are two supported flags: 1062 1063* ``layout_compatible`` will cause types to be compared according to 1064 layout-compatibility rules (C++11 [class.mem] p 17, 18). This is 1065 implemented to support annotating types like ``MPI_DOUBLE_INT``. 1066 1067 For example: 1068 1069 .. code-block:: c++ 1070 1071 /* In mpi.h */ 1072 struct internal_mpi_double_int { double d; int i; }; 1073 extern struct mpi_datatype mpi_datatype_double_int 1074 __attribute__(( type_tag_for_datatype(mpi, struct internal_mpi_double_int, layout_compatible) )); 1075 1076 #define MPI_DOUBLE_INT ((MPI_Datatype) &mpi_datatype_double_int) 1077 1078 /* In user code */ 1079 struct my_pair { double a; int b; }; 1080 struct my_pair *buffer; 1081 MPI_Send(buffer, 1, MPI_DOUBLE_INT /*, ... */); // no warning 1082 1083 struct my_int_pair { int a; int b; } 1084 struct my_int_pair *buffer2; 1085 MPI_Send(buffer2, 1, MPI_DOUBLE_INT /*, ... */); // warning: actual buffer element 1086 // type 'struct my_int_pair' 1087 // doesn't match specified MPI_Datatype 1088 1089* ``must_be_null`` specifies that the expression should be a null pointer 1090 constant, for example: 1091 1092 .. code-block:: c++ 1093 1094 /* In mpi.h */ 1095 extern struct mpi_datatype mpi_datatype_null 1096 __attribute__(( type_tag_for_datatype(mpi, void, must_be_null) )); 1097 1098 #define MPI_DATATYPE_NULL ((MPI_Datatype) &mpi_datatype_null) 1099 1100 /* In user code */ 1101 MPI_Send(buffer, 1, MPI_DATATYPE_NULL /*, ... */); // warning: MPI_DATATYPE_NULL 1102 // was specified but buffer 1103 // is not a null pointer 1104 }]; 1105} 1106 1107def FlattenDocs : Documentation { 1108 let Category = DocCatFunction; 1109 let Content = [{ 1110The ``flatten`` attribute causes calls within the attributed function to 1111be inlined unless it is impossible to do so, for example if the body of the 1112callee is unavailable or if the callee has the ``noinline`` attribute. 1113 }]; 1114} 1115 1116def FormatDocs : Documentation { 1117 let Category = DocCatFunction; 1118 let Content = [{ 1119 1120Clang supports the ``format`` attribute, which indicates that the function 1121accepts a ``printf`` or ``scanf``-like format string and corresponding 1122arguments or a ``va_list`` that contains these arguments. 1123 1124Please see `GCC documentation about format attribute 1125<http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_ to find details 1126about attribute syntax. 1127 1128Clang implements two kinds of checks with this attribute. 1129 1130#. Clang checks that the function with the ``format`` attribute is called with 1131 a format string that uses format specifiers that are allowed, and that 1132 arguments match the format string. This is the ``-Wformat`` warning, it is 1133 on by default. 1134 1135#. Clang checks that the format string argument is a literal string. This is 1136 the ``-Wformat-nonliteral`` warning, it is off by default. 1137 1138 Clang implements this mostly the same way as GCC, but there is a difference 1139 for functions that accept a ``va_list`` argument (for example, ``vprintf``). 1140 GCC does not emit ``-Wformat-nonliteral`` warning for calls to such 1141 functions. Clang does not warn if the format string comes from a function 1142 parameter, where the function is annotated with a compatible attribute, 1143 otherwise it warns. For example: 1144 1145 .. code-block:: c 1146 1147 __attribute__((__format__ (__scanf__, 1, 3))) 1148 void foo(const char* s, char *buf, ...) { 1149 va_list ap; 1150 va_start(ap, buf); 1151 1152 vprintf(s, ap); // warning: format string is not a string literal 1153 } 1154 1155 In this case we warn because ``s`` contains a format string for a 1156 ``scanf``-like function, but it is passed to a ``printf``-like function. 1157 1158 If the attribute is removed, clang still warns, because the format string is 1159 not a string literal. 1160 1161 Another example: 1162 1163 .. code-block:: c 1164 1165 __attribute__((__format__ (__printf__, 1, 3))) 1166 void foo(const char* s, char *buf, ...) { 1167 va_list ap; 1168 va_start(ap, buf); 1169 1170 vprintf(s, ap); // warning 1171 } 1172 1173 In this case Clang does not warn because the format string ``s`` and 1174 the corresponding arguments are annotated. If the arguments are 1175 incorrect, the caller of ``foo`` will receive a warning. 1176 }]; 1177} 1178 1179def AlignValueDocs : Documentation { 1180 let Category = DocCatType; 1181 let Content = [{ 1182The align_value attribute can be added to the typedef of a pointer type or the 1183declaration of a variable of pointer or reference type. It specifies that the 1184pointer will point to, or the reference will bind to, only objects with at 1185least the provided alignment. This alignment value must be some positive power 1186of 2. 1187 1188 .. code-block:: c 1189 1190 typedef double * aligned_double_ptr __attribute__((align_value(64))); 1191 void foo(double & x __attribute__((align_value(128)), 1192 aligned_double_ptr y) { ... } 1193 1194If the pointer value does not have the specified alignment at runtime, the 1195behavior of the program is undefined. 1196 }]; 1197} 1198 1199def FlagEnumDocs : Documentation { 1200 let Category = DocCatType; 1201 let Content = [{ 1202This attribute can be added to an enumerator to signal to the compiler that it 1203is intended to be used as a flag type. This will cause the compiler to assume 1204that the range of the type includes all of the values that you can get by 1205manipulating bits of the enumerator when issuing warnings. 1206 }]; 1207} 1208 1209def MSInheritanceDocs : Documentation { 1210 let Category = DocCatType; 1211 let Heading = "__single_inhertiance, __multiple_inheritance, __virtual_inheritance"; 1212 let Content = [{ 1213This collection of keywords is enabled under ``-fms-extensions`` and controls 1214the pointer-to-member representation used on ``*-*-win32`` targets. 1215 1216The ``*-*-win32`` targets utilize a pointer-to-member representation which 1217varies in size and alignment depending on the definition of the underlying 1218class. 1219 1220However, this is problematic when a forward declaration is only available and 1221no definition has been made yet. In such cases, Clang is forced to utilize the 1222most general representation that is available to it. 1223 1224These keywords make it possible to use a pointer-to-member representation other 1225than the most general one regardless of whether or not the definition will ever 1226be present in the current translation unit. 1227 1228This family of keywords belong between the ``class-key`` and ``class-name``: 1229 1230.. code-block:: c++ 1231 1232 struct __single_inheritance S; 1233 int S::*i; 1234 struct S {}; 1235 1236This keyword can be applied to class templates but only has an effect when used 1237on full specializations: 1238 1239.. code-block:: c++ 1240 1241 template <typename T, typename U> struct __single_inheritance A; // warning: inheritance model ignored on primary template 1242 template <typename T> struct __multiple_inheritance A<T, T>; // warning: inheritance model ignored on partial specialization 1243 template <> struct __single_inheritance A<int, float>; 1244 1245Note that choosing an inheritance model less general than strictly necessary is 1246an error: 1247 1248.. code-block:: c++ 1249 1250 struct __multiple_inheritance S; // error: inheritance model does not match definition 1251 int S::*i; 1252 struct S {}; 1253}]; 1254} 1255 1256def MSNoVTableDocs : Documentation { 1257 let Category = DocCatType; 1258 let Content = [{ 1259This attribute can be added to a class declaration or definition to signal to 1260the compiler that constructors and destructors will not reference the virtual 1261function table. 1262 }]; 1263} 1264 1265def OptnoneDocs : Documentation { 1266 let Category = DocCatFunction; 1267 let Content = [{ 1268The ``optnone`` attribute suppresses essentially all optimizations 1269on a function or method, regardless of the optimization level applied to 1270the compilation unit as a whole. This is particularly useful when you 1271need to debug a particular function, but it is infeasible to build the 1272entire application without optimization. Avoiding optimization on the 1273specified function can improve the quality of the debugging information 1274for that function. 1275 1276This attribute is incompatible with the ``always_inline`` and ``minsize`` 1277attributes. 1278 }]; 1279} 1280 1281def LoopHintDocs : Documentation { 1282 let Category = DocCatStmt; 1283 let Heading = "#pragma clang loop"; 1284 let Content = [{ 1285The ``#pragma clang loop`` directive allows loop optimization hints to be 1286specified for the subsequent loop. The directive allows vectorization, 1287interleaving, and unrolling to be enabled or disabled. Vector width as well 1288as interleave and unrolling count can be manually specified. See 1289`language extensions 1290<http://clang.llvm.org/docs/LanguageExtensions.html#extensions-for-loop-hint-optimizations>`_ 1291for details. 1292 }]; 1293} 1294 1295def UnrollHintDocs : Documentation { 1296 let Category = DocCatStmt; 1297 let Heading = "#pragma unroll, #pragma nounroll"; 1298 let Content = [{ 1299Loop unrolling optimization hints can be specified with ``#pragma unroll`` and 1300``#pragma nounroll``. The pragma is placed immediately before a for, while, 1301do-while, or c++11 range-based for loop. 1302 1303Specifying ``#pragma unroll`` without a parameter directs the loop unroller to 1304attempt to fully unroll the loop if the trip count is known at compile time: 1305 1306.. code-block:: c++ 1307 1308 #pragma unroll 1309 for (...) { 1310 ... 1311 } 1312 1313Specifying the optional parameter, ``#pragma unroll _value_``, directs the 1314unroller to unroll the loop ``_value_`` times. The parameter may optionally be 1315enclosed in parentheses: 1316 1317.. code-block:: c++ 1318 1319 #pragma unroll 16 1320 for (...) { 1321 ... 1322 } 1323 1324 #pragma unroll(16) 1325 for (...) { 1326 ... 1327 } 1328 1329Specifying ``#pragma nounroll`` indicates that the loop should not be unrolled: 1330 1331.. code-block:: c++ 1332 1333 #pragma nounroll 1334 for (...) { 1335 ... 1336 } 1337 1338``#pragma unroll`` and ``#pragma unroll _value_`` have identical semantics to 1339``#pragma clang loop unroll(full)`` and 1340``#pragma clang loop unroll_count(_value_)`` respectively. ``#pragma nounroll`` 1341is equivalent to ``#pragma clang loop unroll(disable)``. See 1342`language extensions 1343<http://clang.llvm.org/docs/LanguageExtensions.html#extensions-for-loop-hint-optimizations>`_ 1344for further details including limitations of the unroll hints. 1345 }]; 1346} 1347 1348def DocOpenCLAddressSpaces : DocumentationCategory<"OpenCL Address Spaces"> { 1349 let Content = [{ 1350The address space qualifier may be used to specify the region of memory that is 1351used to allocate the object. OpenCL supports the following address spaces: 1352__generic(generic), __global(global), __local(local), __private(private), 1353__constant(constant). 1354 1355 .. code-block:: c 1356 1357 __constant int c = ...; 1358 1359 __generic int* foo(global int* g) { 1360 __local int* l; 1361 private int p; 1362 ... 1363 return l; 1364 } 1365 1366More details can be found in the OpenCL C language Spec v2.0, Section 6.5. 1367 }]; 1368} 1369 1370def OpenCLAddressSpaceGenericDocs : Documentation { 1371 let Category = DocOpenCLAddressSpaces; 1372 let Heading = "__generic(generic)"; 1373 let Content = [{ 1374The generic address space attribute is only available with OpenCL v2.0 and later. 1375It can be used with pointer types. Variables in global and local scope and 1376function parameters in non-kernel functions can have the generic address space 1377type attribute. It is intended to be a placeholder for any other address space 1378except for '__constant' in OpenCL code which can be used with multiple address 1379spaces. 1380 }]; 1381} 1382 1383def OpenCLAddressSpaceConstantDocs : Documentation { 1384 let Category = DocOpenCLAddressSpaces; 1385 let Heading = "__constant(constant)"; 1386 let Content = [{ 1387The constant address space attribute signals that an object is located in 1388a constant (non-modifiable) memory region. It is available to all work items. 1389Any type can be annotated with the constant address space attribute. Objects 1390with the constant address space qualifier can be declared in any scope and must 1391have an initializer. 1392 }]; 1393} 1394 1395def OpenCLAddressSpaceGlobalDocs : Documentation { 1396 let Category = DocOpenCLAddressSpaces; 1397 let Heading = "__global(global)"; 1398 let Content = [{ 1399The global address space attribute specifies that an object is allocated in 1400global memory, which is accessible by all work items. The content stored in this 1401memory area persists between kernel executions. Pointer types to the global 1402address space are allowed as function parameters or local variables. Starting 1403with OpenCL v2.0, the global address space can be used with global (program 1404scope) variables and static local variable as well. 1405 }]; 1406} 1407 1408def OpenCLAddressSpaceLocalDocs : Documentation { 1409 let Category = DocOpenCLAddressSpaces; 1410 let Heading = "__local(local)"; 1411 let Content = [{ 1412The local address space specifies that an object is allocated in the local (work 1413group) memory area, which is accessible to all work items in the same work 1414group. The content stored in this memory region is not accessible after 1415the kernel execution ends. In a kernel function scope, any variable can be in 1416the local address space. In other scopes, only pointer types to the local address 1417space are allowed. Local address space variables cannot have an initializer. 1418 }]; 1419} 1420 1421def OpenCLAddressSpacePrivateDocs : Documentation { 1422 let Category = DocOpenCLAddressSpaces; 1423 let Heading = "__private(private)"; 1424 let Content = [{ 1425The private address space specifies that an object is allocated in the private 1426(work item) memory. Other work items cannot access the same memory area and its 1427content is destroyed after work item execution ends. Local variables can be 1428declared in the private address space. Function arguments are always in the 1429private address space. Kernel function arguments of a pointer or an array type 1430cannot point to the private address space. 1431 }]; 1432} 1433