• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /* This file contains codegen for the Thumb2 ISA. */
18 
19 #include "codegen_arm64.h"
20 
21 #include "arch/instruction_set_features.h"
22 #include "arm64_lir.h"
23 #include "base/bit_utils.h"
24 #include "base/logging.h"
25 #include "dex/compiler_ir.h"
26 #include "dex/mir_graph.h"
27 #include "dex/quick/mir_to_lir-inl.h"
28 #include "dex/reg_storage_eq.h"
29 #include "driver/compiler_driver.h"
30 #include "entrypoints/quick/quick_entrypoints.h"
31 #include "mirror/array-inl.h"
32 
33 namespace art {
34 
OpCmpBranch(ConditionCode cond,RegStorage src1,RegStorage src2,LIR * target)35 LIR* Arm64Mir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) {
36   OpRegReg(kOpCmp, src1, src2);
37   return OpCondBranch(cond, target);
38 }
39 
OpIT(ConditionCode ccode,const char * guide)40 LIR* Arm64Mir2Lir::OpIT(ConditionCode ccode, const char* guide) {
41   UNUSED(ccode, guide);
42   LOG(FATAL) << "Unexpected use of OpIT for Arm64";
43   UNREACHABLE();
44 }
45 
OpEndIT(LIR * it)46 void Arm64Mir2Lir::OpEndIT(LIR* it) {
47   UNUSED(it);
48   LOG(FATAL) << "Unexpected use of OpEndIT for Arm64";
49 }
50 
51 /*
52  * 64-bit 3way compare function.
53  *     cmp   xA, xB
54  *     csinc wC, wzr, wzr, eq  // wC = (xA == xB) ? 0 : 1
55  *     csneg wC, wC, wC, ge    // wC = (xA >= xB) ? wC : -wC
56  */
GenCmpLong(RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2)57 void Arm64Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
58                               RegLocation rl_src2) {
59   RegLocation rl_result;
60   rl_src1 = LoadValueWide(rl_src1, kCoreReg);
61   rl_src2 = LoadValueWide(rl_src2, kCoreReg);
62   rl_result = EvalLoc(rl_dest, kCoreReg, true);
63 
64   OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
65   NewLIR4(kA64Csinc4rrrc, rl_result.reg.GetReg(), rwzr, rwzr, kArmCondEq);
66   NewLIR4(kA64Csneg4rrrc, rl_result.reg.GetReg(), rl_result.reg.GetReg(),
67           rl_result.reg.GetReg(), kArmCondGe);
68   StoreValue(rl_dest, rl_result);
69 }
70 
GenShiftOpLong(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_shift)71 void Arm64Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
72                              RegLocation rl_src1, RegLocation rl_shift) {
73   OpKind op = kOpBkpt;
74   switch (opcode) {
75   case Instruction::SHL_LONG:
76   case Instruction::SHL_LONG_2ADDR:
77     op = kOpLsl;
78     break;
79   case Instruction::SHR_LONG:
80   case Instruction::SHR_LONG_2ADDR:
81     op = kOpAsr;
82     break;
83   case Instruction::USHR_LONG:
84   case Instruction::USHR_LONG_2ADDR:
85     op = kOpLsr;
86     break;
87   default:
88     LOG(FATAL) << "Unexpected case: " << opcode;
89   }
90   rl_shift = LoadValue(rl_shift, kCoreReg);
91   rl_src1 = LoadValueWide(rl_src1, kCoreReg);
92   RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
93   OpRegRegReg(op, rl_result.reg, rl_src1.reg, As64BitReg(rl_shift.reg));
94   StoreValueWide(rl_dest, rl_result);
95 }
96 
97 static constexpr bool kUseDeltaEncodingInGenSelect = false;
98 
GenSelect(int32_t true_val,int32_t false_val,ConditionCode ccode,RegStorage rs_dest,int result_reg_class)99 void Arm64Mir2Lir::GenSelect(int32_t true_val, int32_t false_val, ConditionCode ccode,
100                              RegStorage rs_dest, int result_reg_class) {
101   if (false_val == 0 ||               // 0 is better as first operand.
102       true_val == 1 ||                // Potentially Csinc.
103       true_val == -1 ||               // Potentially Csinv.
104       true_val == false_val + 1) {    // Potentially Csinc.
105     ccode = NegateComparison(ccode);
106     std::swap(true_val, false_val);
107   }
108 
109   ArmConditionCode code = ArmConditionEncoding(ccode);
110 
111   int opcode;                                      // The opcode.
112   RegStorage left_op = RegStorage::InvalidReg();   // The operands.
113   RegStorage right_op = RegStorage::InvalidReg();  // The operands.
114 
115   bool is_wide = rs_dest.Is64Bit();
116 
117   RegStorage zero_reg = is_wide ? rs_xzr : rs_wzr;
118 
119   if (true_val == 0) {
120     left_op = zero_reg;
121   } else {
122     left_op = rs_dest;
123     LoadConstantNoClobber(rs_dest, true_val);
124   }
125   if (false_val == 1) {
126     right_op = zero_reg;
127     opcode = kA64Csinc4rrrc;
128   } else if (false_val == -1) {
129     right_op = zero_reg;
130     opcode = kA64Csinv4rrrc;
131   } else if (false_val == true_val + 1) {
132     right_op = left_op;
133     opcode = kA64Csinc4rrrc;
134   } else if (false_val == -true_val) {
135     right_op = left_op;
136     opcode = kA64Csneg4rrrc;
137   } else if (false_val == ~true_val) {
138     right_op = left_op;
139     opcode = kA64Csinv4rrrc;
140   } else if (true_val == 0) {
141     // left_op is zero_reg.
142     right_op = rs_dest;
143     LoadConstantNoClobber(rs_dest, false_val);
144     opcode = kA64Csel4rrrc;
145   } else {
146     // Generic case.
147     RegStorage t_reg2 = AllocTypedTemp(false, result_reg_class);
148     if (is_wide) {
149       if (t_reg2.Is32Bit()) {
150         t_reg2 = As64BitReg(t_reg2);
151       }
152     } else {
153       if (t_reg2.Is64Bit()) {
154         t_reg2 = As32BitReg(t_reg2);
155       }
156     }
157 
158     if (kUseDeltaEncodingInGenSelect) {
159       int32_t delta = false_val - true_val;
160       uint32_t abs_val = delta < 0 ? -delta : delta;
161 
162       if (abs_val < 0x1000) {  // TODO: Replace with InexpensiveConstant with opcode.
163         // Can encode as immediate to an add.
164         right_op = t_reg2;
165         OpRegRegImm(kOpAdd, t_reg2, left_op, delta);
166       }
167     }
168 
169     // Load as constant.
170     if (!right_op.Valid()) {
171       LoadConstantNoClobber(t_reg2, false_val);
172       right_op = t_reg2;
173     }
174 
175     opcode = kA64Csel4rrrc;
176   }
177 
178   DCHECK(left_op.Valid() && right_op.Valid());
179   NewLIR4(is_wide ? WIDE(opcode) : opcode, rs_dest.GetReg(), left_op.GetReg(), right_op.GetReg(),
180       code);
181 }
182 
GenSelectConst32(RegStorage left_op,RegStorage right_op,ConditionCode code,int32_t true_val,int32_t false_val,RegStorage rs_dest,RegisterClass dest_reg_class)183 void Arm64Mir2Lir::GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
184                                     int32_t true_val, int32_t false_val, RegStorage rs_dest,
185                                     RegisterClass dest_reg_class) {
186   DCHECK(rs_dest.Valid());
187   OpRegReg(kOpCmp, left_op, right_op);
188   GenSelect(true_val, false_val, code, rs_dest, dest_reg_class);
189 }
190 
GenSelect(BasicBlock * bb,MIR * mir)191 void Arm64Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
192   UNUSED(bb);
193   RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
194   rl_src = LoadValue(rl_src, rl_src.ref ? kRefReg : kCoreReg);
195   // rl_src may be aliased with rl_result/rl_dest, so do compare early.
196   OpRegImm(kOpCmp, rl_src.reg, 0);
197 
198   RegLocation rl_dest = mir_graph_->GetDest(mir);
199 
200   // The kMirOpSelect has two variants, one for constants and one for moves.
201   if (mir->ssa_rep->num_uses == 1) {
202     RegLocation rl_result = EvalLoc(rl_dest, rl_dest.ref ? kRefReg : kCoreReg, true);
203     GenSelect(mir->dalvikInsn.vB, mir->dalvikInsn.vC, mir->meta.ccode, rl_result.reg,
204               rl_dest.ref ? kRefReg : kCoreReg);
205     StoreValue(rl_dest, rl_result);
206   } else {
207     RegLocation rl_true = mir_graph_->reg_location_[mir->ssa_rep->uses[1]];
208     RegLocation rl_false = mir_graph_->reg_location_[mir->ssa_rep->uses[2]];
209 
210     RegisterClass result_reg_class = rl_dest.ref ? kRefReg : kCoreReg;
211     rl_true = LoadValue(rl_true, result_reg_class);
212     rl_false = LoadValue(rl_false, result_reg_class);
213     RegLocation rl_result = EvalLoc(rl_dest, result_reg_class, true);
214 
215     bool is_wide = rl_dest.ref || rl_dest.wide;
216     int opcode = is_wide ? WIDE(kA64Csel4rrrc) : kA64Csel4rrrc;
217     NewLIR4(opcode, rl_result.reg.GetReg(),
218             rl_true.reg.GetReg(), rl_false.reg.GetReg(), ArmConditionEncoding(mir->meta.ccode));
219     StoreValue(rl_dest, rl_result);
220   }
221 }
222 
GenFusedLongCmpBranch(BasicBlock * bb,MIR * mir)223 void Arm64Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
224   RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
225   RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
226   LIR* taken = &block_label_list_[bb->taken];
227   LIR* not_taken = &block_label_list_[bb->fall_through];
228   // Normalize such that if either operand is constant, src2 will be constant.
229   ConditionCode ccode = mir->meta.ccode;
230   if (rl_src1.is_const) {
231     std::swap(rl_src1, rl_src2);
232     ccode = FlipComparisonOrder(ccode);
233   }
234 
235   rl_src1 = LoadValueWide(rl_src1, kCoreReg);
236 
237   if (rl_src2.is_const) {
238     // TODO: Optimize for rl_src1.is_const? (Does happen in the boot image at the moment.)
239 
240     int64_t val = mir_graph_->ConstantValueWide(rl_src2);
241     // Special handling using cbz & cbnz.
242     if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
243       OpCmpImmBranch(ccode, rl_src1.reg, 0, taken);
244       OpCmpImmBranch(NegateComparison(ccode), rl_src1.reg, 0, not_taken);
245       return;
246     }
247 
248     // Only handle Imm if src2 is not already in a register.
249     rl_src2 = UpdateLocWide(rl_src2);
250     if (rl_src2.location != kLocPhysReg) {
251       OpRegImm64(kOpCmp, rl_src1.reg, val);
252       OpCondBranch(ccode, taken);
253       OpCondBranch(NegateComparison(ccode), not_taken);
254       return;
255     }
256   }
257 
258   rl_src2 = LoadValueWide(rl_src2, kCoreReg);
259   OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
260   OpCondBranch(ccode, taken);
261   OpCondBranch(NegateComparison(ccode), not_taken);
262 }
263 
264 /*
265  * Generate a register comparison to an immediate and branch.  Caller
266  * is responsible for setting branch target field.
267  */
OpCmpImmBranch(ConditionCode cond,RegStorage reg,int check_value,LIR * target)268 LIR* Arm64Mir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
269                                   LIR* target) {
270   LIR* branch = nullptr;
271   ArmConditionCode arm_cond = ArmConditionEncoding(cond);
272   if (check_value == 0) {
273     if (arm_cond == kArmCondEq || arm_cond == kArmCondNe) {
274       A64Opcode opcode = (arm_cond == kArmCondEq) ? kA64Cbz2rt : kA64Cbnz2rt;
275       A64Opcode wide = reg.Is64Bit() ? WIDE(0) : UNWIDE(0);
276       branch = NewLIR2(opcode | wide, reg.GetReg(), 0);
277     } else if (arm_cond == kArmCondLs) {
278       // kArmCondLs is an unsigned less or equal. A comparison r <= 0 is then the same as cbz.
279       // This case happens for a bounds check of array[0].
280       A64Opcode opcode = kA64Cbz2rt;
281       A64Opcode wide = reg.Is64Bit() ? WIDE(0) : UNWIDE(0);
282       branch = NewLIR2(opcode | wide, reg.GetReg(), 0);
283     } else if (arm_cond == kArmCondLt || arm_cond == kArmCondGe) {
284       A64Opcode opcode = (arm_cond == kArmCondLt) ? kA64Tbnz3rht : kA64Tbz3rht;
285       A64Opcode wide = reg.Is64Bit() ? WIDE(0) : UNWIDE(0);
286       int value = reg.Is64Bit() ? 63 : 31;
287       branch = NewLIR3(opcode | wide, reg.GetReg(), value, 0);
288     }
289   }
290 
291   if (branch == nullptr) {
292     OpRegImm(kOpCmp, reg, check_value);
293     branch = NewLIR2(kA64B2ct, arm_cond, 0);
294   }
295 
296   branch->target = target;
297   return branch;
298 }
299 
OpCmpMemImmBranch(ConditionCode cond,RegStorage temp_reg,RegStorage base_reg,int offset,int check_value,LIR * target,LIR ** compare)300 LIR* Arm64Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg,
301                                      RegStorage base_reg, int offset, int check_value,
302                                      LIR* target, LIR** compare) {
303   DCHECK(compare == nullptr);
304   // It is possible that temp register is 64-bit. (ArgReg or RefReg)
305   // Always compare 32-bit value no matter what temp_reg is.
306   if (temp_reg.Is64Bit()) {
307     temp_reg = As32BitReg(temp_reg);
308   }
309   Load32Disp(base_reg, offset, temp_reg);
310   LIR* branch = OpCmpImmBranch(cond, temp_reg, check_value, target);
311   return branch;
312 }
313 
OpRegCopyNoInsert(RegStorage r_dest,RegStorage r_src)314 LIR* Arm64Mir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) {
315   bool dest_is_fp = r_dest.IsFloat();
316   bool src_is_fp = r_src.IsFloat();
317   A64Opcode opcode = kA64Brk1d;
318   LIR* res;
319 
320   if (LIKELY(dest_is_fp == src_is_fp)) {
321     if (LIKELY(!dest_is_fp)) {
322       DCHECK_EQ(r_dest.Is64Bit(), r_src.Is64Bit());
323 
324       // Core/core copy.
325       // Copies involving the sp register require a different instruction.
326       opcode = UNLIKELY(A64_REG_IS_SP(r_dest.GetReg())) ? kA64Add4RRdT : kA64Mov2rr;
327 
328       // TODO(Arm64): kA64Add4RRdT formally has 4 args, but is used as a 2 args instruction.
329       //   This currently works because the other arguments are set to 0 by default. We should
330       //   rather introduce an alias kA64Mov2RR.
331 
332       // core/core copy. Do a x/x copy only if both registers are x.
333       if (r_dest.Is64Bit() && r_src.Is64Bit()) {
334         opcode = WIDE(opcode);
335       }
336     } else {
337       // Float/float copy.
338       bool dest_is_double = r_dest.IsDouble();
339       bool src_is_double = r_src.IsDouble();
340 
341       // We do not do float/double or double/float casts here.
342       DCHECK_EQ(dest_is_double, src_is_double);
343 
344       // Homogeneous float/float copy.
345       opcode = (dest_is_double) ? WIDE(kA64Fmov2ff) : kA64Fmov2ff;
346     }
347   } else {
348     // Inhomogeneous register copy.
349     if (dest_is_fp) {
350       if (r_dest.IsDouble()) {
351         opcode = kA64Fmov2Sx;
352       } else {
353         r_src = Check32BitReg(r_src);
354         opcode = kA64Fmov2sw;
355       }
356     } else {
357       if (r_src.IsDouble()) {
358         opcode = kA64Fmov2xS;
359       } else {
360         r_dest = Check32BitReg(r_dest);
361         opcode = kA64Fmov2ws;
362       }
363     }
364   }
365 
366   res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
367 
368   if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
369     res->flags.is_nop = true;
370   }
371 
372   return res;
373 }
374 
OpRegCopy(RegStorage r_dest,RegStorage r_src)375 void Arm64Mir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) {
376   if (r_dest != r_src) {
377     LIR* res = OpRegCopyNoInsert(r_dest, r_src);
378     AppendLIR(res);
379   }
380 }
381 
OpRegCopyWide(RegStorage r_dest,RegStorage r_src)382 void Arm64Mir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) {
383   OpRegCopy(r_dest, r_src);
384 }
385 
386 // Table of magic divisors
387 struct MagicTable {
388   int magic64_base;
389   int magic64_eor;
390   uint64_t magic64;
391   uint32_t magic32;
392   uint32_t shift;
393   DividePattern pattern;
394 };
395 
396 static const MagicTable magic_table[] = {
397   {   0,      0,                  0,          0, 0, DivideNone},  // 0
398   {   0,      0,                  0,          0, 0, DivideNone},  // 1
399   {   0,      0,                  0,          0, 0, DivideNone},  // 2
400   {0x3c,     -1, 0x5555555555555556, 0x55555556, 0, Divide3},     // 3
401   {   0,      0,                  0,          0, 0, DivideNone},  // 4
402   {0xf9,     -1, 0x6666666666666667, 0x66666667, 1, Divide5},     // 5
403   {0x7c, 0x1041, 0x2AAAAAAAAAAAAAAB, 0x2AAAAAAB, 0, Divide3},     // 6
404   {  -1,     -1, 0x924924924924924A, 0x92492493, 2, Divide7},     // 7
405   {   0,      0,                  0,          0, 0, DivideNone},  // 8
406   {  -1,     -1, 0x38E38E38E38E38E4, 0x38E38E39, 1, Divide5},     // 9
407   {0xf9,     -1, 0x6666666666666667, 0x66666667, 2, Divide5},     // 10
408   {  -1,     -1, 0x2E8BA2E8BA2E8BA3, 0x2E8BA2E9, 1, Divide5},     // 11
409   {0x7c, 0x1041, 0x2AAAAAAAAAAAAAAB, 0x2AAAAAAB, 1, Divide5},     // 12
410   {  -1,     -1, 0x4EC4EC4EC4EC4EC5, 0x4EC4EC4F, 2, Divide5},     // 13
411   {  -1,     -1, 0x924924924924924A, 0x92492493, 3, Divide7},     // 14
412   {0x78,     -1, 0x8888888888888889, 0x88888889, 3, Divide7},     // 15
413 };
414 
415 // Integer division by constant via reciprocal multiply (Hacker's Delight, 10-4)
SmallLiteralDivRem(Instruction::Code dalvik_opcode,bool is_div,RegLocation rl_src,RegLocation rl_dest,int lit)416 bool Arm64Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
417                                       RegLocation rl_src, RegLocation rl_dest, int lit) {
418   UNUSED(dalvik_opcode);
419   if ((lit < 0) || (lit >= static_cast<int>(arraysize(magic_table)))) {
420     return false;
421   }
422   DividePattern pattern = magic_table[lit].pattern;
423   if (pattern == DivideNone) {
424     return false;
425   }
426   // Tuning: add rem patterns
427   if (!is_div) {
428     return false;
429   }
430 
431   RegStorage r_magic = AllocTemp();
432   LoadConstant(r_magic, magic_table[lit].magic32);
433   rl_src = LoadValue(rl_src, kCoreReg);
434   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
435   RegStorage r_long_mul = AllocTemp();
436   NewLIR3(kA64Smull3xww, As64BitReg(r_long_mul).GetReg(), r_magic.GetReg(), rl_src.reg.GetReg());
437   switch (pattern) {
438     case Divide3:
439       OpRegRegImm(kOpLsr, As64BitReg(r_long_mul), As64BitReg(r_long_mul), 32);
440       OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 31));
441       break;
442     case Divide5:
443       OpRegRegImm(kOpAsr, As64BitReg(r_long_mul), As64BitReg(r_long_mul),
444                   32 + magic_table[lit].shift);
445       OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 31));
446       break;
447     case Divide7:
448       OpRegRegRegShift(kOpAdd, As64BitReg(r_long_mul), As64BitReg(rl_src.reg),
449                        As64BitReg(r_long_mul), EncodeShift(kA64Lsr, 32));
450       OpRegRegImm(kOpAsr, r_long_mul, r_long_mul, magic_table[lit].shift);
451       OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 31));
452       break;
453     default:
454       LOG(FATAL) << "Unexpected pattern: " << pattern;
455   }
456   StoreValue(rl_dest, rl_result);
457   return true;
458 }
459 
SmallLiteralDivRem64(Instruction::Code dalvik_opcode,bool is_div,RegLocation rl_src,RegLocation rl_dest,int64_t lit)460 bool Arm64Mir2Lir::SmallLiteralDivRem64(Instruction::Code dalvik_opcode, bool is_div,
461                                         RegLocation rl_src, RegLocation rl_dest, int64_t lit) {
462   UNUSED(dalvik_opcode);
463   if ((lit < 0) || (lit >= static_cast<int>(arraysize(magic_table)))) {
464     return false;
465   }
466   DividePattern pattern = magic_table[lit].pattern;
467   if (pattern == DivideNone) {
468     return false;
469   }
470   // Tuning: add rem patterns
471   if (!is_div) {
472     return false;
473   }
474 
475   RegStorage r_magic = AllocTempWide();
476   rl_src = LoadValueWide(rl_src, kCoreReg);
477   RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
478   RegStorage r_long_mul = AllocTempWide();
479 
480   if (magic_table[lit].magic64_base >= 0) {
481     // Check that the entry in the table is correct.
482     if (kIsDebugBuild) {
483       uint64_t reconstructed_imm;
484       uint64_t base = DecodeLogicalImmediate(/*is_wide*/true, magic_table[lit].magic64_base);
485       if (magic_table[lit].magic64_eor >= 0) {
486         uint64_t eor = DecodeLogicalImmediate(/*is_wide*/true, magic_table[lit].magic64_eor);
487         reconstructed_imm = base ^ eor;
488       } else {
489         reconstructed_imm = base + 1;
490       }
491       DCHECK_EQ(reconstructed_imm, magic_table[lit].magic64) << " for literal " << lit;
492     }
493 
494     // Load the magic constant in two instructions.
495     NewLIR3(WIDE(kA64Orr3Rrl), r_magic.GetReg(), rxzr, magic_table[lit].magic64_base);
496     if (magic_table[lit].magic64_eor >= 0) {
497       NewLIR3(WIDE(kA64Eor3Rrl), r_magic.GetReg(), r_magic.GetReg(),
498               magic_table[lit].magic64_eor);
499     } else {
500       NewLIR4(WIDE(kA64Add4RRdT), r_magic.GetReg(), r_magic.GetReg(), 1, 0);
501     }
502   } else {
503     LoadConstantWide(r_magic, magic_table[lit].magic64);
504   }
505 
506   NewLIR3(kA64Smulh3xxx, r_long_mul.GetReg(), r_magic.GetReg(), rl_src.reg.GetReg());
507   switch (pattern) {
508     case Divide3:
509       OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 63));
510       break;
511     case Divide5:
512       OpRegRegImm(kOpAsr, r_long_mul, r_long_mul, magic_table[lit].shift);
513       OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 63));
514       break;
515     case Divide7:
516       OpRegRegReg(kOpAdd, r_long_mul, rl_src.reg, r_long_mul);
517       OpRegRegImm(kOpAsr, r_long_mul, r_long_mul, magic_table[lit].shift);
518       OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 63));
519       break;
520     default:
521       LOG(FATAL) << "Unexpected pattern: " << pattern;
522   }
523   StoreValueWide(rl_dest, rl_result);
524   return true;
525 }
526 
527 // Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
528 // and store the result in 'rl_dest'.
HandleEasyDivRem(Instruction::Code dalvik_opcode,bool is_div,RegLocation rl_src,RegLocation rl_dest,int lit)529 bool Arm64Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
530                                     RegLocation rl_src, RegLocation rl_dest, int lit) {
531   return HandleEasyDivRem64(dalvik_opcode, is_div, rl_src, rl_dest, static_cast<int>(lit));
532 }
533 
534 // Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
535 // and store the result in 'rl_dest'.
HandleEasyDivRem64(Instruction::Code dalvik_opcode,bool is_div,RegLocation rl_src,RegLocation rl_dest,int64_t lit)536 bool Arm64Mir2Lir::HandleEasyDivRem64(Instruction::Code dalvik_opcode, bool is_div,
537                                       RegLocation rl_src, RegLocation rl_dest, int64_t lit) {
538   const bool is_64bit = rl_dest.wide;
539   const int nbits = (is_64bit) ? 64 : 32;
540 
541   if (lit < 2) {
542     return false;
543   }
544   if (!IsPowerOfTwo(lit)) {
545     if (is_64bit) {
546       return SmallLiteralDivRem64(dalvik_opcode, is_div, rl_src, rl_dest, lit);
547     } else {
548       return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, static_cast<int32_t>(lit));
549     }
550   }
551   int k = CTZ(lit);
552   if (k >= nbits - 2) {
553     // Avoid special cases.
554     return false;
555   }
556 
557   RegLocation rl_result;
558   RegStorage t_reg;
559   if (is_64bit) {
560     rl_src = LoadValueWide(rl_src, kCoreReg);
561     rl_result = EvalLocWide(rl_dest, kCoreReg, true);
562     t_reg = AllocTempWide();
563   } else {
564     rl_src = LoadValue(rl_src, kCoreReg);
565     rl_result = EvalLoc(rl_dest, kCoreReg, true);
566     t_reg = AllocTemp();
567   }
568 
569   int shift = EncodeShift(kA64Lsr, nbits - k);
570   if (is_div) {
571     if (lit == 2) {
572       // Division by 2 is by far the most common division by constant.
573       OpRegRegRegShift(kOpAdd, t_reg, rl_src.reg, rl_src.reg, shift);
574       OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
575     } else {
576       OpRegRegImm(kOpAsr, t_reg, rl_src.reg, nbits - 1);
577       OpRegRegRegShift(kOpAdd, t_reg, rl_src.reg, t_reg, shift);
578       OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
579     }
580   } else {
581     if (lit == 2) {
582       OpRegRegRegShift(kOpAdd, t_reg, rl_src.reg, rl_src.reg, shift);
583       OpRegRegImm64(kOpAnd, t_reg, t_reg, lit - 1);
584       OpRegRegRegShift(kOpSub, rl_result.reg, t_reg, rl_src.reg, shift);
585     } else {
586       RegStorage t_reg2 = (is_64bit) ? AllocTempWide() : AllocTemp();
587       OpRegRegImm(kOpAsr, t_reg, rl_src.reg, nbits - 1);
588       OpRegRegRegShift(kOpAdd, t_reg2, rl_src.reg, t_reg, shift);
589       OpRegRegImm64(kOpAnd, t_reg2, t_reg2, lit - 1);
590       OpRegRegRegShift(kOpSub, rl_result.reg, t_reg2, t_reg, shift);
591     }
592   }
593 
594   if (is_64bit) {
595     StoreValueWide(rl_dest, rl_result);
596   } else {
597     StoreValue(rl_dest, rl_result);
598   }
599   return true;
600 }
601 
EasyMultiply(RegLocation rl_src,RegLocation rl_dest,int lit)602 bool Arm64Mir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
603   UNUSED(rl_src, rl_dest, lit);
604   LOG(FATAL) << "Unexpected use of EasyMultiply for Arm64";
605   UNREACHABLE();
606 }
607 
GenDivRemLit(RegLocation rl_dest,RegLocation rl_src1,int lit,bool is_div)608 RegLocation Arm64Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
609                                        bool is_div) {
610   UNUSED(rl_dest, rl_src1, lit, is_div);
611   LOG(FATAL) << "Unexpected use of GenDivRemLit for Arm64";
612   UNREACHABLE();
613 }
614 
GenDivRemLit(RegLocation rl_dest,RegStorage reg1,int lit,bool is_div)615 RegLocation Arm64Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg1, int lit, bool is_div) {
616   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
617 
618   // Put the literal in a temp.
619   RegStorage lit_temp = AllocTemp();
620   LoadConstant(lit_temp, lit);
621   // Use the generic case for div/rem with arg2 in a register.
622   // TODO: The literal temp can be freed earlier during a modulus to reduce reg pressure.
623   rl_result = GenDivRem(rl_result, reg1, lit_temp, is_div);
624   FreeTemp(lit_temp);
625 
626   return rl_result;
627 }
628 
GenDivRem(RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2,bool is_div,int flags)629 RegLocation Arm64Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
630                                     RegLocation rl_src2, bool is_div, int flags) {
631   UNUSED(rl_dest, rl_src1, rl_src2, is_div, flags);
632   LOG(FATAL) << "Unexpected use of GenDivRem for Arm64";
633   UNREACHABLE();
634 }
635 
GenDivRem(RegLocation rl_dest,RegStorage r_src1,RegStorage r_src2,bool is_div)636 RegLocation Arm64Mir2Lir::GenDivRem(RegLocation rl_dest, RegStorage r_src1, RegStorage r_src2,
637                                     bool is_div) {
638   CHECK_EQ(r_src1.Is64Bit(), r_src2.Is64Bit());
639 
640   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
641   if (is_div) {
642     OpRegRegReg(kOpDiv, rl_result.reg, r_src1, r_src2);
643   } else {
644     // temp = r_src1 / r_src2
645     // dest = r_src1 - temp * r_src2
646     RegStorage temp;
647     A64Opcode wide;
648     if (rl_result.reg.Is64Bit()) {
649       temp = AllocTempWide();
650       wide = WIDE(0);
651     } else {
652       temp = AllocTemp();
653       wide = UNWIDE(0);
654     }
655     OpRegRegReg(kOpDiv, temp, r_src1, r_src2);
656     NewLIR4(kA64Msub4rrrr | wide, rl_result.reg.GetReg(), temp.GetReg(),
657             r_src2.GetReg(), r_src1.GetReg());
658     FreeTemp(temp);
659   }
660   return rl_result;
661 }
662 
GenInlinedAbsInt(CallInfo * info)663 bool Arm64Mir2Lir::GenInlinedAbsInt(CallInfo* info) {
664   RegLocation rl_src = info->args[0];
665   rl_src = LoadValue(rl_src, kCoreReg);
666   RegLocation rl_dest = InlineTarget(info);
667   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
668 
669   // Compare the source value with zero. Write the negated value to the result if
670   // negative, otherwise write the original value.
671   OpRegImm(kOpCmp, rl_src.reg, 0);
672   NewLIR4(kA64Csneg4rrrc, rl_result.reg.GetReg(), rl_src.reg.GetReg(), rl_src.reg.GetReg(),
673           kArmCondPl);
674   StoreValue(rl_dest, rl_result);
675   return true;
676 }
677 
GenInlinedAbsLong(CallInfo * info)678 bool Arm64Mir2Lir::GenInlinedAbsLong(CallInfo* info) {
679   RegLocation rl_src = info->args[0];
680   rl_src = LoadValueWide(rl_src, kCoreReg);
681   RegLocation rl_dest = InlineTargetWide(info);
682   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
683 
684   // Compare the source value with zero. Write the negated value to the result if
685   // negative, otherwise write the original value.
686   OpRegImm(kOpCmp, rl_src.reg, 0);
687   NewLIR4(WIDE(kA64Csneg4rrrc), rl_result.reg.GetReg(), rl_src.reg.GetReg(),
688           rl_src.reg.GetReg(), kArmCondPl);
689   StoreValueWide(rl_dest, rl_result);
690   return true;
691 }
692 
GenInlinedMinMax(CallInfo * info,bool is_min,bool is_long)693 bool Arm64Mir2Lir::GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) {
694   DCHECK_EQ(cu_->instruction_set, kArm64);
695   RegLocation rl_src1 = info->args[0];
696   RegLocation rl_src2 = (is_long) ? info->args[2] : info->args[1];
697   rl_src1 = (is_long) ? LoadValueWide(rl_src1, kCoreReg) : LoadValue(rl_src1, kCoreReg);
698   rl_src2 = (is_long) ? LoadValueWide(rl_src2, kCoreReg) : LoadValue(rl_src2, kCoreReg);
699   RegLocation rl_dest = (is_long) ? InlineTargetWide(info) : InlineTarget(info);
700   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
701   OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
702   NewLIR4((is_long) ? WIDE(kA64Csel4rrrc) : kA64Csel4rrrc, rl_result.reg.GetReg(),
703           rl_src1.reg.GetReg(), rl_src2.reg.GetReg(), (is_min) ? kArmCondLt : kArmCondGt);
704   (is_long) ?  StoreValueWide(rl_dest, rl_result) :StoreValue(rl_dest, rl_result);
705   return true;
706 }
707 
GenInlinedPeek(CallInfo * info,OpSize size)708 bool Arm64Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
709   RegLocation rl_src_address = info->args[0];  // long address
710   RegLocation rl_dest = (size == k64) ? InlineTargetWide(info) : InlineTarget(info);
711   RegLocation rl_address = LoadValueWide(rl_src_address, kCoreReg);
712   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
713 
714   LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size, kNotVolatile);
715   if (size == k64) {
716     StoreValueWide(rl_dest, rl_result);
717   } else {
718     DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
719     StoreValue(rl_dest, rl_result);
720   }
721   return true;
722 }
723 
GenInlinedPoke(CallInfo * info,OpSize size)724 bool Arm64Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
725   RegLocation rl_src_address = info->args[0];  // long address
726   RegLocation rl_src_value = info->args[2];  // [size] value
727   RegLocation rl_address = LoadValueWide(rl_src_address, kCoreReg);
728 
729   RegLocation rl_value;
730   if (size == k64) {
731     rl_value = LoadValueWide(rl_src_value, kCoreReg);
732   } else {
733     DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
734     rl_value = LoadValue(rl_src_value, kCoreReg);
735   }
736   StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size, kNotVolatile);
737   return true;
738 }
739 
GenInlinedCas(CallInfo * info,bool is_long,bool is_object)740 bool Arm64Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
741   DCHECK_EQ(cu_->instruction_set, kArm64);
742   // Unused - RegLocation rl_src_unsafe = info->args[0];
743   RegLocation rl_src_obj = info->args[1];  // Object - known non-null
744   RegLocation rl_src_offset = info->args[2];  // long low
745   RegLocation rl_src_expected = info->args[4];  // int, long or Object
746   // If is_long, high half is in info->args[5]
747   RegLocation rl_src_new_value = info->args[is_long ? 6 : 5];  // int, long or Object
748   // If is_long, high half is in info->args[7]
749   RegLocation rl_dest = InlineTarget(info);  // boolean place for result
750 
751   // Load Object and offset
752   RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
753   RegLocation rl_offset = LoadValueWide(rl_src_offset, kCoreReg);
754 
755   RegLocation rl_new_value;
756   RegLocation rl_expected;
757   if (is_long) {
758     rl_new_value = LoadValueWide(rl_src_new_value, kCoreReg);
759     rl_expected = LoadValueWide(rl_src_expected, kCoreReg);
760   } else {
761     rl_new_value = LoadValue(rl_src_new_value, is_object ? kRefReg : kCoreReg);
762     rl_expected = LoadValue(rl_src_expected, is_object ? kRefReg : kCoreReg);
763   }
764 
765   if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
766     // Mark card for object assuming new value is stored.
767     MarkGCCard(0, rl_new_value.reg, rl_object.reg);
768   }
769 
770   RegStorage r_ptr = AllocTempRef();
771   OpRegRegReg(kOpAdd, r_ptr, rl_object.reg, rl_offset.reg);
772 
773   // Free now unneeded rl_object and rl_offset to give more temps.
774   ClobberSReg(rl_object.s_reg_low);
775   FreeTemp(rl_object.reg);
776   ClobberSReg(rl_offset.s_reg_low);
777   FreeTemp(rl_offset.reg);
778 
779   // do {
780   //   tmp = [r_ptr] - expected;
781   // } while (tmp == 0 && failure([r_ptr] <- r_new_value));
782   // result = tmp != 0;
783 
784   RegStorage r_tmp;
785   RegStorage r_tmp_stored;
786   RegStorage rl_new_value_stored = rl_new_value.reg;
787   A64Opcode wide = UNWIDE(0);
788   if (is_long) {
789     r_tmp_stored = r_tmp = AllocTempWide();
790     wide = WIDE(0);
791   } else if (is_object) {
792     // References use 64-bit registers, but are stored as compressed 32-bit values.
793     // This means r_tmp_stored != r_tmp.
794     r_tmp = AllocTempRef();
795     r_tmp_stored = As32BitReg(r_tmp);
796     rl_new_value_stored = As32BitReg(rl_new_value_stored);
797   } else {
798     r_tmp_stored = r_tmp = AllocTemp();
799   }
800 
801   RegStorage r_tmp32 = (r_tmp.Is32Bit()) ? r_tmp : As32BitReg(r_tmp);
802   LIR* loop = NewLIR0(kPseudoTargetLabel);
803   NewLIR2(kA64Ldaxr2rX | wide, r_tmp_stored.GetReg(), r_ptr.GetReg());
804   OpRegReg(kOpCmp, r_tmp, rl_expected.reg);
805   DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
806   LIR* early_exit = OpCondBranch(kCondNe, nullptr);
807   NewLIR3(kA64Stlxr3wrX | wide, r_tmp32.GetReg(), rl_new_value_stored.GetReg(), r_ptr.GetReg());
808   NewLIR3(kA64Cmp3RdT, r_tmp32.GetReg(), 0, ENCODE_NO_SHIFT);
809   DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
810   OpCondBranch(kCondNe, loop);
811 
812   LIR* exit_loop = NewLIR0(kPseudoTargetLabel);
813   early_exit->target = exit_loop;
814 
815   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
816   NewLIR4(kA64Csinc4rrrc, rl_result.reg.GetReg(), rwzr, rwzr, kArmCondNe);
817 
818   FreeTemp(r_tmp);  // Now unneeded.
819   FreeTemp(r_ptr);  // Now unneeded.
820 
821   StoreValue(rl_dest, rl_result);
822 
823   return true;
824 }
825 
GenInlinedArrayCopyCharArray(CallInfo * info)826 bool Arm64Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
827   constexpr int kLargeArrayThreshold = 512;
828 
829   RegLocation rl_src = info->args[0];
830   RegLocation rl_src_pos = info->args[1];
831   RegLocation rl_dst = info->args[2];
832   RegLocation rl_dst_pos = info->args[3];
833   RegLocation rl_length = info->args[4];
834   // Compile time check, handle exception by non-inline method to reduce related meta-data.
835   if ((rl_src_pos.is_const && (mir_graph_->ConstantValue(rl_src_pos) < 0)) ||
836       (rl_dst_pos.is_const && (mir_graph_->ConstantValue(rl_dst_pos) < 0)) ||
837       (rl_length.is_const && (mir_graph_->ConstantValue(rl_length) < 0))) {
838     return false;
839   }
840 
841   ClobberCallerSave();
842   LockCallTemps();  // Prepare for explicit register usage.
843   RegStorage rs_src = rs_x0;
844   RegStorage rs_dst = rs_x1;
845   LoadValueDirectFixed(rl_src, rs_src);
846   LoadValueDirectFixed(rl_dst, rs_dst);
847 
848   // Handle null pointer exception in slow-path.
849   LIR* src_check_branch = OpCmpImmBranch(kCondEq, rs_src, 0, nullptr);
850   LIR* dst_check_branch = OpCmpImmBranch(kCondEq, rs_dst, 0, nullptr);
851   // Handle potential overlapping in slow-path.
852   // TUNING: Support overlapping cases.
853   LIR* src_dst_same = OpCmpBranch(kCondEq, rs_src, rs_dst, nullptr);
854   // Handle exception or big length in slow-path.
855   RegStorage rs_length = rs_w2;
856   LoadValueDirectFixed(rl_length, rs_length);
857   LIR* len_neg_or_too_big = OpCmpImmBranch(kCondHi, rs_length, kLargeArrayThreshold, nullptr);
858   // Src bounds check.
859   RegStorage rs_src_pos = rs_w3;
860   RegStorage rs_arr_length = rs_w4;
861   LoadValueDirectFixed(rl_src_pos, rs_src_pos);
862   LIR* src_pos_negative = OpCmpImmBranch(kCondLt, rs_src_pos, 0, nullptr);
863   Load32Disp(rs_src, mirror::Array::LengthOffset().Int32Value(), rs_arr_length);
864   OpRegReg(kOpSub, rs_arr_length, rs_src_pos);
865   LIR* src_bad_len = OpCmpBranch(kCondLt, rs_arr_length, rs_length, nullptr);
866   // Dst bounds check.
867   RegStorage rs_dst_pos = rs_w5;
868   LoadValueDirectFixed(rl_dst_pos, rs_dst_pos);
869   LIR* dst_pos_negative = OpCmpImmBranch(kCondLt, rs_dst_pos, 0, nullptr);
870   Load32Disp(rs_dst, mirror::Array::LengthOffset().Int32Value(), rs_arr_length);
871   OpRegReg(kOpSub, rs_arr_length, rs_dst_pos);
872   LIR* dst_bad_len = OpCmpBranch(kCondLt, rs_arr_length, rs_length, nullptr);
873 
874   // Everything is checked now.
875   // Set rs_src to the address of the first element to be copied.
876   rs_src_pos = As64BitReg(rs_src_pos);
877   OpRegImm(kOpAdd, rs_src, mirror::Array::DataOffset(2).Int32Value());
878   OpRegRegImm(kOpLsl, rs_src_pos, rs_src_pos, 1);
879   OpRegReg(kOpAdd, rs_src, rs_src_pos);
880   // Set rs_src to the address of the first element to be copied.
881   rs_dst_pos = As64BitReg(rs_dst_pos);
882   OpRegImm(kOpAdd, rs_dst, mirror::Array::DataOffset(2).Int32Value());
883   OpRegRegImm(kOpLsl, rs_dst_pos, rs_dst_pos, 1);
884   OpRegReg(kOpAdd, rs_dst, rs_dst_pos);
885 
886   // rs_arr_length won't be not used anymore.
887   RegStorage rs_tmp = rs_arr_length;
888   // Use 64-bit view since rs_length will be used as index.
889   rs_length = As64BitReg(rs_length);
890   OpRegRegImm(kOpLsl, rs_length, rs_length, 1);
891 
892   // Copy one element.
893   LIR* jmp_to_copy_two = NewLIR3(WIDE(kA64Tbz3rht), rs_length.GetReg(), 1, 0);
894   OpRegImm(kOpSub, rs_length, 2);
895   LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, kSignedHalf);
896   StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, kSignedHalf);
897 
898   // Copy two elements.
899   LIR *copy_two = NewLIR0(kPseudoTargetLabel);
900   LIR* jmp_to_copy_four = NewLIR3(WIDE(kA64Tbz3rht), rs_length.GetReg(), 2, 0);
901   OpRegImm(kOpSub, rs_length, 4);
902   LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, k32);
903   StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, k32);
904 
905   // Copy four elements.
906   LIR *copy_four = NewLIR0(kPseudoTargetLabel);
907   LIR* jmp_to_ret = OpCmpImmBranch(kCondEq, rs_length, 0, nullptr);
908   LIR *begin_loop = NewLIR0(kPseudoTargetLabel);
909   OpRegImm(kOpSub, rs_length, 8);
910   rs_tmp = As64BitReg(rs_tmp);
911   LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, k64);
912   StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, k64);
913   LIR* jmp_to_loop = OpCmpImmBranch(kCondNe, rs_length, 0, nullptr);
914   LIR* loop_finished = OpUnconditionalBranch(nullptr);
915 
916   LIR *check_failed = NewLIR0(kPseudoTargetLabel);
917   LIR* launchpad_branch = OpUnconditionalBranch(nullptr);
918   LIR* return_point = NewLIR0(kPseudoTargetLabel);
919 
920   src_check_branch->target = check_failed;
921   dst_check_branch->target = check_failed;
922   src_dst_same->target = check_failed;
923   len_neg_or_too_big->target = check_failed;
924   src_pos_negative->target = check_failed;
925   src_bad_len->target = check_failed;
926   dst_pos_negative->target = check_failed;
927   dst_bad_len->target = check_failed;
928   jmp_to_copy_two->target = copy_two;
929   jmp_to_copy_four->target = copy_four;
930   jmp_to_ret->target = return_point;
931   jmp_to_loop->target = begin_loop;
932   loop_finished->target = return_point;
933 
934   AddIntrinsicSlowPath(info, launchpad_branch, return_point);
935   ClobberCallerSave();  // We must clobber everything because slow path will return here
936 
937   return true;
938 }
939 
OpPcRelLoad(RegStorage reg,LIR * target)940 void Arm64Mir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) {
941   ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
942   LIR* lir = NewLIR2(kA64Ldr2rp, As32BitReg(reg).GetReg(), 0);
943   lir->target = target;
944 }
945 
CanUseOpPcRelDexCacheArrayLoad() const946 bool Arm64Mir2Lir::CanUseOpPcRelDexCacheArrayLoad() const {
947   return dex_cache_arrays_layout_.Valid();
948 }
949 
OpPcRelDexCacheArrayLoad(const DexFile * dex_file,int offset,RegStorage r_dest,bool wide)950 void Arm64Mir2Lir::OpPcRelDexCacheArrayLoad(const DexFile* dex_file, int offset, RegStorage r_dest,
951                                             bool wide) {
952   LIR* adrp = NewLIR2(kA64Adrp2xd, r_dest.GetReg(), 0);
953   adrp->operands[2] = WrapPointer(dex_file);
954   adrp->operands[3] = offset;
955   adrp->operands[4] = WrapPointer(adrp);
956   dex_cache_access_insns_.push_back(adrp);
957   if (wide) {
958     DCHECK(r_dest.Is64Bit());
959   }
960   LIR* ldr = LoadBaseDisp(r_dest, 0, r_dest, wide ? k64 : kReference, kNotVolatile);
961   ldr->operands[4] = adrp->operands[4];
962   ldr->flags.fixup = kFixupLabel;
963   dex_cache_access_insns_.push_back(ldr);
964 }
965 
OpVldm(RegStorage r_base,int count)966 LIR* Arm64Mir2Lir::OpVldm(RegStorage r_base, int count) {
967   UNUSED(r_base, count);
968   LOG(FATAL) << "Unexpected use of OpVldm for Arm64";
969   UNREACHABLE();
970 }
971 
OpVstm(RegStorage r_base,int count)972 LIR* Arm64Mir2Lir::OpVstm(RegStorage r_base, int count) {
973   UNUSED(r_base, count);
974   LOG(FATAL) << "Unexpected use of OpVstm for Arm64";
975   UNREACHABLE();
976 }
977 
GenMaddMsubInt(RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2,RegLocation rl_src3,bool is_sub)978 void Arm64Mir2Lir::GenMaddMsubInt(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
979                                   RegLocation rl_src3, bool is_sub) {
980   rl_src1 = LoadValue(rl_src1, kCoreReg);
981   rl_src2 = LoadValue(rl_src2, kCoreReg);
982   rl_src3 = LoadValue(rl_src3, kCoreReg);
983   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
984   NewLIR4(is_sub ? kA64Msub4rrrr : kA64Madd4rrrr, rl_result.reg.GetReg(), rl_src1.reg.GetReg(),
985           rl_src2.reg.GetReg(), rl_src3.reg.GetReg());
986   StoreValue(rl_dest, rl_result);
987 }
988 
GenMaddMsubLong(RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2,RegLocation rl_src3,bool is_sub)989 void Arm64Mir2Lir::GenMaddMsubLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
990                                    RegLocation rl_src3, bool is_sub) {
991   rl_src1 = LoadValueWide(rl_src1, kCoreReg);
992   rl_src2 = LoadValueWide(rl_src2, kCoreReg);
993   rl_src3 = LoadValueWide(rl_src3, kCoreReg);
994   RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
995   NewLIR4(is_sub ? WIDE(kA64Msub4rrrr) : WIDE(kA64Madd4rrrr), rl_result.reg.GetReg(),
996           rl_src1.reg.GetReg(), rl_src2.reg.GetReg(), rl_src3.reg.GetReg());
997   StoreValueWide(rl_dest, rl_result);
998 }
999 
GenMultiplyByTwoBitMultiplier(RegLocation rl_src,RegLocation rl_result,int lit ATTRIBUTE_UNUSED,int first_bit,int second_bit)1000 void Arm64Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
1001                                                  RegLocation rl_result, int lit ATTRIBUTE_UNUSED,
1002                                                  int first_bit, int second_bit) {
1003   OpRegRegRegShift(kOpAdd, rl_result.reg, rl_src.reg, rl_src.reg,
1004                    EncodeShift(kA64Lsl, second_bit - first_bit));
1005   if (first_bit != 0) {
1006     OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit);
1007   }
1008 }
1009 
GenDivZeroCheckWide(RegStorage reg ATTRIBUTE_UNUSED)1010 void Arm64Mir2Lir::GenDivZeroCheckWide(RegStorage reg ATTRIBUTE_UNUSED) {
1011   LOG(FATAL) << "Unexpected use of GenDivZero for Arm64";
1012 }
1013 
1014 // Test suspend flag, return target of taken suspend branch
OpTestSuspend(LIR * target)1015 LIR* Arm64Mir2Lir::OpTestSuspend(LIR* target) {
1016   RegStorage r_tmp = AllocTemp();
1017   LoadBaseDisp(rs_xSELF, Thread::ThreadFlagsOffset<kArm64PointerSize>().Int32Value(), r_tmp,
1018       kUnsignedHalf, kNotVolatile);
1019   LIR* cmp_branch = OpCmpImmBranch(target == nullptr ? kCondNe: kCondEq, r_tmp, 0, target);
1020   FreeTemp(r_tmp);
1021   return cmp_branch;
1022 }
1023 
1024 // Decrement register and branch on condition
OpDecAndBranch(ConditionCode c_code,RegStorage reg,LIR * target)1025 LIR* Arm64Mir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) {
1026   // Combine sub & test using sub setflags encoding here.  We need to make sure a
1027   // subtract form that sets carry is used, so generate explicitly.
1028   // TODO: might be best to add a new op, kOpSubs, and handle it generically.
1029   A64Opcode opcode = reg.Is64Bit() ? WIDE(kA64Subs3rRd) : UNWIDE(kA64Subs3rRd);
1030   NewLIR3(opcode, reg.GetReg(), reg.GetReg(), 1);  // For value == 1, this should set flags.
1031   DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
1032   return OpCondBranch(c_code, target);
1033 }
1034 
GenMemBarrier(MemBarrierKind barrier_kind)1035 bool Arm64Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
1036   if (!cu_->compiler_driver->GetInstructionSetFeatures()->IsSmp()) {
1037     return false;
1038   }
1039   // Start off with using the last LIR as the barrier. If it is not enough, then we will generate one.
1040   LIR* barrier = last_lir_insn_;
1041 
1042   int dmb_flavor;
1043   // TODO: revisit Arm barrier kinds
1044   switch (barrier_kind) {
1045     case kAnyStore: dmb_flavor = kISH; break;
1046     case kLoadAny: dmb_flavor = kISH; break;
1047         // We conjecture that kISHLD is insufficient.  It is documented
1048         // to provide LoadLoad | StoreStore ordering.  But if this were used
1049         // to implement volatile loads, we suspect that the lack of store
1050         // atomicity on ARM would cause us to allow incorrect results for
1051         // the canonical IRIW example.  But we're not sure.
1052         // We should be using acquire loads instead.
1053     case kStoreStore: dmb_flavor = kISHST; break;
1054     case kAnyAny: dmb_flavor = kISH; break;
1055     default:
1056       LOG(FATAL) << "Unexpected MemBarrierKind: " << barrier_kind;
1057       dmb_flavor = kSY;  // quiet gcc.
1058       break;
1059   }
1060 
1061   bool ret = false;
1062 
1063   // If the same barrier already exists, don't generate another.
1064   if (barrier == nullptr
1065       || (barrier->opcode != kA64Dmb1B || barrier->operands[0] != dmb_flavor)) {
1066     barrier = NewLIR1(kA64Dmb1B, dmb_flavor);
1067     ret = true;
1068   }
1069 
1070   // At this point we must have a memory barrier. Mark it as a scheduling barrier as well.
1071   DCHECK(!barrier->flags.use_def_invalid);
1072   barrier->u.m.def_mask = &kEncodeAll;
1073   return ret;
1074 }
1075 
GenIntToLong(RegLocation rl_dest,RegLocation rl_src)1076 void Arm64Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
1077   RegLocation rl_result;
1078 
1079   rl_src = LoadValue(rl_src, kCoreReg);
1080   rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1081   NewLIR4(WIDE(kA64Sbfm4rrdd), rl_result.reg.GetReg(), As64BitReg(rl_src.reg).GetReg(), 0, 31);
1082   StoreValueWide(rl_dest, rl_result);
1083 }
1084 
GenDivRemLong(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2,bool is_div,int flags)1085 void Arm64Mir2Lir::GenDivRemLong(Instruction::Code opcode, RegLocation rl_dest,
1086                                  RegLocation rl_src1, RegLocation rl_src2, bool is_div, int flags) {
1087   if (rl_src2.is_const) {
1088     DCHECK(rl_src2.wide);
1089     int64_t lit = mir_graph_->ConstantValueWide(rl_src2);
1090     if (HandleEasyDivRem64(opcode, is_div, rl_src1, rl_dest, lit)) {
1091       return;
1092     }
1093   }
1094 
1095   RegLocation rl_result;
1096   rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1097   rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1098   if ((flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) {
1099     GenDivZeroCheck(rl_src2.reg);
1100   }
1101   rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, is_div);
1102   StoreValueWide(rl_dest, rl_result);
1103 }
1104 
GenLongOp(OpKind op,RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2)1105 void Arm64Mir2Lir::GenLongOp(OpKind op, RegLocation rl_dest, RegLocation rl_src1,
1106                              RegLocation rl_src2) {
1107   RegLocation rl_result;
1108 
1109   rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1110   rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1111   rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1112   OpRegRegRegShift(op, rl_result.reg, rl_src1.reg, rl_src2.reg, ENCODE_NO_SHIFT);
1113   StoreValueWide(rl_dest, rl_result);
1114 }
1115 
GenNegLong(RegLocation rl_dest,RegLocation rl_src)1116 void Arm64Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
1117   RegLocation rl_result;
1118 
1119   rl_src = LoadValueWide(rl_src, kCoreReg);
1120   rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1121   OpRegRegShift(kOpNeg, rl_result.reg, rl_src.reg, ENCODE_NO_SHIFT);
1122   StoreValueWide(rl_dest, rl_result);
1123 }
1124 
GenNotLong(RegLocation rl_dest,RegLocation rl_src)1125 void Arm64Mir2Lir::GenNotLong(RegLocation rl_dest, RegLocation rl_src) {
1126   RegLocation rl_result;
1127 
1128   rl_src = LoadValueWide(rl_src, kCoreReg);
1129   rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1130   OpRegRegShift(kOpMvn, rl_result.reg, rl_src.reg, ENCODE_NO_SHIFT);
1131   StoreValueWide(rl_dest, rl_result);
1132 }
1133 
GenArithOpLong(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2,int flags)1134 void Arm64Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
1135                                   RegLocation rl_src1, RegLocation rl_src2, int flags) {
1136   switch (opcode) {
1137     case Instruction::NOT_LONG:
1138       GenNotLong(rl_dest, rl_src2);
1139       return;
1140     case Instruction::ADD_LONG:
1141     case Instruction::ADD_LONG_2ADDR:
1142       GenLongOp(kOpAdd, rl_dest, rl_src1, rl_src2);
1143       return;
1144     case Instruction::SUB_LONG:
1145     case Instruction::SUB_LONG_2ADDR:
1146       GenLongOp(kOpSub, rl_dest, rl_src1, rl_src2);
1147       return;
1148     case Instruction::MUL_LONG:
1149     case Instruction::MUL_LONG_2ADDR:
1150       GenLongOp(kOpMul, rl_dest, rl_src1, rl_src2);
1151       return;
1152     case Instruction::DIV_LONG:
1153     case Instruction::DIV_LONG_2ADDR:
1154       GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ true, flags);
1155       return;
1156     case Instruction::REM_LONG:
1157     case Instruction::REM_LONG_2ADDR:
1158       GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ false, flags);
1159       return;
1160     case Instruction::AND_LONG_2ADDR:
1161     case Instruction::AND_LONG:
1162       GenLongOp(kOpAnd, rl_dest, rl_src1, rl_src2);
1163       return;
1164     case Instruction::OR_LONG:
1165     case Instruction::OR_LONG_2ADDR:
1166       GenLongOp(kOpOr, rl_dest, rl_src1, rl_src2);
1167       return;
1168     case Instruction::XOR_LONG:
1169     case Instruction::XOR_LONG_2ADDR:
1170       GenLongOp(kOpXor, rl_dest, rl_src1, rl_src2);
1171       return;
1172     case Instruction::NEG_LONG: {
1173       GenNegLong(rl_dest, rl_src2);
1174       return;
1175     }
1176     default:
1177       LOG(FATAL) << "Invalid long arith op";
1178       return;
1179   }
1180 }
1181 
1182 /*
1183  * Generate array load
1184  */
GenArrayGet(int opt_flags,OpSize size,RegLocation rl_array,RegLocation rl_index,RegLocation rl_dest,int scale)1185 void Arm64Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1186                              RegLocation rl_index, RegLocation rl_dest, int scale) {
1187   RegisterClass reg_class = RegClassBySize(size);
1188   int len_offset = mirror::Array::LengthOffset().Int32Value();
1189   int data_offset;
1190   RegLocation rl_result;
1191   bool constant_index = rl_index.is_const;
1192   rl_array = LoadValue(rl_array, kRefReg);
1193   if (!constant_index) {
1194     rl_index = LoadValue(rl_index, kCoreReg);
1195   }
1196 
1197   if (rl_dest.wide) {
1198     data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1199   } else {
1200     data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1201   }
1202 
1203   /* null object? */
1204   GenNullCheck(rl_array.reg, opt_flags);
1205 
1206   bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
1207   RegStorage reg_len;
1208   if (needs_range_check) {
1209     reg_len = AllocTemp();
1210     /* Get len */
1211     Load32Disp(rl_array.reg, len_offset, reg_len);
1212     MarkPossibleNullPointerException(opt_flags);
1213   } else {
1214     ForceImplicitNullCheck(rl_array.reg, opt_flags);
1215   }
1216   if (constant_index) {
1217     rl_result = EvalLoc(rl_dest, reg_class, true);
1218 
1219     if (needs_range_check) {
1220       GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len);
1221       FreeTemp(reg_len);
1222     }
1223     // Fold the constant index into the data offset.
1224     data_offset += mir_graph_->ConstantValue(rl_index) << scale;
1225     if (rl_result.ref) {
1226       LoadRefDisp(rl_array.reg, data_offset, rl_result.reg, kNotVolatile);
1227     } else {
1228       LoadBaseDisp(rl_array.reg, data_offset, rl_result.reg, size, kNotVolatile);
1229     }
1230   } else {
1231     // Offset base, then use indexed load.
1232     RegStorage reg_ptr = AllocTempRef();
1233     OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset);
1234     FreeTemp(rl_array.reg);
1235     rl_result = EvalLoc(rl_dest, reg_class, true);
1236 
1237     if (needs_range_check) {
1238       GenArrayBoundsCheck(rl_index.reg, reg_len);
1239       FreeTemp(reg_len);
1240     }
1241     if (rl_result.ref) {
1242       LoadRefIndexed(reg_ptr, rl_index.reg, rl_result.reg, scale);
1243     } else {
1244       LoadBaseIndexed(reg_ptr, rl_index.reg, rl_result.reg, scale, size);
1245     }
1246     FreeTemp(reg_ptr);
1247   }
1248   if (rl_dest.wide) {
1249     StoreValueWide(rl_dest, rl_result);
1250   } else {
1251     StoreValue(rl_dest, rl_result);
1252   }
1253 }
1254 
1255 /*
1256  * Generate array store
1257  *
1258  */
GenArrayPut(int opt_flags,OpSize size,RegLocation rl_array,RegLocation rl_index,RegLocation rl_src,int scale,bool card_mark)1259 void Arm64Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1260                              RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
1261   RegisterClass reg_class = RegClassBySize(size);
1262   int len_offset = mirror::Array::LengthOffset().Int32Value();
1263   bool constant_index = rl_index.is_const;
1264 
1265   int data_offset;
1266   if (size == k64 || size == kDouble) {
1267     data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1268   } else {
1269     data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1270   }
1271 
1272   rl_array = LoadValue(rl_array, kRefReg);
1273   if (!constant_index) {
1274     rl_index = LoadValue(rl_index, kCoreReg);
1275   }
1276 
1277   RegStorage reg_ptr;
1278   bool allocated_reg_ptr_temp = false;
1279   if (constant_index) {
1280     reg_ptr = rl_array.reg;
1281   } else if (IsTemp(rl_array.reg) && !card_mark) {
1282     Clobber(rl_array.reg);
1283     reg_ptr = rl_array.reg;
1284   } else {
1285     allocated_reg_ptr_temp = true;
1286     reg_ptr = AllocTempRef();
1287   }
1288 
1289   /* null object? */
1290   GenNullCheck(rl_array.reg, opt_flags);
1291 
1292   bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
1293   RegStorage reg_len;
1294   if (needs_range_check) {
1295     reg_len = AllocTemp();
1296     // NOTE: max live temps(4) here.
1297     /* Get len */
1298     Load32Disp(rl_array.reg, len_offset, reg_len);
1299     MarkPossibleNullPointerException(opt_flags);
1300   } else {
1301     ForceImplicitNullCheck(rl_array.reg, opt_flags);
1302   }
1303   /* at this point, reg_ptr points to array, 2 live temps */
1304   if (rl_src.wide) {
1305     rl_src = LoadValueWide(rl_src, reg_class);
1306   } else {
1307     rl_src = LoadValue(rl_src, reg_class);
1308   }
1309   if (constant_index) {
1310     if (needs_range_check) {
1311       GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len);
1312       FreeTemp(reg_len);
1313     }
1314     // Fold the constant index into the data offset.
1315     data_offset += mir_graph_->ConstantValue(rl_index) << scale;
1316     if (rl_src.ref) {
1317       StoreRefDisp(reg_ptr, data_offset, rl_src.reg, kNotVolatile);
1318     } else {
1319       StoreBaseDisp(reg_ptr, data_offset, rl_src.reg, size, kNotVolatile);
1320     }
1321   } else {
1322     /* reg_ptr -> array data */
1323     OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset);
1324     if (needs_range_check) {
1325       GenArrayBoundsCheck(rl_index.reg, reg_len);
1326       FreeTemp(reg_len);
1327     }
1328     if (rl_src.ref) {
1329       StoreRefIndexed(reg_ptr, rl_index.reg, rl_src.reg, scale);
1330     } else {
1331       StoreBaseIndexed(reg_ptr, rl_index.reg, rl_src.reg, scale, size);
1332     }
1333   }
1334   if (allocated_reg_ptr_temp) {
1335     FreeTemp(reg_ptr);
1336   }
1337   if (card_mark) {
1338     MarkGCCard(opt_flags, rl_src.reg, rl_array.reg);
1339   }
1340 }
1341 
GenShiftImmOpLong(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src,RegLocation rl_shift,int flags ATTRIBUTE_UNUSED)1342 void Arm64Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode,
1343                                      RegLocation rl_dest, RegLocation rl_src, RegLocation rl_shift,
1344                                      int flags ATTRIBUTE_UNUSED) {
1345   OpKind op = kOpBkpt;
1346   // Per spec, we only care about low 6 bits of shift amount.
1347   int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1348   rl_src = LoadValueWide(rl_src, kCoreReg);
1349   if (shift_amount == 0) {
1350     StoreValueWide(rl_dest, rl_src);
1351     return;
1352   }
1353 
1354   RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1355   switch (opcode) {
1356     case Instruction::SHL_LONG:
1357     case Instruction::SHL_LONG_2ADDR:
1358       op = kOpLsl;
1359       break;
1360     case Instruction::SHR_LONG:
1361     case Instruction::SHR_LONG_2ADDR:
1362       op = kOpAsr;
1363       break;
1364     case Instruction::USHR_LONG:
1365     case Instruction::USHR_LONG_2ADDR:
1366       op = kOpLsr;
1367       break;
1368     default:
1369       LOG(FATAL) << "Unexpected case";
1370   }
1371   OpRegRegImm(op, rl_result.reg, rl_src.reg, shift_amount);
1372   StoreValueWide(rl_dest, rl_result);
1373 }
1374 
GenArithImmOpLong(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2,int flags)1375 void Arm64Mir2Lir::GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1376                                      RegLocation rl_src1, RegLocation rl_src2, int flags) {
1377   OpKind op = kOpBkpt;
1378   switch (opcode) {
1379     case Instruction::ADD_LONG:
1380     case Instruction::ADD_LONG_2ADDR:
1381       op = kOpAdd;
1382       break;
1383     case Instruction::SUB_LONG:
1384     case Instruction::SUB_LONG_2ADDR:
1385       op = kOpSub;
1386       break;
1387     case Instruction::AND_LONG:
1388     case Instruction::AND_LONG_2ADDR:
1389       op = kOpAnd;
1390       break;
1391     case Instruction::OR_LONG:
1392     case Instruction::OR_LONG_2ADDR:
1393       op = kOpOr;
1394       break;
1395     case Instruction::XOR_LONG:
1396     case Instruction::XOR_LONG_2ADDR:
1397       op = kOpXor;
1398       break;
1399     default:
1400       LOG(FATAL) << "Unexpected opcode";
1401   }
1402 
1403   if (op == kOpSub) {
1404     if (!rl_src2.is_const) {
1405       return GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2, flags);
1406     }
1407   } else {
1408     // Associativity.
1409     if (!rl_src2.is_const) {
1410       DCHECK(rl_src1.is_const);
1411       std::swap(rl_src1, rl_src2);
1412     }
1413   }
1414   DCHECK(rl_src2.is_const);
1415   int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1416 
1417   rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1418   RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1419   OpRegRegImm64(op, rl_result.reg, rl_src1.reg, val);
1420   StoreValueWide(rl_dest, rl_result);
1421 }
1422 
ExtractReg(uint32_t reg_mask,int * reg)1423 static uint32_t ExtractReg(uint32_t reg_mask, int* reg) {
1424   // Find first register.
1425   int first_bit_set = CTZ(reg_mask) + 1;
1426   *reg = *reg + first_bit_set;
1427   reg_mask >>= first_bit_set;
1428   return reg_mask;
1429 }
1430 
1431 /**
1432  * @brief Split a register list in pairs or registers.
1433  *
1434  * Given a list of registers in @p reg_mask, split the list in pairs. Use as follows:
1435  * @code
1436  *   int reg1 = -1, reg2 = -1;
1437  *   while (reg_mask) {
1438  *     reg_mask = GenPairWise(reg_mask, & reg1, & reg2);
1439  *     if (UNLIKELY(reg2 < 0)) {
1440  *       // Single register in reg1.
1441  *     } else {
1442  *       // Pair in reg1, reg2.
1443  *     }
1444  *   }
1445  * @endcode
1446  */
GenPairWise(uint32_t reg_mask,int * reg1,int * reg2)1447 static uint32_t GenPairWise(uint32_t reg_mask, int* reg1, int* reg2) {
1448   // Find first register.
1449   int first_bit_set = CTZ(reg_mask) + 1;
1450   int reg = *reg1 + first_bit_set;
1451   reg_mask >>= first_bit_set;
1452 
1453   if (LIKELY(reg_mask)) {
1454     // Save the first register, find the second and use the pair opcode.
1455     int second_bit_set = CTZ(reg_mask) + 1;
1456     *reg2 = reg;
1457     reg_mask >>= second_bit_set;
1458     *reg1 = reg + second_bit_set;
1459     return reg_mask;
1460   }
1461 
1462   // Use the single opcode, as we just have one register.
1463   *reg1 = reg;
1464   *reg2 = -1;
1465   return reg_mask;
1466 }
1467 
DwarfCoreReg(int num)1468 static dwarf::Reg DwarfCoreReg(int num) {
1469   return dwarf::Reg::Arm64Core(num);
1470 }
1471 
DwarfFpReg(int num)1472 static dwarf::Reg DwarfFpReg(int num) {
1473   return dwarf::Reg::Arm64Fp(num);
1474 }
1475 
SpillCoreRegs(Arm64Mir2Lir * m2l,RegStorage base,int offset,uint32_t reg_mask)1476 static void SpillCoreRegs(Arm64Mir2Lir* m2l, RegStorage base, int offset, uint32_t reg_mask) {
1477   int reg1 = -1, reg2 = -1;
1478   const int reg_log2_size = 3;
1479 
1480   for (offset = (offset >> reg_log2_size); reg_mask; offset += 2) {
1481     reg_mask = GenPairWise(reg_mask, & reg1, & reg2);
1482     if (UNLIKELY(reg2 < 0)) {
1483       m2l->NewLIR3(WIDE(kA64Str3rXD), RegStorage::Solo64(reg1).GetReg(), base.GetReg(), offset);
1484       m2l->cfi().RelOffset(DwarfCoreReg(reg1), offset << reg_log2_size);
1485     } else {
1486       m2l->NewLIR4(WIDE(kA64Stp4rrXD), RegStorage::Solo64(reg2).GetReg(),
1487                    RegStorage::Solo64(reg1).GetReg(), base.GetReg(), offset);
1488       m2l->cfi().RelOffset(DwarfCoreReg(reg2), offset << reg_log2_size);
1489       m2l->cfi().RelOffset(DwarfCoreReg(reg1), (offset + 1) << reg_log2_size);
1490     }
1491   }
1492 }
1493 
1494 // TODO(Arm64): consider using ld1 and st1?
SpillFPRegs(Arm64Mir2Lir * m2l,RegStorage base,int offset,uint32_t reg_mask)1495 static void SpillFPRegs(Arm64Mir2Lir* m2l, RegStorage base, int offset, uint32_t reg_mask) {
1496   int reg1 = -1, reg2 = -1;
1497   const int reg_log2_size = 3;
1498 
1499   for (offset = (offset >> reg_log2_size); reg_mask; offset += 2) {
1500     reg_mask = GenPairWise(reg_mask, & reg1, & reg2);
1501     if (UNLIKELY(reg2 < 0)) {
1502       m2l->NewLIR3(WIDE(kA64Str3fXD), RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(),
1503                    offset);
1504       m2l->cfi().RelOffset(DwarfFpReg(reg1), offset << reg_log2_size);
1505     } else {
1506       m2l->NewLIR4(WIDE(kA64Stp4ffXD), RegStorage::FloatSolo64(reg2).GetReg(),
1507                    RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), offset);
1508       m2l->cfi().RelOffset(DwarfFpReg(reg2), offset << reg_log2_size);
1509       m2l->cfi().RelOffset(DwarfFpReg(reg1), (offset + 1) << reg_log2_size);
1510     }
1511   }
1512 }
1513 
SpillRegsPreSub(Arm64Mir2Lir * m2l,uint32_t core_reg_mask,uint32_t fp_reg_mask,int frame_size)1514 static int SpillRegsPreSub(Arm64Mir2Lir* m2l, uint32_t core_reg_mask, uint32_t fp_reg_mask,
1515                            int frame_size) {
1516   m2l->OpRegRegImm(kOpSub, rs_sp, rs_sp, frame_size);
1517   m2l->cfi().AdjustCFAOffset(frame_size);
1518 
1519   int core_count = POPCOUNT(core_reg_mask);
1520 
1521   if (fp_reg_mask != 0) {
1522     // Spill FP regs.
1523     int fp_count = POPCOUNT(fp_reg_mask);
1524     int spill_offset = frame_size - (core_count + fp_count) * kArm64PointerSize;
1525     SpillFPRegs(m2l, rs_sp, spill_offset, fp_reg_mask);
1526   }
1527 
1528   if (core_reg_mask != 0) {
1529     // Spill core regs.
1530     int spill_offset = frame_size - (core_count * kArm64PointerSize);
1531     SpillCoreRegs(m2l, rs_sp, spill_offset, core_reg_mask);
1532   }
1533 
1534   return frame_size;
1535 }
1536 
SpillRegsPreIndexed(Arm64Mir2Lir * m2l,RegStorage base,uint32_t core_reg_mask,uint32_t fp_reg_mask)1537 static int SpillRegsPreIndexed(Arm64Mir2Lir* m2l, RegStorage base, uint32_t core_reg_mask,
1538                                uint32_t fp_reg_mask) {
1539   // Otherwise, spill both core and fp regs at the same time.
1540   // The very first instruction will be an stp with pre-indexed address, moving the stack pointer
1541   // down. From then on, we fill upwards. This will generate overall the same number of instructions
1542   // as the specialized code above in most cases (exception being odd number of core and even
1543   // non-zero fp spills), but is more flexible, as the offsets are guaranteed small.
1544   //
1545   // Some demonstrative fill cases : (c) = core, (f) = fp
1546   // cc    44   cc    44   cc    22   cc    33   fc => 1[1/2]
1547   // fc => 23   fc => 23   ff => 11   ff => 22
1548   // ff    11    f    11               f    11
1549   //
1550   int reg1 = -1, reg2 = -1;
1551   int core_count = POPCOUNT(core_reg_mask);
1552   int fp_count = POPCOUNT(fp_reg_mask);
1553 
1554   int combined = fp_count + core_count;
1555   int all_offset = RoundUp(combined, 2);  // Needs to be 16B = 2-reg aligned.
1556 
1557   int cur_offset = 2;  // What's the starting offset after the first stp? We expect the base slot
1558                        // to be filled.
1559 
1560   // First figure out whether the bottom is FP or core.
1561   if (fp_count > 0) {
1562     // Some FP spills.
1563     //
1564     // Four cases: (d0 is dummy to fill up stp)
1565     // 1) Single FP, even number of core -> stp d0, fp_reg
1566     // 2) Single FP, odd number of core -> stp fp_reg, d0
1567     // 3) More FP, even number combined -> stp fp_reg1, fp_reg2
1568     // 4) More FP, odd number combined -> stp d0, fp_reg
1569     if (fp_count == 1) {
1570       fp_reg_mask = ExtractReg(fp_reg_mask, &reg1);
1571       DCHECK_EQ(fp_reg_mask, 0U);
1572       if (core_count % 2 == 0) {
1573         m2l->NewLIR4(WIDE(kA64StpPre4ffXD),
1574                      RegStorage::FloatSolo64(reg1).GetReg(),
1575                      RegStorage::FloatSolo64(reg1).GetReg(),
1576                      base.GetReg(), -all_offset);
1577         m2l->cfi().AdjustCFAOffset(all_offset * kArm64PointerSize);
1578         m2l->cfi().RelOffset(DwarfFpReg(reg1), kArm64PointerSize);
1579       } else {
1580         m2l->NewLIR4(WIDE(kA64StpPre4ffXD),
1581                      RegStorage::FloatSolo64(reg1).GetReg(),
1582                      RegStorage::FloatSolo64(reg1).GetReg(),
1583                      base.GetReg(), -all_offset);
1584         m2l->cfi().AdjustCFAOffset(all_offset * kArm64PointerSize);
1585         m2l->cfi().RelOffset(DwarfFpReg(reg1), 0);
1586         cur_offset = 0;  // That core reg needs to go into the upper half.
1587       }
1588     } else {
1589       if (combined % 2 == 0) {
1590         fp_reg_mask = GenPairWise(fp_reg_mask, &reg1, &reg2);
1591         m2l->NewLIR4(WIDE(kA64StpPre4ffXD), RegStorage::FloatSolo64(reg2).GetReg(),
1592                      RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), -all_offset);
1593         m2l->cfi().AdjustCFAOffset(all_offset * kArm64PointerSize);
1594         m2l->cfi().RelOffset(DwarfFpReg(reg2), 0);
1595         m2l->cfi().RelOffset(DwarfFpReg(reg1), kArm64PointerSize);
1596       } else {
1597         fp_reg_mask = ExtractReg(fp_reg_mask, &reg1);
1598         m2l->NewLIR4(WIDE(kA64StpPre4ffXD), rs_d0.GetReg(), RegStorage::FloatSolo64(reg1).GetReg(),
1599                      base.GetReg(), -all_offset);
1600         m2l->cfi().AdjustCFAOffset(all_offset * kArm64PointerSize);
1601         m2l->cfi().RelOffset(DwarfFpReg(reg1), kArm64PointerSize);
1602       }
1603     }
1604   } else {
1605     // No FP spills.
1606     //
1607     // Two cases:
1608     // 1) Even number of core -> stp core1, core2
1609     // 2) Odd number of core -> stp xzr, core1
1610     if (core_count % 2 == 1) {
1611       core_reg_mask = ExtractReg(core_reg_mask, &reg1);
1612       m2l->NewLIR4(WIDE(kA64StpPre4rrXD), rs_xzr.GetReg(),
1613                    RegStorage::Solo64(reg1).GetReg(), base.GetReg(), -all_offset);
1614       m2l->cfi().AdjustCFAOffset(all_offset * kArm64PointerSize);
1615       m2l->cfi().RelOffset(DwarfCoreReg(reg1), kArm64PointerSize);
1616     } else {
1617       core_reg_mask = GenPairWise(core_reg_mask, &reg1, &reg2);
1618       m2l->NewLIR4(WIDE(kA64StpPre4rrXD), RegStorage::Solo64(reg2).GetReg(),
1619                    RegStorage::Solo64(reg1).GetReg(), base.GetReg(), -all_offset);
1620       m2l->cfi().AdjustCFAOffset(all_offset * kArm64PointerSize);
1621       m2l->cfi().RelOffset(DwarfCoreReg(reg2), 0);
1622       m2l->cfi().RelOffset(DwarfCoreReg(reg1), kArm64PointerSize);
1623     }
1624   }
1625   DCHECK_EQ(m2l->cfi().GetCurrentCFAOffset(),
1626             static_cast<int>(all_offset * kArm64PointerSize));
1627 
1628   if (fp_count != 0) {
1629     for (; fp_reg_mask != 0;) {
1630       // Have some FP regs to do.
1631       fp_reg_mask = GenPairWise(fp_reg_mask, &reg1, &reg2);
1632       if (UNLIKELY(reg2 < 0)) {
1633         m2l->NewLIR3(WIDE(kA64Str3fXD), RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(),
1634                      cur_offset);
1635         m2l->cfi().RelOffset(DwarfFpReg(reg1), cur_offset * kArm64PointerSize);
1636         // Do not increment offset here, as the second half will be filled by a core reg.
1637       } else {
1638         m2l->NewLIR4(WIDE(kA64Stp4ffXD), RegStorage::FloatSolo64(reg2).GetReg(),
1639                      RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), cur_offset);
1640         m2l->cfi().RelOffset(DwarfFpReg(reg2), cur_offset * kArm64PointerSize);
1641         m2l->cfi().RelOffset(DwarfFpReg(reg1), (cur_offset + 1) * kArm64PointerSize);
1642         cur_offset += 2;
1643       }
1644     }
1645 
1646     // Reset counting.
1647     reg1 = -1;
1648 
1649     // If there is an odd number of core registers, we need to store the bottom now.
1650     if (core_count % 2 == 1) {
1651       core_reg_mask = ExtractReg(core_reg_mask, &reg1);
1652       m2l->NewLIR3(WIDE(kA64Str3rXD), RegStorage::Solo64(reg1).GetReg(), base.GetReg(),
1653                    cur_offset + 1);
1654       m2l->cfi().RelOffset(DwarfCoreReg(reg1), (cur_offset + 1) * kArm64PointerSize);
1655       cur_offset += 2;  // Half-slot filled now.
1656     }
1657   }
1658 
1659   // Spill the rest of the core regs. They are guaranteed to be even.
1660   DCHECK_EQ(POPCOUNT(core_reg_mask) % 2, 0);
1661   for (; core_reg_mask != 0; cur_offset += 2) {
1662     core_reg_mask = GenPairWise(core_reg_mask, &reg1, &reg2);
1663     m2l->NewLIR4(WIDE(kA64Stp4rrXD), RegStorage::Solo64(reg2).GetReg(),
1664                  RegStorage::Solo64(reg1).GetReg(), base.GetReg(), cur_offset);
1665     m2l->cfi().RelOffset(DwarfCoreReg(reg2), cur_offset * kArm64PointerSize);
1666     m2l->cfi().RelOffset(DwarfCoreReg(reg1), (cur_offset + 1) * kArm64PointerSize);
1667   }
1668 
1669   DCHECK_EQ(cur_offset, all_offset);
1670 
1671   return all_offset * 8;
1672 }
1673 
SpillRegs(RegStorage base,uint32_t core_reg_mask,uint32_t fp_reg_mask,int frame_size)1674 int Arm64Mir2Lir::SpillRegs(RegStorage base, uint32_t core_reg_mask, uint32_t fp_reg_mask,
1675                             int frame_size) {
1676   // If the frame size is small enough that all offsets would fit into the immediates, use that
1677   // setup, as it decrements sp early (kind of instruction scheduling), and is not worse
1678   // instruction-count wise than the complicated code below.
1679   //
1680   // This case is also optimal when we have an odd number of core spills, and an even (non-zero)
1681   // number of fp spills.
1682   if ((RoundUp(frame_size, 8) / 8 <= 63)) {
1683     return SpillRegsPreSub(this, core_reg_mask, fp_reg_mask, frame_size);
1684   } else {
1685     return SpillRegsPreIndexed(this, base, core_reg_mask, fp_reg_mask);
1686   }
1687 }
1688 
UnSpillCoreRegs(Arm64Mir2Lir * m2l,RegStorage base,int offset,uint32_t reg_mask)1689 static void UnSpillCoreRegs(Arm64Mir2Lir* m2l, RegStorage base, int offset, uint32_t reg_mask) {
1690   int reg1 = -1, reg2 = -1;
1691   const int reg_log2_size = 3;
1692 
1693   for (offset = (offset >> reg_log2_size); reg_mask; offset += 2) {
1694     reg_mask = GenPairWise(reg_mask, & reg1, & reg2);
1695     if (UNLIKELY(reg2 < 0)) {
1696       m2l->NewLIR3(WIDE(kA64Ldr3rXD), RegStorage::Solo64(reg1).GetReg(), base.GetReg(), offset);
1697       m2l->cfi().Restore(DwarfCoreReg(reg1));
1698     } else {
1699       DCHECK_LE(offset, 63);
1700       m2l->NewLIR4(WIDE(kA64Ldp4rrXD), RegStorage::Solo64(reg2).GetReg(),
1701                    RegStorage::Solo64(reg1).GetReg(), base.GetReg(), offset);
1702       m2l->cfi().Restore(DwarfCoreReg(reg2));
1703       m2l->cfi().Restore(DwarfCoreReg(reg1));
1704     }
1705   }
1706 }
1707 
UnSpillFPRegs(Arm64Mir2Lir * m2l,RegStorage base,int offset,uint32_t reg_mask)1708 static void UnSpillFPRegs(Arm64Mir2Lir* m2l, RegStorage base, int offset, uint32_t reg_mask) {
1709   int reg1 = -1, reg2 = -1;
1710   const int reg_log2_size = 3;
1711 
1712   for (offset = (offset >> reg_log2_size); reg_mask; offset += 2) {
1713      reg_mask = GenPairWise(reg_mask, & reg1, & reg2);
1714     if (UNLIKELY(reg2 < 0)) {
1715       m2l->NewLIR3(WIDE(kA64Ldr3fXD), RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(),
1716                    offset);
1717       m2l->cfi().Restore(DwarfFpReg(reg1));
1718     } else {
1719       m2l->NewLIR4(WIDE(kA64Ldp4ffXD), RegStorage::FloatSolo64(reg2).GetReg(),
1720                    RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), offset);
1721       m2l->cfi().Restore(DwarfFpReg(reg2));
1722       m2l->cfi().Restore(DwarfFpReg(reg1));
1723     }
1724   }
1725 }
1726 
UnspillRegs(RegStorage base,uint32_t core_reg_mask,uint32_t fp_reg_mask,int frame_size)1727 void Arm64Mir2Lir::UnspillRegs(RegStorage base, uint32_t core_reg_mask, uint32_t fp_reg_mask,
1728                                int frame_size) {
1729   DCHECK_EQ(base, rs_sp);
1730   // Restore saves and drop stack frame.
1731   // 2 versions:
1732   //
1733   // 1. (Original): Try to address directly, then drop the whole frame.
1734   //                Limitation: ldp is a 7b signed immediate.
1735   //
1736   // 2. (New): Drop the non-save-part. Then do similar to original, which is now guaranteed to be
1737   //           in range. Then drop the rest.
1738   //
1739   // TODO: In methods with few spills but huge frame, it would be better to do non-immediate loads
1740   //       in variant 1.
1741 
1742   // "Magic" constant, 63 (max signed 7b) * 8.
1743   static constexpr int kMaxFramesizeForOffset = 63 * kArm64PointerSize;
1744 
1745   const int num_core_spills = POPCOUNT(core_reg_mask);
1746   const int num_fp_spills = POPCOUNT(fp_reg_mask);
1747 
1748   int early_drop = 0;
1749 
1750   if (frame_size > kMaxFramesizeForOffset) {
1751     // Second variant. Drop the frame part.
1752 
1753     // TODO: Always use the first formula, as num_fp_spills would be zero?
1754     if (fp_reg_mask != 0) {
1755       early_drop = frame_size - kArm64PointerSize * (num_fp_spills + num_core_spills);
1756     } else {
1757       early_drop = frame_size - kArm64PointerSize * num_core_spills;
1758     }
1759 
1760     // Drop needs to be 16B aligned, so that SP keeps aligned.
1761     early_drop = RoundDown(early_drop, 16);
1762 
1763     OpRegImm64(kOpAdd, rs_sp, early_drop);
1764     cfi_.AdjustCFAOffset(-early_drop);
1765   }
1766 
1767   // Unspill.
1768   if (fp_reg_mask != 0) {
1769     int offset = frame_size - early_drop - kArm64PointerSize * (num_fp_spills + num_core_spills);
1770     UnSpillFPRegs(this, rs_sp, offset, fp_reg_mask);
1771   }
1772   if (core_reg_mask != 0) {
1773     int offset = frame_size - early_drop - kArm64PointerSize * num_core_spills;
1774     UnSpillCoreRegs(this, rs_sp, offset, core_reg_mask);
1775   }
1776 
1777   // Drop the (rest of) the frame.
1778   int adjust = frame_size - early_drop;
1779   OpRegImm64(kOpAdd, rs_sp, adjust);
1780   cfi_.AdjustCFAOffset(-adjust);
1781 }
1782 
GenInlinedReverseBits(CallInfo * info,OpSize size)1783 bool Arm64Mir2Lir::GenInlinedReverseBits(CallInfo* info, OpSize size) {
1784   A64Opcode wide = IsWide(size) ? WIDE(0) : UNWIDE(0);
1785   RegLocation rl_src_i = info->args[0];
1786   RegLocation rl_dest = IsWide(size) ? InlineTargetWide(info) : InlineTarget(info);  // result reg
1787   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1788   RegLocation rl_i = IsWide(size) ?
1789       LoadValueWide(rl_src_i, kCoreReg) : LoadValue(rl_src_i, kCoreReg);
1790   NewLIR2(kA64Rbit2rr | wide, rl_result.reg.GetReg(), rl_i.reg.GetReg());
1791   IsWide(size) ? StoreValueWide(rl_dest, rl_result) : StoreValue(rl_dest, rl_result);
1792   return true;
1793 }
1794 
1795 }  // namespace art
1796