• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <emmintrin.h>
12 
13 #include "./vpx_config.h"
14 #include "./vp9_rtcd.h"
15 
16 #include "vpx_ports/emmintrin_compat.h"
17 #include "vpx/vpx_integer.h"
18 #include "vp9/common/vp9_reconinter.h"
19 #include "vp9/encoder/vp9_context_tree.h"
20 #include "vp9/encoder/vp9_denoiser.h"
21 #include "vpx_mem/vpx_mem.h"
22 
23 // Compute the sum of all pixel differences of this MB.
sum_diff_16x1(__m128i acc_diff)24 static INLINE int sum_diff_16x1(__m128i acc_diff) {
25   const __m128i k_1 = _mm_set1_epi16(1);
26   const __m128i acc_diff_lo =
27       _mm_srai_epi16(_mm_unpacklo_epi8(acc_diff, acc_diff), 8);
28   const __m128i acc_diff_hi =
29       _mm_srai_epi16(_mm_unpackhi_epi8(acc_diff, acc_diff), 8);
30   const __m128i acc_diff_16 = _mm_add_epi16(acc_diff_lo, acc_diff_hi);
31   const __m128i hg_fe_dc_ba = _mm_madd_epi16(acc_diff_16, k_1);
32   const __m128i hgfe_dcba =
33       _mm_add_epi32(hg_fe_dc_ba, _mm_srli_si128(hg_fe_dc_ba, 8));
34   const __m128i hgfedcba =
35       _mm_add_epi32(hgfe_dcba, _mm_srli_si128(hgfe_dcba, 4));
36   return _mm_cvtsi128_si32(hgfedcba);
37 }
38 
39 // Denoise a 16x1 vector.
vp9_denoiser_16x1_sse2(const uint8_t * sig,const uint8_t * mc_running_avg_y,uint8_t * running_avg_y,const __m128i * k_0,const __m128i * k_4,const __m128i * k_8,const __m128i * k_16,const __m128i * l3,const __m128i * l32,const __m128i * l21,__m128i acc_diff)40 static INLINE __m128i vp9_denoiser_16x1_sse2(const uint8_t *sig,
41                                              const uint8_t *mc_running_avg_y,
42                                              uint8_t *running_avg_y,
43                                              const __m128i *k_0,
44                                              const __m128i *k_4,
45                                              const __m128i *k_8,
46                                              const __m128i *k_16,
47                                              const __m128i *l3,
48                                              const __m128i *l32,
49                                              const __m128i *l21,
50                                              __m128i acc_diff) {
51   // Calculate differences
52   const __m128i v_sig = _mm_loadu_si128((const __m128i *)(&sig[0]));
53   const __m128i v_mc_running_avg_y =
54       _mm_loadu_si128((const __m128i *)(&mc_running_avg_y[0]));
55   __m128i v_running_avg_y;
56   const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
57   const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
58   // Obtain the sign. FF if diff is negative.
59   const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, *k_0);
60   // Clamp absolute difference to 16 to be used to get mask. Doing this
61   // allows us to use _mm_cmpgt_epi8, which operates on signed byte.
62   const __m128i clamped_absdiff =
63       _mm_min_epu8(_mm_or_si128(pdiff, ndiff), *k_16);
64   // Get masks for l2 l1 and l0 adjustments.
65   const __m128i mask2 = _mm_cmpgt_epi8(*k_16, clamped_absdiff);
66   const __m128i mask1 = _mm_cmpgt_epi8(*k_8, clamped_absdiff);
67   const __m128i mask0 = _mm_cmpgt_epi8(*k_4, clamped_absdiff);
68   // Get adjustments for l2, l1, and l0.
69   __m128i adj2 = _mm_and_si128(mask2, *l32);
70   const __m128i adj1 = _mm_and_si128(mask1, *l21);
71   const __m128i adj0 = _mm_and_si128(mask0, clamped_absdiff);
72   __m128i adj,  padj, nadj;
73 
74   // Combine the adjustments and get absolute adjustments.
75   adj2 = _mm_add_epi8(adj2, adj1);
76   adj = _mm_sub_epi8(*l3, adj2);
77   adj = _mm_andnot_si128(mask0, adj);
78   adj = _mm_or_si128(adj, adj0);
79 
80   // Restore the sign and get positive and negative adjustments.
81   padj = _mm_andnot_si128(diff_sign, adj);
82   nadj = _mm_and_si128(diff_sign, adj);
83 
84   // Calculate filtered value.
85   v_running_avg_y = _mm_adds_epu8(v_sig, padj);
86   v_running_avg_y = _mm_subs_epu8(v_running_avg_y, nadj);
87   _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y);
88 
89   // Adjustments <=7, and each element in acc_diff can fit in signed
90   // char.
91   acc_diff = _mm_adds_epi8(acc_diff, padj);
92   acc_diff = _mm_subs_epi8(acc_diff, nadj);
93   return acc_diff;
94 }
95 
96 // Denoise a 16x1 vector with a weaker filter.
vp9_denoiser_adj_16x1_sse2(const uint8_t * sig,const uint8_t * mc_running_avg_y,uint8_t * running_avg_y,const __m128i k_0,const __m128i k_delta,__m128i acc_diff)97 static INLINE __m128i vp9_denoiser_adj_16x1_sse2(
98     const uint8_t *sig, const uint8_t *mc_running_avg_y,
99     uint8_t *running_avg_y, const __m128i k_0,
100     const __m128i k_delta, __m128i acc_diff) {
101   __m128i v_running_avg_y = _mm_loadu_si128((__m128i *)(&running_avg_y[0]));
102   // Calculate differences.
103   const __m128i v_sig = _mm_loadu_si128((const __m128i *)(&sig[0]));
104   const __m128i v_mc_running_avg_y =
105       _mm_loadu_si128((const __m128i *)(&mc_running_avg_y[0]));
106   const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
107   const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
108   // Obtain the sign. FF if diff is negative.
109   const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0);
110   // Clamp absolute difference to delta to get the adjustment.
111   const __m128i adj =
112       _mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_delta);
113   // Restore the sign and get positive and negative adjustments.
114   __m128i padj, nadj;
115   padj = _mm_andnot_si128(diff_sign, adj);
116   nadj = _mm_and_si128(diff_sign, adj);
117   // Calculate filtered value.
118   v_running_avg_y = _mm_subs_epu8(v_running_avg_y, padj);
119   v_running_avg_y = _mm_adds_epu8(v_running_avg_y, nadj);
120   _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y);
121 
122   // Accumulate the adjustments.
123   acc_diff = _mm_subs_epi8(acc_diff, padj);
124   acc_diff = _mm_adds_epi8(acc_diff, nadj);
125   return acc_diff;
126 }
127 
128 // Denoiser for 4xM and 8xM blocks.
vp9_denoiser_NxM_sse2_small(const uint8_t * sig,int sig_stride,const uint8_t * mc_running_avg_y,int mc_avg_y_stride,uint8_t * running_avg_y,int avg_y_stride,int increase_denoising,BLOCK_SIZE bs,int motion_magnitude,int width)129 static int vp9_denoiser_NxM_sse2_small(
130     const uint8_t *sig, int sig_stride, const uint8_t *mc_running_avg_y,
131     int mc_avg_y_stride, uint8_t *running_avg_y, int avg_y_stride,
132     int increase_denoising, BLOCK_SIZE bs, int motion_magnitude, int width) {
133   int sum_diff_thresh, r, sum_diff = 0;
134   const int shift_inc  = (increase_denoising &&
135                           motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ?
136                          1 : 0;
137   uint8_t sig_buffer[8][16], mc_running_buffer[8][16], running_buffer[8][16];
138   __m128i acc_diff = _mm_setzero_si128();
139   const __m128i k_0 = _mm_setzero_si128();
140   const __m128i k_4 = _mm_set1_epi8(4 + shift_inc);
141   const __m128i k_8 = _mm_set1_epi8(8);
142   const __m128i k_16 = _mm_set1_epi8(16);
143   // Modify each level's adjustment according to motion_magnitude.
144   const __m128i l3 = _mm_set1_epi8(
145       (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6);
146   // Difference between level 3 and level 2 is 2.
147   const __m128i l32 = _mm_set1_epi8(2);
148   // Difference between level 2 and level 1 is 1.
149   const __m128i l21 = _mm_set1_epi8(1);
150   const uint8_t shift = (width == 4) ? 2 : 1;
151 
152   for (r = 0; r < ((4 << b_height_log2_lookup[bs]) >> shift); ++r) {
153     memcpy(sig_buffer[r], sig, width);
154     memcpy(sig_buffer[r] + width, sig + sig_stride, width);
155     memcpy(mc_running_buffer[r], mc_running_avg_y, width);
156     memcpy(mc_running_buffer[r] + width,
157            mc_running_avg_y + mc_avg_y_stride, width);
158     memcpy(running_buffer[r], running_avg_y, width);
159     memcpy(running_buffer[r] + width, running_avg_y + avg_y_stride, width);
160     if (width == 4) {
161       memcpy(sig_buffer[r] + width * 2, sig + sig_stride * 2, width);
162       memcpy(sig_buffer[r] + width * 3, sig + sig_stride * 3, width);
163       memcpy(mc_running_buffer[r] + width * 2,
164              mc_running_avg_y + mc_avg_y_stride * 2, width);
165       memcpy(mc_running_buffer[r] + width * 3,
166              mc_running_avg_y + mc_avg_y_stride * 3, width);
167       memcpy(running_buffer[r] + width * 2,
168              running_avg_y + avg_y_stride * 2, width);
169       memcpy(running_buffer[r] + width * 3,
170              running_avg_y + avg_y_stride * 3, width);
171     }
172     acc_diff = vp9_denoiser_16x1_sse2(sig_buffer[r],
173                                       mc_running_buffer[r],
174                                       running_buffer[r],
175                                       &k_0, &k_4, &k_8, &k_16,
176                                       &l3, &l32, &l21, acc_diff);
177     memcpy(running_avg_y, running_buffer[r], width);
178     memcpy(running_avg_y + avg_y_stride, running_buffer[r] + width, width);
179     if (width == 4) {
180       memcpy(running_avg_y + avg_y_stride * 2,
181              running_buffer[r] + width * 2, width);
182       memcpy(running_avg_y + avg_y_stride * 3,
183              running_buffer[r] + width * 3, width);
184     }
185     // Update pointers for next iteration.
186     sig += (sig_stride << shift);
187     mc_running_avg_y += (mc_avg_y_stride << shift);
188     running_avg_y += (avg_y_stride << shift);
189   }
190 
191   {
192     sum_diff = sum_diff_16x1(acc_diff);
193     sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising);
194     if (abs(sum_diff) > sum_diff_thresh) {
195       // Before returning to copy the block (i.e., apply no denoising),
196       // check if we can still apply some (weaker) temporal filtering to
197       // this block, that would otherwise not be denoised at all. Simplest
198       // is to apply an additional adjustment to running_avg_y to bring it
199       // closer to sig. The adjustment is capped by a maximum delta, and
200       // chosen such that in most cases the resulting sum_diff will be
201       // within the acceptable range given by sum_diff_thresh.
202 
203       // The delta is set by the excess of absolute pixel diff over the
204       // threshold.
205       const int delta = ((abs(sum_diff) - sum_diff_thresh) >>
206                          num_pels_log2_lookup[bs]) + 1;
207       // Only apply the adjustment for max delta up to 3.
208       if (delta < 4) {
209         const __m128i k_delta = _mm_set1_epi8(delta);
210         running_avg_y -= avg_y_stride * (4 << b_height_log2_lookup[bs]);
211         for (r = 0; r < ((4 << b_height_log2_lookup[bs]) >> shift); ++r) {
212           acc_diff = vp9_denoiser_adj_16x1_sse2(
213               sig_buffer[r], mc_running_buffer[r], running_buffer[r],
214               k_0, k_delta, acc_diff);
215           memcpy(running_avg_y, running_buffer[r], width);
216           memcpy(running_avg_y + avg_y_stride,
217                  running_buffer[r] + width, width);
218           if (width == 4) {
219             memcpy(running_avg_y + avg_y_stride * 2,
220                    running_buffer[r] + width * 2, width);
221             memcpy(running_avg_y + avg_y_stride * 3,
222                    running_buffer[r] + width * 3, width);
223           }
224           // Update pointers for next iteration.
225           running_avg_y += (avg_y_stride << shift);
226         }
227         sum_diff = sum_diff_16x1(acc_diff);
228         if (abs(sum_diff) > sum_diff_thresh) {
229           return COPY_BLOCK;
230         }
231       } else {
232         return COPY_BLOCK;
233       }
234     }
235   }
236   return FILTER_BLOCK;
237 }
238 
239 // Denoiser for 16xM, 32xM and 64xM blocks
vp9_denoiser_NxM_sse2_big(const uint8_t * sig,int sig_stride,const uint8_t * mc_running_avg_y,int mc_avg_y_stride,uint8_t * running_avg_y,int avg_y_stride,int increase_denoising,BLOCK_SIZE bs,int motion_magnitude)240 static int vp9_denoiser_NxM_sse2_big(const uint8_t *sig, int sig_stride,
241                                      const uint8_t *mc_running_avg_y,
242                                      int mc_avg_y_stride,
243                                      uint8_t *running_avg_y,
244                                      int avg_y_stride,
245                                      int increase_denoising, BLOCK_SIZE bs,
246                                      int motion_magnitude) {
247   int sum_diff_thresh, r, c, sum_diff = 0;
248   const int shift_inc  = (increase_denoising &&
249                           motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ?
250                          1 : 0;
251   __m128i acc_diff[4][4];
252   const __m128i k_0 = _mm_setzero_si128();
253   const __m128i k_4 = _mm_set1_epi8(4 + shift_inc);
254   const __m128i k_8 = _mm_set1_epi8(8);
255   const __m128i k_16 = _mm_set1_epi8(16);
256   // Modify each level's adjustment according to motion_magnitude.
257   const __m128i l3 = _mm_set1_epi8(
258       (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6);
259   // Difference between level 3 and level 2 is 2.
260   const __m128i l32 = _mm_set1_epi8(2);
261   // Difference between level 2 and level 1 is 1.
262   const __m128i l21 = _mm_set1_epi8(1);
263 
264   for (c = 0; c < 4; ++c) {
265     for (r = 0; r < 4; ++r) {
266       acc_diff[c][r] = _mm_setzero_si128();
267     }
268   }
269 
270   for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) {
271     for (c = 0; c < (4 << b_width_log2_lookup[bs]); c += 16) {
272       acc_diff[c>>4][r>>4] = vp9_denoiser_16x1_sse2(
273           sig, mc_running_avg_y, running_avg_y, &k_0, &k_4,
274           &k_8, &k_16, &l3, &l32, &l21, acc_diff[c>>4][r>>4]);
275       // Update pointers for next iteration.
276       sig += 16;
277       mc_running_avg_y += 16;
278       running_avg_y += 16;
279     }
280 
281     if ((r + 1) % 16 == 0 || (bs == BLOCK_16X8 && r == 7)) {
282       for (c = 0; c < (4 << b_width_log2_lookup[bs]); c += 16) {
283         sum_diff += sum_diff_16x1(acc_diff[c>>4][r>>4]);
284       }
285     }
286 
287     // Update pointers for next iteration.
288     sig = sig - 16 * ((4 << b_width_log2_lookup[bs]) >> 4) + sig_stride;
289     mc_running_avg_y = mc_running_avg_y -
290                        16 * ((4 << b_width_log2_lookup[bs]) >> 4) +
291                        mc_avg_y_stride;
292     running_avg_y = running_avg_y -
293                     16 * ((4 << b_width_log2_lookup[bs]) >> 4) +
294                     avg_y_stride;
295   }
296 
297   {
298     sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising);
299     if (abs(sum_diff) > sum_diff_thresh) {
300       const int delta = ((abs(sum_diff) - sum_diff_thresh) >>
301                          num_pels_log2_lookup[bs]) + 1;
302 
303       // Only apply the adjustment for max delta up to 3.
304       if (delta < 4) {
305         const __m128i k_delta = _mm_set1_epi8(delta);
306         sig -= sig_stride * (4 << b_height_log2_lookup[bs]);
307         mc_running_avg_y -= mc_avg_y_stride * (4 << b_height_log2_lookup[bs]);
308         running_avg_y -= avg_y_stride * (4 << b_height_log2_lookup[bs]);
309         sum_diff = 0;
310         for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) {
311           for (c = 0; c < (4 << b_width_log2_lookup[bs]); c += 16) {
312             acc_diff[c>>4][r>>4] = vp9_denoiser_adj_16x1_sse2(
313                 sig, mc_running_avg_y, running_avg_y, k_0,
314                 k_delta, acc_diff[c>>4][r>>4]);
315             // Update pointers for next iteration.
316             sig += 16;
317             mc_running_avg_y += 16;
318             running_avg_y += 16;
319           }
320 
321           if ((r + 1) % 16 == 0 || (bs == BLOCK_16X8 && r == 7)) {
322             for (c = 0; c < (4 << b_width_log2_lookup[bs]); c += 16) {
323               sum_diff += sum_diff_16x1(acc_diff[c>>4][r>>4]);
324             }
325           }
326           sig = sig - 16 * ((4 << b_width_log2_lookup[bs]) >> 4) + sig_stride;
327           mc_running_avg_y = mc_running_avg_y -
328                              16 * ((4 << b_width_log2_lookup[bs]) >> 4) +
329                              mc_avg_y_stride;
330           running_avg_y = running_avg_y -
331                           16 * ((4 << b_width_log2_lookup[bs]) >> 4) +
332                           avg_y_stride;
333         }
334         if (abs(sum_diff) > sum_diff_thresh) {
335           return COPY_BLOCK;
336         }
337       } else {
338         return COPY_BLOCK;
339       }
340     }
341   }
342   return FILTER_BLOCK;
343 }
344 
vp9_denoiser_filter_sse2(const uint8_t * sig,int sig_stride,const uint8_t * mc_avg,int mc_avg_stride,uint8_t * avg,int avg_stride,int increase_denoising,BLOCK_SIZE bs,int motion_magnitude)345 int vp9_denoiser_filter_sse2(const uint8_t *sig, int sig_stride,
346                              const uint8_t *mc_avg,
347                              int mc_avg_stride,
348                              uint8_t *avg, int avg_stride,
349                              int increase_denoising,
350                              BLOCK_SIZE bs,
351                              int motion_magnitude) {
352   if (bs == BLOCK_4X4 || bs == BLOCK_4X8) {
353     return vp9_denoiser_NxM_sse2_small(sig, sig_stride,
354                                        mc_avg, mc_avg_stride,
355                                        avg, avg_stride,
356                                        increase_denoising,
357                                        bs, motion_magnitude, 4);
358   } else if (bs == BLOCK_8X4 || bs == BLOCK_8X8 || bs == BLOCK_8X16) {
359     return vp9_denoiser_NxM_sse2_small(sig, sig_stride,
360                                        mc_avg, mc_avg_stride,
361                                        avg, avg_stride,
362                                        increase_denoising,
363                                        bs, motion_magnitude, 8);
364   } else if (bs == BLOCK_16X8 || bs == BLOCK_16X16 || bs == BLOCK_16X32 ||
365              bs == BLOCK_32X16|| bs == BLOCK_32X32 || bs == BLOCK_32X64 ||
366              bs == BLOCK_64X32 || bs == BLOCK_64X64) {
367     return vp9_denoiser_NxM_sse2_big(sig, sig_stride,
368                                      mc_avg, mc_avg_stride,
369                                      avg, avg_stride,
370                                      increase_denoising,
371                                      bs, motion_magnitude);
372   } else {
373     return COPY_BLOCK;
374   }
375 }
376