• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30 //
31 // A simple example of using the Ceres minimizer.
32 //
33 // Minimize 0.5 (10 - x)^2 using jacobian matrix computed using
34 // automatic differentiation.
35 
36 #include "ceres/ceres.h"
37 #include "glog/logging.h"
38 
39 using ceres::AutoDiffCostFunction;
40 using ceres::CostFunction;
41 using ceres::Problem;
42 using ceres::Solver;
43 using ceres::Solve;
44 
45 // A templated cost functor that implements the residual r = 10 -
46 // x. The method operator() is templated so that we can then use an
47 // automatic differentiation wrapper around it to generate its
48 // derivatives.
49 struct CostFunctor {
operator ()CostFunctor50   template <typename T> bool operator()(const T* const x, T* residual) const {
51     residual[0] = T(10.0) - x[0];
52     return true;
53   }
54 };
55 
main(int argc,char ** argv)56 int main(int argc, char** argv) {
57   google::InitGoogleLogging(argv[0]);
58 
59   // The variable to solve for with its initial value. It will be
60   // mutated in place by the solver.
61   double x = 0.5;
62   const double initial_x = x;
63 
64   // Build the problem.
65   Problem problem;
66 
67   // Set up the only cost function (also known as residual). This uses
68   // auto-differentiation to obtain the derivative (jacobian).
69   CostFunction* cost_function =
70       new AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
71   problem.AddResidualBlock(cost_function, NULL, &x);
72 
73   // Run the solver!
74   Solver::Options options;
75   options.minimizer_progress_to_stdout = true;
76   Solver::Summary summary;
77   Solve(options, &problem, &summary);
78 
79   std::cout << summary.BriefReport() << "\n";
80   std::cout << "x : " << initial_x
81             << " -> " << x << "\n";
82   return 0;
83 }
84