• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "linker/arm64/relative_patcher_arm64.h"
18 
19 #include "arch/arm64/instruction_set_features_arm64.h"
20 #include "art_method.h"
21 #include "compiled_method.h"
22 #include "driver/compiler_driver.h"
23 #include "utils/arm64/assembler_arm64.h"
24 #include "oat.h"
25 #include "output_stream.h"
26 
27 namespace art {
28 namespace linker {
29 
Arm64RelativePatcher(RelativePatcherTargetProvider * provider,const Arm64InstructionSetFeatures * features)30 Arm64RelativePatcher::Arm64RelativePatcher(RelativePatcherTargetProvider* provider,
31                                            const Arm64InstructionSetFeatures* features)
32     : ArmBaseRelativePatcher(provider, kArm64, CompileThunkCode(),
33                              kMaxPositiveDisplacement, kMaxNegativeDisplacement),
34       fix_cortex_a53_843419_(features->NeedFixCortexA53_843419()),
35       reserved_adrp_thunks_(0u),
36       processed_adrp_thunks_(0u) {
37   if (fix_cortex_a53_843419_) {
38     adrp_thunk_locations_.reserve(16u);
39     current_method_thunks_.reserve(16u * kAdrpThunkSize);
40   }
41 }
42 
ReserveSpace(uint32_t offset,const CompiledMethod * compiled_method,MethodReference method_ref)43 uint32_t Arm64RelativePatcher::ReserveSpace(uint32_t offset,
44                                             const CompiledMethod* compiled_method,
45                                             MethodReference method_ref) {
46   if (!fix_cortex_a53_843419_) {
47     DCHECK(adrp_thunk_locations_.empty());
48     return ReserveSpaceInternal(offset, compiled_method, method_ref, 0u);
49   }
50 
51   // Add thunks for previous method if any.
52   if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
53     size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
54     offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks;
55     reserved_adrp_thunks_ = adrp_thunk_locations_.size();
56   }
57 
58   // Count the number of ADRP insns as the upper bound on the number of thunks needed
59   // and use it to reserve space for other linker patches.
60   size_t num_adrp = 0u;
61   DCHECK(compiled_method != nullptr);
62   for (const LinkerPatch& patch : compiled_method->GetPatches()) {
63     if (patch.Type() == kLinkerPatchDexCacheArray &&
64         patch.LiteralOffset() == patch.PcInsnOffset()) {  // ADRP patch
65       ++num_adrp;
66     }
67   }
68   offset = ReserveSpaceInternal(offset, compiled_method, method_ref, kAdrpThunkSize * num_adrp);
69   if (num_adrp == 0u) {
70     return offset;
71   }
72 
73   // Now that we have the actual offset where the code will be placed, locate the ADRP insns
74   // that actually require the thunk.
75   uint32_t quick_code_offset = compiled_method->AlignCode(offset) + sizeof(OatQuickMethodHeader);
76   ArrayRef<const uint8_t> code(*compiled_method->GetQuickCode());
77   uint32_t thunk_offset = compiled_method->AlignCode(quick_code_offset + code.size());
78   DCHECK(compiled_method != nullptr);
79   for (const LinkerPatch& patch : compiled_method->GetPatches()) {
80     if (patch.Type() == kLinkerPatchDexCacheArray &&
81         patch.LiteralOffset() == patch.PcInsnOffset()) {  // ADRP patch
82       uint32_t patch_offset = quick_code_offset + patch.LiteralOffset();
83       if (NeedsErratum843419Thunk(code, patch.LiteralOffset(), patch_offset)) {
84         adrp_thunk_locations_.emplace_back(patch_offset, thunk_offset);
85         thunk_offset += kAdrpThunkSize;
86       }
87     }
88   }
89   return offset;
90 }
91 
ReserveSpaceEnd(uint32_t offset)92 uint32_t Arm64RelativePatcher::ReserveSpaceEnd(uint32_t offset) {
93   if (!fix_cortex_a53_843419_) {
94     DCHECK(adrp_thunk_locations_.empty());
95   } else {
96     // Add thunks for the last method if any.
97     if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
98       size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
99       offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks;
100       reserved_adrp_thunks_ = adrp_thunk_locations_.size();
101     }
102   }
103   return ArmBaseRelativePatcher::ReserveSpaceEnd(offset);
104 }
105 
WriteThunks(OutputStream * out,uint32_t offset)106 uint32_t Arm64RelativePatcher::WriteThunks(OutputStream* out, uint32_t offset) {
107   if (fix_cortex_a53_843419_) {
108     if (!current_method_thunks_.empty()) {
109       uint32_t aligned_offset = CompiledMethod::AlignCode(offset, kArm64);
110       if (kIsDebugBuild) {
111         CHECK(IsAligned<kAdrpThunkSize>(current_method_thunks_.size()));
112         size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
113         CHECK_LE(num_thunks, processed_adrp_thunks_);
114         for (size_t i = 0u; i != num_thunks; ++i) {
115           const auto& entry = adrp_thunk_locations_[processed_adrp_thunks_ - num_thunks + i];
116           CHECK_EQ(entry.second, aligned_offset + i * kAdrpThunkSize);
117         }
118       }
119       uint32_t aligned_code_delta = aligned_offset - offset;
120       if (aligned_code_delta != 0u && !WriteCodeAlignment(out, aligned_code_delta)) {
121         return 0u;
122       }
123       if (!WriteMiscThunk(out, ArrayRef<const uint8_t>(current_method_thunks_))) {
124         return 0u;
125       }
126       offset = aligned_offset + current_method_thunks_.size();
127       current_method_thunks_.clear();
128     }
129   }
130   return ArmBaseRelativePatcher::WriteThunks(out, offset);
131 }
132 
PatchCall(std::vector<uint8_t> * code,uint32_t literal_offset,uint32_t patch_offset,uint32_t target_offset)133 void Arm64RelativePatcher::PatchCall(std::vector<uint8_t>* code, uint32_t literal_offset,
134                                      uint32_t patch_offset, uint32_t target_offset) {
135   DCHECK_LE(literal_offset + 4u, code->size());
136   DCHECK_EQ(literal_offset & 3u, 0u);
137   DCHECK_EQ(patch_offset & 3u, 0u);
138   DCHECK_EQ(target_offset & 3u, 0u);
139   uint32_t displacement = CalculateDisplacement(patch_offset, target_offset & ~1u);
140   DCHECK_EQ(displacement & 3u, 0u);
141   DCHECK((displacement >> 27) == 0u || (displacement >> 27) == 31u);  // 28-bit signed.
142   uint32_t insn = (displacement & 0x0fffffffu) >> 2;
143   insn |= 0x94000000;  // BL
144 
145   // Check that we're just overwriting an existing BL.
146   DCHECK_EQ(GetInsn(code, literal_offset) & 0xfc000000u, 0x94000000u);
147   // Write the new BL.
148   SetInsn(code, literal_offset, insn);
149 }
150 
PatchDexCacheReference(std::vector<uint8_t> * code,const LinkerPatch & patch,uint32_t patch_offset,uint32_t target_offset)151 void Arm64RelativePatcher::PatchDexCacheReference(std::vector<uint8_t>* code,
152                                                   const LinkerPatch& patch,
153                                                   uint32_t patch_offset,
154                                                   uint32_t target_offset) {
155   DCHECK_EQ(patch_offset & 3u, 0u);
156   DCHECK_EQ(target_offset & 3u, 0u);
157   uint32_t literal_offset = patch.LiteralOffset();
158   uint32_t insn = GetInsn(code, literal_offset);
159   uint32_t pc_insn_offset = patch.PcInsnOffset();
160   uint32_t disp = target_offset - ((patch_offset - literal_offset + pc_insn_offset) & ~0xfffu);
161   bool wide = (insn & 0x40000000) != 0;
162   uint32_t shift = wide ? 3u : 2u;
163   if (literal_offset == pc_insn_offset) {
164     // Check it's an ADRP with imm == 0 (unset).
165     DCHECK_EQ((insn & 0xffffffe0u), 0x90000000u)
166         << literal_offset << ", " << pc_insn_offset << ", 0x" << std::hex << insn;
167     if (fix_cortex_a53_843419_ && processed_adrp_thunks_ != adrp_thunk_locations_.size() &&
168         adrp_thunk_locations_[processed_adrp_thunks_].first == patch_offset) {
169       DCHECK(NeedsErratum843419Thunk(ArrayRef<const uint8_t>(*code),
170                                      literal_offset, patch_offset));
171       uint32_t thunk_offset = adrp_thunk_locations_[processed_adrp_thunks_].second;
172       uint32_t adrp_disp = target_offset - (thunk_offset & ~0xfffu);
173       uint32_t adrp = PatchAdrp(insn, adrp_disp);
174 
175       uint32_t out_disp = thunk_offset - patch_offset;
176       DCHECK_EQ(out_disp & 3u, 0u);
177       DCHECK((out_disp >> 27) == 0u || (out_disp >> 27) == 31u);  // 28-bit signed.
178       insn = (out_disp & 0x0fffffffu) >> shift;
179       insn |= 0x14000000;  // B <thunk>
180 
181       uint32_t back_disp = -out_disp;
182       DCHECK_EQ(back_disp & 3u, 0u);
183       DCHECK((back_disp >> 27) == 0u || (back_disp >> 27) == 31u);  // 28-bit signed.
184       uint32_t b_back = (back_disp & 0x0fffffffu) >> 2;
185       b_back |= 0x14000000;  // B <back>
186       size_t thunks_code_offset = current_method_thunks_.size();
187       current_method_thunks_.resize(thunks_code_offset + kAdrpThunkSize);
188       SetInsn(&current_method_thunks_, thunks_code_offset, adrp);
189       SetInsn(&current_method_thunks_, thunks_code_offset + 4u, b_back);
190       static_assert(kAdrpThunkSize == 2 * 4u, "thunk has 2 instructions");
191 
192       processed_adrp_thunks_ += 1u;
193     } else {
194       insn = PatchAdrp(insn, disp);
195     }
196     // Write the new ADRP (or B to the erratum 843419 thunk).
197     SetInsn(code, literal_offset, insn);
198   } else {
199     // LDR 32-bit or 64-bit with imm12 == 0 (unset).
200     DCHECK_EQ(insn & 0xbffffc00, 0xb9400000) << insn;
201     if (kIsDebugBuild) {
202       uint32_t adrp = GetInsn(code, pc_insn_offset);
203       if ((adrp & 0x9f000000u) != 0x90000000u) {
204         CHECK(fix_cortex_a53_843419_);
205         CHECK_EQ(adrp & 0xfc000000u, 0x14000000u);  // B <thunk>
206         CHECK(IsAligned<kAdrpThunkSize>(current_method_thunks_.size()));
207         size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
208         CHECK_LE(num_thunks, processed_adrp_thunks_);
209         uint32_t b_offset = patch_offset - literal_offset + pc_insn_offset;
210         for (size_t i = processed_adrp_thunks_ - num_thunks; ; ++i) {
211           CHECK_NE(i, processed_adrp_thunks_);
212           if (adrp_thunk_locations_[i].first == b_offset) {
213             size_t idx = num_thunks - (processed_adrp_thunks_ - i);
214             adrp = GetInsn(&current_method_thunks_, idx * kAdrpThunkSize);
215             break;
216           }
217         }
218       }
219       CHECK_EQ(adrp & 0x9f00001fu,                    // Check that pc_insn_offset points
220                0x90000000 | ((insn >> 5) & 0x1fu));   // to ADRP with matching register.
221     }
222     uint32_t imm12 = (disp & 0xfffu) >> shift;
223     insn = (insn & ~(0xfffu << 10)) | (imm12 << 10);
224     SetInsn(code, literal_offset, insn);
225   }
226 }
227 
CompileThunkCode()228 std::vector<uint8_t> Arm64RelativePatcher::CompileThunkCode() {
229   // The thunk just uses the entry point in the ArtMethod. This works even for calls
230   // to the generic JNI and interpreter trampolines.
231   arm64::Arm64Assembler assembler;
232   Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset(
233       kArm64PointerSize).Int32Value());
234   assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0));
235   // Ensure we emit the literal pool.
236   assembler.EmitSlowPaths();
237   std::vector<uint8_t> thunk_code(assembler.CodeSize());
238   MemoryRegion code(thunk_code.data(), thunk_code.size());
239   assembler.FinalizeInstructions(code);
240   return thunk_code;
241 }
242 
PatchAdrp(uint32_t adrp,uint32_t disp)243 uint32_t Arm64RelativePatcher::PatchAdrp(uint32_t adrp, uint32_t disp) {
244   return (adrp & 0x9f00001fu) |  // Clear offset bits, keep ADRP with destination reg.
245       // Bottom 12 bits are ignored, the next 2 lowest bits are encoded in bits 29-30.
246       ((disp & 0x00003000u) << (29 - 12)) |
247       // The next 16 bits are encoded in bits 5-22.
248       ((disp & 0xffffc000u) >> (12 + 2 - 5)) |
249       // Since the target_offset is based on the beginning of the oat file and the
250       // image space precedes the oat file, the target_offset into image space will
251       // be negative yet passed as uint32_t. Therefore we limit the displacement
252       // to +-2GiB (rather than the maximim +-4GiB) and determine the sign bit from
253       // the highest bit of the displacement. This is encoded in bit 23.
254       ((disp & 0x80000000u) >> (31 - 23));
255 }
256 
NeedsErratum843419Thunk(ArrayRef<const uint8_t> code,uint32_t literal_offset,uint32_t patch_offset)257 bool Arm64RelativePatcher::NeedsErratum843419Thunk(ArrayRef<const uint8_t> code,
258                                                    uint32_t literal_offset,
259                                                    uint32_t patch_offset) {
260   DCHECK_EQ(patch_offset & 0x3u, 0u);
261   if ((patch_offset & 0xff8) == 0xff8) {  // ...ff8 or ...ffc
262     uint32_t adrp = GetInsn(code, literal_offset);
263     DCHECK_EQ(adrp & 0xff000000, 0x90000000);
264     uint32_t next_offset = patch_offset + 4u;
265     uint32_t next_insn = GetInsn(code, literal_offset + 4u);
266 
267     // Below we avoid patching sequences where the adrp is followed by a load which can easily
268     // be proved to be aligned.
269 
270     // First check if the next insn is the LDR using the result of the ADRP.
271     // LDR <Wt>, [<Xn>, #pimm], where <Xn> == ADRP destination reg.
272     if ((next_insn & 0xffc00000) == 0xb9400000 &&
273         (((next_insn >> 5) ^ adrp) & 0x1f) == 0) {
274       return false;
275     }
276 
277     // LDR <Wt>, <label> is always aligned and thus it doesn't cause boundary crossing.
278     if ((next_insn & 0xff000000) == 0x18000000) {
279       return false;
280     }
281 
282     // LDR <Xt>, <label> is aligned iff the pc + displacement is a multiple of 8.
283     if ((next_insn & 0xff000000) == 0x58000000) {
284       bool is_aligned_load = (((next_offset >> 2) ^ (next_insn >> 5)) & 1) == 0;
285       return !is_aligned_load;
286     }
287 
288     // LDR <Wt>, [SP, #<pimm>] and LDR <Xt>, [SP, #<pimm>] are always aligned loads, as SP is
289     // guaranteed to be 128-bits aligned and <pimm> is multiple of the load size.
290     if ((next_insn & 0xbfc003e0) == 0xb94003e0) {
291       return false;
292     }
293     return true;
294   }
295   return false;
296 }
297 
SetInsn(std::vector<uint8_t> * code,uint32_t offset,uint32_t value)298 void Arm64RelativePatcher::SetInsn(std::vector<uint8_t>* code, uint32_t offset, uint32_t value) {
299   DCHECK_LE(offset + 4u, code->size());
300   DCHECK_EQ(offset & 3u, 0u);
301   uint8_t* addr = &(*code)[offset];
302   addr[0] = (value >> 0) & 0xff;
303   addr[1] = (value >> 8) & 0xff;
304   addr[2] = (value >> 16) & 0xff;
305   addr[3] = (value >> 24) & 0xff;
306 }
307 
GetInsn(ArrayRef<const uint8_t> code,uint32_t offset)308 uint32_t Arm64RelativePatcher::GetInsn(ArrayRef<const uint8_t> code, uint32_t offset) {
309   DCHECK_LE(offset + 4u, code.size());
310   DCHECK_EQ(offset & 3u, 0u);
311   const uint8_t* addr = &code[offset];
312   return
313       (static_cast<uint32_t>(addr[0]) << 0) +
314       (static_cast<uint32_t>(addr[1]) << 8) +
315       (static_cast<uint32_t>(addr[2]) << 16)+
316       (static_cast<uint32_t>(addr[3]) << 24);
317 }
318 
319 template <typename Alloc>
GetInsn(std::vector<uint8_t,Alloc> * code,uint32_t offset)320 uint32_t Arm64RelativePatcher::GetInsn(std::vector<uint8_t, Alloc>* code, uint32_t offset) {
321   return GetInsn(ArrayRef<const uint8_t>(*code), offset);
322 }
323 
324 }  // namespace linker
325 }  // namespace art
326