• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*-------------------------------------------------------------------------
2  * drawElements Quality Program OpenGL ES 2.0 Module
3  * -------------------------------------------------
4  *
5  * Copyright 2014 The Android Open Source Project
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file
21  * \brief Texture unit usage tests.
22  *
23  * \todo [2012-07-12 nuutti] Come up with a good way to make these tests faster.
24  *//*--------------------------------------------------------------------*/
25 
26 #include "es2fTextureUnitTests.hpp"
27 #include "glsTextureTestUtil.hpp"
28 #include "gluTextureUtil.hpp"
29 #include "gluContextInfo.hpp"
30 #include "tcuTextureUtil.hpp"
31 #include "tcuImageCompare.hpp"
32 #include "tcuMatrix.hpp"
33 #include "tcuRenderTarget.hpp"
34 #include "sglrContextUtil.hpp"
35 #include "sglrReferenceContext.hpp"
36 #include "sglrGLContext.hpp"
37 #include "deStringUtil.hpp"
38 #include "deRandom.hpp"
39 
40 #include "glwEnums.hpp"
41 #include "glwFunctions.hpp"
42 
43 using tcu::Vec2;
44 using tcu::Vec3;
45 using tcu::Vec4;
46 using tcu::IVec2;
47 using tcu::Mat3;
48 using std::vector;
49 using std::string;
50 using namespace glw; // GL types
51 
52 namespace deqp
53 {
54 
55 using namespace gls::TextureTestUtil;
56 
57 namespace gles2
58 {
59 namespace Functional
60 {
61 
62 static const int VIEWPORT_WIDTH			= 128;
63 static const int VIEWPORT_HEIGHT		= 128;
64 
65 static const int TEXTURE_WIDTH_2D		= 128;
66 static const int TEXTURE_HEIGHT_2D		= 128;
67 
68 // \note Cube map texture size is larger in order to make minifications possible - otherwise would need to display different faces at same time.
69 static const int TEXTURE_WIDTH_CUBE		= 256;
70 static const int TEXTURE_HEIGHT_CUBE	= 256;
71 
72 static const int GRID_CELL_SIZE			= 8;
73 
74 static const GLenum s_testFormats[] =
75 {
76 	GL_RGB,
77 	GL_RGBA,
78 	GL_ALPHA,
79 	GL_LUMINANCE,
80 	GL_LUMINANCE_ALPHA
81 };
82 
83 static const GLenum s_testDataTypes[] =
84 {
85 	GL_UNSIGNED_BYTE,
86 	GL_UNSIGNED_SHORT_5_6_5,
87 	GL_UNSIGNED_SHORT_4_4_4_4,
88 	GL_UNSIGNED_SHORT_5_5_5_1,
89 };
90 
91 static const GLenum s_testWrapModes[] =
92 {
93 	GL_CLAMP_TO_EDGE,
94 	GL_REPEAT,
95 	GL_MIRRORED_REPEAT,
96 };
97 
98 static const GLenum s_testMinFilters[] =
99 {
100 	GL_NEAREST,
101 	GL_LINEAR,
102 	GL_NEAREST_MIPMAP_NEAREST,
103 	GL_LINEAR_MIPMAP_NEAREST,
104 	GL_NEAREST_MIPMAP_LINEAR,
105 	GL_LINEAR_MIPMAP_LINEAR
106 };
107 
108 static const GLenum s_testNonMipmapMinFilters[] =
109 {
110 	GL_NEAREST,
111 	GL_LINEAR
112 };
113 
114 static const GLenum s_testMagFilters[] =
115 {
116 	GL_NEAREST,
117 	GL_LINEAR
118 };
119 
120 static const GLenum s_cubeFaceTargets[] =
121 {
122 	GL_TEXTURE_CUBE_MAP_POSITIVE_X,
123 	GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
124 	GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
125 	GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
126 	GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
127 	GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
128 };
129 
generateMultiTexFragmentShader(int numUnits,const GLenum * unitTypes)130 static string generateMultiTexFragmentShader(int numUnits, const GLenum* unitTypes)
131 {
132 	// The fragment shader calculates the average of a set of textures.
133 
134 	string samplersStr;
135 	string matricesStr;
136 	string lookupsStr;
137 
138 	string colorMultiplier = "(1.0/" + de::toString(numUnits) + ".0)";
139 
140 	for (int ndx = 0; ndx < numUnits; ndx++)
141 	{
142 		string			ndxStr				= de::toString(ndx);
143 		string			samplerName			= "u_sampler" + ndxStr;
144 		string			transformationName	= "u_trans" + ndxStr;
145 		const char*		samplerType			= unitTypes[ndx] == GL_TEXTURE_2D ? "sampler2D" : "samplerCube";
146 		const char*		lookupFunc			= unitTypes[ndx] == GL_TEXTURE_2D ? "texture2D" : "textureCube";
147 
148 		samplersStr += string("") + "uniform mediump " + samplerType + " " + samplerName + ";\n";
149 		matricesStr += "uniform mediump mat3 " + transformationName + ";\n";
150 
151 		string lookupCoord = transformationName + "*vec3(v_coord, 1.0)";
152 
153 		if (unitTypes[ndx] == GL_TEXTURE_2D)
154 			lookupCoord = "vec2(" + lookupCoord + ")";
155 
156 		lookupsStr += "\tcolor += " + colorMultiplier + "*" + lookupFunc + "(" + samplerName + ", " + lookupCoord + ");\n";
157 	}
158 
159 	return
160 		samplersStr +
161 		matricesStr +
162 		"varying mediump vec2 v_coord;\n"
163 		"\n"
164 		"void main (void)\n"
165 		"{\n"
166 		"	mediump vec4 color = vec4(0.0);\n" +
167 		lookupsStr +
168 		"	gl_FragColor = color;\n"
169 		"}\n";
170 }
171 
generateShaderProgramDeclaration(int numUnits,const GLenum * unitTypes)172 static sglr::pdec::ShaderProgramDeclaration generateShaderProgramDeclaration (int numUnits, const GLenum* unitTypes)
173 {
174 	sglr::pdec::ShaderProgramDeclaration decl;
175 
176 	decl << sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT);
177 	decl << sglr::pdec::VertexAttribute("a_coord", rr::GENERICVECTYPE_FLOAT);
178 	decl << sglr::pdec::VertexToFragmentVarying(rr::GENERICVECTYPE_FLOAT);
179 	decl << sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT);
180 
181 	for (int ndx = 0; ndx < numUnits; ++ndx)
182 	{
183 		string	samplerName			= "u_sampler" + de::toString(ndx);
184 		string	transformationName	= "u_trans" + de::toString(ndx);
185 
186 		decl << sglr::pdec::Uniform(samplerName, (unitTypes[ndx] == GL_TEXTURE_2D) ? (glu::TYPE_SAMPLER_2D) : (glu::TYPE_SAMPLER_CUBE));
187 		decl << sglr::pdec::Uniform(transformationName, glu::TYPE_FLOAT_MAT3);
188 	}
189 
190 	decl << sglr::pdec::VertexSource("attribute highp vec4 a_position;\n"
191 									 "attribute mediump vec2 a_coord;\n"
192 									 "varying mediump vec2 v_coord;\n"
193 									 "\n"
194 									 "void main (void)\n"
195 									 "{\n"
196 									 "	gl_Position = a_position;\n"
197 									 "	v_coord = a_coord;\n"
198 									 "}\n");
199 	decl << sglr::pdec::FragmentSource(generateMultiTexFragmentShader(numUnits, unitTypes));
200 
201 	return decl;
202 }
203 
204 // Calculates values to be used in calculateLod().
calculateLodDerivateParts(const Mat3 & transformation)205 static Vec4 calculateLodDerivateParts(const Mat3& transformation)
206 {
207 	// Calculate transformed coordinates of three corners.
208 	Vec2 trans00 = (transformation * Vec3(0.0f, 0.0f, 1.0f)).xy();
209 	Vec2 trans01 = (transformation * Vec3(0.0f, 1.0f, 1.0f)).xy();
210 	Vec2 trans10 = (transformation * Vec3(1.0f, 0.0f, 1.0f)).xy();
211 
212 	return Vec4(trans10.x() - trans00.x(),
213 				trans01.x() - trans00.x(),
214 				trans10.y() - trans00.y(),
215 				trans01.y() - trans00.y());
216 }
217 
218 // Calculates the maximum allowed lod from derivates
calculateLodMax(const Vec4 & derivateParts,const tcu::IVec2 & textureSize,const Vec2 & screenDerivate)219 static float calculateLodMax(const Vec4& derivateParts, const tcu::IVec2& textureSize, const Vec2& screenDerivate)
220 {
221 	float dudx = derivateParts.x() * (float)textureSize.x() * screenDerivate.x();
222 	float dudy = derivateParts.y() * (float)textureSize.x() * screenDerivate.y();
223 	float dvdx = derivateParts.z() * (float)textureSize.y() * screenDerivate.x();
224 	float dvdy = derivateParts.w() * (float)textureSize.y() * screenDerivate.y();
225 
226 	return deFloatLog2(de::max(de::abs(dudx), de::abs(dudy)) + de::max(de::abs(dvdx), de::abs(dvdy)));
227 }
228 
229 // Calculates the minimum allowed lod from derivates
calculateLodMin(const Vec4 & derivateParts,const tcu::IVec2 & textureSize,const Vec2 & screenDerivate)230 static float calculateLodMin(const Vec4& derivateParts, const tcu::IVec2& textureSize, const Vec2& screenDerivate)
231 {
232 	float dudx = derivateParts.x() * (float)textureSize.x() * screenDerivate.x();
233 	float dudy = derivateParts.y() * (float)textureSize.x() * screenDerivate.y();
234 	float dvdx = derivateParts.z() * (float)textureSize.y() * screenDerivate.x();
235 	float dvdy = derivateParts.w() * (float)textureSize.y() * screenDerivate.y();
236 
237 	return deFloatLog2(de::max(de::max(de::abs(dudx), de::abs(dudy)), de::max(de::abs(dvdx), de::abs(dvdy))));
238 }
239 
240 class MultiTexShader : public sglr::ShaderProgram
241 {
242 public:
243 							MultiTexShader	(deUint32 randSeed, int numUnits, const vector<GLenum>& unitTypes);
244 
245 	void					setUniforms		(sglr::Context& context, deUint32 program) const;
246 	void					makeSafeLods	(const vector<IVec2>& textureSizes, const IVec2& viewportSize); // Modifies texture coordinates so that LODs aren't too close to x.5 or 0.0 .
247 
248 private:
249 	void					shadeVertices	(const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const;
250 	void					shadeFragments	(rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const;
251 
252 	int						m_numUnits;
253 	vector<GLenum>			m_unitTypes;		// 2d or cube map.
254 	vector<Mat3>			m_transformations;
255 	vector<Vec4>			m_lodDerivateParts;	// Parts of lod derivates; computed in init(), used in eval().
256 };
257 
MultiTexShader(deUint32 randSeed,int numUnits,const vector<GLenum> & unitTypes)258 MultiTexShader::MultiTexShader (deUint32 randSeed, int numUnits, const vector<GLenum>& unitTypes)
259 	: sglr::ShaderProgram	(generateShaderProgramDeclaration(numUnits, &unitTypes[0]))
260 	, m_numUnits			(numUnits)
261 	, m_unitTypes			(unitTypes)
262 {
263 	// 2d-to-cube-face transformations.
264 	// \note 2d coordinates range from 0 to 1 and cube face coordinates from -1 to 1, so scaling is done as well.
265 	static const float s_cubeTransforms[][3*3] =
266 	{
267 		// Face -X: (x, y, 1) -> (-1, -(2*y-1), +(2*x-1))
268 		{  0.0f,  0.0f, -1.0f,
269 		   0.0f, -2.0f,  1.0f,
270 		   2.0f,  0.0f, -1.0f },
271 		// Face +X: (x, y, 1) -> (+1, -(2*y-1), -(2*x-1))
272 		{  0.0f,  0.0f,  1.0f,
273 		   0.0f, -2.0f,  1.0f,
274 		  -2.0f,  0.0f,  1.0f },
275 		// Face -Y: (x, y, 1) -> (+(2*x-1), -1, -(2*y-1))
276 		{  2.0f,  0.0f, -1.0f,
277 		   0.0f,  0.0f, -1.0f,
278 		   0.0f, -2.0f,  1.0f },
279 		// Face +Y: (x, y, 1) -> (+(2*x-1), +1, +(2*y-1))
280 		{  2.0f,  0.0f, -1.0f,
281 		   0.0f,  0.0f,  1.0f,
282 		   0.0f,  2.0f, -1.0f },
283 		// Face -Z: (x, y, 1) -> (-(2*x-1), -(2*y-1), -1)
284 		{ -2.0f,  0.0f,  1.0f,
285 		   0.0f, -2.0f,  1.0f,
286 		   0.0f,  0.0f, -1.0f },
287 		// Face +Z: (x, y, 1) -> (+(2*x-1), -(2*y-1), +1)
288 		{  2.0f,  0.0f, -1.0f,
289 		   0.0f, -2.0f,  1.0f,
290 		   0.0f,  0.0f,  1.0f }
291 	};
292 
293 	// Generate transformation matrices.
294 
295 	de::Random rnd(randSeed);
296 
297 	m_transformations.reserve(m_numUnits);
298 	m_lodDerivateParts.reserve(m_numUnits);
299 
300 	DE_ASSERT((int)m_unitTypes.size() == m_numUnits);
301 
302 	for (int unitNdx = 0; unitNdx < m_numUnits; unitNdx++)
303 	{
304 		if (m_unitTypes[unitNdx] == GL_TEXTURE_2D)
305 		{
306 			float rotAngle				= rnd.getFloat(0.0f, 2.0f*DE_PI);
307 			float xScaleFactor			= rnd.getFloat(0.7f, 1.5f);
308 			float yScaleFactor			= rnd.getFloat(0.7f, 1.5f);
309 			float xShearAmount			= rnd.getFloat(0.0f, 0.5f);
310 			float yShearAmount			= rnd.getFloat(0.0f, 0.5f);
311 			float xTranslationAmount	= rnd.getFloat(-0.5f, 0.5f);
312 			float yTranslationAmount	= rnd.getFloat(-0.5f, 0.5f);
313 
314 			float tempOffsetData[3*3] = // For temporarily centering the coordinates to get nicer transformations.
315 			{
316 				1.0f,  0.0f, -0.5f,
317 				0.0f,  1.0f, -0.5f,
318 				0.0f,  0.0f,  1.0f
319 			};
320 			float rotTransfData[3*3] =
321 			{
322 				deFloatCos(rotAngle),	-deFloatSin(rotAngle),	0.0f,
323 				deFloatSin(rotAngle),	deFloatCos(rotAngle),	0.0f,
324 				0.0f,					0.0f,					1.0f
325 			};
326 			float scaleTransfData[3*3] =
327 			{
328 				xScaleFactor,	0.0f,			0.0f,
329 				0.0f,			yScaleFactor,	0.0f,
330 				0.0f,			0.0f,			1.0f
331 			};
332 			float xShearTransfData[3*3] =
333 			{
334 				1.0f,			xShearAmount,	0.0f,
335 				0.0f,			1.0f,			0.0f,
336 				0.0f,			0.0f,			1.0f
337 			};
338 			float yShearTransfData[3*3] =
339 			{
340 				1.0f,			0.0f,			0.0f,
341 				yShearAmount,	1.0f,			0.0f,
342 				0.0f,			0.0f,			1.0f
343 			};
344 			float translationTransfData[3*3] =
345 			{
346 				1.0f,	0.0f,	xTranslationAmount,
347 				0.0f,	1.0f,	yTranslationAmount,
348 				0.0f,	0.0f,	1.0f
349 			};
350 
351 			Mat3 transformation =
352 				Mat3(tempOffsetData) *
353 				Mat3(translationTransfData) *
354 				Mat3(rotTransfData) *
355 				Mat3(scaleTransfData) *
356 				Mat3(xShearTransfData) *
357 				Mat3(yShearTransfData) *
358 				(Mat3(tempOffsetData) * (-1.0f));
359 
360 			// Calculate parts of lod derivates.
361 			m_lodDerivateParts.push_back(calculateLodDerivateParts(transformation));
362 
363 			m_transformations.push_back(transformation);
364 		}
365 		else
366 		{
367 			DE_ASSERT(m_unitTypes[unitNdx] == GL_TEXTURE_CUBE_MAP);
368 			DE_STATIC_ASSERT((int)tcu::CUBEFACE_LAST == DE_LENGTH_OF_ARRAY(s_cubeTransforms));
369 
370 			float planarTransData[3*3];
371 
372 			// In case of a cube map, we only want to render one face, so the transformation needs to be restricted - only enlarging scaling is done.
373 
374 			for (int i = 0; i < DE_LENGTH_OF_ARRAY(planarTransData); i++)
375 			{
376 				if (i == 0 || i == 4)
377 					planarTransData[i] = rnd.getFloat(0.1f, 0.9f); // Two first diagonal cells control the scaling.
378 				else if (i == 8)
379 					planarTransData[i] = 1.0f;
380 				else
381 					planarTransData[i] = 0.0f;
382 			}
383 
384 			int		faceNdx			= rnd.getInt(0, (int)tcu::CUBEFACE_LAST - 1);
385 			Mat3	planarTrans		(planarTransData);									// Planar, face-agnostic transformation.
386 			Mat3	finalTrans		= Mat3(s_cubeTransforms[faceNdx]) * planarTrans;	// Final transformation from planar to cube map coordinates, including the transformation just generated.
387 
388 			// Calculate parts of lod derivates.
389 			m_lodDerivateParts.push_back(calculateLodDerivateParts(planarTrans));
390 
391 			m_transformations.push_back(finalTrans);
392 		}
393 	}
394 }
395 
setUniforms(sglr::Context & ctx,deUint32 program) const396 void MultiTexShader::setUniforms (sglr::Context& ctx, deUint32 program) const
397 {
398 	ctx.useProgram(program);
399 
400 	// Sampler and matrix uniforms.
401 
402 	for (int ndx = 0; ndx < m_numUnits; ndx++)
403 	{
404 		string			ndxStr		= de::toString(ndx);
405 
406 		ctx.uniform1i(ctx.getUniformLocation(program, ("u_sampler" + ndxStr).c_str()), ndx);
407 		ctx.uniformMatrix3fv(ctx.getUniformLocation(program, ("u_trans" + ndxStr).c_str()), 1, GL_FALSE, (GLfloat*)&m_transformations[ndx].getColumnMajorData()[0]);
408 	}
409 }
410 
makeSafeLods(const vector<IVec2> & textureSizes,const IVec2 & viewportSize)411 void MultiTexShader::makeSafeLods (const vector<IVec2>& textureSizes, const IVec2& viewportSize)
412 {
413 	DE_ASSERT((int)textureSizes.size() == m_numUnits);
414 
415 	static const float shrinkScaleMatData[3*3] =
416 	{
417 		0.95f,	0.0f,	0.0f,
418 		0.0f,	0.95f,	0.0f,
419 		0.0f,	0.0f,	1.0f
420 	};
421 	Mat3 shrinkScaleMat(shrinkScaleMatData);
422 
423 	Vec2 screenDerivate(1.0f / (float)viewportSize.x(), 1.0f / (float)viewportSize.y());
424 
425 	for (int unitNdx = 0; unitNdx < m_numUnits; unitNdx++)
426 	{
427 		// As long as LOD is too close to 0.0 or is positive and too close to a something-and-a-half (0.5, 1.5, 2.5 etc) or allowed lod range could round to different levels, zoom in a little to get a safer LOD.
428 		for (;;)
429 		{
430 			const float threshold = 0.1f;
431 			const float epsilon	= 0.01f;
432 
433 			const float lodMax = calculateLodMax(m_lodDerivateParts[unitNdx], textureSizes[unitNdx], screenDerivate);
434 			const float lodMin = calculateLodMin(m_lodDerivateParts[unitNdx], textureSizes[unitNdx], screenDerivate);
435 
436 			const deInt32 maxLevel = (lodMax + epsilon < 0.5f) ? (0) : (deCeilFloatToInt32(lodMax + epsilon + 0.5f) - 1);
437 			const deInt32 minLevel = (lodMin - epsilon < 0.5f) ? (0) : (deCeilFloatToInt32(lodMin - epsilon + 0.5f) - 1);
438 
439 			if (de::abs(lodMax) < threshold || (lodMax > 0.0f && de::abs(deFloatFrac(lodMax) - 0.5f) < threshold) ||
440 				de::abs(lodMin) < threshold || (lodMin > 0.0f && de::abs(deFloatFrac(lodMin) - 0.5f) < threshold) ||
441 				maxLevel != minLevel)
442 			{
443 				m_transformations[unitNdx] = shrinkScaleMat * m_transformations[unitNdx];
444 				m_lodDerivateParts[unitNdx] = calculateLodDerivateParts(m_transformations[unitNdx]);
445 			}
446 			else
447 				break;
448 		}
449 	}
450 }
451 
shadeVertices(const rr::VertexAttrib * inputs,rr::VertexPacket * const * packets,const int numPackets) const452 void MultiTexShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const
453 {
454 	for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
455 	{
456 		rr::VertexPacket& packet = *(packets[packetNdx]);
457 
458 		packet.position		= rr::readVertexAttribFloat(inputs[0], packet.instanceNdx, packet.vertexNdx);
459 		packet.outputs[0]	= rr::readVertexAttribFloat(inputs[1], packet.instanceNdx, packet.vertexNdx);
460 	}
461 }
462 
shadeFragments(rr::FragmentPacket * packets,const int numPackets,const rr::FragmentShadingContext & context) const463 void MultiTexShader::shadeFragments	(rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const
464 {
465 	DE_ASSERT((int)m_unitTypes.size() == m_numUnits);
466 	DE_ASSERT((int)m_transformations.size() == m_numUnits);
467 	DE_ASSERT((int)m_lodDerivateParts.size() == m_numUnits);
468 
469 	for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
470 	{
471 		rr::FragmentPacket& packet				= packets[packetNdx];
472 		const float			colorMultiplier		= 1.0f / (float)m_numUnits;
473 		Vec4				outColors[4]		= { Vec4(0.0f), Vec4(0.0f), Vec4(0.0f), Vec4(0.0f) };
474 
475 		for (int unitNdx = 0; unitNdx < m_numUnits; unitNdx++)
476 		{
477 			tcu::Vec4 texSamples[4];
478 
479 			// Read tex coords
480 			const tcu::Vec2 texCoords[4] =
481 			{
482 				rr::readTriangleVarying<float>(packet, context, 0, 0).xy(),
483 				rr::readTriangleVarying<float>(packet, context, 0, 1).xy(),
484 				rr::readTriangleVarying<float>(packet, context, 0, 2).xy(),
485 				rr::readTriangleVarying<float>(packet, context, 0, 3).xy(),
486 			};
487 
488 			if (m_unitTypes[unitNdx] == GL_TEXTURE_2D)
489 			{
490 				// Transform
491 				const tcu::Vec2 transformedTexCoords[4] =
492 				{
493 					(m_transformations[unitNdx] * Vec3(texCoords[0].x(), texCoords[0].y(), 1.0f)).xy(),
494 					(m_transformations[unitNdx] * Vec3(texCoords[1].x(), texCoords[1].y(), 1.0f)).xy(),
495 					(m_transformations[unitNdx] * Vec3(texCoords[2].x(), texCoords[2].y(), 1.0f)).xy(),
496 					(m_transformations[unitNdx] * Vec3(texCoords[3].x(), texCoords[3].y(), 1.0f)).xy(),
497 				};
498 
499 				// Sample
500 				m_uniforms[2*unitNdx].sampler.tex2D->sample4(texSamples, transformedTexCoords);
501 			}
502 			else
503 			{
504 				DE_ASSERT(m_unitTypes[unitNdx] == GL_TEXTURE_CUBE_MAP);
505 
506 				// Transform
507 				const tcu::Vec3 transformedTexCoords[4] =
508 				{
509 					m_transformations[unitNdx] * Vec3(texCoords[0].x(), texCoords[0].y(), 1.0f),
510 					m_transformations[unitNdx] * Vec3(texCoords[1].x(), texCoords[1].y(), 1.0f),
511 					m_transformations[unitNdx] * Vec3(texCoords[2].x(), texCoords[2].y(), 1.0f),
512 					m_transformations[unitNdx] * Vec3(texCoords[3].x(), texCoords[3].y(), 1.0f),
513 				};
514 
515 				// Sample
516 				m_uniforms[2*unitNdx].sampler.texCube->sample4(texSamples, transformedTexCoords);
517 			}
518 
519 			// Add to sum
520 			for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
521 				outColors[fragNdx] += colorMultiplier * texSamples[fragNdx];
522 		}
523 
524 		// output
525 		for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
526 			rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, outColors[fragNdx]);
527 	}
528 }
529 
530 class TextureUnitCase : public TestCase
531 {
532 public:
533 	enum CaseType
534 	{
535 		CASE_ONLY_2D = 0,
536 		CASE_ONLY_CUBE,
537 		CASE_MIXED,
538 
539 		CASE_LAST
540 	};
541 								TextureUnitCase		(Context& context, const char* name, const char* desc, int numUnits /* \note If non-positive, use all units */, CaseType caseType, deUint32 randSeed);
542 								~TextureUnitCase	(void);
543 
544 	void						init				(void);
545 	void						deinit				(void);
546 	IterateResult				iterate				(void);
547 
548 private:
549 	struct TextureParameters
550 	{
551 		GLenum format;
552 		GLenum dataType;
553 		GLenum wrapModeS;
554 		GLenum wrapModeT;
555 		GLenum minFilter;
556 		GLenum magFilter;
557 	};
558 
559 								TextureUnitCase		(const TextureUnitCase& other);
560 	TextureUnitCase&			operator=			(const TextureUnitCase& other);
561 
562 	void						render				(sglr::Context& context);
563 
564 	const int					m_numUnitsParam;
565 	const CaseType				m_caseType;
566 	const deUint32				m_randSeed;
567 
568 	int							m_numTextures;	//!< \note Needed in addition to m_numUnits since same texture may be bound to many texture units.
569 	int							m_numUnits;		//!< = m_numUnitsParam > 0 ? m_numUnitsParam : implementationDefinedMaximum
570 
571 	vector<GLenum>				m_textureTypes;
572 	vector<TextureParameters>	m_textureParams;
573 	vector<tcu::Texture2D*>		m_textures2d;
574 	vector<tcu::TextureCube*>	m_texturesCube;
575 	vector<int>					m_unitTextures;	//!< Which texture is used in a particular unit.
576 	vector<int>					m_ndx2dOrCube;	//!< Index of a texture in either m_textures2d or m_texturesCube, depending on texture type.
577 	MultiTexShader*				m_shader;
578 };
579 
TextureUnitCase(Context & context,const char * name,const char * desc,int numUnits,CaseType caseType,deUint32 randSeed)580 TextureUnitCase::TextureUnitCase (Context& context, const char* name, const char* desc, int numUnits, CaseType caseType, deUint32 randSeed)
581 	: TestCase			(context, tcu::NODETYPE_SELF_VALIDATE, name, desc)
582 	, m_numUnitsParam	(numUnits)
583 	, m_caseType		(caseType)
584 	, m_randSeed		(randSeed)
585 	, m_shader			(DE_NULL)
586 {
587 }
588 
~TextureUnitCase(void)589 TextureUnitCase::~TextureUnitCase (void)
590 {
591 	TextureUnitCase::deinit();
592 }
593 
deinit(void)594 void TextureUnitCase::deinit (void)
595 {
596 	for (vector<tcu::Texture2D*>::iterator i = m_textures2d.begin(); i != m_textures2d.end(); i++)
597 		delete *i;
598 	m_textures2d.clear();
599 
600 	for (vector<tcu::TextureCube*>::iterator i = m_texturesCube.begin(); i != m_texturesCube.end(); i++)
601 		delete *i;
602 	m_texturesCube.clear();
603 
604 	delete m_shader;
605 	m_shader = DE_NULL;
606 }
607 
init(void)608 void TextureUnitCase::init (void)
609 {
610 	m_numUnits = m_numUnitsParam > 0 ? m_numUnitsParam : m_context.getContextInfo().getInt(GL_MAX_TEXTURE_IMAGE_UNITS);
611 
612 	// Make the textures.
613 
614 	try
615 	{
616 		tcu::TestLog&	log	= m_testCtx.getLog();
617 		de::Random		rnd	(m_randSeed);
618 
619 		if (rnd.getFloat() < 0.7f)
620 			m_numTextures = m_numUnits;											// In most cases use one unit per texture.
621 		else
622 			m_numTextures = rnd.getInt(deMax32(1, m_numUnits - 2), m_numUnits);	// Sometimes assign same texture to multiple units.
623 
624 		log << tcu::TestLog::Message << ("Using " + de::toString(m_numUnits) + " texture unit(s) and " + de::toString(m_numTextures) + " texture(s)").c_str() << tcu::TestLog::EndMessage;
625 
626 		m_textureTypes.reserve(m_numTextures);
627 		m_textureParams.reserve(m_numTextures);
628 		m_ndx2dOrCube.reserve(m_numTextures);
629 
630 		// Generate textures.
631 
632 		for (int texNdx = 0; texNdx < m_numTextures; texNdx++)
633 		{
634 			// Either fixed or randomized target types (2d or cube), and randomized parameters for every texture.
635 
636 			TextureParameters	params;
637 			bool				is2d		= m_caseType == CASE_ONLY_2D	? true :
638 											  m_caseType == CASE_ONLY_CUBE	? false :
639 																			  rnd.getBool();
640 
641 			GLenum				type		= is2d ? GL_TEXTURE_2D : GL_TEXTURE_CUBE_MAP;
642 			const int			texWidth	= is2d ? TEXTURE_WIDTH_2D : TEXTURE_WIDTH_CUBE;
643 			const int			texHeight	= is2d ? TEXTURE_HEIGHT_2D : TEXTURE_HEIGHT_CUBE;
644 			bool				mipmaps		= (deIsPowerOfTwo32(texWidth) && deIsPowerOfTwo32(texHeight));
645 			int					numLevels	= mipmaps ? deLog2Floor32(de::max(texWidth, texHeight))+1 : 1;
646 
647 			params.wrapModeS	= s_testWrapModes	[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testWrapModes) - 1)];
648 			params.wrapModeT	= s_testWrapModes	[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testWrapModes) - 1)];
649 			params.magFilter	= s_testMagFilters	[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testMagFilters) - 1)];
650 			params.dataType		= s_testDataTypes	[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testDataTypes) - 1)];
651 
652 			// Certain minification filters are only used when using mipmaps.
653 			if (mipmaps)
654 				params.minFilter = s_testMinFilters[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testMinFilters) - 1)];
655 			else
656 				params.minFilter = s_testNonMipmapMinFilters[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testNonMipmapMinFilters) - 1)];
657 
658 			// Format may depend on data type.
659 			if (params.dataType == GL_UNSIGNED_SHORT_5_6_5)
660 				params.format = GL_RGB;
661 			else if (params.dataType == GL_UNSIGNED_SHORT_4_4_4_4 || params.dataType == GL_UNSIGNED_SHORT_5_5_5_1)
662 				params.format = GL_RGBA;
663 			else
664 				params.format = s_testFormats[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testFormats) - 1)];
665 
666 			m_textureTypes.push_back(type);
667 			m_textureParams.push_back(params);
668 
669 			// Create new texture.
670 
671 			if (is2d)
672 			{
673 				m_ndx2dOrCube.push_back((int)m_textures2d.size()); // Remember the index this texture has in the 2d array.
674 				m_textures2d.push_back(new tcu::Texture2D(glu::mapGLTransferFormat(params.format, params.dataType), texWidth, texHeight));
675 			}
676 			else
677 			{
678 				m_ndx2dOrCube.push_back((int)m_texturesCube.size()); // Remember the index this texture has in the cube array.
679 				DE_ASSERT(texWidth == texHeight);
680 				m_texturesCube.push_back(new tcu::TextureCube(glu::mapGLTransferFormat(params.format, params.dataType), texWidth));
681 			}
682 
683 			tcu::TextureFormatInfo	fmtInfo		= tcu::getTextureFormatInfo(is2d ? m_textures2d.back()->getFormat() : m_texturesCube.back()->getFormat());
684 			Vec4					cBias		= fmtInfo.valueMin;
685 			Vec4					cScale		= fmtInfo.valueMax-fmtInfo.valueMin;
686 
687 			// Fill with grid texture.
688 
689 			int numFaces = is2d ? 1 : (int)tcu::CUBEFACE_LAST;
690 
691 			for (int face = 0; face < numFaces; face++)
692 			{
693 				deUint32 rgb	= rnd.getUint32() & 0x00ffffff;
694 				deUint32 alpha0	= 0xff000000;
695 				deUint32 alpha1	= 0xff000000;
696 
697 				if (params.format == GL_ALPHA) // \note This needs alpha to be visible.
698 				{
699 					alpha0 &= rnd.getUint32();
700 					alpha1 = ~alpha0;
701 				}
702 
703 				deUint32 colorA = alpha0 | rgb;
704 				deUint32 colorB = alpha1 | ~rgb;
705 
706 				for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
707 				{
708 					if (is2d)
709 						m_textures2d.back()->allocLevel(levelNdx);
710 					else
711 						m_texturesCube.back()->allocLevel((tcu::CubeFace)face, levelNdx);
712 
713 					int curCellSize = deMax32(1, GRID_CELL_SIZE >> levelNdx); // \note Scale grid cell size for mipmaps.
714 
715 					tcu::PixelBufferAccess access = is2d ? m_textures2d.back()->getLevel(levelNdx) : m_texturesCube.back()->getLevelFace(levelNdx, (tcu::CubeFace)face);
716 					tcu::fillWithGrid(access, curCellSize, toVec4(tcu::RGBA(colorA))*cScale + cBias, toVec4(tcu::RGBA(colorB))*cScale + cBias);
717 				}
718 			}
719 		}
720 
721 		// Assign a texture index to each unit.
722 
723 		m_unitTextures.reserve(m_numUnits);
724 
725 		// \note Every texture is used at least once.
726 		for (int i = 0; i < m_numTextures; i++)
727 			m_unitTextures.push_back(i);
728 
729 		// Assign a random texture to remaining units.
730 		while ((int)m_unitTextures.size() < m_numUnits)
731 			m_unitTextures.push_back(rnd.getInt(0, m_numTextures - 1));
732 
733 		rnd.shuffle(m_unitTextures.begin(), m_unitTextures.end());
734 
735 		// Create shader.
736 
737 		vector<GLenum> unitTypes;
738 		unitTypes.reserve(m_numUnits);
739 		for (int i = 0; i < m_numUnits; i++)
740 			unitTypes.push_back(m_textureTypes[m_unitTextures[i]]);
741 
742 		DE_ASSERT(m_shader == DE_NULL);
743 		m_shader = new MultiTexShader(rnd.getUint32(), m_numUnits, unitTypes);
744 	}
745 	catch (const std::exception&)
746 	{
747 		// Clean up to save memory.
748 		TextureUnitCase::deinit();
749 		throw;
750 	}
751 }
752 
iterate(void)753 TextureUnitCase::IterateResult TextureUnitCase::iterate (void)
754 {
755 	glu::RenderContext&			renderCtx			= m_context.getRenderContext();
756 	const tcu::RenderTarget&	renderTarget		= renderCtx.getRenderTarget();
757 	tcu::TestLog&				log					= m_testCtx.getLog();
758 	de::Random					rnd					(m_randSeed);
759 
760 	int							viewportWidth		= deMin32(VIEWPORT_WIDTH, renderTarget.getWidth());
761 	int							viewportHeight		= deMin32(VIEWPORT_HEIGHT, renderTarget.getHeight());
762 	int							viewportX			= rnd.getInt(0, renderTarget.getWidth() - viewportWidth);
763 	int							viewportY			= rnd.getInt(0, renderTarget.getHeight() - viewportHeight);
764 
765 	tcu::Surface				gles2Frame			(viewportWidth, viewportHeight);
766 	tcu::Surface				refFrame			(viewportWidth, viewportHeight);
767 
768 	{
769 		// First we do some tricks to make the LODs safer wrt. precision issues. See MultiTexShader::makeSafeLods().
770 
771 		vector<IVec2> texSizes;
772 		texSizes.reserve(m_numUnits);
773 
774 		for (int i = 0; i < m_numUnits; i++)
775 		{
776 			int		texNdx			= m_unitTextures[i];
777 			int		texNdxInType	= m_ndx2dOrCube[texNdx];
778 			GLenum	type			= m_textureTypes[texNdx];
779 
780 			switch (type)
781 			{
782 				case GL_TEXTURE_2D:			texSizes.push_back(IVec2(m_textures2d[texNdxInType]->getWidth(),	m_textures2d[texNdxInType]->getHeight()));	break;
783 				case GL_TEXTURE_CUBE_MAP:	texSizes.push_back(IVec2(m_texturesCube[texNdxInType]->getSize(),	m_texturesCube[texNdxInType]->getSize()));	break;
784 				default:
785 					DE_ASSERT(DE_FALSE);
786 			}
787 		}
788 
789 		m_shader->makeSafeLods(texSizes, IVec2(viewportWidth, viewportHeight));
790 	}
791 
792 	// Render using GLES2.
793 	{
794 		sglr::GLContext context(renderCtx, log, sglr::GLCONTEXT_LOG_CALLS|sglr::GLCONTEXT_LOG_PROGRAMS, tcu::IVec4(viewportX, viewportY, viewportWidth, viewportHeight));
795 
796 		render(context);
797 
798 		context.readPixels(gles2Frame, 0, 0, viewportWidth, viewportHeight);
799 	}
800 
801 	// Render reference image.
802 	{
803 		sglr::ReferenceContextBuffers	buffers	(tcu::PixelFormat(8,8,8,renderTarget.getPixelFormat().alphaBits?8:0), 0 /* depth */, 0 /* stencil */, viewportWidth, viewportHeight);
804 		sglr::ReferenceContext			context	(sglr::ReferenceContextLimits(renderCtx), buffers.getColorbuffer(), buffers.getDepthbuffer(), buffers.getStencilbuffer());
805 
806 		render(context);
807 
808 		context.readPixels(refFrame, 0, 0, viewportWidth, viewportHeight);
809 	}
810 
811 	// Compare images.
812 	const float		threshold	= 0.001f;
813 	bool			isOk		= tcu::fuzzyCompare(log, "ComparisonResult", "Image comparison result", refFrame, gles2Frame, threshold, tcu::COMPARE_LOG_RESULT);
814 
815 	// Store test result.
816 	m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS	: QP_TEST_RESULT_FAIL,
817 							isOk ? "Pass"				: "Image comparison failed");
818 
819 	return STOP;
820 }
821 
render(sglr::Context & context)822 void TextureUnitCase::render (sglr::Context& context)
823 {
824 	// Setup textures.
825 
826 	vector<deUint32>	textureGLNames;
827 	vector<bool>		isTextureSetUp(m_numTextures, false); // \note Same texture may be bound to multiple units, but we only want to set up parameters and data once per texture.
828 
829 	textureGLNames.resize(m_numTextures);
830 	context.genTextures(m_numTextures, &textureGLNames[0]);
831 
832 	for (int unitNdx = 0; unitNdx < m_numUnits; unitNdx++)
833 	{
834 		int texNdx = m_unitTextures[unitNdx];
835 
836 		// Bind texture to unit.
837 		context.activeTexture(GL_TEXTURE0 + unitNdx);
838 		context.bindTexture(m_textureTypes[texNdx], textureGLNames[texNdx]);
839 
840 		if (!isTextureSetUp[texNdx])
841 		{
842 			// Binding this texture for first time, so set parameters and data.
843 
844 			context.texParameteri(m_textureTypes[texNdx], GL_TEXTURE_WRAP_S, m_textureParams[texNdx].wrapModeS);
845 			context.texParameteri(m_textureTypes[texNdx], GL_TEXTURE_WRAP_T, m_textureParams[texNdx].wrapModeT);
846 			context.texParameteri(m_textureTypes[texNdx], GL_TEXTURE_MIN_FILTER, m_textureParams[texNdx].minFilter);
847 			context.texParameteri(m_textureTypes[texNdx], GL_TEXTURE_MAG_FILTER, m_textureParams[texNdx].magFilter);
848 
849 			if (m_textureTypes[texNdx] == GL_TEXTURE_2D)
850 			{
851 				int						ndx2d		= m_ndx2dOrCube[texNdx];
852 				const tcu::Texture2D*	texture		= m_textures2d[ndx2d];
853 				bool					mipmaps		= (deIsPowerOfTwo32(texture->getWidth()) && deIsPowerOfTwo32(texture->getHeight()));
854 				int						numLevels	= mipmaps ? deLog2Floor32(de::max(texture->getWidth(), texture->getHeight()))+1 : 1;
855 
856 				context.pixelStorei(GL_UNPACK_ALIGNMENT, 1);
857 
858 				for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
859 				{
860 					tcu::ConstPixelBufferAccess		access	= texture->getLevel(levelNdx);
861 					int								width	= access.getWidth();
862 					int								height	= access.getHeight();
863 
864 					DE_ASSERT(access.getRowPitch() == access.getFormat().getPixelSize()*width);
865 
866 					context.texImage2D(GL_TEXTURE_2D, levelNdx, m_textureParams[texNdx].format, width, height, 0, m_textureParams[texNdx].format, m_textureParams[texNdx].dataType, access.getDataPtr());
867 				}
868 			}
869 			else
870 			{
871 				DE_ASSERT(m_textureTypes[texNdx] == GL_TEXTURE_CUBE_MAP);
872 
873 				int							ndxCube		= m_ndx2dOrCube[texNdx];
874 				const tcu::TextureCube*		texture		= m_texturesCube[ndxCube];
875 				bool						mipmaps		= deIsPowerOfTwo32(texture->getSize()) != DE_FALSE;
876 				int							numLevels	= mipmaps ? deLog2Floor32(texture->getSize())+1 : 1;
877 
878 				context.pixelStorei(GL_UNPACK_ALIGNMENT, 1);
879 
880 				for (int face = 0; face < (int)tcu::CUBEFACE_LAST; face++)
881 				{
882 					for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
883 					{
884 						tcu::ConstPixelBufferAccess		access	= texture->getLevelFace(levelNdx, (tcu::CubeFace)face);
885 						int								width	= access.getWidth();
886 						int								height	= access.getHeight();
887 
888 						DE_ASSERT(access.getRowPitch() == access.getFormat().getPixelSize()*width);
889 
890 						context.texImage2D(s_cubeFaceTargets[face], levelNdx, m_textureParams[texNdx].format, width, height, 0, m_textureParams[texNdx].format, m_textureParams[texNdx].dataType, access.getDataPtr());
891 					}
892 				}
893 			}
894 
895 			isTextureSetUp[texNdx] = true; // Don't set up this texture's parameters and data again later.
896 		}
897 	}
898 
899 	GLU_EXPECT_NO_ERROR(context.getError(), "Set textures");
900 
901 	// Setup shader
902 
903 	deUint32 shaderID = context.createProgram(m_shader);
904 
905 	// Draw.
906 
907 	context.clearColor(0.125f, 0.25f, 0.5f, 1.0f);
908 	context.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT);
909 	m_shader->setUniforms(context, shaderID);
910 	sglr::drawQuad(context, shaderID, Vec3(-1.0f, -1.0f, 0.0f), Vec3(1.0f, 1.0f, 0.0f));
911 	GLU_EXPECT_NO_ERROR(context.getError(), "Draw");
912 
913 	// Delete previously generated texture names.
914 
915 	context.deleteTextures(m_numTextures, &textureGLNames[0]);
916 	GLU_EXPECT_NO_ERROR(context.getError(), "Delete textures");
917 }
918 
TextureUnitTests(Context & context)919 TextureUnitTests::TextureUnitTests (Context& context)
920 	: TestCaseGroup(context, "units", "Texture Unit Usage Tests")
921 {
922 }
923 
~TextureUnitTests(void)924 TextureUnitTests::~TextureUnitTests (void)
925 {
926 }
927 
init(void)928 void TextureUnitTests::init (void)
929 {
930 	const int numTestsPerGroup = 10;
931 
932 	static const int unitCounts[] =
933 	{
934 		2,
935 		4,
936 		8,
937 		-1 // \note Negative stands for the implementation-specified maximum.
938 	};
939 
940 	for (int unitCountNdx = 0; unitCountNdx < DE_LENGTH_OF_ARRAY(unitCounts); unitCountNdx++)
941 	{
942 		int numUnits = unitCounts[unitCountNdx];
943 
944 		string countGroupName = (unitCounts[unitCountNdx] < 0 ? "all" : de::toString(numUnits)) + "_units";
945 
946 		tcu::TestCaseGroup* countGroup = new tcu::TestCaseGroup(m_testCtx, countGroupName.c_str(), "");
947 		addChild(countGroup);
948 
949 		DE_STATIC_ASSERT((int)TextureUnitCase::CASE_ONLY_2D == 0);
950 
951 		for (int caseType = (int)TextureUnitCase::CASE_ONLY_2D; caseType < (int)TextureUnitCase::CASE_LAST; caseType++)
952 		{
953 			const char* caseTypeGroupName = (TextureUnitCase::CaseType)caseType == TextureUnitCase::CASE_ONLY_2D	? "only_2d" :
954 											(TextureUnitCase::CaseType)caseType == TextureUnitCase::CASE_ONLY_CUBE	? "only_cube" :
955 											(TextureUnitCase::CaseType)caseType == TextureUnitCase::CASE_MIXED		? "mixed" :
956 																													  DE_NULL;
957 			DE_ASSERT(caseTypeGroupName != DE_NULL);
958 
959 			tcu::TestCaseGroup* caseTypeGroup = new tcu::TestCaseGroup(m_testCtx, caseTypeGroupName, "");
960 			countGroup->addChild(caseTypeGroup);
961 
962 			for (int testNdx = 0; testNdx < numTestsPerGroup; testNdx++)
963 				caseTypeGroup->addChild(new TextureUnitCase(m_context, de::toString(testNdx).c_str(), "", numUnits, (TextureUnitCase::CaseType)caseType, (deUint32)deInt32Hash(testNdx)));
964 		}
965 	}
966 }
967 
968 } // Functional
969 } // gles2
970 } // deqp
971