• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_REGISTER_ALLOCATOR_H_
6 #define V8_REGISTER_ALLOCATOR_H_
7 
8 #include "src/allocation.h"
9 #include "src/compiler/instruction.h"
10 #include "src/compiler/node.h"
11 #include "src/compiler/schedule.h"
12 #include "src/macro-assembler.h"
13 #include "src/zone.h"
14 
15 namespace v8 {
16 namespace internal {
17 
18 // Forward declarations.
19 class BitVector;
20 class InstructionOperand;
21 class UnallocatedOperand;
22 class ParallelMove;
23 class PointerMap;
24 
25 namespace compiler {
26 
27 enum RegisterKind {
28   UNALLOCATED_REGISTERS,
29   GENERAL_REGISTERS,
30   DOUBLE_REGISTERS
31 };
32 
33 
34 // This class represents a single point of a InstructionOperand's lifetime. For
35 // each instruction there are exactly two lifetime positions: the beginning and
36 // the end of the instruction. Lifetime positions for different instructions are
37 // disjoint.
38 class LifetimePosition {
39  public:
40   // Return the lifetime position that corresponds to the beginning of
41   // the instruction with the given index.
FromInstructionIndex(int index)42   static LifetimePosition FromInstructionIndex(int index) {
43     return LifetimePosition(index * kStep);
44   }
45 
46   // Returns a numeric representation of this lifetime position.
Value()47   int Value() const { return value_; }
48 
49   // Returns the index of the instruction to which this lifetime position
50   // corresponds.
InstructionIndex()51   int InstructionIndex() const {
52     DCHECK(IsValid());
53     return value_ / kStep;
54   }
55 
56   // Returns true if this lifetime position corresponds to the instruction
57   // start.
IsInstructionStart()58   bool IsInstructionStart() const { return (value_ & (kStep - 1)) == 0; }
59 
60   // Returns the lifetime position for the start of the instruction which
61   // corresponds to this lifetime position.
InstructionStart()62   LifetimePosition InstructionStart() const {
63     DCHECK(IsValid());
64     return LifetimePosition(value_ & ~(kStep - 1));
65   }
66 
67   // Returns the lifetime position for the end of the instruction which
68   // corresponds to this lifetime position.
InstructionEnd()69   LifetimePosition InstructionEnd() const {
70     DCHECK(IsValid());
71     return LifetimePosition(InstructionStart().Value() + kStep / 2);
72   }
73 
74   // Returns the lifetime position for the beginning of the next instruction.
NextInstruction()75   LifetimePosition NextInstruction() const {
76     DCHECK(IsValid());
77     return LifetimePosition(InstructionStart().Value() + kStep);
78   }
79 
80   // Returns the lifetime position for the beginning of the previous
81   // instruction.
PrevInstruction()82   LifetimePosition PrevInstruction() const {
83     DCHECK(IsValid());
84     DCHECK(value_ > 1);
85     return LifetimePosition(InstructionStart().Value() - kStep);
86   }
87 
88   // Constructs the lifetime position which does not correspond to any
89   // instruction.
LifetimePosition()90   LifetimePosition() : value_(-1) {}
91 
92   // Returns true if this lifetime positions corrensponds to some
93   // instruction.
IsValid()94   bool IsValid() const { return value_ != -1; }
95 
Invalid()96   static inline LifetimePosition Invalid() { return LifetimePosition(); }
97 
MaxPosition()98   static inline LifetimePosition MaxPosition() {
99     // We have to use this kind of getter instead of static member due to
100     // crash bug in GDB.
101     return LifetimePosition(kMaxInt);
102   }
103 
104  private:
105   static const int kStep = 2;
106 
107   // Code relies on kStep being a power of two.
108   STATIC_ASSERT(IS_POWER_OF_TWO(kStep));
109 
LifetimePosition(int value)110   explicit LifetimePosition(int value) : value_(value) {}
111 
112   int value_;
113 };
114 
115 
116 // Representation of the non-empty interval [start,end[.
117 class UseInterval : public ZoneObject {
118  public:
UseInterval(LifetimePosition start,LifetimePosition end)119   UseInterval(LifetimePosition start, LifetimePosition end)
120       : start_(start), end_(end), next_(NULL) {
121     DCHECK(start.Value() < end.Value());
122   }
123 
start()124   LifetimePosition start() const { return start_; }
end()125   LifetimePosition end() const { return end_; }
next()126   UseInterval* next() const { return next_; }
127 
128   // Split this interval at the given position without effecting the
129   // live range that owns it. The interval must contain the position.
130   void SplitAt(LifetimePosition pos, Zone* zone);
131 
132   // If this interval intersects with other return smallest position
133   // that belongs to both of them.
Intersect(const UseInterval * other)134   LifetimePosition Intersect(const UseInterval* other) const {
135     if (other->start().Value() < start_.Value()) return other->Intersect(this);
136     if (other->start().Value() < end_.Value()) return other->start();
137     return LifetimePosition::Invalid();
138   }
139 
Contains(LifetimePosition point)140   bool Contains(LifetimePosition point) const {
141     return start_.Value() <= point.Value() && point.Value() < end_.Value();
142   }
143 
set_start(LifetimePosition start)144   void set_start(LifetimePosition start) { start_ = start; }
set_next(UseInterval * next)145   void set_next(UseInterval* next) { next_ = next; }
146 
147   LifetimePosition start_;
148   LifetimePosition end_;
149   UseInterval* next_;
150 };
151 
152 // Representation of a use position.
153 class UsePosition : public ZoneObject {
154  public:
155   UsePosition(LifetimePosition pos, InstructionOperand* operand,
156               InstructionOperand* hint);
157 
operand()158   InstructionOperand* operand() const { return operand_; }
HasOperand()159   bool HasOperand() const { return operand_ != NULL; }
160 
hint()161   InstructionOperand* hint() const { return hint_; }
162   bool HasHint() const;
163   bool RequiresRegister() const;
164   bool RegisterIsBeneficial() const;
165 
pos()166   LifetimePosition pos() const { return pos_; }
next()167   UsePosition* next() const { return next_; }
168 
set_next(UsePosition * next)169   void set_next(UsePosition* next) { next_ = next; }
170 
171   InstructionOperand* const operand_;
172   InstructionOperand* const hint_;
173   LifetimePosition const pos_;
174   UsePosition* next_;
175   bool requires_reg_;
176   bool register_beneficial_;
177 };
178 
179 // Representation of SSA values' live ranges as a collection of (continuous)
180 // intervals over the instruction ordering.
181 class LiveRange : public ZoneObject {
182  public:
183   static const int kInvalidAssignment = 0x7fffffff;
184 
185   LiveRange(int id, Zone* zone);
186 
first_interval()187   UseInterval* first_interval() const { return first_interval_; }
first_pos()188   UsePosition* first_pos() const { return first_pos_; }
parent()189   LiveRange* parent() const { return parent_; }
TopLevel()190   LiveRange* TopLevel() { return (parent_ == NULL) ? this : parent_; }
next()191   LiveRange* next() const { return next_; }
IsChild()192   bool IsChild() const { return parent() != NULL; }
id()193   int id() const { return id_; }
IsFixed()194   bool IsFixed() const { return id_ < 0; }
IsEmpty()195   bool IsEmpty() const { return first_interval() == NULL; }
196   InstructionOperand* CreateAssignedOperand(Zone* zone);
assigned_register()197   int assigned_register() const { return assigned_register_; }
spill_start_index()198   int spill_start_index() const { return spill_start_index_; }
199   void set_assigned_register(int reg, Zone* zone);
200   void MakeSpilled(Zone* zone);
is_phi()201   bool is_phi() const { return is_phi_; }
set_is_phi(bool is_phi)202   void set_is_phi(bool is_phi) { is_phi_ = is_phi; }
is_non_loop_phi()203   bool is_non_loop_phi() const { return is_non_loop_phi_; }
set_is_non_loop_phi(bool is_non_loop_phi)204   void set_is_non_loop_phi(bool is_non_loop_phi) {
205     is_non_loop_phi_ = is_non_loop_phi;
206   }
207 
208   // Returns use position in this live range that follows both start
209   // and last processed use position.
210   // Modifies internal state of live range!
211   UsePosition* NextUsePosition(LifetimePosition start);
212 
213   // Returns use position for which register is required in this live
214   // range and which follows both start and last processed use position
215   // Modifies internal state of live range!
216   UsePosition* NextRegisterPosition(LifetimePosition start);
217 
218   // Returns use position for which register is beneficial in this live
219   // range and which follows both start and last processed use position
220   // Modifies internal state of live range!
221   UsePosition* NextUsePositionRegisterIsBeneficial(LifetimePosition start);
222 
223   // Returns use position for which register is beneficial in this live
224   // range and which precedes start.
225   UsePosition* PreviousUsePositionRegisterIsBeneficial(LifetimePosition start);
226 
227   // Can this live range be spilled at this position.
228   bool CanBeSpilled(LifetimePosition pos);
229 
230   // Split this live range at the given position which must follow the start of
231   // the range.
232   // All uses following the given position will be moved from this
233   // live range to the result live range.
234   void SplitAt(LifetimePosition position, LiveRange* result, Zone* zone);
235 
Kind()236   RegisterKind Kind() const { return kind_; }
HasRegisterAssigned()237   bool HasRegisterAssigned() const {
238     return assigned_register_ != kInvalidAssignment;
239   }
IsSpilled()240   bool IsSpilled() const { return spilled_; }
241 
current_hint_operand()242   InstructionOperand* current_hint_operand() const {
243     DCHECK(current_hint_operand_ == FirstHint());
244     return current_hint_operand_;
245   }
FirstHint()246   InstructionOperand* FirstHint() const {
247     UsePosition* pos = first_pos_;
248     while (pos != NULL && !pos->HasHint()) pos = pos->next();
249     if (pos != NULL) return pos->hint();
250     return NULL;
251   }
252 
Start()253   LifetimePosition Start() const {
254     DCHECK(!IsEmpty());
255     return first_interval()->start();
256   }
257 
End()258   LifetimePosition End() const {
259     DCHECK(!IsEmpty());
260     return last_interval_->end();
261   }
262 
263   bool HasAllocatedSpillOperand() const;
GetSpillOperand()264   InstructionOperand* GetSpillOperand() const { return spill_operand_; }
265   void SetSpillOperand(InstructionOperand* operand);
266 
SetSpillStartIndex(int start)267   void SetSpillStartIndex(int start) {
268     spill_start_index_ = Min(start, spill_start_index_);
269   }
270 
271   bool ShouldBeAllocatedBefore(const LiveRange* other) const;
272   bool CanCover(LifetimePosition position) const;
273   bool Covers(LifetimePosition position);
274   LifetimePosition FirstIntersection(LiveRange* other);
275 
276   // Add a new interval or a new use position to this live range.
277   void EnsureInterval(LifetimePosition start, LifetimePosition end, Zone* zone);
278   void AddUseInterval(LifetimePosition start, LifetimePosition end, Zone* zone);
279   void AddUsePosition(LifetimePosition pos, InstructionOperand* operand,
280                       InstructionOperand* hint, Zone* zone);
281 
282   // Shorten the most recently added interval by setting a new start.
283   void ShortenTo(LifetimePosition start);
284 
285 #ifdef DEBUG
286   // True if target overlaps an existing interval.
287   bool HasOverlap(UseInterval* target) const;
288   void Verify() const;
289 #endif
290 
291  private:
292   void ConvertOperands(Zone* zone);
293   UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
294   void AdvanceLastProcessedMarker(UseInterval* to_start_of,
295                                   LifetimePosition but_not_past) const;
296 
297   int id_;
298   bool spilled_;
299   bool is_phi_;
300   bool is_non_loop_phi_;
301   RegisterKind kind_;
302   int assigned_register_;
303   UseInterval* last_interval_;
304   UseInterval* first_interval_;
305   UsePosition* first_pos_;
306   LiveRange* parent_;
307   LiveRange* next_;
308   // This is used as a cache, it doesn't affect correctness.
309   mutable UseInterval* current_interval_;
310   UsePosition* last_processed_use_;
311   // This is used as a cache, it's invalid outside of BuildLiveRanges.
312   InstructionOperand* current_hint_operand_;
313   InstructionOperand* spill_operand_;
314   int spill_start_index_;
315 
316   friend class RegisterAllocator;  // Assigns to kind_.
317 };
318 
319 
320 class RegisterAllocator BASE_EMBEDDED {
321  public:
322   explicit RegisterAllocator(InstructionSequence* code);
323 
324   static void TraceAlloc(const char* msg, ...);
325 
326   // Checks whether the value of a given virtual register is a reference.
327   // TODO(titzer): rename this to IsReference.
328   bool HasTaggedValue(int virtual_register) const;
329 
330   // Returns the register kind required by the given virtual register.
331   RegisterKind RequiredRegisterKind(int virtual_register) const;
332 
333   bool Allocate();
334 
live_ranges()335   const ZoneList<LiveRange*>* live_ranges() const { return &live_ranges_; }
fixed_live_ranges()336   const Vector<LiveRange*>* fixed_live_ranges() const {
337     return &fixed_live_ranges_;
338   }
fixed_double_live_ranges()339   const Vector<LiveRange*>* fixed_double_live_ranges() const {
340     return &fixed_double_live_ranges_;
341   }
342 
code()343   inline InstructionSequence* code() const { return code_; }
344 
345   // This zone is for datastructures only needed during register allocation.
zone()346   inline Zone* zone() { return &zone_; }
347 
348   // This zone is for InstructionOperands and moves that live beyond register
349   // allocation.
code_zone()350   inline Zone* code_zone() { return code()->zone(); }
351 
GetVirtualRegister()352   int GetVirtualRegister() {
353     int vreg = code()->NextVirtualRegister();
354     if (vreg >= UnallocatedOperand::kMaxVirtualRegisters) {
355       allocation_ok_ = false;
356       // Maintain the invariant that we return something below the maximum.
357       return 0;
358     }
359     return vreg;
360   }
361 
AllocationOk()362   bool AllocationOk() { return allocation_ok_; }
363 
364 #ifdef DEBUG
365   void Verify() const;
366 #endif
367 
assigned_registers()368   BitVector* assigned_registers() { return assigned_registers_; }
assigned_double_registers()369   BitVector* assigned_double_registers() { return assigned_double_registers_; }
370 
371  private:
372   void MeetRegisterConstraints();
373   void ResolvePhis();
374   void BuildLiveRanges();
375   void AllocateGeneralRegisters();
376   void AllocateDoubleRegisters();
377   void ConnectRanges();
378   void ResolveControlFlow();
379   void PopulatePointerMaps();  // TODO(titzer): rename to PopulateReferenceMaps.
380   void AllocateRegisters();
381   bool CanEagerlyResolveControlFlow(BasicBlock* block) const;
382   inline bool SafePointsAreInOrder() const;
383 
384   // Liveness analysis support.
385   void InitializeLivenessAnalysis();
386   BitVector* ComputeLiveOut(BasicBlock* block);
387   void AddInitialIntervals(BasicBlock* block, BitVector* live_out);
388   bool IsOutputRegisterOf(Instruction* instr, int index);
389   bool IsOutputDoubleRegisterOf(Instruction* instr, int index);
390   void ProcessInstructions(BasicBlock* block, BitVector* live);
391   void MeetRegisterConstraints(BasicBlock* block);
392   void MeetConstraintsBetween(Instruction* first, Instruction* second,
393                               int gap_index);
394   void MeetRegisterConstraintsForLastInstructionInBlock(BasicBlock* block);
395   void ResolvePhis(BasicBlock* block);
396 
397   // Helper methods for building intervals.
398   InstructionOperand* AllocateFixed(UnallocatedOperand* operand, int pos,
399                                     bool is_tagged);
400   LiveRange* LiveRangeFor(InstructionOperand* operand);
401   void Define(LifetimePosition position, InstructionOperand* operand,
402               InstructionOperand* hint);
403   void Use(LifetimePosition block_start, LifetimePosition position,
404            InstructionOperand* operand, InstructionOperand* hint);
405   void AddConstraintsGapMove(int index, InstructionOperand* from,
406                              InstructionOperand* to);
407 
408   // Helper methods for updating the life range lists.
409   void AddToActive(LiveRange* range);
410   void AddToInactive(LiveRange* range);
411   void AddToUnhandledSorted(LiveRange* range);
412   void AddToUnhandledUnsorted(LiveRange* range);
413   void SortUnhandled();
414   bool UnhandledIsSorted();
415   void ActiveToHandled(LiveRange* range);
416   void ActiveToInactive(LiveRange* range);
417   void InactiveToHandled(LiveRange* range);
418   void InactiveToActive(LiveRange* range);
419   void FreeSpillSlot(LiveRange* range);
420   InstructionOperand* TryReuseSpillSlot(LiveRange* range);
421 
422   // Helper methods for allocating registers.
423   bool TryAllocateFreeReg(LiveRange* range);
424   void AllocateBlockedReg(LiveRange* range);
425 
426   // Live range splitting helpers.
427 
428   // Split the given range at the given position.
429   // If range starts at or after the given position then the
430   // original range is returned.
431   // Otherwise returns the live range that starts at pos and contains
432   // all uses from the original range that follow pos. Uses at pos will
433   // still be owned by the original range after splitting.
434   LiveRange* SplitRangeAt(LiveRange* range, LifetimePosition pos);
435 
436   // Split the given range in a position from the interval [start, end].
437   LiveRange* SplitBetween(LiveRange* range, LifetimePosition start,
438                           LifetimePosition end);
439 
440   // Find a lifetime position in the interval [start, end] which
441   // is optimal for splitting: it is either header of the outermost
442   // loop covered by this interval or the latest possible position.
443   LifetimePosition FindOptimalSplitPos(LifetimePosition start,
444                                        LifetimePosition end);
445 
446   // Spill the given life range after position pos.
447   void SpillAfter(LiveRange* range, LifetimePosition pos);
448 
449   // Spill the given life range after position [start] and up to position [end].
450   void SpillBetween(LiveRange* range, LifetimePosition start,
451                     LifetimePosition end);
452 
453   // Spill the given life range after position [start] and up to position [end].
454   // Range is guaranteed to be spilled at least until position [until].
455   void SpillBetweenUntil(LiveRange* range, LifetimePosition start,
456                          LifetimePosition until, LifetimePosition end);
457 
458   void SplitAndSpillIntersecting(LiveRange* range);
459 
460   // If we are trying to spill a range inside the loop try to
461   // hoist spill position out to the point just before the loop.
462   LifetimePosition FindOptimalSpillingPos(LiveRange* range,
463                                           LifetimePosition pos);
464 
465   void Spill(LiveRange* range);
466   bool IsBlockBoundary(LifetimePosition pos);
467 
468   // Helper methods for resolving control flow.
469   void ResolveControlFlow(LiveRange* range, BasicBlock* block,
470                           BasicBlock* pred);
471 
472   inline void SetLiveRangeAssignedRegister(LiveRange* range, int reg);
473 
474   // Return parallel move that should be used to connect ranges split at the
475   // given position.
476   ParallelMove* GetConnectingParallelMove(LifetimePosition pos);
477 
478   // Return the block which contains give lifetime position.
479   BasicBlock* GetBlock(LifetimePosition pos);
480 
481   // Helper methods for the fixed registers.
482   int RegisterCount() const;
FixedLiveRangeID(int index)483   static int FixedLiveRangeID(int index) { return -index - 1; }
484   static int FixedDoubleLiveRangeID(int index);
485   LiveRange* FixedLiveRangeFor(int index);
486   LiveRange* FixedDoubleLiveRangeFor(int index);
487   LiveRange* LiveRangeFor(int index);
488   GapInstruction* GetLastGap(BasicBlock* block);
489 
490   const char* RegisterName(int allocation_index);
491 
InstructionAt(int index)492   inline Instruction* InstructionAt(int index) {
493     return code()->InstructionAt(index);
494   }
495 
496   Zone zone_;
497   InstructionSequence* code_;
498 
499   // During liveness analysis keep a mapping from block id to live_in sets
500   // for blocks already analyzed.
501   ZoneList<BitVector*> live_in_sets_;
502 
503   // Liveness analysis results.
504   ZoneList<LiveRange*> live_ranges_;
505 
506   // Lists of live ranges
507   EmbeddedVector<LiveRange*, Register::kMaxNumAllocatableRegisters>
508       fixed_live_ranges_;
509   EmbeddedVector<LiveRange*, DoubleRegister::kMaxNumAllocatableRegisters>
510       fixed_double_live_ranges_;
511   ZoneList<LiveRange*> unhandled_live_ranges_;
512   ZoneList<LiveRange*> active_live_ranges_;
513   ZoneList<LiveRange*> inactive_live_ranges_;
514   ZoneList<LiveRange*> reusable_slots_;
515 
516   RegisterKind mode_;
517   int num_registers_;
518 
519   BitVector* assigned_registers_;
520   BitVector* assigned_double_registers_;
521 
522   // Indicates success or failure during register allocation.
523   bool allocation_ok_;
524 
525 #ifdef DEBUG
526   LifetimePosition allocation_finger_;
527 #endif
528 
529   DISALLOW_COPY_AND_ASSIGN(RegisterAllocator);
530 };
531 
532 
533 class RegisterAllocatorPhase : public CompilationPhase {
534  public:
535   RegisterAllocatorPhase(const char* name, RegisterAllocator* allocator);
536   ~RegisterAllocatorPhase();
537 
538  private:
539   RegisterAllocator* allocator_;
540   unsigned allocator_zone_start_allocation_size_;
541 
542   DISALLOW_COPY_AND_ASSIGN(RegisterAllocatorPhase);
543 };
544 }
545 }
546 }  // namespace v8::internal::compiler
547 
548 #endif  // V8_REGISTER_ALLOCATOR_H_
549