1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define TRACE_TAG TRACE_SYSDEPS
18
19 #include "sysdeps.h"
20
21 #include <winsock2.h> /* winsock.h *must* be included before windows.h. */
22 #include <windows.h>
23
24 #include <errno.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27
28 #include "adb.h"
29
30 extern void fatal(const char *fmt, ...);
31
32 /* forward declarations */
33
34 typedef const struct FHClassRec_* FHClass;
35 typedef struct FHRec_* FH;
36 typedef struct EventHookRec_* EventHook;
37
38 typedef struct FHClassRec_ {
39 void (*_fh_init)(FH);
40 int (*_fh_close)(FH);
41 int (*_fh_lseek)(FH, int, int);
42 int (*_fh_read)(FH, void*, int);
43 int (*_fh_write)(FH, const void*, int);
44 void (*_fh_hook)(FH, int, EventHook);
45 } FHClassRec;
46
47 static void _fh_file_init(FH);
48 static int _fh_file_close(FH);
49 static int _fh_file_lseek(FH, int, int);
50 static int _fh_file_read(FH, void*, int);
51 static int _fh_file_write(FH, const void*, int);
52 static void _fh_file_hook(FH, int, EventHook);
53
54 static const FHClassRec _fh_file_class = {
55 _fh_file_init,
56 _fh_file_close,
57 _fh_file_lseek,
58 _fh_file_read,
59 _fh_file_write,
60 _fh_file_hook
61 };
62
63 static void _fh_socket_init(FH);
64 static int _fh_socket_close(FH);
65 static int _fh_socket_lseek(FH, int, int);
66 static int _fh_socket_read(FH, void*, int);
67 static int _fh_socket_write(FH, const void*, int);
68 static void _fh_socket_hook(FH, int, EventHook);
69
70 static const FHClassRec _fh_socket_class = {
71 _fh_socket_init,
72 _fh_socket_close,
73 _fh_socket_lseek,
74 _fh_socket_read,
75 _fh_socket_write,
76 _fh_socket_hook
77 };
78
79 #define assert(cond) do { if (!(cond)) fatal( "assertion failed '%s' on %s:%ld\n", #cond, __FILE__, __LINE__ ); } while (0)
80
81 /**************************************************************************/
82 /**************************************************************************/
83 /***** *****/
84 /***** replaces libs/cutils/load_file.c *****/
85 /***** *****/
86 /**************************************************************************/
87 /**************************************************************************/
88
load_file(const char * fn,unsigned * _sz)89 void *load_file(const char *fn, unsigned *_sz)
90 {
91 HANDLE file;
92 char *data;
93 DWORD file_size;
94
95 file = CreateFile( fn,
96 GENERIC_READ,
97 FILE_SHARE_READ,
98 NULL,
99 OPEN_EXISTING,
100 0,
101 NULL );
102
103 if (file == INVALID_HANDLE_VALUE)
104 return NULL;
105
106 file_size = GetFileSize( file, NULL );
107 data = NULL;
108
109 if (file_size > 0) {
110 data = (char*) malloc( file_size + 1 );
111 if (data == NULL) {
112 D("load_file: could not allocate %ld bytes\n", file_size );
113 file_size = 0;
114 } else {
115 DWORD out_bytes;
116
117 if ( !ReadFile( file, data, file_size, &out_bytes, NULL ) ||
118 out_bytes != file_size )
119 {
120 D("load_file: could not read %ld bytes from '%s'\n", file_size, fn);
121 free(data);
122 data = NULL;
123 file_size = 0;
124 }
125 }
126 }
127 CloseHandle( file );
128
129 *_sz = (unsigned) file_size;
130 return data;
131 }
132
133 /**************************************************************************/
134 /**************************************************************************/
135 /***** *****/
136 /***** common file descriptor handling *****/
137 /***** *****/
138 /**************************************************************************/
139 /**************************************************************************/
140
141 /* used to emulate unix-domain socket pairs */
142 typedef struct SocketPairRec_* SocketPair;
143
144 typedef struct FHRec_
145 {
146 FHClass clazz;
147 int used;
148 int eof;
149 union {
150 HANDLE handle;
151 SOCKET socket;
152 SocketPair pair;
153 } u;
154
155 HANDLE event;
156 int mask;
157
158 char name[32];
159
160 } FHRec;
161
162 #define fh_handle u.handle
163 #define fh_socket u.socket
164 #define fh_pair u.pair
165
166 #define WIN32_FH_BASE 100
167
168 #define WIN32_MAX_FHS 128
169
170 static adb_mutex_t _win32_lock;
171 static FHRec _win32_fhs[ WIN32_MAX_FHS ];
172 static int _win32_fh_count;
173
174 static FH
_fh_from_int(int fd)175 _fh_from_int( int fd )
176 {
177 FH f;
178
179 fd -= WIN32_FH_BASE;
180
181 if (fd < 0 || fd >= _win32_fh_count) {
182 D( "_fh_from_int: invalid fd %d\n", fd + WIN32_FH_BASE );
183 errno = EBADF;
184 return NULL;
185 }
186
187 f = &_win32_fhs[fd];
188
189 if (f->used == 0) {
190 D( "_fh_from_int: invalid fd %d\n", fd + WIN32_FH_BASE );
191 errno = EBADF;
192 return NULL;
193 }
194
195 return f;
196 }
197
198
199 static int
_fh_to_int(FH f)200 _fh_to_int( FH f )
201 {
202 if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS)
203 return (int)(f - _win32_fhs) + WIN32_FH_BASE;
204
205 return -1;
206 }
207
208 static FH
_fh_alloc(FHClass clazz)209 _fh_alloc( FHClass clazz )
210 {
211 int nn;
212 FH f = NULL;
213
214 adb_mutex_lock( &_win32_lock );
215
216 if (_win32_fh_count < WIN32_MAX_FHS) {
217 f = &_win32_fhs[ _win32_fh_count++ ];
218 goto Exit;
219 }
220
221 for (nn = 0; nn < WIN32_MAX_FHS; nn++) {
222 if ( _win32_fhs[nn].clazz == NULL) {
223 f = &_win32_fhs[nn];
224 goto Exit;
225 }
226 }
227 D( "_fh_alloc: no more free file descriptors\n" );
228 Exit:
229 if (f) {
230 f->clazz = clazz;
231 f->used = 1;
232 f->eof = 0;
233 clazz->_fh_init(f);
234 }
235 adb_mutex_unlock( &_win32_lock );
236 return f;
237 }
238
239
240 static int
_fh_close(FH f)241 _fh_close( FH f )
242 {
243 if ( f->used ) {
244 f->clazz->_fh_close( f );
245 f->used = 0;
246 f->eof = 0;
247 f->clazz = NULL;
248 }
249 return 0;
250 }
251
252 /**************************************************************************/
253 /**************************************************************************/
254 /***** *****/
255 /***** file-based descriptor handling *****/
256 /***** *****/
257 /**************************************************************************/
258 /**************************************************************************/
259
_fh_file_init(FH f)260 static void _fh_file_init( FH f ) {
261 f->fh_handle = INVALID_HANDLE_VALUE;
262 }
263
_fh_file_close(FH f)264 static int _fh_file_close( FH f ) {
265 CloseHandle( f->fh_handle );
266 f->fh_handle = INVALID_HANDLE_VALUE;
267 return 0;
268 }
269
_fh_file_read(FH f,void * buf,int len)270 static int _fh_file_read( FH f, void* buf, int len ) {
271 DWORD read_bytes;
272
273 if ( !ReadFile( f->fh_handle, buf, (DWORD)len, &read_bytes, NULL ) ) {
274 D( "adb_read: could not read %d bytes from %s\n", len, f->name );
275 errno = EIO;
276 return -1;
277 } else if (read_bytes < (DWORD)len) {
278 f->eof = 1;
279 }
280 return (int)read_bytes;
281 }
282
_fh_file_write(FH f,const void * buf,int len)283 static int _fh_file_write( FH f, const void* buf, int len ) {
284 DWORD wrote_bytes;
285
286 if ( !WriteFile( f->fh_handle, buf, (DWORD)len, &wrote_bytes, NULL ) ) {
287 D( "adb_file_write: could not write %d bytes from %s\n", len, f->name );
288 errno = EIO;
289 return -1;
290 } else if (wrote_bytes < (DWORD)len) {
291 f->eof = 1;
292 }
293 return (int)wrote_bytes;
294 }
295
_fh_file_lseek(FH f,int pos,int origin)296 static int _fh_file_lseek( FH f, int pos, int origin ) {
297 DWORD method;
298 DWORD result;
299
300 switch (origin)
301 {
302 case SEEK_SET: method = FILE_BEGIN; break;
303 case SEEK_CUR: method = FILE_CURRENT; break;
304 case SEEK_END: method = FILE_END; break;
305 default:
306 errno = EINVAL;
307 return -1;
308 }
309
310 result = SetFilePointer( f->fh_handle, pos, NULL, method );
311 if (result == INVALID_SET_FILE_POINTER) {
312 errno = EIO;
313 return -1;
314 } else {
315 f->eof = 0;
316 }
317 return (int)result;
318 }
319
320
321 /**************************************************************************/
322 /**************************************************************************/
323 /***** *****/
324 /***** file-based descriptor handling *****/
325 /***** *****/
326 /**************************************************************************/
327 /**************************************************************************/
328
adb_open(const char * path,int options)329 int adb_open(const char* path, int options)
330 {
331 FH f;
332
333 DWORD desiredAccess = 0;
334 DWORD shareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
335
336 switch (options) {
337 case O_RDONLY:
338 desiredAccess = GENERIC_READ;
339 break;
340 case O_WRONLY:
341 desiredAccess = GENERIC_WRITE;
342 break;
343 case O_RDWR:
344 desiredAccess = GENERIC_READ | GENERIC_WRITE;
345 break;
346 default:
347 D("adb_open: invalid options (0x%0x)\n", options);
348 errno = EINVAL;
349 return -1;
350 }
351
352 f = _fh_alloc( &_fh_file_class );
353 if ( !f ) {
354 errno = ENOMEM;
355 return -1;
356 }
357
358 f->fh_handle = CreateFile( path, desiredAccess, shareMode, NULL, OPEN_EXISTING,
359 0, NULL );
360
361 if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
362 _fh_close(f);
363 D( "adb_open: could not open '%s':", path );
364 switch (GetLastError()) {
365 case ERROR_FILE_NOT_FOUND:
366 D( "file not found\n" );
367 errno = ENOENT;
368 return -1;
369
370 case ERROR_PATH_NOT_FOUND:
371 D( "path not found\n" );
372 errno = ENOTDIR;
373 return -1;
374
375 default:
376 D( "unknown error\n" );
377 errno = ENOENT;
378 return -1;
379 }
380 }
381
382 snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
383 D( "adb_open: '%s' => fd %d\n", path, _fh_to_int(f) );
384 return _fh_to_int(f);
385 }
386
387 /* ignore mode on Win32 */
adb_creat(const char * path,int mode)388 int adb_creat(const char* path, int mode)
389 {
390 FH f;
391
392 f = _fh_alloc( &_fh_file_class );
393 if ( !f ) {
394 errno = ENOMEM;
395 return -1;
396 }
397
398 f->fh_handle = CreateFile( path, GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE,
399 NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL,
400 NULL );
401
402 if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
403 _fh_close(f);
404 D( "adb_creat: could not open '%s':", path );
405 switch (GetLastError()) {
406 case ERROR_FILE_NOT_FOUND:
407 D( "file not found\n" );
408 errno = ENOENT;
409 return -1;
410
411 case ERROR_PATH_NOT_FOUND:
412 D( "path not found\n" );
413 errno = ENOTDIR;
414 return -1;
415
416 default:
417 D( "unknown error\n" );
418 errno = ENOENT;
419 return -1;
420 }
421 }
422 snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
423 D( "adb_creat: '%s' => fd %d\n", path, _fh_to_int(f) );
424 return _fh_to_int(f);
425 }
426
427
adb_read(int fd,void * buf,int len)428 int adb_read(int fd, void* buf, int len)
429 {
430 FH f = _fh_from_int(fd);
431
432 if (f == NULL) {
433 return -1;
434 }
435
436 return f->clazz->_fh_read( f, buf, len );
437 }
438
439
adb_write(int fd,const void * buf,int len)440 int adb_write(int fd, const void* buf, int len)
441 {
442 FH f = _fh_from_int(fd);
443
444 if (f == NULL) {
445 return -1;
446 }
447
448 return f->clazz->_fh_write(f, buf, len);
449 }
450
451
adb_lseek(int fd,int pos,int where)452 int adb_lseek(int fd, int pos, int where)
453 {
454 FH f = _fh_from_int(fd);
455
456 if (!f) {
457 return -1;
458 }
459
460 return f->clazz->_fh_lseek(f, pos, where);
461 }
462
463
adb_shutdown(int fd)464 int adb_shutdown(int fd)
465 {
466 FH f = _fh_from_int(fd);
467
468 if (!f || f->clazz != &_fh_socket_class) {
469 D("adb_shutdown: invalid fd %d\n", fd);
470 return -1;
471 }
472
473 D( "adb_shutdown: %s\n", f->name);
474 shutdown( f->fh_socket, SD_BOTH );
475 return 0;
476 }
477
478
adb_close(int fd)479 int adb_close(int fd)
480 {
481 FH f = _fh_from_int(fd);
482
483 if (!f) {
484 return -1;
485 }
486
487 D( "adb_close: %s\n", f->name);
488 _fh_close(f);
489 return 0;
490 }
491
492 /**************************************************************************/
493 /**************************************************************************/
494 /***** *****/
495 /***** socket-based file descriptors *****/
496 /***** *****/
497 /**************************************************************************/
498 /**************************************************************************/
499
500 #undef setsockopt
501
_socket_set_errno(void)502 static void _socket_set_errno( void ) {
503 switch (WSAGetLastError()) {
504 case 0: errno = 0; break;
505 case WSAEWOULDBLOCK: errno = EAGAIN; break;
506 case WSAEINTR: errno = EINTR; break;
507 default:
508 D( "_socket_set_errno: unhandled value %d\n", WSAGetLastError() );
509 errno = EINVAL;
510 }
511 }
512
_fh_socket_init(FH f)513 static void _fh_socket_init( FH f ) {
514 f->fh_socket = INVALID_SOCKET;
515 f->event = WSACreateEvent();
516 f->mask = 0;
517 }
518
_fh_socket_close(FH f)519 static int _fh_socket_close( FH f ) {
520 /* gently tell any peer that we're closing the socket */
521 shutdown( f->fh_socket, SD_BOTH );
522 closesocket( f->fh_socket );
523 f->fh_socket = INVALID_SOCKET;
524 CloseHandle( f->event );
525 f->mask = 0;
526 return 0;
527 }
528
_fh_socket_lseek(FH f,int pos,int origin)529 static int _fh_socket_lseek( FH f, int pos, int origin ) {
530 errno = EPIPE;
531 return -1;
532 }
533
_fh_socket_read(FH f,void * buf,int len)534 static int _fh_socket_read(FH f, void* buf, int len) {
535 int result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0);
536 if (result == SOCKET_ERROR) {
537 _socket_set_errno();
538 result = -1;
539 }
540 return result;
541 }
542
_fh_socket_write(FH f,const void * buf,int len)543 static int _fh_socket_write(FH f, const void* buf, int len) {
544 int result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0);
545 if (result == SOCKET_ERROR) {
546 _socket_set_errno();
547 result = -1;
548 }
549 return result;
550 }
551
552 /**************************************************************************/
553 /**************************************************************************/
554 /***** *****/
555 /***** replacement for libs/cutils/socket_xxxx.c *****/
556 /***** *****/
557 /**************************************************************************/
558 /**************************************************************************/
559
560 #include <winsock2.h>
561
562 static int _winsock_init;
563
564 static void
_cleanup_winsock(void)565 _cleanup_winsock( void )
566 {
567 WSACleanup();
568 }
569
570 static void
_init_winsock(void)571 _init_winsock( void )
572 {
573 if (!_winsock_init) {
574 WSADATA wsaData;
575 int rc = WSAStartup( MAKEWORD(2,2), &wsaData);
576 if (rc != 0) {
577 fatal( "adb: could not initialize Winsock\n" );
578 }
579 atexit( _cleanup_winsock );
580 _winsock_init = 1;
581 }
582 }
583
socket_loopback_client(int port,int type)584 int socket_loopback_client(int port, int type)
585 {
586 FH f = _fh_alloc( &_fh_socket_class );
587 struct sockaddr_in addr;
588 SOCKET s;
589
590 if (!f)
591 return -1;
592
593 if (!_winsock_init)
594 _init_winsock();
595
596 memset(&addr, 0, sizeof(addr));
597 addr.sin_family = AF_INET;
598 addr.sin_port = htons(port);
599 addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
600
601 s = socket(AF_INET, type, 0);
602 if(s == INVALID_SOCKET) {
603 D("socket_loopback_client: could not create socket\n" );
604 _fh_close(f);
605 return -1;
606 }
607
608 f->fh_socket = s;
609 if(connect(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
610 D("socket_loopback_client: could not connect to %s:%d\n", type != SOCK_STREAM ? "udp" : "tcp", port );
611 _fh_close(f);
612 return -1;
613 }
614 snprintf( f->name, sizeof(f->name), "%d(lo-client:%s%d)", _fh_to_int(f), type != SOCK_STREAM ? "udp:" : "", port );
615 D( "socket_loopback_client: port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp", _fh_to_int(f) );
616 return _fh_to_int(f);
617 }
618
619 #define LISTEN_BACKLOG 4
620
socket_loopback_server(int port,int type)621 int socket_loopback_server(int port, int type)
622 {
623 FH f = _fh_alloc( &_fh_socket_class );
624 struct sockaddr_in addr;
625 SOCKET s;
626 int n;
627
628 if (!f) {
629 return -1;
630 }
631
632 if (!_winsock_init)
633 _init_winsock();
634
635 memset(&addr, 0, sizeof(addr));
636 addr.sin_family = AF_INET;
637 addr.sin_port = htons(port);
638 addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
639
640 s = socket(AF_INET, type, 0);
641 if(s == INVALID_SOCKET) return -1;
642
643 f->fh_socket = s;
644
645 n = 1;
646 setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n));
647
648 if(bind(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
649 _fh_close(f);
650 return -1;
651 }
652 if (type == SOCK_STREAM) {
653 int ret;
654
655 ret = listen(s, LISTEN_BACKLOG);
656 if (ret < 0) {
657 _fh_close(f);
658 return -1;
659 }
660 }
661 snprintf( f->name, sizeof(f->name), "%d(lo-server:%s%d)", _fh_to_int(f), type != SOCK_STREAM ? "udp:" : "", port );
662 D( "socket_loopback_server: port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp", _fh_to_int(f) );
663 return _fh_to_int(f);
664 }
665
666
socket_network_client(const char * host,int port,int type)667 int socket_network_client(const char *host, int port, int type)
668 {
669 FH f = _fh_alloc( &_fh_socket_class );
670 struct hostent *hp;
671 struct sockaddr_in addr;
672 SOCKET s;
673
674 if (!f)
675 return -1;
676
677 if (!_winsock_init)
678 _init_winsock();
679
680 hp = gethostbyname(host);
681 if(hp == 0) {
682 _fh_close(f);
683 return -1;
684 }
685
686 memset(&addr, 0, sizeof(addr));
687 addr.sin_family = hp->h_addrtype;
688 addr.sin_port = htons(port);
689 memcpy(&addr.sin_addr, hp->h_addr, hp->h_length);
690
691 s = socket(hp->h_addrtype, type, 0);
692 if(s == INVALID_SOCKET) {
693 _fh_close(f);
694 return -1;
695 }
696 f->fh_socket = s;
697
698 if(connect(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
699 _fh_close(f);
700 return -1;
701 }
702
703 snprintf( f->name, sizeof(f->name), "%d(net-client:%s%d)", _fh_to_int(f), type != SOCK_STREAM ? "udp:" : "", port );
704 D( "socket_network_client: host '%s' port %d type %s => fd %d\n", host, port, type != SOCK_STREAM ? "udp" : "tcp", _fh_to_int(f) );
705 return _fh_to_int(f);
706 }
707
708
socket_network_client_timeout(const char * host,int port,int type,int timeout)709 int socket_network_client_timeout(const char *host, int port, int type, int timeout)
710 {
711 // TODO: implement timeouts for Windows.
712 return socket_network_client(host, port, type);
713 }
714
715
socket_inaddr_any_server(int port,int type)716 int socket_inaddr_any_server(int port, int type)
717 {
718 FH f = _fh_alloc( &_fh_socket_class );
719 struct sockaddr_in addr;
720 SOCKET s;
721 int n;
722
723 if (!f)
724 return -1;
725
726 if (!_winsock_init)
727 _init_winsock();
728
729 memset(&addr, 0, sizeof(addr));
730 addr.sin_family = AF_INET;
731 addr.sin_port = htons(port);
732 addr.sin_addr.s_addr = htonl(INADDR_ANY);
733
734 s = socket(AF_INET, type, 0);
735 if(s == INVALID_SOCKET) {
736 _fh_close(f);
737 return -1;
738 }
739
740 f->fh_socket = s;
741 n = 1;
742 setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n));
743
744 if(bind(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
745 _fh_close(f);
746 return -1;
747 }
748
749 if (type == SOCK_STREAM) {
750 int ret;
751
752 ret = listen(s, LISTEN_BACKLOG);
753 if (ret < 0) {
754 _fh_close(f);
755 return -1;
756 }
757 }
758 snprintf( f->name, sizeof(f->name), "%d(any-server:%s%d)", _fh_to_int(f), type != SOCK_STREAM ? "udp:" : "", port );
759 D( "socket_inaddr_server: port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp", _fh_to_int(f) );
760 return _fh_to_int(f);
761 }
762
763 #undef accept
adb_socket_accept(int serverfd,struct sockaddr * addr,socklen_t * addrlen)764 int adb_socket_accept(int serverfd, struct sockaddr* addr, socklen_t *addrlen)
765 {
766 FH serverfh = _fh_from_int(serverfd);
767 FH fh;
768
769 if ( !serverfh || serverfh->clazz != &_fh_socket_class ) {
770 D( "adb_socket_accept: invalid fd %d\n", serverfd );
771 return -1;
772 }
773
774 fh = _fh_alloc( &_fh_socket_class );
775 if (!fh) {
776 D( "adb_socket_accept: not enough memory to allocate accepted socket descriptor\n" );
777 return -1;
778 }
779
780 fh->fh_socket = accept( serverfh->fh_socket, addr, addrlen );
781 if (fh->fh_socket == INVALID_SOCKET) {
782 _fh_close( fh );
783 D( "adb_socket_accept: accept on fd %d return error %ld\n", serverfd, GetLastError() );
784 return -1;
785 }
786
787 snprintf( fh->name, sizeof(fh->name), "%d(accept:%s)", _fh_to_int(fh), serverfh->name );
788 D( "adb_socket_accept on fd %d returns fd %d\n", serverfd, _fh_to_int(fh) );
789 return _fh_to_int(fh);
790 }
791
792
adb_setsockopt(int fd,int level,int optname,const void * optval,socklen_t optlen)793 int adb_setsockopt( int fd, int level, int optname, const void* optval, socklen_t optlen )
794 {
795 FH fh = _fh_from_int(fd);
796
797 if ( !fh || fh->clazz != &_fh_socket_class ) {
798 D("adb_setsockopt: invalid fd %d\n", fd);
799 return -1;
800 }
801
802 return setsockopt( fh->fh_socket, level, optname, reinterpret_cast<const char*>(optval), optlen );
803 }
804
805 /**************************************************************************/
806 /**************************************************************************/
807 /***** *****/
808 /***** emulated socketpairs *****/
809 /***** *****/
810 /**************************************************************************/
811 /**************************************************************************/
812
813 /* we implement socketpairs directly in use space for the following reasons:
814 * - it avoids copying data from/to the Nt kernel
815 * - it allows us to implement fdevent hooks easily and cheaply, something
816 * that is not possible with standard Win32 pipes !!
817 *
818 * basically, we use two circular buffers, each one corresponding to a given
819 * direction.
820 *
821 * each buffer is implemented as two regions:
822 *
823 * region A which is (a_start,a_end)
824 * region B which is (0, b_end) with b_end <= a_start
825 *
826 * an empty buffer has: a_start = a_end = b_end = 0
827 *
828 * a_start is the pointer where we start reading data
829 * a_end is the pointer where we start writing data, unless it is BUFFER_SIZE,
830 * then you start writing at b_end
831 *
832 * the buffer is full when b_end == a_start && a_end == BUFFER_SIZE
833 *
834 * there is room when b_end < a_start || a_end < BUFER_SIZE
835 *
836 * when reading, a_start is incremented, it a_start meets a_end, then
837 * we do: a_start = 0, a_end = b_end, b_end = 0, and keep going on..
838 */
839
840 #define BIP_BUFFER_SIZE 4096
841
842 #if 0
843 #include <stdio.h>
844 # define BIPD(x) D x
845 # define BIPDUMP bip_dump_hex
846
847 static void bip_dump_hex( const unsigned char* ptr, size_t len )
848 {
849 int nn, len2 = len;
850
851 if (len2 > 8) len2 = 8;
852
853 for (nn = 0; nn < len2; nn++)
854 printf("%02x", ptr[nn]);
855 printf(" ");
856
857 for (nn = 0; nn < len2; nn++) {
858 int c = ptr[nn];
859 if (c < 32 || c > 127)
860 c = '.';
861 printf("%c", c);
862 }
863 printf("\n");
864 fflush(stdout);
865 }
866
867 #else
868 # define BIPD(x) do {} while (0)
869 # define BIPDUMP(p,l) BIPD(p)
870 #endif
871
872 typedef struct BipBufferRec_
873 {
874 int a_start;
875 int a_end;
876 int b_end;
877 int fdin;
878 int fdout;
879 int closed;
880 int can_write; /* boolean */
881 HANDLE evt_write; /* event signaled when one can write to a buffer */
882 int can_read; /* boolean */
883 HANDLE evt_read; /* event signaled when one can read from a buffer */
884 CRITICAL_SECTION lock;
885 unsigned char buff[ BIP_BUFFER_SIZE ];
886
887 } BipBufferRec, *BipBuffer;
888
889 static void
bip_buffer_init(BipBuffer buffer)890 bip_buffer_init( BipBuffer buffer )
891 {
892 D( "bit_buffer_init %p\n", buffer );
893 buffer->a_start = 0;
894 buffer->a_end = 0;
895 buffer->b_end = 0;
896 buffer->can_write = 1;
897 buffer->can_read = 0;
898 buffer->fdin = 0;
899 buffer->fdout = 0;
900 buffer->closed = 0;
901 buffer->evt_write = CreateEvent( NULL, TRUE, TRUE, NULL );
902 buffer->evt_read = CreateEvent( NULL, TRUE, FALSE, NULL );
903 InitializeCriticalSection( &buffer->lock );
904 }
905
906 static void
bip_buffer_close(BipBuffer bip)907 bip_buffer_close( BipBuffer bip )
908 {
909 bip->closed = 1;
910
911 if (!bip->can_read) {
912 SetEvent( bip->evt_read );
913 }
914 if (!bip->can_write) {
915 SetEvent( bip->evt_write );
916 }
917 }
918
919 static void
bip_buffer_done(BipBuffer bip)920 bip_buffer_done( BipBuffer bip )
921 {
922 BIPD(( "bip_buffer_done: %d->%d\n", bip->fdin, bip->fdout ));
923 CloseHandle( bip->evt_read );
924 CloseHandle( bip->evt_write );
925 DeleteCriticalSection( &bip->lock );
926 }
927
928 static int
bip_buffer_write(BipBuffer bip,const void * src,int len)929 bip_buffer_write( BipBuffer bip, const void* src, int len )
930 {
931 int avail, count = 0;
932
933 if (len <= 0)
934 return 0;
935
936 BIPD(( "bip_buffer_write: enter %d->%d len %d\n", bip->fdin, bip->fdout, len ));
937 BIPDUMP( src, len );
938
939 EnterCriticalSection( &bip->lock );
940
941 while (!bip->can_write) {
942 int ret;
943 LeaveCriticalSection( &bip->lock );
944
945 if (bip->closed) {
946 errno = EPIPE;
947 return -1;
948 }
949 /* spinlocking here is probably unfair, but let's live with it */
950 ret = WaitForSingleObject( bip->evt_write, INFINITE );
951 if (ret != WAIT_OBJECT_0) { /* buffer probably closed */
952 D( "bip_buffer_write: error %d->%d WaitForSingleObject returned %d, error %ld\n", bip->fdin, bip->fdout, ret, GetLastError() );
953 return 0;
954 }
955 if (bip->closed) {
956 errno = EPIPE;
957 return -1;
958 }
959 EnterCriticalSection( &bip->lock );
960 }
961
962 BIPD(( "bip_buffer_write: exec %d->%d len %d\n", bip->fdin, bip->fdout, len ));
963
964 avail = BIP_BUFFER_SIZE - bip->a_end;
965 if (avail > 0)
966 {
967 /* we can append to region A */
968 if (avail > len)
969 avail = len;
970
971 memcpy( bip->buff + bip->a_end, src, avail );
972 src = (const char *)src + avail;
973 count += avail;
974 len -= avail;
975
976 bip->a_end += avail;
977 if (bip->a_end == BIP_BUFFER_SIZE && bip->a_start == 0) {
978 bip->can_write = 0;
979 ResetEvent( bip->evt_write );
980 goto Exit;
981 }
982 }
983
984 if (len == 0)
985 goto Exit;
986
987 avail = bip->a_start - bip->b_end;
988 assert( avail > 0 ); /* since can_write is TRUE */
989
990 if (avail > len)
991 avail = len;
992
993 memcpy( bip->buff + bip->b_end, src, avail );
994 count += avail;
995 bip->b_end += avail;
996
997 if (bip->b_end == bip->a_start) {
998 bip->can_write = 0;
999 ResetEvent( bip->evt_write );
1000 }
1001
1002 Exit:
1003 assert( count > 0 );
1004
1005 if ( !bip->can_read ) {
1006 bip->can_read = 1;
1007 SetEvent( bip->evt_read );
1008 }
1009
1010 BIPD(( "bip_buffer_write: exit %d->%d count %d (as=%d ae=%d be=%d cw=%d cr=%d\n",
1011 bip->fdin, bip->fdout, count, bip->a_start, bip->a_end, bip->b_end, bip->can_write, bip->can_read ));
1012 LeaveCriticalSection( &bip->lock );
1013
1014 return count;
1015 }
1016
1017 static int
bip_buffer_read(BipBuffer bip,void * dst,int len)1018 bip_buffer_read( BipBuffer bip, void* dst, int len )
1019 {
1020 int avail, count = 0;
1021
1022 if (len <= 0)
1023 return 0;
1024
1025 BIPD(( "bip_buffer_read: enter %d->%d len %d\n", bip->fdin, bip->fdout, len ));
1026
1027 EnterCriticalSection( &bip->lock );
1028 while ( !bip->can_read )
1029 {
1030 #if 0
1031 LeaveCriticalSection( &bip->lock );
1032 errno = EAGAIN;
1033 return -1;
1034 #else
1035 int ret;
1036 LeaveCriticalSection( &bip->lock );
1037
1038 if (bip->closed) {
1039 errno = EPIPE;
1040 return -1;
1041 }
1042
1043 ret = WaitForSingleObject( bip->evt_read, INFINITE );
1044 if (ret != WAIT_OBJECT_0) { /* probably closed buffer */
1045 D( "bip_buffer_read: error %d->%d WaitForSingleObject returned %d, error %ld\n", bip->fdin, bip->fdout, ret, GetLastError());
1046 return 0;
1047 }
1048 if (bip->closed) {
1049 errno = EPIPE;
1050 return -1;
1051 }
1052 EnterCriticalSection( &bip->lock );
1053 #endif
1054 }
1055
1056 BIPD(( "bip_buffer_read: exec %d->%d len %d\n", bip->fdin, bip->fdout, len ));
1057
1058 avail = bip->a_end - bip->a_start;
1059 assert( avail > 0 ); /* since can_read is TRUE */
1060
1061 if (avail > len)
1062 avail = len;
1063
1064 memcpy( dst, bip->buff + bip->a_start, avail );
1065 dst = (char *)dst + avail;
1066 count += avail;
1067 len -= avail;
1068
1069 bip->a_start += avail;
1070 if (bip->a_start < bip->a_end)
1071 goto Exit;
1072
1073 bip->a_start = 0;
1074 bip->a_end = bip->b_end;
1075 bip->b_end = 0;
1076
1077 avail = bip->a_end;
1078 if (avail > 0) {
1079 if (avail > len)
1080 avail = len;
1081 memcpy( dst, bip->buff, avail );
1082 count += avail;
1083 bip->a_start += avail;
1084
1085 if ( bip->a_start < bip->a_end )
1086 goto Exit;
1087
1088 bip->a_start = bip->a_end = 0;
1089 }
1090
1091 bip->can_read = 0;
1092 ResetEvent( bip->evt_read );
1093
1094 Exit:
1095 assert( count > 0 );
1096
1097 if (!bip->can_write ) {
1098 bip->can_write = 1;
1099 SetEvent( bip->evt_write );
1100 }
1101
1102 BIPDUMP( (const unsigned char*)dst - count, count );
1103 BIPD(( "bip_buffer_read: exit %d->%d count %d (as=%d ae=%d be=%d cw=%d cr=%d\n",
1104 bip->fdin, bip->fdout, count, bip->a_start, bip->a_end, bip->b_end, bip->can_write, bip->can_read ));
1105 LeaveCriticalSection( &bip->lock );
1106
1107 return count;
1108 }
1109
1110 typedef struct SocketPairRec_
1111 {
1112 BipBufferRec a2b_bip;
1113 BipBufferRec b2a_bip;
1114 FH a_fd;
1115 int used;
1116
1117 } SocketPairRec;
1118
_fh_socketpair_init(FH f)1119 void _fh_socketpair_init( FH f )
1120 {
1121 f->fh_pair = NULL;
1122 }
1123
1124 static int
_fh_socketpair_close(FH f)1125 _fh_socketpair_close( FH f )
1126 {
1127 if ( f->fh_pair ) {
1128 SocketPair pair = f->fh_pair;
1129
1130 if ( f == pair->a_fd ) {
1131 pair->a_fd = NULL;
1132 }
1133
1134 bip_buffer_close( &pair->b2a_bip );
1135 bip_buffer_close( &pair->a2b_bip );
1136
1137 if ( --pair->used == 0 ) {
1138 bip_buffer_done( &pair->b2a_bip );
1139 bip_buffer_done( &pair->a2b_bip );
1140 free( pair );
1141 }
1142 f->fh_pair = NULL;
1143 }
1144 return 0;
1145 }
1146
1147 static int
_fh_socketpair_lseek(FH f,int pos,int origin)1148 _fh_socketpair_lseek( FH f, int pos, int origin )
1149 {
1150 errno = ESPIPE;
1151 return -1;
1152 }
1153
1154 static int
_fh_socketpair_read(FH f,void * buf,int len)1155 _fh_socketpair_read( FH f, void* buf, int len )
1156 {
1157 SocketPair pair = f->fh_pair;
1158 BipBuffer bip;
1159
1160 if (!pair)
1161 return -1;
1162
1163 if ( f == pair->a_fd )
1164 bip = &pair->b2a_bip;
1165 else
1166 bip = &pair->a2b_bip;
1167
1168 return bip_buffer_read( bip, buf, len );
1169 }
1170
1171 static int
_fh_socketpair_write(FH f,const void * buf,int len)1172 _fh_socketpair_write( FH f, const void* buf, int len )
1173 {
1174 SocketPair pair = f->fh_pair;
1175 BipBuffer bip;
1176
1177 if (!pair)
1178 return -1;
1179
1180 if ( f == pair->a_fd )
1181 bip = &pair->a2b_bip;
1182 else
1183 bip = &pair->b2a_bip;
1184
1185 return bip_buffer_write( bip, buf, len );
1186 }
1187
1188
1189 static void _fh_socketpair_hook( FH f, int event, EventHook hook ); /* forward */
1190
1191 static const FHClassRec _fh_socketpair_class =
1192 {
1193 _fh_socketpair_init,
1194 _fh_socketpair_close,
1195 _fh_socketpair_lseek,
1196 _fh_socketpair_read,
1197 _fh_socketpair_write,
1198 _fh_socketpair_hook
1199 };
1200
1201
adb_socketpair(int sv[2])1202 int adb_socketpair(int sv[2]) {
1203 SocketPair pair;
1204
1205 FH fa = _fh_alloc(&_fh_socketpair_class);
1206 FH fb = _fh_alloc(&_fh_socketpair_class);
1207
1208 if (!fa || !fb)
1209 goto Fail;
1210
1211 pair = reinterpret_cast<SocketPair>(malloc(sizeof(*pair)));
1212 if (pair == NULL) {
1213 D("adb_socketpair: not enough memory to allocate pipes\n" );
1214 goto Fail;
1215 }
1216
1217 bip_buffer_init( &pair->a2b_bip );
1218 bip_buffer_init( &pair->b2a_bip );
1219
1220 fa->fh_pair = pair;
1221 fb->fh_pair = pair;
1222 pair->used = 2;
1223 pair->a_fd = fa;
1224
1225 sv[0] = _fh_to_int(fa);
1226 sv[1] = _fh_to_int(fb);
1227
1228 pair->a2b_bip.fdin = sv[0];
1229 pair->a2b_bip.fdout = sv[1];
1230 pair->b2a_bip.fdin = sv[1];
1231 pair->b2a_bip.fdout = sv[0];
1232
1233 snprintf( fa->name, sizeof(fa->name), "%d(pair:%d)", sv[0], sv[1] );
1234 snprintf( fb->name, sizeof(fb->name), "%d(pair:%d)", sv[1], sv[0] );
1235 D( "adb_socketpair: returns (%d, %d)\n", sv[0], sv[1] );
1236 return 0;
1237
1238 Fail:
1239 _fh_close(fb);
1240 _fh_close(fa);
1241 return -1;
1242 }
1243
1244 /**************************************************************************/
1245 /**************************************************************************/
1246 /***** *****/
1247 /***** fdevents emulation *****/
1248 /***** *****/
1249 /***** this is a very simple implementation, we rely on the fact *****/
1250 /***** that ADB doesn't use FDE_ERROR. *****/
1251 /***** *****/
1252 /**************************************************************************/
1253 /**************************************************************************/
1254
1255 #define FATAL(x...) fatal(__FUNCTION__, x)
1256
1257 #if DEBUG
dump_fde(fdevent * fde,const char * info)1258 static void dump_fde(fdevent *fde, const char *info)
1259 {
1260 fprintf(stderr,"FDE #%03d %c%c%c %s\n", fde->fd,
1261 fde->state & FDE_READ ? 'R' : ' ',
1262 fde->state & FDE_WRITE ? 'W' : ' ',
1263 fde->state & FDE_ERROR ? 'E' : ' ',
1264 info);
1265 }
1266 #else
1267 #define dump_fde(fde, info) do { } while(0)
1268 #endif
1269
1270 #define FDE_EVENTMASK 0x00ff
1271 #define FDE_STATEMASK 0xff00
1272
1273 #define FDE_ACTIVE 0x0100
1274 #define FDE_PENDING 0x0200
1275 #define FDE_CREATED 0x0400
1276
1277 static void fdevent_plist_enqueue(fdevent *node);
1278 static void fdevent_plist_remove(fdevent *node);
1279 static fdevent *fdevent_plist_dequeue(void);
1280
1281 static fdevent list_pending = {
1282 .next = &list_pending,
1283 .prev = &list_pending,
1284 };
1285
1286 static fdevent **fd_table = 0;
1287 static int fd_table_max = 0;
1288
1289 typedef struct EventLooperRec_* EventLooper;
1290
1291 typedef struct EventHookRec_
1292 {
1293 EventHook next;
1294 FH fh;
1295 HANDLE h;
1296 int wanted; /* wanted event flags */
1297 int ready; /* ready event flags */
1298 void* aux;
1299 void (*prepare)( EventHook hook );
1300 int (*start) ( EventHook hook );
1301 void (*stop) ( EventHook hook );
1302 int (*check) ( EventHook hook );
1303 int (*peek) ( EventHook hook );
1304 } EventHookRec;
1305
1306 static EventHook _free_hooks;
1307
1308 static EventHook
event_hook_alloc(FH fh)1309 event_hook_alloc(FH fh) {
1310 EventHook hook = _free_hooks;
1311 if (hook != NULL) {
1312 _free_hooks = hook->next;
1313 } else {
1314 hook = reinterpret_cast<EventHook>(malloc(sizeof(*hook)));
1315 if (hook == NULL)
1316 fatal( "could not allocate event hook\n" );
1317 }
1318 hook->next = NULL;
1319 hook->fh = fh;
1320 hook->wanted = 0;
1321 hook->ready = 0;
1322 hook->h = INVALID_HANDLE_VALUE;
1323 hook->aux = NULL;
1324
1325 hook->prepare = NULL;
1326 hook->start = NULL;
1327 hook->stop = NULL;
1328 hook->check = NULL;
1329 hook->peek = NULL;
1330
1331 return hook;
1332 }
1333
1334 static void
event_hook_free(EventHook hook)1335 event_hook_free( EventHook hook )
1336 {
1337 hook->fh = NULL;
1338 hook->wanted = 0;
1339 hook->ready = 0;
1340 hook->next = _free_hooks;
1341 _free_hooks = hook;
1342 }
1343
1344
1345 static void
event_hook_signal(EventHook hook)1346 event_hook_signal( EventHook hook )
1347 {
1348 FH f = hook->fh;
1349 int fd = _fh_to_int(f);
1350 fdevent* fde = fd_table[ fd - WIN32_FH_BASE ];
1351
1352 if (fde != NULL && fde->fd == fd) {
1353 if ((fde->state & FDE_PENDING) == 0) {
1354 fde->state |= FDE_PENDING;
1355 fdevent_plist_enqueue( fde );
1356 }
1357 fde->events |= hook->wanted;
1358 }
1359 }
1360
1361
1362 #define MAX_LOOPER_HANDLES WIN32_MAX_FHS
1363
1364 typedef struct EventLooperRec_
1365 {
1366 EventHook hooks;
1367 HANDLE htab[ MAX_LOOPER_HANDLES ];
1368 int htab_count;
1369
1370 } EventLooperRec;
1371
1372 static EventHook*
event_looper_find_p(EventLooper looper,FH fh)1373 event_looper_find_p( EventLooper looper, FH fh )
1374 {
1375 EventHook *pnode = &looper->hooks;
1376 EventHook node = *pnode;
1377 for (;;) {
1378 if ( node == NULL || node->fh == fh )
1379 break;
1380 pnode = &node->next;
1381 node = *pnode;
1382 }
1383 return pnode;
1384 }
1385
1386 static void
event_looper_hook(EventLooper looper,int fd,int events)1387 event_looper_hook( EventLooper looper, int fd, int events )
1388 {
1389 FH f = _fh_from_int(fd);
1390 EventHook *pnode;
1391 EventHook node;
1392
1393 if (f == NULL) /* invalid arg */ {
1394 D("event_looper_hook: invalid fd=%d\n", fd);
1395 return;
1396 }
1397
1398 pnode = event_looper_find_p( looper, f );
1399 node = *pnode;
1400 if ( node == NULL ) {
1401 node = event_hook_alloc( f );
1402 node->next = *pnode;
1403 *pnode = node;
1404 }
1405
1406 if ( (node->wanted & events) != events ) {
1407 /* this should update start/stop/check/peek */
1408 D("event_looper_hook: call hook for %d (new=%x, old=%x)\n",
1409 fd, node->wanted, events);
1410 f->clazz->_fh_hook( f, events & ~node->wanted, node );
1411 node->wanted |= events;
1412 } else {
1413 D("event_looper_hook: ignoring events %x for %d wanted=%x)\n",
1414 events, fd, node->wanted);
1415 }
1416 }
1417
1418 static void
event_looper_unhook(EventLooper looper,int fd,int events)1419 event_looper_unhook( EventLooper looper, int fd, int events )
1420 {
1421 FH fh = _fh_from_int(fd);
1422 EventHook *pnode = event_looper_find_p( looper, fh );
1423 EventHook node = *pnode;
1424
1425 if (node != NULL) {
1426 int events2 = events & node->wanted;
1427 if ( events2 == 0 ) {
1428 D( "event_looper_unhook: events %x not registered for fd %d\n", events, fd );
1429 return;
1430 }
1431 node->wanted &= ~events2;
1432 if (!node->wanted) {
1433 *pnode = node->next;
1434 event_hook_free( node );
1435 }
1436 }
1437 }
1438
1439 /*
1440 * A fixer for WaitForMultipleObjects on condition that there are more than 64
1441 * handles to wait on.
1442 *
1443 * In cetain cases DDMS may establish more than 64 connections with ADB. For
1444 * instance, this may happen if there are more than 64 processes running on a
1445 * device, or there are multiple devices connected (including the emulator) with
1446 * the combined number of running processes greater than 64. In this case using
1447 * WaitForMultipleObjects to wait on connection events simply wouldn't cut,
1448 * because of the API limitations (64 handles max). So, we need to provide a way
1449 * to scale WaitForMultipleObjects to accept an arbitrary number of handles. The
1450 * easiest (and "Microsoft recommended") way to do that would be dividing the
1451 * handle array into chunks with the chunk size less than 64, and fire up as many
1452 * waiting threads as there are chunks. Then each thread would wait on a chunk of
1453 * handles, and will report back to the caller which handle has been set.
1454 * Here is the implementation of that algorithm.
1455 */
1456
1457 /* Number of handles to wait on in each wating thread. */
1458 #define WAIT_ALL_CHUNK_SIZE 63
1459
1460 /* Descriptor for a wating thread */
1461 typedef struct WaitForAllParam {
1462 /* A handle to an event to signal when waiting is over. This handle is shared
1463 * accross all the waiting threads, so each waiting thread knows when any
1464 * other thread has exited, so it can exit too. */
1465 HANDLE main_event;
1466 /* Upon exit from a waiting thread contains the index of the handle that has
1467 * been signaled. The index is an absolute index of the signaled handle in
1468 * the original array. This pointer is shared accross all the waiting threads
1469 * and it's not guaranteed (due to a race condition) that when all the
1470 * waiting threads exit, the value contained here would indicate the first
1471 * handle that was signaled. This is fine, because the caller cares only
1472 * about any handle being signaled. It doesn't care about the order, nor
1473 * about the whole list of handles that were signaled. */
1474 LONG volatile *signaled_index;
1475 /* Array of handles to wait on in a waiting thread. */
1476 HANDLE* handles;
1477 /* Number of handles in 'handles' array to wait on. */
1478 int handles_count;
1479 /* Index inside the main array of the first handle in the 'handles' array. */
1480 int first_handle_index;
1481 /* Waiting thread handle. */
1482 HANDLE thread;
1483 } WaitForAllParam;
1484
1485 /* Waiting thread routine. */
1486 static unsigned __stdcall
_in_waiter_thread(void * arg)1487 _in_waiter_thread(void* arg)
1488 {
1489 HANDLE wait_on[WAIT_ALL_CHUNK_SIZE + 1];
1490 int res;
1491 WaitForAllParam* const param = (WaitForAllParam*)arg;
1492
1493 /* We have to wait on the main_event in order to be notified when any of the
1494 * sibling threads is exiting. */
1495 wait_on[0] = param->main_event;
1496 /* The rest of the handles go behind the main event handle. */
1497 memcpy(wait_on + 1, param->handles, param->handles_count * sizeof(HANDLE));
1498
1499 res = WaitForMultipleObjects(param->handles_count + 1, wait_on, FALSE, INFINITE);
1500 if (res > 0 && res < (param->handles_count + 1)) {
1501 /* One of the original handles got signaled. Save its absolute index into
1502 * the output variable. */
1503 InterlockedCompareExchange(param->signaled_index,
1504 res - 1L + param->first_handle_index, -1L);
1505 }
1506
1507 /* Notify the caller (and the siblings) that the wait is over. */
1508 SetEvent(param->main_event);
1509
1510 _endthreadex(0);
1511 return 0;
1512 }
1513
1514 /* WaitForMultipeObjects fixer routine.
1515 * Param:
1516 * handles Array of handles to wait on.
1517 * handles_count Number of handles in the array.
1518 * Return:
1519 * (>= 0 && < handles_count) - Index of the signaled handle in the array, or
1520 * WAIT_FAILED on an error.
1521 */
1522 static int
_wait_for_all(HANDLE * handles,int handles_count)1523 _wait_for_all(HANDLE* handles, int handles_count)
1524 {
1525 WaitForAllParam* threads;
1526 HANDLE main_event;
1527 int chunks, chunk, remains;
1528
1529 /* This variable is going to be accessed by several threads at the same time,
1530 * this is bound to fail randomly when the core is run on multi-core machines.
1531 * To solve this, we need to do the following (1 _and_ 2):
1532 * 1. Use the "volatile" qualifier to ensure the compiler doesn't optimize
1533 * out the reads/writes in this function unexpectedly.
1534 * 2. Ensure correct memory ordering. The "simple" way to do that is to wrap
1535 * all accesses inside a critical section. But we can also use
1536 * InterlockedCompareExchange() which always provide a full memory barrier
1537 * on Win32.
1538 */
1539 volatile LONG sig_index = -1;
1540
1541 /* Calculate number of chunks, and allocate thread param array. */
1542 chunks = handles_count / WAIT_ALL_CHUNK_SIZE;
1543 remains = handles_count % WAIT_ALL_CHUNK_SIZE;
1544 threads = (WaitForAllParam*)malloc((chunks + (remains ? 1 : 0)) *
1545 sizeof(WaitForAllParam));
1546 if (threads == NULL) {
1547 D("Unable to allocate thread array for %d handles.", handles_count);
1548 return (int)WAIT_FAILED;
1549 }
1550
1551 /* Create main event to wait on for all waiting threads. This is a "manualy
1552 * reset" event that will remain set once it was set. */
1553 main_event = CreateEvent(NULL, TRUE, FALSE, NULL);
1554 if (main_event == NULL) {
1555 D("Unable to create main event. Error: %d", (int)GetLastError());
1556 free(threads);
1557 return (int)WAIT_FAILED;
1558 }
1559
1560 /*
1561 * Initialize waiting thread parameters.
1562 */
1563
1564 for (chunk = 0; chunk < chunks; chunk++) {
1565 threads[chunk].main_event = main_event;
1566 threads[chunk].signaled_index = &sig_index;
1567 threads[chunk].first_handle_index = WAIT_ALL_CHUNK_SIZE * chunk;
1568 threads[chunk].handles = handles + threads[chunk].first_handle_index;
1569 threads[chunk].handles_count = WAIT_ALL_CHUNK_SIZE;
1570 }
1571 if (remains) {
1572 threads[chunk].main_event = main_event;
1573 threads[chunk].signaled_index = &sig_index;
1574 threads[chunk].first_handle_index = WAIT_ALL_CHUNK_SIZE * chunk;
1575 threads[chunk].handles = handles + threads[chunk].first_handle_index;
1576 threads[chunk].handles_count = remains;
1577 chunks++;
1578 }
1579
1580 /* Start the waiting threads. */
1581 for (chunk = 0; chunk < chunks; chunk++) {
1582 /* Note that using adb_thread_create is not appropriate here, since we
1583 * need a handle to wait on for thread termination. */
1584 threads[chunk].thread = (HANDLE)_beginthreadex(NULL, 0, _in_waiter_thread,
1585 &threads[chunk], 0, NULL);
1586 if (threads[chunk].thread == NULL) {
1587 /* Unable to create a waiter thread. Collapse. */
1588 D("Unable to create a waiting thread %d of %d. errno=%d",
1589 chunk, chunks, errno);
1590 chunks = chunk;
1591 SetEvent(main_event);
1592 break;
1593 }
1594 }
1595
1596 /* Wait on any of the threads to get signaled. */
1597 WaitForSingleObject(main_event, INFINITE);
1598
1599 /* Wait on all the waiting threads to exit. */
1600 for (chunk = 0; chunk < chunks; chunk++) {
1601 WaitForSingleObject(threads[chunk].thread, INFINITE);
1602 CloseHandle(threads[chunk].thread);
1603 }
1604
1605 CloseHandle(main_event);
1606 free(threads);
1607
1608
1609 const int ret = (int)InterlockedCompareExchange(&sig_index, -1, -1);
1610 return (ret >= 0) ? ret : (int)WAIT_FAILED;
1611 }
1612
1613 static EventLooperRec win32_looper;
1614
fdevent_init(void)1615 static void fdevent_init(void)
1616 {
1617 win32_looper.htab_count = 0;
1618 win32_looper.hooks = NULL;
1619 }
1620
fdevent_connect(fdevent * fde)1621 static void fdevent_connect(fdevent *fde)
1622 {
1623 EventLooper looper = &win32_looper;
1624 int events = fde->state & FDE_EVENTMASK;
1625
1626 if (events != 0)
1627 event_looper_hook( looper, fde->fd, events );
1628 }
1629
fdevent_disconnect(fdevent * fde)1630 static void fdevent_disconnect(fdevent *fde)
1631 {
1632 EventLooper looper = &win32_looper;
1633 int events = fde->state & FDE_EVENTMASK;
1634
1635 if (events != 0)
1636 event_looper_unhook( looper, fde->fd, events );
1637 }
1638
fdevent_update(fdevent * fde,unsigned events)1639 static void fdevent_update(fdevent *fde, unsigned events)
1640 {
1641 EventLooper looper = &win32_looper;
1642 unsigned events0 = fde->state & FDE_EVENTMASK;
1643
1644 if (events != events0) {
1645 int removes = events0 & ~events;
1646 int adds = events & ~events0;
1647 if (removes) {
1648 D("fdevent_update: remove %x from %d\n", removes, fde->fd);
1649 event_looper_unhook( looper, fde->fd, removes );
1650 }
1651 if (adds) {
1652 D("fdevent_update: add %x to %d\n", adds, fde->fd);
1653 event_looper_hook ( looper, fde->fd, adds );
1654 }
1655 }
1656 }
1657
fdevent_process()1658 static void fdevent_process()
1659 {
1660 EventLooper looper = &win32_looper;
1661 EventHook hook;
1662 int gotone = 0;
1663
1664 /* if we have at least one ready hook, execute it/them */
1665 for (hook = looper->hooks; hook; hook = hook->next) {
1666 hook->ready = 0;
1667 if (hook->prepare) {
1668 hook->prepare(hook);
1669 if (hook->ready != 0) {
1670 event_hook_signal( hook );
1671 gotone = 1;
1672 }
1673 }
1674 }
1675
1676 /* nothing's ready yet, so wait for something to happen */
1677 if (!gotone)
1678 {
1679 looper->htab_count = 0;
1680
1681 for (hook = looper->hooks; hook; hook = hook->next)
1682 {
1683 if (hook->start && !hook->start(hook)) {
1684 D( "fdevent_process: error when starting a hook\n" );
1685 return;
1686 }
1687 if (hook->h != INVALID_HANDLE_VALUE) {
1688 int nn;
1689
1690 for (nn = 0; nn < looper->htab_count; nn++)
1691 {
1692 if ( looper->htab[nn] == hook->h )
1693 goto DontAdd;
1694 }
1695 looper->htab[ looper->htab_count++ ] = hook->h;
1696 DontAdd:
1697 ;
1698 }
1699 }
1700
1701 if (looper->htab_count == 0) {
1702 D( "fdevent_process: nothing to wait for !!\n" );
1703 return;
1704 }
1705
1706 do
1707 {
1708 int wait_ret;
1709
1710 D( "adb_win32: waiting for %d events\n", looper->htab_count );
1711 if (looper->htab_count > MAXIMUM_WAIT_OBJECTS) {
1712 D("handle count %d exceeds MAXIMUM_WAIT_OBJECTS.\n", looper->htab_count);
1713 wait_ret = _wait_for_all(looper->htab, looper->htab_count);
1714 } else {
1715 wait_ret = WaitForMultipleObjects( looper->htab_count, looper->htab, FALSE, INFINITE );
1716 }
1717 if (wait_ret == (int)WAIT_FAILED) {
1718 D( "adb_win32: wait failed, error %ld\n", GetLastError() );
1719 } else {
1720 D( "adb_win32: got one (index %d)\n", wait_ret );
1721
1722 /* according to Cygwin, some objects like consoles wake up on "inappropriate" events
1723 * like mouse movements. we need to filter these with the "check" function
1724 */
1725 if ((unsigned)wait_ret < (unsigned)looper->htab_count)
1726 {
1727 for (hook = looper->hooks; hook; hook = hook->next)
1728 {
1729 if ( looper->htab[wait_ret] == hook->h &&
1730 (!hook->check || hook->check(hook)) )
1731 {
1732 D( "adb_win32: signaling %s for %x\n", hook->fh->name, hook->ready );
1733 event_hook_signal( hook );
1734 gotone = 1;
1735 break;
1736 }
1737 }
1738 }
1739 }
1740 }
1741 while (!gotone);
1742
1743 for (hook = looper->hooks; hook; hook = hook->next) {
1744 if (hook->stop)
1745 hook->stop( hook );
1746 }
1747 }
1748
1749 for (hook = looper->hooks; hook; hook = hook->next) {
1750 if (hook->peek && hook->peek(hook))
1751 event_hook_signal( hook );
1752 }
1753 }
1754
1755
fdevent_register(fdevent * fde)1756 static void fdevent_register(fdevent *fde)
1757 {
1758 int fd = fde->fd - WIN32_FH_BASE;
1759
1760 if(fd < 0) {
1761 FATAL("bogus negative fd (%d)\n", fde->fd);
1762 }
1763
1764 if(fd >= fd_table_max) {
1765 int oldmax = fd_table_max;
1766 if(fde->fd > 32000) {
1767 FATAL("bogus huuuuge fd (%d)\n", fde->fd);
1768 }
1769 if(fd_table_max == 0) {
1770 fdevent_init();
1771 fd_table_max = 256;
1772 }
1773 while(fd_table_max <= fd) {
1774 fd_table_max *= 2;
1775 }
1776 fd_table = reinterpret_cast<fdevent**>(realloc(fd_table, sizeof(fdevent*) * fd_table_max));
1777 if(fd_table == 0) {
1778 FATAL("could not expand fd_table to %d entries\n", fd_table_max);
1779 }
1780 memset(fd_table + oldmax, 0, sizeof(int) * (fd_table_max - oldmax));
1781 }
1782
1783 fd_table[fd] = fde;
1784 }
1785
fdevent_unregister(fdevent * fde)1786 static void fdevent_unregister(fdevent *fde)
1787 {
1788 int fd = fde->fd - WIN32_FH_BASE;
1789
1790 if((fd < 0) || (fd >= fd_table_max)) {
1791 FATAL("fd out of range (%d)\n", fde->fd);
1792 }
1793
1794 if(fd_table[fd] != fde) {
1795 FATAL("fd_table out of sync");
1796 }
1797
1798 fd_table[fd] = 0;
1799
1800 if(!(fde->state & FDE_DONT_CLOSE)) {
1801 dump_fde(fde, "close");
1802 adb_close(fde->fd);
1803 }
1804 }
1805
fdevent_plist_enqueue(fdevent * node)1806 static void fdevent_plist_enqueue(fdevent *node)
1807 {
1808 fdevent *list = &list_pending;
1809
1810 node->next = list;
1811 node->prev = list->prev;
1812 node->prev->next = node;
1813 list->prev = node;
1814 }
1815
fdevent_plist_remove(fdevent * node)1816 static void fdevent_plist_remove(fdevent *node)
1817 {
1818 node->prev->next = node->next;
1819 node->next->prev = node->prev;
1820 node->next = 0;
1821 node->prev = 0;
1822 }
1823
fdevent_plist_dequeue(void)1824 static fdevent *fdevent_plist_dequeue(void)
1825 {
1826 fdevent *list = &list_pending;
1827 fdevent *node = list->next;
1828
1829 if(node == list) return 0;
1830
1831 list->next = node->next;
1832 list->next->prev = list;
1833 node->next = 0;
1834 node->prev = 0;
1835
1836 return node;
1837 }
1838
fdevent_create(int fd,fd_func func,void * arg)1839 fdevent *fdevent_create(int fd, fd_func func, void *arg)
1840 {
1841 fdevent *fde = (fdevent*) malloc(sizeof(fdevent));
1842 if(fde == 0) return 0;
1843 fdevent_install(fde, fd, func, arg);
1844 fde->state |= FDE_CREATED;
1845 return fde;
1846 }
1847
fdevent_destroy(fdevent * fde)1848 void fdevent_destroy(fdevent *fde)
1849 {
1850 if(fde == 0) return;
1851 if(!(fde->state & FDE_CREATED)) {
1852 FATAL("fde %p not created by fdevent_create()\n", fde);
1853 }
1854 fdevent_remove(fde);
1855 }
1856
fdevent_install(fdevent * fde,int fd,fd_func func,void * arg)1857 void fdevent_install(fdevent *fde, int fd, fd_func func, void *arg)
1858 {
1859 memset(fde, 0, sizeof(fdevent));
1860 fde->state = FDE_ACTIVE;
1861 fde->fd = fd;
1862 fde->func = func;
1863 fde->arg = arg;
1864
1865 fdevent_register(fde);
1866 dump_fde(fde, "connect");
1867 fdevent_connect(fde);
1868 fde->state |= FDE_ACTIVE;
1869 }
1870
fdevent_remove(fdevent * fde)1871 void fdevent_remove(fdevent *fde)
1872 {
1873 if(fde->state & FDE_PENDING) {
1874 fdevent_plist_remove(fde);
1875 }
1876
1877 if(fde->state & FDE_ACTIVE) {
1878 fdevent_disconnect(fde);
1879 dump_fde(fde, "disconnect");
1880 fdevent_unregister(fde);
1881 }
1882
1883 fde->state = 0;
1884 fde->events = 0;
1885 }
1886
1887
fdevent_set(fdevent * fde,unsigned events)1888 void fdevent_set(fdevent *fde, unsigned events)
1889 {
1890 events &= FDE_EVENTMASK;
1891
1892 if((fde->state & FDE_EVENTMASK) == (int)events) return;
1893
1894 if(fde->state & FDE_ACTIVE) {
1895 fdevent_update(fde, events);
1896 dump_fde(fde, "update");
1897 }
1898
1899 fde->state = (fde->state & FDE_STATEMASK) | events;
1900
1901 if(fde->state & FDE_PENDING) {
1902 /* if we're pending, make sure
1903 ** we don't signal an event that
1904 ** is no longer wanted.
1905 */
1906 fde->events &= (~events);
1907 if(fde->events == 0) {
1908 fdevent_plist_remove(fde);
1909 fde->state &= (~FDE_PENDING);
1910 }
1911 }
1912 }
1913
fdevent_add(fdevent * fde,unsigned events)1914 void fdevent_add(fdevent *fde, unsigned events)
1915 {
1916 fdevent_set(
1917 fde, (fde->state & FDE_EVENTMASK) | (events & FDE_EVENTMASK));
1918 }
1919
fdevent_del(fdevent * fde,unsigned events)1920 void fdevent_del(fdevent *fde, unsigned events)
1921 {
1922 fdevent_set(
1923 fde, (fde->state & FDE_EVENTMASK) & (~(events & FDE_EVENTMASK)));
1924 }
1925
fdevent_loop()1926 void fdevent_loop()
1927 {
1928 fdevent *fde;
1929
1930 for(;;) {
1931 #if DEBUG
1932 fprintf(stderr,"--- ---- waiting for events\n");
1933 #endif
1934 fdevent_process();
1935
1936 while((fde = fdevent_plist_dequeue())) {
1937 unsigned events = fde->events;
1938 fde->events = 0;
1939 fde->state &= (~FDE_PENDING);
1940 dump_fde(fde, "callback");
1941 fde->func(fde->fd, events, fde->arg);
1942 }
1943 }
1944 }
1945
1946 /** FILE EVENT HOOKS
1947 **/
1948
_event_file_prepare(EventHook hook)1949 static void _event_file_prepare( EventHook hook )
1950 {
1951 if (hook->wanted & (FDE_READ|FDE_WRITE)) {
1952 /* we can always read/write */
1953 hook->ready |= hook->wanted & (FDE_READ|FDE_WRITE);
1954 }
1955 }
1956
_event_file_peek(EventHook hook)1957 static int _event_file_peek( EventHook hook )
1958 {
1959 return (hook->wanted & (FDE_READ|FDE_WRITE));
1960 }
1961
_fh_file_hook(FH f,int events,EventHook hook)1962 static void _fh_file_hook( FH f, int events, EventHook hook )
1963 {
1964 hook->h = f->fh_handle;
1965 hook->prepare = _event_file_prepare;
1966 hook->peek = _event_file_peek;
1967 }
1968
1969 /** SOCKET EVENT HOOKS
1970 **/
1971
_event_socket_verify(EventHook hook,WSANETWORKEVENTS * evts)1972 static void _event_socket_verify( EventHook hook, WSANETWORKEVENTS* evts )
1973 {
1974 if ( evts->lNetworkEvents & (FD_READ|FD_ACCEPT|FD_CLOSE) ) {
1975 if (hook->wanted & FDE_READ)
1976 hook->ready |= FDE_READ;
1977 if ((evts->iErrorCode[FD_READ] != 0) && hook->wanted & FDE_ERROR)
1978 hook->ready |= FDE_ERROR;
1979 }
1980 if ( evts->lNetworkEvents & (FD_WRITE|FD_CONNECT|FD_CLOSE) ) {
1981 if (hook->wanted & FDE_WRITE)
1982 hook->ready |= FDE_WRITE;
1983 if ((evts->iErrorCode[FD_WRITE] != 0) && hook->wanted & FDE_ERROR)
1984 hook->ready |= FDE_ERROR;
1985 }
1986 if ( evts->lNetworkEvents & FD_OOB ) {
1987 if (hook->wanted & FDE_ERROR)
1988 hook->ready |= FDE_ERROR;
1989 }
1990 }
1991
_event_socket_prepare(EventHook hook)1992 static void _event_socket_prepare( EventHook hook )
1993 {
1994 WSANETWORKEVENTS evts;
1995
1996 /* look if some of the events we want already happened ? */
1997 if (!WSAEnumNetworkEvents( hook->fh->fh_socket, NULL, &evts ))
1998 _event_socket_verify( hook, &evts );
1999 }
2000
_socket_wanted_to_flags(int wanted)2001 static int _socket_wanted_to_flags( int wanted )
2002 {
2003 int flags = 0;
2004 if (wanted & FDE_READ)
2005 flags |= FD_READ | FD_ACCEPT | FD_CLOSE;
2006
2007 if (wanted & FDE_WRITE)
2008 flags |= FD_WRITE | FD_CONNECT | FD_CLOSE;
2009
2010 if (wanted & FDE_ERROR)
2011 flags |= FD_OOB;
2012
2013 return flags;
2014 }
2015
_event_socket_start(EventHook hook)2016 static int _event_socket_start( EventHook hook )
2017 {
2018 /* create an event which we're going to wait for */
2019 FH fh = hook->fh;
2020 long flags = _socket_wanted_to_flags( hook->wanted );
2021
2022 hook->h = fh->event;
2023 if (hook->h == INVALID_HANDLE_VALUE) {
2024 D( "_event_socket_start: no event for %s\n", fh->name );
2025 return 0;
2026 }
2027
2028 if ( flags != fh->mask ) {
2029 D( "_event_socket_start: hooking %s for %x (flags %ld)\n", hook->fh->name, hook->wanted, flags );
2030 if ( WSAEventSelect( fh->fh_socket, hook->h, flags ) ) {
2031 D( "_event_socket_start: WSAEventSelect() for %s failed, error %d\n", hook->fh->name, WSAGetLastError() );
2032 CloseHandle( hook->h );
2033 hook->h = INVALID_HANDLE_VALUE;
2034 exit(1);
2035 return 0;
2036 }
2037 fh->mask = flags;
2038 }
2039 return 1;
2040 }
2041
_event_socket_stop(EventHook hook)2042 static void _event_socket_stop( EventHook hook )
2043 {
2044 hook->h = INVALID_HANDLE_VALUE;
2045 }
2046
_event_socket_check(EventHook hook)2047 static int _event_socket_check( EventHook hook )
2048 {
2049 int result = 0;
2050 FH fh = hook->fh;
2051 WSANETWORKEVENTS evts;
2052
2053 if (!WSAEnumNetworkEvents( fh->fh_socket, hook->h, &evts ) ) {
2054 _event_socket_verify( hook, &evts );
2055 result = (hook->ready != 0);
2056 if (result) {
2057 ResetEvent( hook->h );
2058 }
2059 }
2060 D( "_event_socket_check %s returns %d\n", fh->name, result );
2061 return result;
2062 }
2063
_event_socket_peek(EventHook hook)2064 static int _event_socket_peek( EventHook hook )
2065 {
2066 WSANETWORKEVENTS evts;
2067 FH fh = hook->fh;
2068
2069 /* look if some of the events we want already happened ? */
2070 if (!WSAEnumNetworkEvents( fh->fh_socket, NULL, &evts )) {
2071 _event_socket_verify( hook, &evts );
2072 if (hook->ready)
2073 ResetEvent( hook->h );
2074 }
2075
2076 return hook->ready != 0;
2077 }
2078
2079
2080
_fh_socket_hook(FH f,int events,EventHook hook)2081 static void _fh_socket_hook( FH f, int events, EventHook hook )
2082 {
2083 hook->prepare = _event_socket_prepare;
2084 hook->start = _event_socket_start;
2085 hook->stop = _event_socket_stop;
2086 hook->check = _event_socket_check;
2087 hook->peek = _event_socket_peek;
2088
2089 _event_socket_start( hook );
2090 }
2091
2092 /** SOCKETPAIR EVENT HOOKS
2093 **/
2094
_event_socketpair_prepare(EventHook hook)2095 static void _event_socketpair_prepare( EventHook hook )
2096 {
2097 FH fh = hook->fh;
2098 SocketPair pair = fh->fh_pair;
2099 BipBuffer rbip = (pair->a_fd == fh) ? &pair->b2a_bip : &pair->a2b_bip;
2100 BipBuffer wbip = (pair->a_fd == fh) ? &pair->a2b_bip : &pair->b2a_bip;
2101
2102 if (hook->wanted & FDE_READ && rbip->can_read)
2103 hook->ready |= FDE_READ;
2104
2105 if (hook->wanted & FDE_WRITE && wbip->can_write)
2106 hook->ready |= FDE_WRITE;
2107 }
2108
_event_socketpair_start(EventHook hook)2109 static int _event_socketpair_start( EventHook hook )
2110 {
2111 FH fh = hook->fh;
2112 SocketPair pair = fh->fh_pair;
2113 BipBuffer rbip = (pair->a_fd == fh) ? &pair->b2a_bip : &pair->a2b_bip;
2114 BipBuffer wbip = (pair->a_fd == fh) ? &pair->a2b_bip : &pair->b2a_bip;
2115
2116 if (hook->wanted == FDE_READ)
2117 hook->h = rbip->evt_read;
2118
2119 else if (hook->wanted == FDE_WRITE)
2120 hook->h = wbip->evt_write;
2121
2122 else {
2123 D("_event_socketpair_start: can't handle FDE_READ+FDE_WRITE\n" );
2124 return 0;
2125 }
2126 D( "_event_socketpair_start: hook %s for %x wanted=%x\n",
2127 hook->fh->name, _fh_to_int(fh), hook->wanted);
2128 return 1;
2129 }
2130
_event_socketpair_peek(EventHook hook)2131 static int _event_socketpair_peek( EventHook hook )
2132 {
2133 _event_socketpair_prepare( hook );
2134 return hook->ready != 0;
2135 }
2136
_fh_socketpair_hook(FH fh,int events,EventHook hook)2137 static void _fh_socketpair_hook( FH fh, int events, EventHook hook )
2138 {
2139 hook->prepare = _event_socketpair_prepare;
2140 hook->start = _event_socketpair_start;
2141 hook->peek = _event_socketpair_peek;
2142 }
2143
2144
2145 void
adb_sysdeps_init(void)2146 adb_sysdeps_init( void )
2147 {
2148 #define ADB_MUTEX(x) InitializeCriticalSection( & x );
2149 #include "mutex_list.h"
2150 InitializeCriticalSection( &_win32_lock );
2151 }
2152
2153 /**************************************************************************/
2154 /**************************************************************************/
2155 /***** *****/
2156 /***** Console Window Terminal Emulation *****/
2157 /***** *****/
2158 /**************************************************************************/
2159 /**************************************************************************/
2160
2161 // This reads input from a Win32 console window and translates it into Unix
2162 // terminal-style sequences. This emulates mostly Gnome Terminal (in Normal
2163 // mode, not Application mode), which itself emulates xterm. Gnome Terminal
2164 // is emulated instead of xterm because it is probably more popular than xterm:
2165 // Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal
2166 // supports modern fonts, etc. It seems best to emulate the terminal that most
2167 // Android developers use because they'll fix apps (the shell, etc.) to keep
2168 // working with that terminal's emulation.
2169 //
2170 // The point of this emulation is not to be perfect or to solve all issues with
2171 // console windows on Windows, but to be better than the original code which
2172 // just called read() (which called ReadFile(), which called ReadConsoleA())
2173 // which did not support Ctrl-C, tab completion, shell input line editing
2174 // keys, server echo, and more.
2175 //
2176 // This implementation reconfigures the console with SetConsoleMode(), then
2177 // calls ReadConsoleInput() to get raw input which it remaps to Unix
2178 // terminal-style sequences which is returned via unix_read() which is used
2179 // by the 'adb shell' command.
2180 //
2181 // Code organization:
2182 //
2183 // * stdin_raw_init() and stdin_raw_restore() reconfigure the console.
2184 // * unix_read() detects console windows (as opposed to pipes, files, etc.).
2185 // * _console_read() is the main code of the emulation.
2186
2187
2188 // Read an input record from the console; one that should be processed.
_get_interesting_input_record_uncached(const HANDLE console,INPUT_RECORD * const input_record)2189 static bool _get_interesting_input_record_uncached(const HANDLE console,
2190 INPUT_RECORD* const input_record) {
2191 for (;;) {
2192 DWORD read_count = 0;
2193 memset(input_record, 0, sizeof(*input_record));
2194 if (!ReadConsoleInputA(console, input_record, 1, &read_count)) {
2195 D("_get_interesting_input_record_uncached: ReadConsoleInputA() "
2196 "failure, error %ld\n", GetLastError());
2197 errno = EIO;
2198 return false;
2199 }
2200
2201 if (read_count == 0) { // should be impossible
2202 fatal("ReadConsoleInputA returned 0");
2203 }
2204
2205 if (read_count != 1) { // should be impossible
2206 fatal("ReadConsoleInputA did not return one input record");
2207 }
2208
2209 if ((input_record->EventType == KEY_EVENT) &&
2210 (input_record->Event.KeyEvent.bKeyDown)) {
2211 if (input_record->Event.KeyEvent.wRepeatCount == 0) {
2212 fatal("ReadConsoleInputA returned a key event with zero repeat"
2213 " count");
2214 }
2215
2216 // Got an interesting INPUT_RECORD, so return
2217 return true;
2218 }
2219 }
2220 }
2221
2222 // Cached input record (in case _console_read() is passed a buffer that doesn't
2223 // have enough space to fit wRepeatCount number of key sequences). A non-zero
2224 // wRepeatCount indicates that a record is cached.
2225 static INPUT_RECORD _win32_input_record;
2226
2227 // Get the next KEY_EVENT_RECORD that should be processed.
_get_key_event_record(const HANDLE console)2228 static KEY_EVENT_RECORD* _get_key_event_record(const HANDLE console) {
2229 // If nothing cached, read directly from the console until we get an
2230 // interesting record.
2231 if (_win32_input_record.Event.KeyEvent.wRepeatCount == 0) {
2232 if (!_get_interesting_input_record_uncached(console,
2233 &_win32_input_record)) {
2234 // There was an error, so make sure wRepeatCount is zero because
2235 // that signifies no cached input record.
2236 _win32_input_record.Event.KeyEvent.wRepeatCount = 0;
2237 return NULL;
2238 }
2239 }
2240
2241 return &_win32_input_record.Event.KeyEvent;
2242 }
2243
_is_shift_pressed(const DWORD control_key_state)2244 static __inline__ bool _is_shift_pressed(const DWORD control_key_state) {
2245 return (control_key_state & SHIFT_PRESSED) != 0;
2246 }
2247
_is_ctrl_pressed(const DWORD control_key_state)2248 static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) {
2249 return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0;
2250 }
2251
_is_alt_pressed(const DWORD control_key_state)2252 static __inline__ bool _is_alt_pressed(const DWORD control_key_state) {
2253 return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0;
2254 }
2255
_is_numlock_on(const DWORD control_key_state)2256 static __inline__ bool _is_numlock_on(const DWORD control_key_state) {
2257 return (control_key_state & NUMLOCK_ON) != 0;
2258 }
2259
_is_capslock_on(const DWORD control_key_state)2260 static __inline__ bool _is_capslock_on(const DWORD control_key_state) {
2261 return (control_key_state & CAPSLOCK_ON) != 0;
2262 }
2263
_is_enhanced_key(const DWORD control_key_state)2264 static __inline__ bool _is_enhanced_key(const DWORD control_key_state) {
2265 return (control_key_state & ENHANCED_KEY) != 0;
2266 }
2267
2268 // Constants from MSDN for ToAscii().
2269 static const BYTE TOASCII_KEY_OFF = 0x00;
2270 static const BYTE TOASCII_KEY_DOWN = 0x80;
2271 static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01; // for CapsLock
2272
2273 // Given a key event, ignore a modifier key and return the character that was
2274 // entered without the modifier. Writes to *ch and returns the number of bytes
2275 // written.
_get_char_ignoring_modifier(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state,const WORD modifier)2276 static size_t _get_char_ignoring_modifier(char* const ch,
2277 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state,
2278 const WORD modifier) {
2279 // If there is no character from Windows, try ignoring the specified
2280 // modifier and look for a character. Note that if AltGr is being used,
2281 // there will be a character from Windows.
2282 if (key_event->uChar.AsciiChar == '\0') {
2283 // Note that we read the control key state from the passed in argument
2284 // instead of from key_event since the argument has been normalized.
2285 if (((modifier == VK_SHIFT) &&
2286 _is_shift_pressed(control_key_state)) ||
2287 ((modifier == VK_CONTROL) &&
2288 _is_ctrl_pressed(control_key_state)) ||
2289 ((modifier == VK_MENU) && _is_alt_pressed(control_key_state))) {
2290
2291 BYTE key_state[256] = {0};
2292 key_state[VK_SHIFT] = _is_shift_pressed(control_key_state) ?
2293 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
2294 key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state) ?
2295 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
2296 key_state[VK_MENU] = _is_alt_pressed(control_key_state) ?
2297 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
2298 key_state[VK_CAPITAL] = _is_capslock_on(control_key_state) ?
2299 TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF;
2300
2301 // cause this modifier to be ignored
2302 key_state[modifier] = TOASCII_KEY_OFF;
2303
2304 WORD translated = 0;
2305 if (ToAscii(key_event->wVirtualKeyCode,
2306 key_event->wVirtualScanCode, key_state, &translated, 0) == 1) {
2307 // Ignoring the modifier, we found a character.
2308 *ch = (CHAR)translated;
2309 return 1;
2310 }
2311 }
2312 }
2313
2314 // Just use whatever Windows told us originally.
2315 *ch = key_event->uChar.AsciiChar;
2316
2317 // If the character from Windows is NULL, return a size of zero.
2318 return (*ch == '\0') ? 0 : 1;
2319 }
2320
2321 // If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key,
2322 // but taking into account the shift key. This is because for a sequence like
2323 // Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0,
2324 // we want to find the character ')'.
2325 //
2326 // Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0
2327 // because it is the default key-sequence to switch the input language.
2328 // This is configurable in the Region and Language control panel.
_get_non_control_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)2329 static __inline__ size_t _get_non_control_char(char* const ch,
2330 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
2331 return _get_char_ignoring_modifier(ch, key_event, control_key_state,
2332 VK_CONTROL);
2333 }
2334
2335 // Get without Alt.
_get_non_alt_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)2336 static __inline__ size_t _get_non_alt_char(char* const ch,
2337 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
2338 return _get_char_ignoring_modifier(ch, key_event, control_key_state,
2339 VK_MENU);
2340 }
2341
2342 // Ignore the control key, find the character from Windows, and apply any
2343 // Control key mappings (for example, Ctrl-2 is a NULL character). Writes to
2344 // *pch and returns number of bytes written.
_get_control_character(char * const pch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)2345 static size_t _get_control_character(char* const pch,
2346 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
2347 const size_t len = _get_non_control_char(pch, key_event,
2348 control_key_state);
2349
2350 if ((len == 1) && _is_ctrl_pressed(control_key_state)) {
2351 char ch = *pch;
2352 switch (ch) {
2353 case '2':
2354 case '@':
2355 case '`':
2356 ch = '\0';
2357 break;
2358 case '3':
2359 case '[':
2360 case '{':
2361 ch = '\x1b';
2362 break;
2363 case '4':
2364 case '\\':
2365 case '|':
2366 ch = '\x1c';
2367 break;
2368 case '5':
2369 case ']':
2370 case '}':
2371 ch = '\x1d';
2372 break;
2373 case '6':
2374 case '^':
2375 case '~':
2376 ch = '\x1e';
2377 break;
2378 case '7':
2379 case '-':
2380 case '_':
2381 ch = '\x1f';
2382 break;
2383 case '8':
2384 ch = '\x7f';
2385 break;
2386 case '/':
2387 if (!_is_alt_pressed(control_key_state)) {
2388 ch = '\x1f';
2389 }
2390 break;
2391 case '?':
2392 if (!_is_alt_pressed(control_key_state)) {
2393 ch = '\x7f';
2394 }
2395 break;
2396 }
2397 *pch = ch;
2398 }
2399
2400 return len;
2401 }
2402
_normalize_altgr_control_key_state(const KEY_EVENT_RECORD * const key_event)2403 static DWORD _normalize_altgr_control_key_state(
2404 const KEY_EVENT_RECORD* const key_event) {
2405 DWORD control_key_state = key_event->dwControlKeyState;
2406
2407 // If we're in an AltGr situation where the AltGr key is down (depending on
2408 // the keyboard layout, that might be the physical right alt key which
2409 // produces a control_key_state where Right-Alt and Left-Ctrl are down) or
2410 // AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have
2411 // a character (which indicates that there was an AltGr mapping), then act
2412 // as if alt and control are not really down for the purposes of modifiers.
2413 // This makes it so that if the user with, say, a German keyboard layout
2414 // presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just
2415 // output the key and we don't see the Alt and Ctrl keys.
2416 if (_is_ctrl_pressed(control_key_state) &&
2417 _is_alt_pressed(control_key_state)
2418 && (key_event->uChar.AsciiChar != '\0')) {
2419 // Try to remove as few bits as possible to improve our chances of
2420 // detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or
2421 // Left-Alt + Right-Ctrl + AltGr.
2422 if ((control_key_state & RIGHT_ALT_PRESSED) != 0) {
2423 // Remove Right-Alt.
2424 control_key_state &= ~RIGHT_ALT_PRESSED;
2425 // If uChar is set, a Ctrl key is pressed, and Right-Alt is
2426 // pressed, Left-Ctrl is almost always set, except if the user
2427 // presses Right-Ctrl, then AltGr (in that specific order) for
2428 // whatever reason. At any rate, make sure the bit is not set.
2429 control_key_state &= ~LEFT_CTRL_PRESSED;
2430 } else if ((control_key_state & LEFT_ALT_PRESSED) != 0) {
2431 // Remove Left-Alt.
2432 control_key_state &= ~LEFT_ALT_PRESSED;
2433 // Whichever Ctrl key is down, remove it from the state. We only
2434 // remove one key, to improve our chances of detecting the
2435 // corner-case of Left-Ctrl + Left-Alt + Right-Ctrl.
2436 if ((control_key_state & LEFT_CTRL_PRESSED) != 0) {
2437 // Remove Left-Ctrl.
2438 control_key_state &= ~LEFT_CTRL_PRESSED;
2439 } else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) {
2440 // Remove Right-Ctrl.
2441 control_key_state &= ~RIGHT_CTRL_PRESSED;
2442 }
2443 }
2444
2445 // Note that this logic isn't 100% perfect because Windows doesn't
2446 // allow us to detect all combinations because a physical AltGr key
2447 // press shows up as two bits, plus some combinations are ambiguous
2448 // about what is actually physically pressed.
2449 }
2450
2451 return control_key_state;
2452 }
2453
2454 // If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in
2455 // dwControlKeyState for the following keypad keys: period, 0-9. If we detect
2456 // this scenario, set the SHIFT_PRESSED bit so we can add modifiers
2457 // appropriately.
_normalize_keypad_control_key_state(const WORD vk,const DWORD control_key_state)2458 static DWORD _normalize_keypad_control_key_state(const WORD vk,
2459 const DWORD control_key_state) {
2460 if (!_is_numlock_on(control_key_state)) {
2461 return control_key_state;
2462 }
2463 if (!_is_enhanced_key(control_key_state)) {
2464 switch (vk) {
2465 case VK_INSERT: // 0
2466 case VK_DELETE: // .
2467 case VK_END: // 1
2468 case VK_DOWN: // 2
2469 case VK_NEXT: // 3
2470 case VK_LEFT: // 4
2471 case VK_CLEAR: // 5
2472 case VK_RIGHT: // 6
2473 case VK_HOME: // 7
2474 case VK_UP: // 8
2475 case VK_PRIOR: // 9
2476 return control_key_state | SHIFT_PRESSED;
2477 }
2478 }
2479
2480 return control_key_state;
2481 }
2482
_get_keypad_sequence(const DWORD control_key_state,const char * const normal,const char * const shifted)2483 static const char* _get_keypad_sequence(const DWORD control_key_state,
2484 const char* const normal, const char* const shifted) {
2485 if (_is_shift_pressed(control_key_state)) {
2486 // Shift is pressed and NumLock is off
2487 return shifted;
2488 } else {
2489 // Shift is not pressed and NumLock is off, or,
2490 // Shift is pressed and NumLock is on, in which case we want the
2491 // NumLock and Shift to neutralize each other, thus, we want the normal
2492 // sequence.
2493 return normal;
2494 }
2495 // If Shift is not pressed and NumLock is on, a different virtual key code
2496 // is returned by Windows, which can be taken care of by a different case
2497 // statement in _console_read().
2498 }
2499
2500 // Write sequence to buf and return the number of bytes written.
_get_modifier_sequence(char * const buf,const WORD vk,DWORD control_key_state,const char * const normal)2501 static size_t _get_modifier_sequence(char* const buf, const WORD vk,
2502 DWORD control_key_state, const char* const normal) {
2503 // Copy the base sequence into buf.
2504 const size_t len = strlen(normal);
2505 memcpy(buf, normal, len);
2506
2507 int code = 0;
2508
2509 control_key_state = _normalize_keypad_control_key_state(vk,
2510 control_key_state);
2511
2512 if (_is_shift_pressed(control_key_state)) {
2513 code |= 0x1;
2514 }
2515 if (_is_alt_pressed(control_key_state)) { // any alt key pressed
2516 code |= 0x2;
2517 }
2518 if (_is_ctrl_pressed(control_key_state)) { // any control key pressed
2519 code |= 0x4;
2520 }
2521 // If some modifier was held down, then we need to insert the modifier code
2522 if (code != 0) {
2523 if (len == 0) {
2524 // Should be impossible because caller should pass a string of
2525 // non-zero length.
2526 return 0;
2527 }
2528 size_t index = len - 1;
2529 const char lastChar = buf[index];
2530 if (lastChar != '~') {
2531 buf[index++] = '1';
2532 }
2533 buf[index++] = ';'; // modifier separator
2534 // 2 = shift, 3 = alt, 4 = shift & alt, 5 = control,
2535 // 6 = shift & control, 7 = alt & control, 8 = shift & alt & control
2536 buf[index++] = '1' + code;
2537 buf[index++] = lastChar; // move ~ (or other last char) to the end
2538 return index;
2539 }
2540 return len;
2541 }
2542
2543 // Write sequence to buf and return the number of bytes written.
_get_modifier_keypad_sequence(char * const buf,const WORD vk,const DWORD control_key_state,const char * const normal,const char shifted)2544 static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk,
2545 const DWORD control_key_state, const char* const normal,
2546 const char shifted) {
2547 if (_is_shift_pressed(control_key_state)) {
2548 // Shift is pressed and NumLock is off
2549 if (shifted != '\0') {
2550 buf[0] = shifted;
2551 return sizeof(buf[0]);
2552 } else {
2553 return 0;
2554 }
2555 } else {
2556 // Shift is not pressed and NumLock is off, or,
2557 // Shift is pressed and NumLock is on, in which case we want the
2558 // NumLock and Shift to neutralize each other, thus, we want the normal
2559 // sequence.
2560 return _get_modifier_sequence(buf, vk, control_key_state, normal);
2561 }
2562 // If Shift is not pressed and NumLock is on, a different virtual key code
2563 // is returned by Windows, which can be taken care of by a different case
2564 // statement in _console_read().
2565 }
2566
2567 // The decimal key on the keypad produces a '.' for U.S. English and a ',' for
2568 // Standard German. Figure this out at runtime so we know what to output for
2569 // Shift-VK_DELETE.
_get_decimal_char()2570 static char _get_decimal_char() {
2571 return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR);
2572 }
2573
2574 // Prefix the len bytes in buf with the escape character, and then return the
2575 // new buffer length.
_escape_prefix(char * const buf,const size_t len)2576 size_t _escape_prefix(char* const buf, const size_t len) {
2577 // If nothing to prefix, don't do anything. We might be called with
2578 // len == 0, if alt was held down with a dead key which produced nothing.
2579 if (len == 0) {
2580 return 0;
2581 }
2582
2583 memmove(&buf[1], buf, len);
2584 buf[0] = '\x1b';
2585 return len + 1;
2586 }
2587
2588 // Writes to buffer buf (of length len), returning number of bytes written or
2589 // -1 on error. Never returns zero because Win32 consoles are never 'closed'
2590 // (as far as I can tell).
_console_read(const HANDLE console,void * buf,size_t len)2591 static int _console_read(const HANDLE console, void* buf, size_t len) {
2592 for (;;) {
2593 KEY_EVENT_RECORD* const key_event = _get_key_event_record(console);
2594 if (key_event == NULL) {
2595 return -1;
2596 }
2597
2598 const WORD vk = key_event->wVirtualKeyCode;
2599 const CHAR ch = key_event->uChar.AsciiChar;
2600 const DWORD control_key_state = _normalize_altgr_control_key_state(
2601 key_event);
2602
2603 // The following emulation code should write the output sequence to
2604 // either seqstr or to seqbuf and seqbuflen.
2605 const char* seqstr = NULL; // NULL terminated C-string
2606 // Enough space for max sequence string below, plus modifiers and/or
2607 // escape prefix.
2608 char seqbuf[16];
2609 size_t seqbuflen = 0; // Space used in seqbuf.
2610
2611 #define MATCH(vk, normal) \
2612 case (vk): \
2613 { \
2614 seqstr = (normal); \
2615 } \
2616 break;
2617
2618 // Modifier keys should affect the output sequence.
2619 #define MATCH_MODIFIER(vk, normal) \
2620 case (vk): \
2621 { \
2622 seqbuflen = _get_modifier_sequence(seqbuf, (vk), \
2623 control_key_state, (normal)); \
2624 } \
2625 break;
2626
2627 // The shift key should affect the output sequence.
2628 #define MATCH_KEYPAD(vk, normal, shifted) \
2629 case (vk): \
2630 { \
2631 seqstr = _get_keypad_sequence(control_key_state, (normal), \
2632 (shifted)); \
2633 } \
2634 break;
2635
2636 // The shift key and other modifier keys should affect the output
2637 // sequence.
2638 #define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \
2639 case (vk): \
2640 { \
2641 seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \
2642 control_key_state, (normal), (shifted)); \
2643 } \
2644 break;
2645
2646 #define ESC "\x1b"
2647 #define CSI ESC "["
2648 #define SS3 ESC "O"
2649
2650 // Only support normal mode, not application mode.
2651
2652 // Enhanced keys:
2653 // * 6-pack: insert, delete, home, end, page up, page down
2654 // * cursor keys: up, down, right, left
2655 // * keypad: divide, enter
2656 // * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT,
2657 // VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK
2658 if (_is_enhanced_key(control_key_state)) {
2659 switch (vk) {
2660 case VK_RETURN: // Enter key on keypad
2661 if (_is_ctrl_pressed(control_key_state)) {
2662 seqstr = "\n";
2663 } else {
2664 seqstr = "\r";
2665 }
2666 break;
2667
2668 MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up
2669 MATCH_MODIFIER(VK_NEXT, CSI "6~"); // Page Down
2670
2671 // gnome-terminal currently sends SS3 "F" and SS3 "H", but that
2672 // will be fixed soon to match xterm which sends CSI "F" and
2673 // CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764
2674 MATCH(VK_END, CSI "F");
2675 MATCH(VK_HOME, CSI "H");
2676
2677 MATCH_MODIFIER(VK_LEFT, CSI "D");
2678 MATCH_MODIFIER(VK_UP, CSI "A");
2679 MATCH_MODIFIER(VK_RIGHT, CSI "C");
2680 MATCH_MODIFIER(VK_DOWN, CSI "B");
2681
2682 MATCH_MODIFIER(VK_INSERT, CSI "2~");
2683 MATCH_MODIFIER(VK_DELETE, CSI "3~");
2684
2685 MATCH(VK_DIVIDE, "/");
2686 }
2687 } else { // Non-enhanced keys:
2688 switch (vk) {
2689 case VK_BACK: // backspace
2690 if (_is_alt_pressed(control_key_state)) {
2691 seqstr = ESC "\x7f";
2692 } else {
2693 seqstr = "\x7f";
2694 }
2695 break;
2696
2697 case VK_TAB:
2698 if (_is_shift_pressed(control_key_state)) {
2699 seqstr = CSI "Z";
2700 } else {
2701 seqstr = "\t";
2702 }
2703 break;
2704
2705 // Number 5 key in keypad when NumLock is off, or if NumLock is
2706 // on and Shift is down.
2707 MATCH_KEYPAD(VK_CLEAR, CSI "E", "5");
2708
2709 case VK_RETURN: // Enter key on main keyboard
2710 if (_is_alt_pressed(control_key_state)) {
2711 seqstr = ESC "\n";
2712 } else if (_is_ctrl_pressed(control_key_state)) {
2713 seqstr = "\n";
2714 } else {
2715 seqstr = "\r";
2716 }
2717 break;
2718
2719 // VK_ESCAPE: Don't do any special handling. The OS uses many
2720 // of the sequences with Escape and many of the remaining
2721 // sequences don't produce bKeyDown messages, only !bKeyDown
2722 // for whatever reason.
2723
2724 case VK_SPACE:
2725 if (_is_alt_pressed(control_key_state)) {
2726 seqstr = ESC " ";
2727 } else if (_is_ctrl_pressed(control_key_state)) {
2728 seqbuf[0] = '\0'; // NULL char
2729 seqbuflen = 1;
2730 } else {
2731 seqstr = " ";
2732 }
2733 break;
2734
2735 MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up
2736 MATCH_MODIFIER_KEYPAD(VK_NEXT, CSI "6~", '3'); // Page Down
2737
2738 MATCH_KEYPAD(VK_END, CSI "4~", "1");
2739 MATCH_KEYPAD(VK_HOME, CSI "1~", "7");
2740
2741 MATCH_MODIFIER_KEYPAD(VK_LEFT, CSI "D", '4');
2742 MATCH_MODIFIER_KEYPAD(VK_UP, CSI "A", '8');
2743 MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6');
2744 MATCH_MODIFIER_KEYPAD(VK_DOWN, CSI "B", '2');
2745
2746 MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0');
2747 MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~",
2748 _get_decimal_char());
2749
2750 case 0x30: // 0
2751 case 0x31: // 1
2752 case 0x39: // 9
2753 case VK_OEM_1: // ;:
2754 case VK_OEM_PLUS: // =+
2755 case VK_OEM_COMMA: // ,<
2756 case VK_OEM_PERIOD: // .>
2757 case VK_OEM_7: // '"
2758 case VK_OEM_102: // depends on keyboard, could be <> or \|
2759 case VK_OEM_2: // /?
2760 case VK_OEM_3: // `~
2761 case VK_OEM_4: // [{
2762 case VK_OEM_5: // \|
2763 case VK_OEM_6: // ]}
2764 {
2765 seqbuflen = _get_control_character(seqbuf, key_event,
2766 control_key_state);
2767
2768 if (_is_alt_pressed(control_key_state)) {
2769 seqbuflen = _escape_prefix(seqbuf, seqbuflen);
2770 }
2771 }
2772 break;
2773
2774 case 0x32: // 2
2775 case 0x36: // 6
2776 case VK_OEM_MINUS: // -_
2777 {
2778 seqbuflen = _get_control_character(seqbuf, key_event,
2779 control_key_state);
2780
2781 // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
2782 // prefix with escape.
2783 if (_is_alt_pressed(control_key_state) &&
2784 !(_is_ctrl_pressed(control_key_state) &&
2785 !_is_shift_pressed(control_key_state))) {
2786 seqbuflen = _escape_prefix(seqbuf, seqbuflen);
2787 }
2788 }
2789 break;
2790
2791 case 0x33: // 3
2792 case 0x34: // 4
2793 case 0x35: // 5
2794 case 0x37: // 7
2795 case 0x38: // 8
2796 {
2797 seqbuflen = _get_control_character(seqbuf, key_event,
2798 control_key_state);
2799
2800 // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
2801 // prefix with escape.
2802 if (_is_alt_pressed(control_key_state) &&
2803 !(_is_ctrl_pressed(control_key_state) &&
2804 !_is_shift_pressed(control_key_state))) {
2805 seqbuflen = _escape_prefix(seqbuf, seqbuflen);
2806 }
2807 }
2808 break;
2809
2810 case 0x41: // a
2811 case 0x42: // b
2812 case 0x43: // c
2813 case 0x44: // d
2814 case 0x45: // e
2815 case 0x46: // f
2816 case 0x47: // g
2817 case 0x48: // h
2818 case 0x49: // i
2819 case 0x4a: // j
2820 case 0x4b: // k
2821 case 0x4c: // l
2822 case 0x4d: // m
2823 case 0x4e: // n
2824 case 0x4f: // o
2825 case 0x50: // p
2826 case 0x51: // q
2827 case 0x52: // r
2828 case 0x53: // s
2829 case 0x54: // t
2830 case 0x55: // u
2831 case 0x56: // v
2832 case 0x57: // w
2833 case 0x58: // x
2834 case 0x59: // y
2835 case 0x5a: // z
2836 {
2837 seqbuflen = _get_non_alt_char(seqbuf, key_event,
2838 control_key_state);
2839
2840 // If Alt is pressed, then prefix with escape.
2841 if (_is_alt_pressed(control_key_state)) {
2842 seqbuflen = _escape_prefix(seqbuf, seqbuflen);
2843 }
2844 }
2845 break;
2846
2847 // These virtual key codes are generated by the keys on the
2848 // keypad *when NumLock is on* and *Shift is up*.
2849 MATCH(VK_NUMPAD0, "0");
2850 MATCH(VK_NUMPAD1, "1");
2851 MATCH(VK_NUMPAD2, "2");
2852 MATCH(VK_NUMPAD3, "3");
2853 MATCH(VK_NUMPAD4, "4");
2854 MATCH(VK_NUMPAD5, "5");
2855 MATCH(VK_NUMPAD6, "6");
2856 MATCH(VK_NUMPAD7, "7");
2857 MATCH(VK_NUMPAD8, "8");
2858 MATCH(VK_NUMPAD9, "9");
2859
2860 MATCH(VK_MULTIPLY, "*");
2861 MATCH(VK_ADD, "+");
2862 MATCH(VK_SUBTRACT, "-");
2863 // VK_DECIMAL is generated by the . key on the keypad *when
2864 // NumLock is on* and *Shift is up* and the sequence is not
2865 // Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the
2866 // Windows Security screen to come up).
2867 case VK_DECIMAL:
2868 // U.S. English uses '.', Germany German uses ','.
2869 seqbuflen = _get_non_control_char(seqbuf, key_event,
2870 control_key_state);
2871 break;
2872
2873 MATCH_MODIFIER(VK_F1, SS3 "P");
2874 MATCH_MODIFIER(VK_F2, SS3 "Q");
2875 MATCH_MODIFIER(VK_F3, SS3 "R");
2876 MATCH_MODIFIER(VK_F4, SS3 "S");
2877 MATCH_MODIFIER(VK_F5, CSI "15~");
2878 MATCH_MODIFIER(VK_F6, CSI "17~");
2879 MATCH_MODIFIER(VK_F7, CSI "18~");
2880 MATCH_MODIFIER(VK_F8, CSI "19~");
2881 MATCH_MODIFIER(VK_F9, CSI "20~");
2882 MATCH_MODIFIER(VK_F10, CSI "21~");
2883 MATCH_MODIFIER(VK_F11, CSI "23~");
2884 MATCH_MODIFIER(VK_F12, CSI "24~");
2885
2886 MATCH_MODIFIER(VK_F13, CSI "25~");
2887 MATCH_MODIFIER(VK_F14, CSI "26~");
2888 MATCH_MODIFIER(VK_F15, CSI "28~");
2889 MATCH_MODIFIER(VK_F16, CSI "29~");
2890 MATCH_MODIFIER(VK_F17, CSI "31~");
2891 MATCH_MODIFIER(VK_F18, CSI "32~");
2892 MATCH_MODIFIER(VK_F19, CSI "33~");
2893 MATCH_MODIFIER(VK_F20, CSI "34~");
2894
2895 // MATCH_MODIFIER(VK_F21, ???);
2896 // MATCH_MODIFIER(VK_F22, ???);
2897 // MATCH_MODIFIER(VK_F23, ???);
2898 // MATCH_MODIFIER(VK_F24, ???);
2899 }
2900 }
2901
2902 #undef MATCH
2903 #undef MATCH_MODIFIER
2904 #undef MATCH_KEYPAD
2905 #undef MATCH_MODIFIER_KEYPAD
2906 #undef ESC
2907 #undef CSI
2908 #undef SS3
2909
2910 const char* out;
2911 size_t outlen;
2912
2913 // Check for output in any of:
2914 // * seqstr is set (and strlen can be used to determine the length).
2915 // * seqbuf and seqbuflen are set
2916 // Fallback to ch from Windows.
2917 if (seqstr != NULL) {
2918 out = seqstr;
2919 outlen = strlen(seqstr);
2920 } else if (seqbuflen > 0) {
2921 out = seqbuf;
2922 outlen = seqbuflen;
2923 } else if (ch != '\0') {
2924 // Use whatever Windows told us it is.
2925 seqbuf[0] = ch;
2926 seqbuflen = 1;
2927 out = seqbuf;
2928 outlen = seqbuflen;
2929 } else {
2930 // No special handling for the virtual key code and Windows isn't
2931 // telling us a character code, then we don't know how to translate
2932 // the key press.
2933 //
2934 // Consume the input and 'continue' to cause us to get a new key
2935 // event.
2936 D("_console_read: unknown virtual key code: %d, enhanced: %s\n",
2937 vk, _is_enhanced_key(control_key_state) ? "true" : "false");
2938 key_event->wRepeatCount = 0;
2939 continue;
2940 }
2941
2942 int bytesRead = 0;
2943
2944 // put output wRepeatCount times into buf/len
2945 while (key_event->wRepeatCount > 0) {
2946 if (len >= outlen) {
2947 // Write to buf/len
2948 memcpy(buf, out, outlen);
2949 buf = (void*)((char*)buf + outlen);
2950 len -= outlen;
2951 bytesRead += outlen;
2952
2953 // consume the input
2954 --key_event->wRepeatCount;
2955 } else {
2956 // Not enough space, so just leave it in _win32_input_record
2957 // for a subsequent retrieval.
2958 if (bytesRead == 0) {
2959 // We didn't write anything because there wasn't enough
2960 // space to even write one sequence. This should never
2961 // happen if the caller uses sensible buffer sizes
2962 // (i.e. >= maximum sequence length which is probably a
2963 // few bytes long).
2964 D("_console_read: no buffer space to write one sequence; "
2965 "buffer: %ld, sequence: %ld\n", (long)len,
2966 (long)outlen);
2967 errno = ENOMEM;
2968 return -1;
2969 } else {
2970 // Stop trying to write to buf/len, just return whatever
2971 // we wrote so far.
2972 break;
2973 }
2974 }
2975 }
2976
2977 return bytesRead;
2978 }
2979 }
2980
2981 static DWORD _old_console_mode; // previous GetConsoleMode() result
2982 static HANDLE _console_handle; // when set, console mode should be restored
2983
stdin_raw_init(const int fd)2984 void stdin_raw_init(const int fd) {
2985 if (STDIN_FILENO == fd) {
2986 const HANDLE in = GetStdHandle(STD_INPUT_HANDLE);
2987 if ((in == INVALID_HANDLE_VALUE) || (in == NULL)) {
2988 return;
2989 }
2990
2991 if (GetFileType(in) != FILE_TYPE_CHAR) {
2992 // stdin might be a file or pipe.
2993 return;
2994 }
2995
2996 if (!GetConsoleMode(in, &_old_console_mode)) {
2997 // If GetConsoleMode() fails, stdin is probably is not a console.
2998 return;
2999 }
3000
3001 // Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of
3002 // calling the process Ctrl-C routine (configured by
3003 // SetConsoleCtrlHandler()).
3004 // Disable ENABLE_LINE_INPUT so that input is immediately sent.
3005 // Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this
3006 // flag also seems necessary to have proper line-ending processing.
3007 if (!SetConsoleMode(in, _old_console_mode & ~(ENABLE_PROCESSED_INPUT |
3008 ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT))) {
3009 // This really should not fail.
3010 D("stdin_raw_init: SetConsoleMode() failure, error %ld\n",
3011 GetLastError());
3012 }
3013
3014 // Once this is set, it means that stdin has been configured for
3015 // reading from and that the old console mode should be restored later.
3016 _console_handle = in;
3017
3018 // Note that we don't need to configure C Runtime line-ending
3019 // translation because _console_read() does not call the C Runtime to
3020 // read from the console.
3021 }
3022 }
3023
stdin_raw_restore(const int fd)3024 void stdin_raw_restore(const int fd) {
3025 if (STDIN_FILENO == fd) {
3026 if (_console_handle != NULL) {
3027 const HANDLE in = _console_handle;
3028 _console_handle = NULL; // clear state
3029
3030 if (!SetConsoleMode(in, _old_console_mode)) {
3031 // This really should not fail.
3032 D("stdin_raw_restore: SetConsoleMode() failure, error %ld\n",
3033 GetLastError());
3034 }
3035 }
3036 }
3037 }
3038
3039 // Called by 'adb shell' command to read from stdin.
unix_read(int fd,void * buf,size_t len)3040 int unix_read(int fd, void* buf, size_t len) {
3041 if ((fd == STDIN_FILENO) && (_console_handle != NULL)) {
3042 // If it is a request to read from stdin, and stdin_raw_init() has been
3043 // called, and it successfully configured the console, then read from
3044 // the console using Win32 console APIs and partially emulate a unix
3045 // terminal.
3046 return _console_read(_console_handle, buf, len);
3047 } else {
3048 // Just call into C Runtime which can read from pipes/files and which
3049 // can do LF/CR translation.
3050 #undef read
3051 return read(fd, buf, len);
3052 }
3053 }
3054