• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define TRACE_TAG TRACE_SYSDEPS
18 
19 #include "sysdeps.h"
20 
21 #include <winsock2.h> /* winsock.h *must* be included before windows.h. */
22 #include <windows.h>
23 
24 #include <errno.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 
28 #include "adb.h"
29 
30 extern void fatal(const char *fmt, ...);
31 
32 /* forward declarations */
33 
34 typedef const struct FHClassRec_* FHClass;
35 typedef struct FHRec_* FH;
36 typedef struct EventHookRec_* EventHook;
37 
38 typedef struct FHClassRec_ {
39     void (*_fh_init)(FH);
40     int (*_fh_close)(FH);
41     int (*_fh_lseek)(FH, int, int);
42     int (*_fh_read)(FH, void*, int);
43     int (*_fh_write)(FH, const void*, int);
44     void (*_fh_hook)(FH, int, EventHook);
45 } FHClassRec;
46 
47 static void _fh_file_init(FH);
48 static int _fh_file_close(FH);
49 static int _fh_file_lseek(FH, int, int);
50 static int _fh_file_read(FH, void*, int);
51 static int _fh_file_write(FH, const void*, int);
52 static void _fh_file_hook(FH, int, EventHook);
53 
54 static const FHClassRec _fh_file_class = {
55     _fh_file_init,
56     _fh_file_close,
57     _fh_file_lseek,
58     _fh_file_read,
59     _fh_file_write,
60     _fh_file_hook
61 };
62 
63 static void _fh_socket_init(FH);
64 static int _fh_socket_close(FH);
65 static int _fh_socket_lseek(FH, int, int);
66 static int _fh_socket_read(FH, void*, int);
67 static int _fh_socket_write(FH, const void*, int);
68 static void _fh_socket_hook(FH, int, EventHook);
69 
70 static const FHClassRec _fh_socket_class = {
71     _fh_socket_init,
72     _fh_socket_close,
73     _fh_socket_lseek,
74     _fh_socket_read,
75     _fh_socket_write,
76     _fh_socket_hook
77 };
78 
79 #define assert(cond)  do { if (!(cond)) fatal( "assertion failed '%s' on %s:%ld\n", #cond, __FILE__, __LINE__ ); } while (0)
80 
81 /**************************************************************************/
82 /**************************************************************************/
83 /*****                                                                *****/
84 /*****      replaces libs/cutils/load_file.c                          *****/
85 /*****                                                                *****/
86 /**************************************************************************/
87 /**************************************************************************/
88 
load_file(const char * fn,unsigned * _sz)89 void *load_file(const char *fn, unsigned *_sz)
90 {
91     HANDLE    file;
92     char     *data;
93     DWORD     file_size;
94 
95     file = CreateFile( fn,
96                        GENERIC_READ,
97                        FILE_SHARE_READ,
98                        NULL,
99                        OPEN_EXISTING,
100                        0,
101                        NULL );
102 
103     if (file == INVALID_HANDLE_VALUE)
104         return NULL;
105 
106     file_size = GetFileSize( file, NULL );
107     data      = NULL;
108 
109     if (file_size > 0) {
110         data = (char*) malloc( file_size + 1 );
111         if (data == NULL) {
112             D("load_file: could not allocate %ld bytes\n", file_size );
113             file_size = 0;
114         } else {
115             DWORD  out_bytes;
116 
117             if ( !ReadFile( file, data, file_size, &out_bytes, NULL ) ||
118                  out_bytes != file_size )
119             {
120                 D("load_file: could not read %ld bytes from '%s'\n", file_size, fn);
121                 free(data);
122                 data      = NULL;
123                 file_size = 0;
124             }
125         }
126     }
127     CloseHandle( file );
128 
129     *_sz = (unsigned) file_size;
130     return  data;
131 }
132 
133 /**************************************************************************/
134 /**************************************************************************/
135 /*****                                                                *****/
136 /*****    common file descriptor handling                             *****/
137 /*****                                                                *****/
138 /**************************************************************************/
139 /**************************************************************************/
140 
141 /* used to emulate unix-domain socket pairs */
142 typedef struct SocketPairRec_*  SocketPair;
143 
144 typedef struct FHRec_
145 {
146     FHClass    clazz;
147     int        used;
148     int        eof;
149     union {
150         HANDLE      handle;
151         SOCKET      socket;
152         SocketPair  pair;
153     } u;
154 
155     HANDLE    event;
156     int       mask;
157 
158     char  name[32];
159 
160 } FHRec;
161 
162 #define  fh_handle  u.handle
163 #define  fh_socket  u.socket
164 #define  fh_pair    u.pair
165 
166 #define  WIN32_FH_BASE    100
167 
168 #define  WIN32_MAX_FHS    128
169 
170 static adb_mutex_t   _win32_lock;
171 static  FHRec        _win32_fhs[ WIN32_MAX_FHS ];
172 static  int          _win32_fh_count;
173 
174 static FH
_fh_from_int(int fd)175 _fh_from_int( int   fd )
176 {
177     FH  f;
178 
179     fd -= WIN32_FH_BASE;
180 
181     if (fd < 0 || fd >= _win32_fh_count) {
182         D( "_fh_from_int: invalid fd %d\n", fd + WIN32_FH_BASE );
183         errno = EBADF;
184         return NULL;
185     }
186 
187     f = &_win32_fhs[fd];
188 
189     if (f->used == 0) {
190         D( "_fh_from_int: invalid fd %d\n", fd + WIN32_FH_BASE );
191         errno = EBADF;
192         return NULL;
193     }
194 
195     return f;
196 }
197 
198 
199 static int
_fh_to_int(FH f)200 _fh_to_int( FH  f )
201 {
202     if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS)
203         return (int)(f - _win32_fhs) + WIN32_FH_BASE;
204 
205     return -1;
206 }
207 
208 static FH
_fh_alloc(FHClass clazz)209 _fh_alloc( FHClass  clazz )
210 {
211     int  nn;
212     FH   f = NULL;
213 
214     adb_mutex_lock( &_win32_lock );
215 
216     if (_win32_fh_count < WIN32_MAX_FHS) {
217         f = &_win32_fhs[ _win32_fh_count++ ];
218         goto Exit;
219     }
220 
221     for (nn = 0; nn < WIN32_MAX_FHS; nn++) {
222         if ( _win32_fhs[nn].clazz == NULL) {
223             f = &_win32_fhs[nn];
224             goto Exit;
225         }
226     }
227     D( "_fh_alloc: no more free file descriptors\n" );
228 Exit:
229     if (f) {
230         f->clazz = clazz;
231         f->used  = 1;
232         f->eof   = 0;
233         clazz->_fh_init(f);
234     }
235     adb_mutex_unlock( &_win32_lock );
236     return f;
237 }
238 
239 
240 static int
_fh_close(FH f)241 _fh_close( FH   f )
242 {
243     if ( f->used ) {
244         f->clazz->_fh_close( f );
245         f->used = 0;
246         f->eof  = 0;
247         f->clazz = NULL;
248     }
249     return 0;
250 }
251 
252 /**************************************************************************/
253 /**************************************************************************/
254 /*****                                                                *****/
255 /*****    file-based descriptor handling                              *****/
256 /*****                                                                *****/
257 /**************************************************************************/
258 /**************************************************************************/
259 
_fh_file_init(FH f)260 static void _fh_file_init( FH  f ) {
261     f->fh_handle = INVALID_HANDLE_VALUE;
262 }
263 
_fh_file_close(FH f)264 static int _fh_file_close( FH  f ) {
265     CloseHandle( f->fh_handle );
266     f->fh_handle = INVALID_HANDLE_VALUE;
267     return 0;
268 }
269 
_fh_file_read(FH f,void * buf,int len)270 static int _fh_file_read( FH  f,  void*  buf, int   len ) {
271     DWORD  read_bytes;
272 
273     if ( !ReadFile( f->fh_handle, buf, (DWORD)len, &read_bytes, NULL ) ) {
274         D( "adb_read: could not read %d bytes from %s\n", len, f->name );
275         errno = EIO;
276         return -1;
277     } else if (read_bytes < (DWORD)len) {
278         f->eof = 1;
279     }
280     return (int)read_bytes;
281 }
282 
_fh_file_write(FH f,const void * buf,int len)283 static int _fh_file_write( FH  f,  const void*  buf, int   len ) {
284     DWORD  wrote_bytes;
285 
286     if ( !WriteFile( f->fh_handle, buf, (DWORD)len, &wrote_bytes, NULL ) ) {
287         D( "adb_file_write: could not write %d bytes from %s\n", len, f->name );
288         errno = EIO;
289         return -1;
290     } else if (wrote_bytes < (DWORD)len) {
291         f->eof = 1;
292     }
293     return  (int)wrote_bytes;
294 }
295 
_fh_file_lseek(FH f,int pos,int origin)296 static int _fh_file_lseek( FH  f, int  pos, int  origin ) {
297     DWORD  method;
298     DWORD  result;
299 
300     switch (origin)
301     {
302         case SEEK_SET:  method = FILE_BEGIN; break;
303         case SEEK_CUR:  method = FILE_CURRENT; break;
304         case SEEK_END:  method = FILE_END; break;
305         default:
306             errno = EINVAL;
307             return -1;
308     }
309 
310     result = SetFilePointer( f->fh_handle, pos, NULL, method );
311     if (result == INVALID_SET_FILE_POINTER) {
312         errno = EIO;
313         return -1;
314     } else {
315         f->eof = 0;
316     }
317     return (int)result;
318 }
319 
320 
321 /**************************************************************************/
322 /**************************************************************************/
323 /*****                                                                *****/
324 /*****    file-based descriptor handling                              *****/
325 /*****                                                                *****/
326 /**************************************************************************/
327 /**************************************************************************/
328 
adb_open(const char * path,int options)329 int  adb_open(const char*  path, int  options)
330 {
331     FH  f;
332 
333     DWORD  desiredAccess       = 0;
334     DWORD  shareMode           = FILE_SHARE_READ | FILE_SHARE_WRITE;
335 
336     switch (options) {
337         case O_RDONLY:
338             desiredAccess = GENERIC_READ;
339             break;
340         case O_WRONLY:
341             desiredAccess = GENERIC_WRITE;
342             break;
343         case O_RDWR:
344             desiredAccess = GENERIC_READ | GENERIC_WRITE;
345             break;
346         default:
347             D("adb_open: invalid options (0x%0x)\n", options);
348             errno = EINVAL;
349             return -1;
350     }
351 
352     f = _fh_alloc( &_fh_file_class );
353     if ( !f ) {
354         errno = ENOMEM;
355         return -1;
356     }
357 
358     f->fh_handle = CreateFile( path, desiredAccess, shareMode, NULL, OPEN_EXISTING,
359                                0, NULL );
360 
361     if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
362         _fh_close(f);
363         D( "adb_open: could not open '%s':", path );
364         switch (GetLastError()) {
365             case ERROR_FILE_NOT_FOUND:
366                 D( "file not found\n" );
367                 errno = ENOENT;
368                 return -1;
369 
370             case ERROR_PATH_NOT_FOUND:
371                 D( "path not found\n" );
372                 errno = ENOTDIR;
373                 return -1;
374 
375             default:
376                 D( "unknown error\n" );
377                 errno = ENOENT;
378                 return -1;
379         }
380     }
381 
382     snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
383     D( "adb_open: '%s' => fd %d\n", path, _fh_to_int(f) );
384     return _fh_to_int(f);
385 }
386 
387 /* ignore mode on Win32 */
adb_creat(const char * path,int mode)388 int  adb_creat(const char*  path, int  mode)
389 {
390     FH  f;
391 
392     f = _fh_alloc( &_fh_file_class );
393     if ( !f ) {
394         errno = ENOMEM;
395         return -1;
396     }
397 
398     f->fh_handle = CreateFile( path, GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE,
399                                NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL,
400                                NULL );
401 
402     if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
403         _fh_close(f);
404         D( "adb_creat: could not open '%s':", path );
405         switch (GetLastError()) {
406             case ERROR_FILE_NOT_FOUND:
407                 D( "file not found\n" );
408                 errno = ENOENT;
409                 return -1;
410 
411             case ERROR_PATH_NOT_FOUND:
412                 D( "path not found\n" );
413                 errno = ENOTDIR;
414                 return -1;
415 
416             default:
417                 D( "unknown error\n" );
418                 errno = ENOENT;
419                 return -1;
420         }
421     }
422     snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
423     D( "adb_creat: '%s' => fd %d\n", path, _fh_to_int(f) );
424     return _fh_to_int(f);
425 }
426 
427 
adb_read(int fd,void * buf,int len)428 int  adb_read(int  fd, void* buf, int len)
429 {
430     FH     f = _fh_from_int(fd);
431 
432     if (f == NULL) {
433         return -1;
434     }
435 
436     return f->clazz->_fh_read( f, buf, len );
437 }
438 
439 
adb_write(int fd,const void * buf,int len)440 int  adb_write(int  fd, const void*  buf, int  len)
441 {
442     FH     f = _fh_from_int(fd);
443 
444     if (f == NULL) {
445         return -1;
446     }
447 
448     return f->clazz->_fh_write(f, buf, len);
449 }
450 
451 
adb_lseek(int fd,int pos,int where)452 int  adb_lseek(int  fd, int  pos, int  where)
453 {
454     FH     f = _fh_from_int(fd);
455 
456     if (!f) {
457         return -1;
458     }
459 
460     return f->clazz->_fh_lseek(f, pos, where);
461 }
462 
463 
adb_shutdown(int fd)464 int  adb_shutdown(int  fd)
465 {
466     FH   f = _fh_from_int(fd);
467 
468     if (!f || f->clazz != &_fh_socket_class) {
469         D("adb_shutdown: invalid fd %d\n", fd);
470         return -1;
471     }
472 
473     D( "adb_shutdown: %s\n", f->name);
474     shutdown( f->fh_socket, SD_BOTH );
475     return 0;
476 }
477 
478 
adb_close(int fd)479 int  adb_close(int  fd)
480 {
481     FH   f = _fh_from_int(fd);
482 
483     if (!f) {
484         return -1;
485     }
486 
487     D( "adb_close: %s\n", f->name);
488     _fh_close(f);
489     return 0;
490 }
491 
492 /**************************************************************************/
493 /**************************************************************************/
494 /*****                                                                *****/
495 /*****    socket-based file descriptors                               *****/
496 /*****                                                                *****/
497 /**************************************************************************/
498 /**************************************************************************/
499 
500 #undef setsockopt
501 
_socket_set_errno(void)502 static void _socket_set_errno( void ) {
503     switch (WSAGetLastError()) {
504     case 0:              errno = 0; break;
505     case WSAEWOULDBLOCK: errno = EAGAIN; break;
506     case WSAEINTR:       errno = EINTR; break;
507     default:
508         D( "_socket_set_errno: unhandled value %d\n", WSAGetLastError() );
509         errno = EINVAL;
510     }
511 }
512 
_fh_socket_init(FH f)513 static void _fh_socket_init( FH  f ) {
514     f->fh_socket = INVALID_SOCKET;
515     f->event     = WSACreateEvent();
516     f->mask      = 0;
517 }
518 
_fh_socket_close(FH f)519 static int _fh_socket_close( FH  f ) {
520     /* gently tell any peer that we're closing the socket */
521     shutdown( f->fh_socket, SD_BOTH );
522     closesocket( f->fh_socket );
523     f->fh_socket = INVALID_SOCKET;
524     CloseHandle( f->event );
525     f->mask = 0;
526     return 0;
527 }
528 
_fh_socket_lseek(FH f,int pos,int origin)529 static int _fh_socket_lseek( FH  f, int pos, int origin ) {
530     errno = EPIPE;
531     return -1;
532 }
533 
_fh_socket_read(FH f,void * buf,int len)534 static int _fh_socket_read(FH f, void* buf, int len) {
535     int  result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0);
536     if (result == SOCKET_ERROR) {
537         _socket_set_errno();
538         result = -1;
539     }
540     return  result;
541 }
542 
_fh_socket_write(FH f,const void * buf,int len)543 static int _fh_socket_write(FH f, const void* buf, int len) {
544     int  result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0);
545     if (result == SOCKET_ERROR) {
546         _socket_set_errno();
547         result = -1;
548     }
549     return result;
550 }
551 
552 /**************************************************************************/
553 /**************************************************************************/
554 /*****                                                                *****/
555 /*****    replacement for libs/cutils/socket_xxxx.c                   *****/
556 /*****                                                                *****/
557 /**************************************************************************/
558 /**************************************************************************/
559 
560 #include <winsock2.h>
561 
562 static int  _winsock_init;
563 
564 static void
_cleanup_winsock(void)565 _cleanup_winsock( void )
566 {
567     WSACleanup();
568 }
569 
570 static void
_init_winsock(void)571 _init_winsock( void )
572 {
573     if (!_winsock_init) {
574         WSADATA  wsaData;
575         int      rc = WSAStartup( MAKEWORD(2,2), &wsaData);
576         if (rc != 0) {
577             fatal( "adb: could not initialize Winsock\n" );
578         }
579         atexit( _cleanup_winsock );
580         _winsock_init = 1;
581     }
582 }
583 
socket_loopback_client(int port,int type)584 int socket_loopback_client(int port, int type)
585 {
586     FH  f = _fh_alloc( &_fh_socket_class );
587     struct sockaddr_in addr;
588     SOCKET  s;
589 
590     if (!f)
591         return -1;
592 
593     if (!_winsock_init)
594         _init_winsock();
595 
596     memset(&addr, 0, sizeof(addr));
597     addr.sin_family = AF_INET;
598     addr.sin_port = htons(port);
599     addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
600 
601     s = socket(AF_INET, type, 0);
602     if(s == INVALID_SOCKET) {
603         D("socket_loopback_client: could not create socket\n" );
604         _fh_close(f);
605         return -1;
606     }
607 
608     f->fh_socket = s;
609     if(connect(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
610         D("socket_loopback_client: could not connect to %s:%d\n", type != SOCK_STREAM ? "udp" : "tcp", port );
611         _fh_close(f);
612         return -1;
613     }
614     snprintf( f->name, sizeof(f->name), "%d(lo-client:%s%d)", _fh_to_int(f), type != SOCK_STREAM ? "udp:" : "", port );
615     D( "socket_loopback_client: port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp", _fh_to_int(f) );
616     return _fh_to_int(f);
617 }
618 
619 #define LISTEN_BACKLOG 4
620 
socket_loopback_server(int port,int type)621 int socket_loopback_server(int port, int type)
622 {
623     FH   f = _fh_alloc( &_fh_socket_class );
624     struct sockaddr_in addr;
625     SOCKET  s;
626     int  n;
627 
628     if (!f) {
629         return -1;
630     }
631 
632     if (!_winsock_init)
633         _init_winsock();
634 
635     memset(&addr, 0, sizeof(addr));
636     addr.sin_family = AF_INET;
637     addr.sin_port = htons(port);
638     addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
639 
640     s = socket(AF_INET, type, 0);
641     if(s == INVALID_SOCKET) return -1;
642 
643     f->fh_socket = s;
644 
645     n = 1;
646     setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n));
647 
648     if(bind(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
649         _fh_close(f);
650         return -1;
651     }
652     if (type == SOCK_STREAM) {
653         int ret;
654 
655         ret = listen(s, LISTEN_BACKLOG);
656         if (ret < 0) {
657             _fh_close(f);
658             return -1;
659         }
660     }
661     snprintf( f->name, sizeof(f->name), "%d(lo-server:%s%d)", _fh_to_int(f), type != SOCK_STREAM ? "udp:" : "", port );
662     D( "socket_loopback_server: port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp", _fh_to_int(f) );
663     return _fh_to_int(f);
664 }
665 
666 
socket_network_client(const char * host,int port,int type)667 int socket_network_client(const char *host, int port, int type)
668 {
669     FH  f = _fh_alloc( &_fh_socket_class );
670     struct hostent *hp;
671     struct sockaddr_in addr;
672     SOCKET s;
673 
674     if (!f)
675         return -1;
676 
677     if (!_winsock_init)
678         _init_winsock();
679 
680     hp = gethostbyname(host);
681     if(hp == 0) {
682         _fh_close(f);
683         return -1;
684     }
685 
686     memset(&addr, 0, sizeof(addr));
687     addr.sin_family = hp->h_addrtype;
688     addr.sin_port = htons(port);
689     memcpy(&addr.sin_addr, hp->h_addr, hp->h_length);
690 
691     s = socket(hp->h_addrtype, type, 0);
692     if(s == INVALID_SOCKET) {
693         _fh_close(f);
694         return -1;
695     }
696     f->fh_socket = s;
697 
698     if(connect(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
699         _fh_close(f);
700         return -1;
701     }
702 
703     snprintf( f->name, sizeof(f->name), "%d(net-client:%s%d)", _fh_to_int(f), type != SOCK_STREAM ? "udp:" : "", port );
704     D( "socket_network_client: host '%s' port %d type %s => fd %d\n", host, port, type != SOCK_STREAM ? "udp" : "tcp", _fh_to_int(f) );
705     return _fh_to_int(f);
706 }
707 
708 
socket_network_client_timeout(const char * host,int port,int type,int timeout)709 int socket_network_client_timeout(const char *host, int port, int type, int timeout)
710 {
711     // TODO: implement timeouts for Windows.
712     return socket_network_client(host, port, type);
713 }
714 
715 
socket_inaddr_any_server(int port,int type)716 int socket_inaddr_any_server(int port, int type)
717 {
718     FH  f = _fh_alloc( &_fh_socket_class );
719     struct sockaddr_in addr;
720     SOCKET  s;
721     int n;
722 
723     if (!f)
724         return -1;
725 
726     if (!_winsock_init)
727         _init_winsock();
728 
729     memset(&addr, 0, sizeof(addr));
730     addr.sin_family = AF_INET;
731     addr.sin_port = htons(port);
732     addr.sin_addr.s_addr = htonl(INADDR_ANY);
733 
734     s = socket(AF_INET, type, 0);
735     if(s == INVALID_SOCKET) {
736         _fh_close(f);
737         return -1;
738     }
739 
740     f->fh_socket = s;
741     n = 1;
742     setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n));
743 
744     if(bind(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
745         _fh_close(f);
746         return -1;
747     }
748 
749     if (type == SOCK_STREAM) {
750         int ret;
751 
752         ret = listen(s, LISTEN_BACKLOG);
753         if (ret < 0) {
754             _fh_close(f);
755             return -1;
756         }
757     }
758     snprintf( f->name, sizeof(f->name), "%d(any-server:%s%d)", _fh_to_int(f), type != SOCK_STREAM ? "udp:" : "", port );
759     D( "socket_inaddr_server: port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp", _fh_to_int(f) );
760     return _fh_to_int(f);
761 }
762 
763 #undef accept
adb_socket_accept(int serverfd,struct sockaddr * addr,socklen_t * addrlen)764 int  adb_socket_accept(int  serverfd, struct sockaddr*  addr, socklen_t  *addrlen)
765 {
766     FH   serverfh = _fh_from_int(serverfd);
767     FH   fh;
768 
769     if ( !serverfh || serverfh->clazz != &_fh_socket_class ) {
770         D( "adb_socket_accept: invalid fd %d\n", serverfd );
771         return -1;
772     }
773 
774     fh = _fh_alloc( &_fh_socket_class );
775     if (!fh) {
776         D( "adb_socket_accept: not enough memory to allocate accepted socket descriptor\n" );
777         return -1;
778     }
779 
780     fh->fh_socket = accept( serverfh->fh_socket, addr, addrlen );
781     if (fh->fh_socket == INVALID_SOCKET) {
782         _fh_close( fh );
783         D( "adb_socket_accept: accept on fd %d return error %ld\n", serverfd, GetLastError() );
784         return -1;
785     }
786 
787     snprintf( fh->name, sizeof(fh->name), "%d(accept:%s)", _fh_to_int(fh), serverfh->name );
788     D( "adb_socket_accept on fd %d returns fd %d\n", serverfd, _fh_to_int(fh) );
789     return  _fh_to_int(fh);
790 }
791 
792 
adb_setsockopt(int fd,int level,int optname,const void * optval,socklen_t optlen)793 int  adb_setsockopt( int  fd, int  level, int  optname, const void*  optval, socklen_t  optlen )
794 {
795     FH   fh = _fh_from_int(fd);
796 
797     if ( !fh || fh->clazz != &_fh_socket_class ) {
798         D("adb_setsockopt: invalid fd %d\n", fd);
799         return -1;
800     }
801 
802     return setsockopt( fh->fh_socket, level, optname, reinterpret_cast<const char*>(optval), optlen );
803 }
804 
805 /**************************************************************************/
806 /**************************************************************************/
807 /*****                                                                *****/
808 /*****    emulated socketpairs                                       *****/
809 /*****                                                                *****/
810 /**************************************************************************/
811 /**************************************************************************/
812 
813 /* we implement socketpairs directly in use space for the following reasons:
814  *   - it avoids copying data from/to the Nt kernel
815  *   - it allows us to implement fdevent hooks easily and cheaply, something
816  *     that is not possible with standard Win32 pipes !!
817  *
818  * basically, we use two circular buffers, each one corresponding to a given
819  * direction.
820  *
821  * each buffer is implemented as two regions:
822  *
823  *   region A which is (a_start,a_end)
824  *   region B which is (0, b_end)  with b_end <= a_start
825  *
826  * an empty buffer has:  a_start = a_end = b_end = 0
827  *
828  * a_start is the pointer where we start reading data
829  * a_end is the pointer where we start writing data, unless it is BUFFER_SIZE,
830  * then you start writing at b_end
831  *
832  * the buffer is full when  b_end == a_start && a_end == BUFFER_SIZE
833  *
834  * there is room when b_end < a_start || a_end < BUFER_SIZE
835  *
836  * when reading, a_start is incremented, it a_start meets a_end, then
837  * we do:  a_start = 0, a_end = b_end, b_end = 0, and keep going on..
838  */
839 
840 #define  BIP_BUFFER_SIZE   4096
841 
842 #if 0
843 #include <stdio.h>
844 #  define  BIPD(x)      D x
845 #  define  BIPDUMP   bip_dump_hex
846 
847 static void  bip_dump_hex( const unsigned char*  ptr, size_t  len )
848 {
849     int  nn, len2 = len;
850 
851     if (len2 > 8) len2 = 8;
852 
853     for (nn = 0; nn < len2; nn++)
854         printf("%02x", ptr[nn]);
855     printf("  ");
856 
857     for (nn = 0; nn < len2; nn++) {
858         int  c = ptr[nn];
859         if (c < 32 || c > 127)
860             c = '.';
861         printf("%c", c);
862     }
863     printf("\n");
864     fflush(stdout);
865 }
866 
867 #else
868 #  define  BIPD(x)        do {} while (0)
869 #  define  BIPDUMP(p,l)   BIPD(p)
870 #endif
871 
872 typedef struct BipBufferRec_
873 {
874     int                a_start;
875     int                a_end;
876     int                b_end;
877     int                fdin;
878     int                fdout;
879     int                closed;
880     int                can_write;  /* boolean */
881     HANDLE             evt_write;  /* event signaled when one can write to a buffer  */
882     int                can_read;   /* boolean */
883     HANDLE             evt_read;   /* event signaled when one can read from a buffer */
884     CRITICAL_SECTION  lock;
885     unsigned char      buff[ BIP_BUFFER_SIZE ];
886 
887 } BipBufferRec, *BipBuffer;
888 
889 static void
bip_buffer_init(BipBuffer buffer)890 bip_buffer_init( BipBuffer  buffer )
891 {
892     D( "bit_buffer_init %p\n", buffer );
893     buffer->a_start   = 0;
894     buffer->a_end     = 0;
895     buffer->b_end     = 0;
896     buffer->can_write = 1;
897     buffer->can_read  = 0;
898     buffer->fdin      = 0;
899     buffer->fdout     = 0;
900     buffer->closed    = 0;
901     buffer->evt_write = CreateEvent( NULL, TRUE, TRUE, NULL );
902     buffer->evt_read  = CreateEvent( NULL, TRUE, FALSE, NULL );
903     InitializeCriticalSection( &buffer->lock );
904 }
905 
906 static void
bip_buffer_close(BipBuffer bip)907 bip_buffer_close( BipBuffer  bip )
908 {
909     bip->closed = 1;
910 
911     if (!bip->can_read) {
912         SetEvent( bip->evt_read );
913     }
914     if (!bip->can_write) {
915         SetEvent( bip->evt_write );
916     }
917 }
918 
919 static void
bip_buffer_done(BipBuffer bip)920 bip_buffer_done( BipBuffer  bip )
921 {
922     BIPD(( "bip_buffer_done: %d->%d\n", bip->fdin, bip->fdout ));
923     CloseHandle( bip->evt_read );
924     CloseHandle( bip->evt_write );
925     DeleteCriticalSection( &bip->lock );
926 }
927 
928 static int
bip_buffer_write(BipBuffer bip,const void * src,int len)929 bip_buffer_write( BipBuffer  bip, const void* src, int  len )
930 {
931     int  avail, count = 0;
932 
933     if (len <= 0)
934         return 0;
935 
936     BIPD(( "bip_buffer_write: enter %d->%d len %d\n", bip->fdin, bip->fdout, len ));
937     BIPDUMP( src, len );
938 
939     EnterCriticalSection( &bip->lock );
940 
941     while (!bip->can_write) {
942         int  ret;
943         LeaveCriticalSection( &bip->lock );
944 
945         if (bip->closed) {
946             errno = EPIPE;
947             return -1;
948         }
949         /* spinlocking here is probably unfair, but let's live with it */
950         ret = WaitForSingleObject( bip->evt_write, INFINITE );
951         if (ret != WAIT_OBJECT_0) {  /* buffer probably closed */
952             D( "bip_buffer_write: error %d->%d WaitForSingleObject returned %d, error %ld\n", bip->fdin, bip->fdout, ret, GetLastError() );
953             return 0;
954         }
955         if (bip->closed) {
956             errno = EPIPE;
957             return -1;
958         }
959         EnterCriticalSection( &bip->lock );
960     }
961 
962     BIPD(( "bip_buffer_write: exec %d->%d len %d\n", bip->fdin, bip->fdout, len ));
963 
964     avail = BIP_BUFFER_SIZE - bip->a_end;
965     if (avail > 0)
966     {
967         /* we can append to region A */
968         if (avail > len)
969             avail = len;
970 
971         memcpy( bip->buff + bip->a_end, src, avail );
972         src   = (const char *)src + avail;
973         count += avail;
974         len   -= avail;
975 
976         bip->a_end += avail;
977         if (bip->a_end == BIP_BUFFER_SIZE && bip->a_start == 0) {
978             bip->can_write = 0;
979             ResetEvent( bip->evt_write );
980             goto Exit;
981         }
982     }
983 
984     if (len == 0)
985         goto Exit;
986 
987     avail = bip->a_start - bip->b_end;
988     assert( avail > 0 );  /* since can_write is TRUE */
989 
990     if (avail > len)
991         avail = len;
992 
993     memcpy( bip->buff + bip->b_end, src, avail );
994     count += avail;
995     bip->b_end += avail;
996 
997     if (bip->b_end == bip->a_start) {
998         bip->can_write = 0;
999         ResetEvent( bip->evt_write );
1000     }
1001 
1002 Exit:
1003     assert( count > 0 );
1004 
1005     if ( !bip->can_read ) {
1006         bip->can_read = 1;
1007         SetEvent( bip->evt_read );
1008     }
1009 
1010     BIPD(( "bip_buffer_write: exit %d->%d count %d (as=%d ae=%d be=%d cw=%d cr=%d\n",
1011             bip->fdin, bip->fdout, count, bip->a_start, bip->a_end, bip->b_end, bip->can_write, bip->can_read ));
1012     LeaveCriticalSection( &bip->lock );
1013 
1014     return count;
1015  }
1016 
1017 static int
bip_buffer_read(BipBuffer bip,void * dst,int len)1018 bip_buffer_read( BipBuffer  bip, void*  dst, int  len )
1019 {
1020     int  avail, count = 0;
1021 
1022     if (len <= 0)
1023         return 0;
1024 
1025     BIPD(( "bip_buffer_read: enter %d->%d len %d\n", bip->fdin, bip->fdout, len ));
1026 
1027     EnterCriticalSection( &bip->lock );
1028     while ( !bip->can_read )
1029     {
1030 #if 0
1031         LeaveCriticalSection( &bip->lock );
1032         errno = EAGAIN;
1033         return -1;
1034 #else
1035         int  ret;
1036         LeaveCriticalSection( &bip->lock );
1037 
1038         if (bip->closed) {
1039             errno = EPIPE;
1040             return -1;
1041         }
1042 
1043         ret = WaitForSingleObject( bip->evt_read, INFINITE );
1044         if (ret != WAIT_OBJECT_0) { /* probably closed buffer */
1045             D( "bip_buffer_read: error %d->%d WaitForSingleObject returned %d, error %ld\n", bip->fdin, bip->fdout, ret, GetLastError());
1046             return 0;
1047         }
1048         if (bip->closed) {
1049             errno = EPIPE;
1050             return -1;
1051         }
1052         EnterCriticalSection( &bip->lock );
1053 #endif
1054     }
1055 
1056     BIPD(( "bip_buffer_read: exec %d->%d len %d\n", bip->fdin, bip->fdout, len ));
1057 
1058     avail = bip->a_end - bip->a_start;
1059     assert( avail > 0 );  /* since can_read is TRUE */
1060 
1061     if (avail > len)
1062         avail = len;
1063 
1064     memcpy( dst, bip->buff + bip->a_start, avail );
1065     dst   = (char *)dst + avail;
1066     count += avail;
1067     len   -= avail;
1068 
1069     bip->a_start += avail;
1070     if (bip->a_start < bip->a_end)
1071         goto Exit;
1072 
1073     bip->a_start = 0;
1074     bip->a_end   = bip->b_end;
1075     bip->b_end   = 0;
1076 
1077     avail = bip->a_end;
1078     if (avail > 0) {
1079         if (avail > len)
1080             avail = len;
1081         memcpy( dst, bip->buff, avail );
1082         count += avail;
1083         bip->a_start += avail;
1084 
1085         if ( bip->a_start < bip->a_end )
1086             goto Exit;
1087 
1088         bip->a_start = bip->a_end = 0;
1089     }
1090 
1091     bip->can_read = 0;
1092     ResetEvent( bip->evt_read );
1093 
1094 Exit:
1095     assert( count > 0 );
1096 
1097     if (!bip->can_write ) {
1098         bip->can_write = 1;
1099         SetEvent( bip->evt_write );
1100     }
1101 
1102     BIPDUMP( (const unsigned char*)dst - count, count );
1103     BIPD(( "bip_buffer_read: exit %d->%d count %d (as=%d ae=%d be=%d cw=%d cr=%d\n",
1104             bip->fdin, bip->fdout, count, bip->a_start, bip->a_end, bip->b_end, bip->can_write, bip->can_read ));
1105     LeaveCriticalSection( &bip->lock );
1106 
1107     return count;
1108 }
1109 
1110 typedef struct SocketPairRec_
1111 {
1112     BipBufferRec  a2b_bip;
1113     BipBufferRec  b2a_bip;
1114     FH            a_fd;
1115     int           used;
1116 
1117 } SocketPairRec;
1118 
_fh_socketpair_init(FH f)1119 void _fh_socketpair_init( FH  f )
1120 {
1121     f->fh_pair = NULL;
1122 }
1123 
1124 static int
_fh_socketpair_close(FH f)1125 _fh_socketpair_close( FH  f )
1126 {
1127     if ( f->fh_pair ) {
1128         SocketPair  pair = f->fh_pair;
1129 
1130         if ( f == pair->a_fd ) {
1131             pair->a_fd = NULL;
1132         }
1133 
1134         bip_buffer_close( &pair->b2a_bip );
1135         bip_buffer_close( &pair->a2b_bip );
1136 
1137         if ( --pair->used == 0 ) {
1138             bip_buffer_done( &pair->b2a_bip );
1139             bip_buffer_done( &pair->a2b_bip );
1140             free( pair );
1141         }
1142         f->fh_pair = NULL;
1143     }
1144     return 0;
1145 }
1146 
1147 static int
_fh_socketpair_lseek(FH f,int pos,int origin)1148 _fh_socketpair_lseek( FH  f, int pos, int  origin )
1149 {
1150     errno = ESPIPE;
1151     return -1;
1152 }
1153 
1154 static int
_fh_socketpair_read(FH f,void * buf,int len)1155 _fh_socketpair_read( FH  f, void* buf, int  len )
1156 {
1157     SocketPair  pair = f->fh_pair;
1158     BipBuffer   bip;
1159 
1160     if (!pair)
1161         return -1;
1162 
1163     if ( f == pair->a_fd )
1164         bip = &pair->b2a_bip;
1165     else
1166         bip = &pair->a2b_bip;
1167 
1168     return bip_buffer_read( bip, buf, len );
1169 }
1170 
1171 static int
_fh_socketpair_write(FH f,const void * buf,int len)1172 _fh_socketpair_write( FH  f, const void*  buf, int  len )
1173 {
1174     SocketPair  pair = f->fh_pair;
1175     BipBuffer   bip;
1176 
1177     if (!pair)
1178         return -1;
1179 
1180     if ( f == pair->a_fd )
1181         bip = &pair->a2b_bip;
1182     else
1183         bip = &pair->b2a_bip;
1184 
1185     return bip_buffer_write( bip, buf, len );
1186 }
1187 
1188 
1189 static void  _fh_socketpair_hook( FH  f, int  event, EventHook  hook );  /* forward */
1190 
1191 static const FHClassRec  _fh_socketpair_class =
1192 {
1193     _fh_socketpair_init,
1194     _fh_socketpair_close,
1195     _fh_socketpair_lseek,
1196     _fh_socketpair_read,
1197     _fh_socketpair_write,
1198     _fh_socketpair_hook
1199 };
1200 
1201 
adb_socketpair(int sv[2])1202 int  adb_socketpair(int sv[2]) {
1203     SocketPair pair;
1204 
1205     FH fa = _fh_alloc(&_fh_socketpair_class);
1206     FH fb = _fh_alloc(&_fh_socketpair_class);
1207 
1208     if (!fa || !fb)
1209         goto Fail;
1210 
1211     pair = reinterpret_cast<SocketPair>(malloc(sizeof(*pair)));
1212     if (pair == NULL) {
1213         D("adb_socketpair: not enough memory to allocate pipes\n" );
1214         goto Fail;
1215     }
1216 
1217     bip_buffer_init( &pair->a2b_bip );
1218     bip_buffer_init( &pair->b2a_bip );
1219 
1220     fa->fh_pair = pair;
1221     fb->fh_pair = pair;
1222     pair->used  = 2;
1223     pair->a_fd  = fa;
1224 
1225     sv[0] = _fh_to_int(fa);
1226     sv[1] = _fh_to_int(fb);
1227 
1228     pair->a2b_bip.fdin  = sv[0];
1229     pair->a2b_bip.fdout = sv[1];
1230     pair->b2a_bip.fdin  = sv[1];
1231     pair->b2a_bip.fdout = sv[0];
1232 
1233     snprintf( fa->name, sizeof(fa->name), "%d(pair:%d)", sv[0], sv[1] );
1234     snprintf( fb->name, sizeof(fb->name), "%d(pair:%d)", sv[1], sv[0] );
1235     D( "adb_socketpair: returns (%d, %d)\n", sv[0], sv[1] );
1236     return 0;
1237 
1238 Fail:
1239     _fh_close(fb);
1240     _fh_close(fa);
1241     return -1;
1242 }
1243 
1244 /**************************************************************************/
1245 /**************************************************************************/
1246 /*****                                                                *****/
1247 /*****    fdevents emulation                                          *****/
1248 /*****                                                                *****/
1249 /*****   this is a very simple implementation, we rely on the fact    *****/
1250 /*****   that ADB doesn't use FDE_ERROR.                              *****/
1251 /*****                                                                *****/
1252 /**************************************************************************/
1253 /**************************************************************************/
1254 
1255 #define FATAL(x...) fatal(__FUNCTION__, x)
1256 
1257 #if DEBUG
dump_fde(fdevent * fde,const char * info)1258 static void dump_fde(fdevent *fde, const char *info)
1259 {
1260     fprintf(stderr,"FDE #%03d %c%c%c %s\n", fde->fd,
1261             fde->state & FDE_READ ? 'R' : ' ',
1262             fde->state & FDE_WRITE ? 'W' : ' ',
1263             fde->state & FDE_ERROR ? 'E' : ' ',
1264             info);
1265 }
1266 #else
1267 #define dump_fde(fde, info) do { } while(0)
1268 #endif
1269 
1270 #define FDE_EVENTMASK  0x00ff
1271 #define FDE_STATEMASK  0xff00
1272 
1273 #define FDE_ACTIVE     0x0100
1274 #define FDE_PENDING    0x0200
1275 #define FDE_CREATED    0x0400
1276 
1277 static void fdevent_plist_enqueue(fdevent *node);
1278 static void fdevent_plist_remove(fdevent *node);
1279 static fdevent *fdevent_plist_dequeue(void);
1280 
1281 static fdevent list_pending = {
1282     .next = &list_pending,
1283     .prev = &list_pending,
1284 };
1285 
1286 static fdevent **fd_table = 0;
1287 static int       fd_table_max = 0;
1288 
1289 typedef struct EventLooperRec_*  EventLooper;
1290 
1291 typedef struct EventHookRec_
1292 {
1293     EventHook    next;
1294     FH           fh;
1295     HANDLE       h;
1296     int          wanted;   /* wanted event flags */
1297     int          ready;    /* ready event flags  */
1298     void*        aux;
1299     void        (*prepare)( EventHook  hook );
1300     int         (*start)  ( EventHook  hook );
1301     void        (*stop)   ( EventHook  hook );
1302     int         (*check)  ( EventHook  hook );
1303     int         (*peek)   ( EventHook  hook );
1304 } EventHookRec;
1305 
1306 static EventHook  _free_hooks;
1307 
1308 static EventHook
event_hook_alloc(FH fh)1309 event_hook_alloc(FH fh) {
1310     EventHook hook = _free_hooks;
1311     if (hook != NULL) {
1312         _free_hooks = hook->next;
1313     } else {
1314         hook = reinterpret_cast<EventHook>(malloc(sizeof(*hook)));
1315         if (hook == NULL)
1316             fatal( "could not allocate event hook\n" );
1317     }
1318     hook->next   = NULL;
1319     hook->fh     = fh;
1320     hook->wanted = 0;
1321     hook->ready  = 0;
1322     hook->h      = INVALID_HANDLE_VALUE;
1323     hook->aux    = NULL;
1324 
1325     hook->prepare = NULL;
1326     hook->start   = NULL;
1327     hook->stop    = NULL;
1328     hook->check   = NULL;
1329     hook->peek    = NULL;
1330 
1331     return hook;
1332 }
1333 
1334 static void
event_hook_free(EventHook hook)1335 event_hook_free( EventHook  hook )
1336 {
1337     hook->fh     = NULL;
1338     hook->wanted = 0;
1339     hook->ready  = 0;
1340     hook->next   = _free_hooks;
1341     _free_hooks  = hook;
1342 }
1343 
1344 
1345 static void
event_hook_signal(EventHook hook)1346 event_hook_signal( EventHook  hook )
1347 {
1348     FH        f   = hook->fh;
1349     int       fd  = _fh_to_int(f);
1350     fdevent*  fde = fd_table[ fd - WIN32_FH_BASE ];
1351 
1352     if (fde != NULL && fde->fd == fd) {
1353         if ((fde->state & FDE_PENDING) == 0) {
1354             fde->state |= FDE_PENDING;
1355             fdevent_plist_enqueue( fde );
1356         }
1357         fde->events |= hook->wanted;
1358     }
1359 }
1360 
1361 
1362 #define  MAX_LOOPER_HANDLES  WIN32_MAX_FHS
1363 
1364 typedef struct EventLooperRec_
1365 {
1366     EventHook    hooks;
1367     HANDLE       htab[ MAX_LOOPER_HANDLES ];
1368     int          htab_count;
1369 
1370 } EventLooperRec;
1371 
1372 static EventHook*
event_looper_find_p(EventLooper looper,FH fh)1373 event_looper_find_p( EventLooper  looper, FH  fh )
1374 {
1375     EventHook  *pnode = &looper->hooks;
1376     EventHook   node  = *pnode;
1377     for (;;) {
1378         if ( node == NULL || node->fh == fh )
1379             break;
1380         pnode = &node->next;
1381         node  = *pnode;
1382     }
1383     return  pnode;
1384 }
1385 
1386 static void
event_looper_hook(EventLooper looper,int fd,int events)1387 event_looper_hook( EventLooper  looper, int  fd, int  events )
1388 {
1389     FH          f = _fh_from_int(fd);
1390     EventHook  *pnode;
1391     EventHook   node;
1392 
1393     if (f == NULL)  /* invalid arg */ {
1394         D("event_looper_hook: invalid fd=%d\n", fd);
1395         return;
1396     }
1397 
1398     pnode = event_looper_find_p( looper, f );
1399     node  = *pnode;
1400     if ( node == NULL ) {
1401         node       = event_hook_alloc( f );
1402         node->next = *pnode;
1403         *pnode     = node;
1404     }
1405 
1406     if ( (node->wanted & events) != events ) {
1407         /* this should update start/stop/check/peek */
1408         D("event_looper_hook: call hook for %d (new=%x, old=%x)\n",
1409            fd, node->wanted, events);
1410         f->clazz->_fh_hook( f, events & ~node->wanted, node );
1411         node->wanted |= events;
1412     } else {
1413         D("event_looper_hook: ignoring events %x for %d wanted=%x)\n",
1414            events, fd, node->wanted);
1415     }
1416 }
1417 
1418 static void
event_looper_unhook(EventLooper looper,int fd,int events)1419 event_looper_unhook( EventLooper  looper, int  fd, int  events )
1420 {
1421     FH          fh    = _fh_from_int(fd);
1422     EventHook  *pnode = event_looper_find_p( looper, fh );
1423     EventHook   node  = *pnode;
1424 
1425     if (node != NULL) {
1426         int  events2 = events & node->wanted;
1427         if ( events2 == 0 ) {
1428             D( "event_looper_unhook: events %x not registered for fd %d\n", events, fd );
1429             return;
1430         }
1431         node->wanted &= ~events2;
1432         if (!node->wanted) {
1433             *pnode = node->next;
1434             event_hook_free( node );
1435         }
1436     }
1437 }
1438 
1439 /*
1440  * A fixer for WaitForMultipleObjects on condition that there are more than 64
1441  * handles to wait on.
1442  *
1443  * In cetain cases DDMS may establish more than 64 connections with ADB. For
1444  * instance, this may happen if there are more than 64 processes running on a
1445  * device, or there are multiple devices connected (including the emulator) with
1446  * the combined number of running processes greater than 64. In this case using
1447  * WaitForMultipleObjects to wait on connection events simply wouldn't cut,
1448  * because of the API limitations (64 handles max). So, we need to provide a way
1449  * to scale WaitForMultipleObjects to accept an arbitrary number of handles. The
1450  * easiest (and "Microsoft recommended") way to do that would be dividing the
1451  * handle array into chunks with the chunk size less than 64, and fire up as many
1452  * waiting threads as there are chunks. Then each thread would wait on a chunk of
1453  * handles, and will report back to the caller which handle has been set.
1454  * Here is the implementation of that algorithm.
1455  */
1456 
1457 /* Number of handles to wait on in each wating thread. */
1458 #define WAIT_ALL_CHUNK_SIZE 63
1459 
1460 /* Descriptor for a wating thread */
1461 typedef struct WaitForAllParam {
1462     /* A handle to an event to signal when waiting is over. This handle is shared
1463      * accross all the waiting threads, so each waiting thread knows when any
1464      * other thread has exited, so it can exit too. */
1465     HANDLE          main_event;
1466     /* Upon exit from a waiting thread contains the index of the handle that has
1467      * been signaled. The index is an absolute index of the signaled handle in
1468      * the original array. This pointer is shared accross all the waiting threads
1469      * and it's not guaranteed (due to a race condition) that when all the
1470      * waiting threads exit, the value contained here would indicate the first
1471      * handle that was signaled. This is fine, because the caller cares only
1472      * about any handle being signaled. It doesn't care about the order, nor
1473      * about the whole list of handles that were signaled. */
1474     LONG volatile   *signaled_index;
1475     /* Array of handles to wait on in a waiting thread. */
1476     HANDLE*         handles;
1477     /* Number of handles in 'handles' array to wait on. */
1478     int             handles_count;
1479     /* Index inside the main array of the first handle in the 'handles' array. */
1480     int             first_handle_index;
1481     /* Waiting thread handle. */
1482     HANDLE          thread;
1483 } WaitForAllParam;
1484 
1485 /* Waiting thread routine. */
1486 static unsigned __stdcall
_in_waiter_thread(void * arg)1487 _in_waiter_thread(void*  arg)
1488 {
1489     HANDLE wait_on[WAIT_ALL_CHUNK_SIZE + 1];
1490     int res;
1491     WaitForAllParam* const param = (WaitForAllParam*)arg;
1492 
1493     /* We have to wait on the main_event in order to be notified when any of the
1494      * sibling threads is exiting. */
1495     wait_on[0] = param->main_event;
1496     /* The rest of the handles go behind the main event handle. */
1497     memcpy(wait_on + 1, param->handles, param->handles_count * sizeof(HANDLE));
1498 
1499     res = WaitForMultipleObjects(param->handles_count + 1, wait_on, FALSE, INFINITE);
1500     if (res > 0 && res < (param->handles_count + 1)) {
1501         /* One of the original handles got signaled. Save its absolute index into
1502          * the output variable. */
1503         InterlockedCompareExchange(param->signaled_index,
1504                                    res - 1L + param->first_handle_index, -1L);
1505     }
1506 
1507     /* Notify the caller (and the siblings) that the wait is over. */
1508     SetEvent(param->main_event);
1509 
1510     _endthreadex(0);
1511     return 0;
1512 }
1513 
1514 /* WaitForMultipeObjects fixer routine.
1515  * Param:
1516  *  handles Array of handles to wait on.
1517  *  handles_count Number of handles in the array.
1518  * Return:
1519  *  (>= 0 && < handles_count) - Index of the signaled handle in the array, or
1520  *  WAIT_FAILED on an error.
1521  */
1522 static int
_wait_for_all(HANDLE * handles,int handles_count)1523 _wait_for_all(HANDLE* handles, int handles_count)
1524 {
1525     WaitForAllParam* threads;
1526     HANDLE main_event;
1527     int chunks, chunk, remains;
1528 
1529     /* This variable is going to be accessed by several threads at the same time,
1530      * this is bound to fail randomly when the core is run on multi-core machines.
1531      * To solve this, we need to do the following (1 _and_ 2):
1532      * 1. Use the "volatile" qualifier to ensure the compiler doesn't optimize
1533      *    out the reads/writes in this function unexpectedly.
1534      * 2. Ensure correct memory ordering. The "simple" way to do that is to wrap
1535      *    all accesses inside a critical section. But we can also use
1536      *    InterlockedCompareExchange() which always provide a full memory barrier
1537      *    on Win32.
1538      */
1539     volatile LONG sig_index = -1;
1540 
1541     /* Calculate number of chunks, and allocate thread param array. */
1542     chunks = handles_count / WAIT_ALL_CHUNK_SIZE;
1543     remains = handles_count % WAIT_ALL_CHUNK_SIZE;
1544     threads = (WaitForAllParam*)malloc((chunks + (remains ? 1 : 0)) *
1545                                         sizeof(WaitForAllParam));
1546     if (threads == NULL) {
1547         D("Unable to allocate thread array for %d handles.", handles_count);
1548         return (int)WAIT_FAILED;
1549     }
1550 
1551     /* Create main event to wait on for all waiting threads. This is a "manualy
1552      * reset" event that will remain set once it was set. */
1553     main_event = CreateEvent(NULL, TRUE, FALSE, NULL);
1554     if (main_event == NULL) {
1555         D("Unable to create main event. Error: %d", (int)GetLastError());
1556         free(threads);
1557         return (int)WAIT_FAILED;
1558     }
1559 
1560     /*
1561      * Initialize waiting thread parameters.
1562      */
1563 
1564     for (chunk = 0; chunk < chunks; chunk++) {
1565         threads[chunk].main_event = main_event;
1566         threads[chunk].signaled_index = &sig_index;
1567         threads[chunk].first_handle_index = WAIT_ALL_CHUNK_SIZE * chunk;
1568         threads[chunk].handles = handles + threads[chunk].first_handle_index;
1569         threads[chunk].handles_count = WAIT_ALL_CHUNK_SIZE;
1570     }
1571     if (remains) {
1572         threads[chunk].main_event = main_event;
1573         threads[chunk].signaled_index = &sig_index;
1574         threads[chunk].first_handle_index = WAIT_ALL_CHUNK_SIZE * chunk;
1575         threads[chunk].handles = handles + threads[chunk].first_handle_index;
1576         threads[chunk].handles_count = remains;
1577         chunks++;
1578     }
1579 
1580     /* Start the waiting threads. */
1581     for (chunk = 0; chunk < chunks; chunk++) {
1582         /* Note that using adb_thread_create is not appropriate here, since we
1583          * need a handle to wait on for thread termination. */
1584         threads[chunk].thread = (HANDLE)_beginthreadex(NULL, 0, _in_waiter_thread,
1585                                                        &threads[chunk], 0, NULL);
1586         if (threads[chunk].thread == NULL) {
1587             /* Unable to create a waiter thread. Collapse. */
1588             D("Unable to create a waiting thread %d of %d. errno=%d",
1589               chunk, chunks, errno);
1590             chunks = chunk;
1591             SetEvent(main_event);
1592             break;
1593         }
1594     }
1595 
1596     /* Wait on any of the threads to get signaled. */
1597     WaitForSingleObject(main_event, INFINITE);
1598 
1599     /* Wait on all the waiting threads to exit. */
1600     for (chunk = 0; chunk < chunks; chunk++) {
1601         WaitForSingleObject(threads[chunk].thread, INFINITE);
1602         CloseHandle(threads[chunk].thread);
1603     }
1604 
1605     CloseHandle(main_event);
1606     free(threads);
1607 
1608 
1609     const int ret = (int)InterlockedCompareExchange(&sig_index, -1, -1);
1610     return (ret >= 0) ? ret : (int)WAIT_FAILED;
1611 }
1612 
1613 static EventLooperRec  win32_looper;
1614 
fdevent_init(void)1615 static void fdevent_init(void)
1616 {
1617     win32_looper.htab_count = 0;
1618     win32_looper.hooks      = NULL;
1619 }
1620 
fdevent_connect(fdevent * fde)1621 static void fdevent_connect(fdevent *fde)
1622 {
1623     EventLooper  looper = &win32_looper;
1624     int          events = fde->state & FDE_EVENTMASK;
1625 
1626     if (events != 0)
1627         event_looper_hook( looper, fde->fd, events );
1628 }
1629 
fdevent_disconnect(fdevent * fde)1630 static void fdevent_disconnect(fdevent *fde)
1631 {
1632     EventLooper  looper = &win32_looper;
1633     int          events = fde->state & FDE_EVENTMASK;
1634 
1635     if (events != 0)
1636         event_looper_unhook( looper, fde->fd, events );
1637 }
1638 
fdevent_update(fdevent * fde,unsigned events)1639 static void fdevent_update(fdevent *fde, unsigned events)
1640 {
1641     EventLooper  looper  = &win32_looper;
1642     unsigned     events0 = fde->state & FDE_EVENTMASK;
1643 
1644     if (events != events0) {
1645         int  removes = events0 & ~events;
1646         int  adds    = events  & ~events0;
1647         if (removes) {
1648             D("fdevent_update: remove %x from %d\n", removes, fde->fd);
1649             event_looper_unhook( looper, fde->fd, removes );
1650         }
1651         if (adds) {
1652             D("fdevent_update: add %x to %d\n", adds, fde->fd);
1653             event_looper_hook  ( looper, fde->fd, adds );
1654         }
1655     }
1656 }
1657 
fdevent_process()1658 static void fdevent_process()
1659 {
1660     EventLooper  looper = &win32_looper;
1661     EventHook    hook;
1662     int          gotone = 0;
1663 
1664     /* if we have at least one ready hook, execute it/them */
1665     for (hook = looper->hooks; hook; hook = hook->next) {
1666         hook->ready = 0;
1667         if (hook->prepare) {
1668             hook->prepare(hook);
1669             if (hook->ready != 0) {
1670                 event_hook_signal( hook );
1671                 gotone = 1;
1672             }
1673         }
1674     }
1675 
1676     /* nothing's ready yet, so wait for something to happen */
1677     if (!gotone)
1678     {
1679         looper->htab_count = 0;
1680 
1681         for (hook = looper->hooks; hook; hook = hook->next)
1682         {
1683             if (hook->start && !hook->start(hook)) {
1684                 D( "fdevent_process: error when starting a hook\n" );
1685                 return;
1686             }
1687             if (hook->h != INVALID_HANDLE_VALUE) {
1688                 int  nn;
1689 
1690                 for (nn = 0; nn < looper->htab_count; nn++)
1691                 {
1692                     if ( looper->htab[nn] == hook->h )
1693                         goto DontAdd;
1694                 }
1695                 looper->htab[ looper->htab_count++ ] = hook->h;
1696             DontAdd:
1697                 ;
1698             }
1699         }
1700 
1701         if (looper->htab_count == 0) {
1702             D( "fdevent_process: nothing to wait for !!\n" );
1703             return;
1704         }
1705 
1706         do
1707         {
1708             int   wait_ret;
1709 
1710             D( "adb_win32: waiting for %d events\n", looper->htab_count );
1711             if (looper->htab_count > MAXIMUM_WAIT_OBJECTS) {
1712                 D("handle count %d exceeds MAXIMUM_WAIT_OBJECTS.\n", looper->htab_count);
1713                 wait_ret = _wait_for_all(looper->htab, looper->htab_count);
1714             } else {
1715                 wait_ret = WaitForMultipleObjects( looper->htab_count, looper->htab, FALSE, INFINITE );
1716             }
1717             if (wait_ret == (int)WAIT_FAILED) {
1718                 D( "adb_win32: wait failed, error %ld\n", GetLastError() );
1719             } else {
1720                 D( "adb_win32: got one (index %d)\n", wait_ret );
1721 
1722                 /* according to Cygwin, some objects like consoles wake up on "inappropriate" events
1723                  * like mouse movements. we need to filter these with the "check" function
1724                  */
1725                 if ((unsigned)wait_ret < (unsigned)looper->htab_count)
1726                 {
1727                     for (hook = looper->hooks; hook; hook = hook->next)
1728                     {
1729                         if ( looper->htab[wait_ret] == hook->h       &&
1730                          (!hook->check || hook->check(hook)) )
1731                         {
1732                             D( "adb_win32: signaling %s for %x\n", hook->fh->name, hook->ready );
1733                             event_hook_signal( hook );
1734                             gotone = 1;
1735                             break;
1736                         }
1737                     }
1738                 }
1739             }
1740         }
1741         while (!gotone);
1742 
1743         for (hook = looper->hooks; hook; hook = hook->next) {
1744             if (hook->stop)
1745                 hook->stop( hook );
1746         }
1747     }
1748 
1749     for (hook = looper->hooks; hook; hook = hook->next) {
1750         if (hook->peek && hook->peek(hook))
1751                 event_hook_signal( hook );
1752     }
1753 }
1754 
1755 
fdevent_register(fdevent * fde)1756 static void fdevent_register(fdevent *fde)
1757 {
1758     int  fd = fde->fd - WIN32_FH_BASE;
1759 
1760     if(fd < 0) {
1761         FATAL("bogus negative fd (%d)\n", fde->fd);
1762     }
1763 
1764     if(fd >= fd_table_max) {
1765         int oldmax = fd_table_max;
1766         if(fde->fd > 32000) {
1767             FATAL("bogus huuuuge fd (%d)\n", fde->fd);
1768         }
1769         if(fd_table_max == 0) {
1770             fdevent_init();
1771             fd_table_max = 256;
1772         }
1773         while(fd_table_max <= fd) {
1774             fd_table_max *= 2;
1775         }
1776         fd_table = reinterpret_cast<fdevent**>(realloc(fd_table, sizeof(fdevent*) * fd_table_max));
1777         if(fd_table == 0) {
1778             FATAL("could not expand fd_table to %d entries\n", fd_table_max);
1779         }
1780         memset(fd_table + oldmax, 0, sizeof(int) * (fd_table_max - oldmax));
1781     }
1782 
1783     fd_table[fd] = fde;
1784 }
1785 
fdevent_unregister(fdevent * fde)1786 static void fdevent_unregister(fdevent *fde)
1787 {
1788     int  fd = fde->fd - WIN32_FH_BASE;
1789 
1790     if((fd < 0) || (fd >= fd_table_max)) {
1791         FATAL("fd out of range (%d)\n", fde->fd);
1792     }
1793 
1794     if(fd_table[fd] != fde) {
1795         FATAL("fd_table out of sync");
1796     }
1797 
1798     fd_table[fd] = 0;
1799 
1800     if(!(fde->state & FDE_DONT_CLOSE)) {
1801         dump_fde(fde, "close");
1802         adb_close(fde->fd);
1803     }
1804 }
1805 
fdevent_plist_enqueue(fdevent * node)1806 static void fdevent_plist_enqueue(fdevent *node)
1807 {
1808     fdevent *list = &list_pending;
1809 
1810     node->next = list;
1811     node->prev = list->prev;
1812     node->prev->next = node;
1813     list->prev = node;
1814 }
1815 
fdevent_plist_remove(fdevent * node)1816 static void fdevent_plist_remove(fdevent *node)
1817 {
1818     node->prev->next = node->next;
1819     node->next->prev = node->prev;
1820     node->next = 0;
1821     node->prev = 0;
1822 }
1823 
fdevent_plist_dequeue(void)1824 static fdevent *fdevent_plist_dequeue(void)
1825 {
1826     fdevent *list = &list_pending;
1827     fdevent *node = list->next;
1828 
1829     if(node == list) return 0;
1830 
1831     list->next = node->next;
1832     list->next->prev = list;
1833     node->next = 0;
1834     node->prev = 0;
1835 
1836     return node;
1837 }
1838 
fdevent_create(int fd,fd_func func,void * arg)1839 fdevent *fdevent_create(int fd, fd_func func, void *arg)
1840 {
1841     fdevent *fde = (fdevent*) malloc(sizeof(fdevent));
1842     if(fde == 0) return 0;
1843     fdevent_install(fde, fd, func, arg);
1844     fde->state |= FDE_CREATED;
1845     return fde;
1846 }
1847 
fdevent_destroy(fdevent * fde)1848 void fdevent_destroy(fdevent *fde)
1849 {
1850     if(fde == 0) return;
1851     if(!(fde->state & FDE_CREATED)) {
1852         FATAL("fde %p not created by fdevent_create()\n", fde);
1853     }
1854     fdevent_remove(fde);
1855 }
1856 
fdevent_install(fdevent * fde,int fd,fd_func func,void * arg)1857 void fdevent_install(fdevent *fde, int fd, fd_func func, void *arg)
1858 {
1859     memset(fde, 0, sizeof(fdevent));
1860     fde->state = FDE_ACTIVE;
1861     fde->fd = fd;
1862     fde->func = func;
1863     fde->arg = arg;
1864 
1865     fdevent_register(fde);
1866     dump_fde(fde, "connect");
1867     fdevent_connect(fde);
1868     fde->state |= FDE_ACTIVE;
1869 }
1870 
fdevent_remove(fdevent * fde)1871 void fdevent_remove(fdevent *fde)
1872 {
1873     if(fde->state & FDE_PENDING) {
1874         fdevent_plist_remove(fde);
1875     }
1876 
1877     if(fde->state & FDE_ACTIVE) {
1878         fdevent_disconnect(fde);
1879         dump_fde(fde, "disconnect");
1880         fdevent_unregister(fde);
1881     }
1882 
1883     fde->state = 0;
1884     fde->events = 0;
1885 }
1886 
1887 
fdevent_set(fdevent * fde,unsigned events)1888 void fdevent_set(fdevent *fde, unsigned events)
1889 {
1890     events &= FDE_EVENTMASK;
1891 
1892     if((fde->state & FDE_EVENTMASK) == (int)events) return;
1893 
1894     if(fde->state & FDE_ACTIVE) {
1895         fdevent_update(fde, events);
1896         dump_fde(fde, "update");
1897     }
1898 
1899     fde->state = (fde->state & FDE_STATEMASK) | events;
1900 
1901     if(fde->state & FDE_PENDING) {
1902             /* if we're pending, make sure
1903             ** we don't signal an event that
1904             ** is no longer wanted.
1905             */
1906         fde->events &= (~events);
1907         if(fde->events == 0) {
1908             fdevent_plist_remove(fde);
1909             fde->state &= (~FDE_PENDING);
1910         }
1911     }
1912 }
1913 
fdevent_add(fdevent * fde,unsigned events)1914 void fdevent_add(fdevent *fde, unsigned events)
1915 {
1916     fdevent_set(
1917         fde, (fde->state & FDE_EVENTMASK) | (events & FDE_EVENTMASK));
1918 }
1919 
fdevent_del(fdevent * fde,unsigned events)1920 void fdevent_del(fdevent *fde, unsigned events)
1921 {
1922     fdevent_set(
1923         fde, (fde->state & FDE_EVENTMASK) & (~(events & FDE_EVENTMASK)));
1924 }
1925 
fdevent_loop()1926 void fdevent_loop()
1927 {
1928     fdevent *fde;
1929 
1930     for(;;) {
1931 #if DEBUG
1932         fprintf(stderr,"--- ---- waiting for events\n");
1933 #endif
1934         fdevent_process();
1935 
1936         while((fde = fdevent_plist_dequeue())) {
1937             unsigned events = fde->events;
1938             fde->events = 0;
1939             fde->state &= (~FDE_PENDING);
1940             dump_fde(fde, "callback");
1941             fde->func(fde->fd, events, fde->arg);
1942         }
1943     }
1944 }
1945 
1946 /**  FILE EVENT HOOKS
1947  **/
1948 
_event_file_prepare(EventHook hook)1949 static void  _event_file_prepare( EventHook  hook )
1950 {
1951     if (hook->wanted & (FDE_READ|FDE_WRITE)) {
1952         /* we can always read/write */
1953         hook->ready |= hook->wanted & (FDE_READ|FDE_WRITE);
1954     }
1955 }
1956 
_event_file_peek(EventHook hook)1957 static int  _event_file_peek( EventHook  hook )
1958 {
1959     return (hook->wanted & (FDE_READ|FDE_WRITE));
1960 }
1961 
_fh_file_hook(FH f,int events,EventHook hook)1962 static void  _fh_file_hook( FH  f, int  events, EventHook  hook )
1963 {
1964     hook->h       = f->fh_handle;
1965     hook->prepare = _event_file_prepare;
1966     hook->peek    = _event_file_peek;
1967 }
1968 
1969 /** SOCKET EVENT HOOKS
1970  **/
1971 
_event_socket_verify(EventHook hook,WSANETWORKEVENTS * evts)1972 static void  _event_socket_verify( EventHook  hook, WSANETWORKEVENTS*  evts )
1973 {
1974     if ( evts->lNetworkEvents & (FD_READ|FD_ACCEPT|FD_CLOSE) ) {
1975         if (hook->wanted & FDE_READ)
1976             hook->ready |= FDE_READ;
1977         if ((evts->iErrorCode[FD_READ] != 0) && hook->wanted & FDE_ERROR)
1978             hook->ready |= FDE_ERROR;
1979     }
1980     if ( evts->lNetworkEvents & (FD_WRITE|FD_CONNECT|FD_CLOSE) ) {
1981         if (hook->wanted & FDE_WRITE)
1982             hook->ready |= FDE_WRITE;
1983         if ((evts->iErrorCode[FD_WRITE] != 0) && hook->wanted & FDE_ERROR)
1984             hook->ready |= FDE_ERROR;
1985     }
1986     if ( evts->lNetworkEvents & FD_OOB ) {
1987         if (hook->wanted & FDE_ERROR)
1988             hook->ready |= FDE_ERROR;
1989     }
1990 }
1991 
_event_socket_prepare(EventHook hook)1992 static void  _event_socket_prepare( EventHook  hook )
1993 {
1994     WSANETWORKEVENTS  evts;
1995 
1996     /* look if some of the events we want already happened ? */
1997     if (!WSAEnumNetworkEvents( hook->fh->fh_socket, NULL, &evts ))
1998         _event_socket_verify( hook, &evts );
1999 }
2000 
_socket_wanted_to_flags(int wanted)2001 static int  _socket_wanted_to_flags( int  wanted )
2002 {
2003     int  flags = 0;
2004     if (wanted & FDE_READ)
2005         flags |= FD_READ | FD_ACCEPT | FD_CLOSE;
2006 
2007     if (wanted & FDE_WRITE)
2008         flags |= FD_WRITE | FD_CONNECT | FD_CLOSE;
2009 
2010     if (wanted & FDE_ERROR)
2011         flags |= FD_OOB;
2012 
2013     return flags;
2014 }
2015 
_event_socket_start(EventHook hook)2016 static int _event_socket_start( EventHook  hook )
2017 {
2018     /* create an event which we're going to wait for */
2019     FH    fh    = hook->fh;
2020     long  flags = _socket_wanted_to_flags( hook->wanted );
2021 
2022     hook->h = fh->event;
2023     if (hook->h == INVALID_HANDLE_VALUE) {
2024         D( "_event_socket_start: no event for %s\n", fh->name );
2025         return 0;
2026     }
2027 
2028     if ( flags != fh->mask ) {
2029         D( "_event_socket_start: hooking %s for %x (flags %ld)\n", hook->fh->name, hook->wanted, flags );
2030         if ( WSAEventSelect( fh->fh_socket, hook->h, flags ) ) {
2031             D( "_event_socket_start: WSAEventSelect() for %s failed, error %d\n", hook->fh->name, WSAGetLastError() );
2032             CloseHandle( hook->h );
2033             hook->h = INVALID_HANDLE_VALUE;
2034             exit(1);
2035             return 0;
2036         }
2037         fh->mask = flags;
2038     }
2039     return 1;
2040 }
2041 
_event_socket_stop(EventHook hook)2042 static void _event_socket_stop( EventHook  hook )
2043 {
2044     hook->h = INVALID_HANDLE_VALUE;
2045 }
2046 
_event_socket_check(EventHook hook)2047 static int  _event_socket_check( EventHook  hook )
2048 {
2049     int               result = 0;
2050     FH                fh = hook->fh;
2051     WSANETWORKEVENTS  evts;
2052 
2053     if (!WSAEnumNetworkEvents( fh->fh_socket, hook->h, &evts ) ) {
2054         _event_socket_verify( hook, &evts );
2055         result = (hook->ready != 0);
2056         if (result) {
2057             ResetEvent( hook->h );
2058         }
2059     }
2060     D( "_event_socket_check %s returns %d\n", fh->name, result );
2061     return  result;
2062 }
2063 
_event_socket_peek(EventHook hook)2064 static int  _event_socket_peek( EventHook  hook )
2065 {
2066     WSANETWORKEVENTS  evts;
2067     FH                fh = hook->fh;
2068 
2069     /* look if some of the events we want already happened ? */
2070     if (!WSAEnumNetworkEvents( fh->fh_socket, NULL, &evts )) {
2071         _event_socket_verify( hook, &evts );
2072         if (hook->ready)
2073             ResetEvent( hook->h );
2074     }
2075 
2076     return hook->ready != 0;
2077 }
2078 
2079 
2080 
_fh_socket_hook(FH f,int events,EventHook hook)2081 static void  _fh_socket_hook( FH  f, int  events, EventHook  hook )
2082 {
2083     hook->prepare = _event_socket_prepare;
2084     hook->start   = _event_socket_start;
2085     hook->stop    = _event_socket_stop;
2086     hook->check   = _event_socket_check;
2087     hook->peek    = _event_socket_peek;
2088 
2089     _event_socket_start( hook );
2090 }
2091 
2092 /** SOCKETPAIR EVENT HOOKS
2093  **/
2094 
_event_socketpair_prepare(EventHook hook)2095 static void  _event_socketpair_prepare( EventHook  hook )
2096 {
2097     FH          fh   = hook->fh;
2098     SocketPair  pair = fh->fh_pair;
2099     BipBuffer   rbip = (pair->a_fd == fh) ? &pair->b2a_bip : &pair->a2b_bip;
2100     BipBuffer   wbip = (pair->a_fd == fh) ? &pair->a2b_bip : &pair->b2a_bip;
2101 
2102     if (hook->wanted & FDE_READ && rbip->can_read)
2103         hook->ready |= FDE_READ;
2104 
2105     if (hook->wanted & FDE_WRITE && wbip->can_write)
2106         hook->ready |= FDE_WRITE;
2107  }
2108 
_event_socketpair_start(EventHook hook)2109  static int  _event_socketpair_start( EventHook  hook )
2110  {
2111     FH          fh   = hook->fh;
2112     SocketPair  pair = fh->fh_pair;
2113     BipBuffer   rbip = (pair->a_fd == fh) ? &pair->b2a_bip : &pair->a2b_bip;
2114     BipBuffer   wbip = (pair->a_fd == fh) ? &pair->a2b_bip : &pair->b2a_bip;
2115 
2116     if (hook->wanted == FDE_READ)
2117         hook->h = rbip->evt_read;
2118 
2119     else if (hook->wanted == FDE_WRITE)
2120         hook->h = wbip->evt_write;
2121 
2122     else {
2123         D("_event_socketpair_start: can't handle FDE_READ+FDE_WRITE\n" );
2124         return 0;
2125     }
2126     D( "_event_socketpair_start: hook %s for %x wanted=%x\n",
2127        hook->fh->name, _fh_to_int(fh), hook->wanted);
2128     return 1;
2129 }
2130 
_event_socketpair_peek(EventHook hook)2131 static int  _event_socketpair_peek( EventHook  hook )
2132 {
2133     _event_socketpair_prepare( hook );
2134     return hook->ready != 0;
2135 }
2136 
_fh_socketpair_hook(FH fh,int events,EventHook hook)2137 static void  _fh_socketpair_hook( FH  fh, int  events, EventHook  hook )
2138 {
2139     hook->prepare = _event_socketpair_prepare;
2140     hook->start   = _event_socketpair_start;
2141     hook->peek    = _event_socketpair_peek;
2142 }
2143 
2144 
2145 void
adb_sysdeps_init(void)2146 adb_sysdeps_init( void )
2147 {
2148 #define  ADB_MUTEX(x)  InitializeCriticalSection( & x );
2149 #include "mutex_list.h"
2150     InitializeCriticalSection( &_win32_lock );
2151 }
2152 
2153 /**************************************************************************/
2154 /**************************************************************************/
2155 /*****                                                                *****/
2156 /*****      Console Window Terminal Emulation                         *****/
2157 /*****                                                                *****/
2158 /**************************************************************************/
2159 /**************************************************************************/
2160 
2161 // This reads input from a Win32 console window and translates it into Unix
2162 // terminal-style sequences. This emulates mostly Gnome Terminal (in Normal
2163 // mode, not Application mode), which itself emulates xterm. Gnome Terminal
2164 // is emulated instead of xterm because it is probably more popular than xterm:
2165 // Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal
2166 // supports modern fonts, etc. It seems best to emulate the terminal that most
2167 // Android developers use because they'll fix apps (the shell, etc.) to keep
2168 // working with that terminal's emulation.
2169 //
2170 // The point of this emulation is not to be perfect or to solve all issues with
2171 // console windows on Windows, but to be better than the original code which
2172 // just called read() (which called ReadFile(), which called ReadConsoleA())
2173 // which did not support Ctrl-C, tab completion, shell input line editing
2174 // keys, server echo, and more.
2175 //
2176 // This implementation reconfigures the console with SetConsoleMode(), then
2177 // calls ReadConsoleInput() to get raw input which it remaps to Unix
2178 // terminal-style sequences which is returned via unix_read() which is used
2179 // by the 'adb shell' command.
2180 //
2181 // Code organization:
2182 //
2183 // * stdin_raw_init() and stdin_raw_restore() reconfigure the console.
2184 // * unix_read() detects console windows (as opposed to pipes, files, etc.).
2185 // * _console_read() is the main code of the emulation.
2186 
2187 
2188 // Read an input record from the console; one that should be processed.
_get_interesting_input_record_uncached(const HANDLE console,INPUT_RECORD * const input_record)2189 static bool _get_interesting_input_record_uncached(const HANDLE console,
2190     INPUT_RECORD* const input_record) {
2191     for (;;) {
2192         DWORD read_count = 0;
2193         memset(input_record, 0, sizeof(*input_record));
2194         if (!ReadConsoleInputA(console, input_record, 1, &read_count)) {
2195             D("_get_interesting_input_record_uncached: ReadConsoleInputA() "
2196               "failure, error %ld\n", GetLastError());
2197             errno = EIO;
2198             return false;
2199         }
2200 
2201         if (read_count == 0) {   // should be impossible
2202             fatal("ReadConsoleInputA returned 0");
2203         }
2204 
2205         if (read_count != 1) {   // should be impossible
2206             fatal("ReadConsoleInputA did not return one input record");
2207         }
2208 
2209         if ((input_record->EventType == KEY_EVENT) &&
2210             (input_record->Event.KeyEvent.bKeyDown)) {
2211             if (input_record->Event.KeyEvent.wRepeatCount == 0) {
2212                 fatal("ReadConsoleInputA returned a key event with zero repeat"
2213                       " count");
2214             }
2215 
2216             // Got an interesting INPUT_RECORD, so return
2217             return true;
2218         }
2219     }
2220 }
2221 
2222 // Cached input record (in case _console_read() is passed a buffer that doesn't
2223 // have enough space to fit wRepeatCount number of key sequences). A non-zero
2224 // wRepeatCount indicates that a record is cached.
2225 static INPUT_RECORD _win32_input_record;
2226 
2227 // Get the next KEY_EVENT_RECORD that should be processed.
_get_key_event_record(const HANDLE console)2228 static KEY_EVENT_RECORD* _get_key_event_record(const HANDLE console) {
2229     // If nothing cached, read directly from the console until we get an
2230     // interesting record.
2231     if (_win32_input_record.Event.KeyEvent.wRepeatCount == 0) {
2232         if (!_get_interesting_input_record_uncached(console,
2233             &_win32_input_record)) {
2234             // There was an error, so make sure wRepeatCount is zero because
2235             // that signifies no cached input record.
2236             _win32_input_record.Event.KeyEvent.wRepeatCount = 0;
2237             return NULL;
2238         }
2239     }
2240 
2241     return &_win32_input_record.Event.KeyEvent;
2242 }
2243 
_is_shift_pressed(const DWORD control_key_state)2244 static __inline__ bool _is_shift_pressed(const DWORD control_key_state) {
2245     return (control_key_state & SHIFT_PRESSED) != 0;
2246 }
2247 
_is_ctrl_pressed(const DWORD control_key_state)2248 static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) {
2249     return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0;
2250 }
2251 
_is_alt_pressed(const DWORD control_key_state)2252 static __inline__ bool _is_alt_pressed(const DWORD control_key_state) {
2253     return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0;
2254 }
2255 
_is_numlock_on(const DWORD control_key_state)2256 static __inline__ bool _is_numlock_on(const DWORD control_key_state) {
2257     return (control_key_state & NUMLOCK_ON) != 0;
2258 }
2259 
_is_capslock_on(const DWORD control_key_state)2260 static __inline__ bool _is_capslock_on(const DWORD control_key_state) {
2261     return (control_key_state & CAPSLOCK_ON) != 0;
2262 }
2263 
_is_enhanced_key(const DWORD control_key_state)2264 static __inline__ bool _is_enhanced_key(const DWORD control_key_state) {
2265     return (control_key_state & ENHANCED_KEY) != 0;
2266 }
2267 
2268 // Constants from MSDN for ToAscii().
2269 static const BYTE TOASCII_KEY_OFF = 0x00;
2270 static const BYTE TOASCII_KEY_DOWN = 0x80;
2271 static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01;   // for CapsLock
2272 
2273 // Given a key event, ignore a modifier key and return the character that was
2274 // entered without the modifier. Writes to *ch and returns the number of bytes
2275 // written.
_get_char_ignoring_modifier(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state,const WORD modifier)2276 static size_t _get_char_ignoring_modifier(char* const ch,
2277     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state,
2278     const WORD modifier) {
2279     // If there is no character from Windows, try ignoring the specified
2280     // modifier and look for a character. Note that if AltGr is being used,
2281     // there will be a character from Windows.
2282     if (key_event->uChar.AsciiChar == '\0') {
2283         // Note that we read the control key state from the passed in argument
2284         // instead of from key_event since the argument has been normalized.
2285         if (((modifier == VK_SHIFT)   &&
2286             _is_shift_pressed(control_key_state)) ||
2287             ((modifier == VK_CONTROL) &&
2288             _is_ctrl_pressed(control_key_state)) ||
2289             ((modifier == VK_MENU)    && _is_alt_pressed(control_key_state))) {
2290 
2291             BYTE key_state[256]   = {0};
2292             key_state[VK_SHIFT]   = _is_shift_pressed(control_key_state) ?
2293                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
2294             key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state)  ?
2295                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
2296             key_state[VK_MENU]    = _is_alt_pressed(control_key_state)   ?
2297                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
2298             key_state[VK_CAPITAL] = _is_capslock_on(control_key_state)   ?
2299                 TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF;
2300 
2301             // cause this modifier to be ignored
2302             key_state[modifier]   = TOASCII_KEY_OFF;
2303 
2304             WORD translated = 0;
2305             if (ToAscii(key_event->wVirtualKeyCode,
2306                 key_event->wVirtualScanCode, key_state, &translated, 0) == 1) {
2307                 // Ignoring the modifier, we found a character.
2308                 *ch = (CHAR)translated;
2309                 return 1;
2310             }
2311         }
2312     }
2313 
2314     // Just use whatever Windows told us originally.
2315     *ch = key_event->uChar.AsciiChar;
2316 
2317     // If the character from Windows is NULL, return a size of zero.
2318     return (*ch == '\0') ? 0 : 1;
2319 }
2320 
2321 // If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key,
2322 // but taking into account the shift key. This is because for a sequence like
2323 // Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0,
2324 // we want to find the character ')'.
2325 //
2326 // Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0
2327 // because it is the default key-sequence to switch the input language.
2328 // This is configurable in the Region and Language control panel.
_get_non_control_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)2329 static __inline__ size_t _get_non_control_char(char* const ch,
2330     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
2331     return _get_char_ignoring_modifier(ch, key_event, control_key_state,
2332         VK_CONTROL);
2333 }
2334 
2335 // Get without Alt.
_get_non_alt_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)2336 static __inline__ size_t _get_non_alt_char(char* const ch,
2337     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
2338     return _get_char_ignoring_modifier(ch, key_event, control_key_state,
2339         VK_MENU);
2340 }
2341 
2342 // Ignore the control key, find the character from Windows, and apply any
2343 // Control key mappings (for example, Ctrl-2 is a NULL character). Writes to
2344 // *pch and returns number of bytes written.
_get_control_character(char * const pch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)2345 static size_t _get_control_character(char* const pch,
2346     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
2347     const size_t len = _get_non_control_char(pch, key_event,
2348         control_key_state);
2349 
2350     if ((len == 1) && _is_ctrl_pressed(control_key_state)) {
2351         char ch = *pch;
2352         switch (ch) {
2353         case '2':
2354         case '@':
2355         case '`':
2356             ch = '\0';
2357             break;
2358         case '3':
2359         case '[':
2360         case '{':
2361             ch = '\x1b';
2362             break;
2363         case '4':
2364         case '\\':
2365         case '|':
2366             ch = '\x1c';
2367             break;
2368         case '5':
2369         case ']':
2370         case '}':
2371             ch = '\x1d';
2372             break;
2373         case '6':
2374         case '^':
2375         case '~':
2376             ch = '\x1e';
2377             break;
2378         case '7':
2379         case '-':
2380         case '_':
2381             ch = '\x1f';
2382             break;
2383         case '8':
2384             ch = '\x7f';
2385             break;
2386         case '/':
2387             if (!_is_alt_pressed(control_key_state)) {
2388                 ch = '\x1f';
2389             }
2390             break;
2391         case '?':
2392             if (!_is_alt_pressed(control_key_state)) {
2393                 ch = '\x7f';
2394             }
2395             break;
2396         }
2397         *pch = ch;
2398     }
2399 
2400     return len;
2401 }
2402 
_normalize_altgr_control_key_state(const KEY_EVENT_RECORD * const key_event)2403 static DWORD _normalize_altgr_control_key_state(
2404     const KEY_EVENT_RECORD* const key_event) {
2405     DWORD control_key_state = key_event->dwControlKeyState;
2406 
2407     // If we're in an AltGr situation where the AltGr key is down (depending on
2408     // the keyboard layout, that might be the physical right alt key which
2409     // produces a control_key_state where Right-Alt and Left-Ctrl are down) or
2410     // AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have
2411     // a character (which indicates that there was an AltGr mapping), then act
2412     // as if alt and control are not really down for the purposes of modifiers.
2413     // This makes it so that if the user with, say, a German keyboard layout
2414     // presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just
2415     // output the key and we don't see the Alt and Ctrl keys.
2416     if (_is_ctrl_pressed(control_key_state) &&
2417         _is_alt_pressed(control_key_state)
2418         && (key_event->uChar.AsciiChar != '\0')) {
2419         // Try to remove as few bits as possible to improve our chances of
2420         // detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or
2421         // Left-Alt + Right-Ctrl + AltGr.
2422         if ((control_key_state & RIGHT_ALT_PRESSED) != 0) {
2423             // Remove Right-Alt.
2424             control_key_state &= ~RIGHT_ALT_PRESSED;
2425             // If uChar is set, a Ctrl key is pressed, and Right-Alt is
2426             // pressed, Left-Ctrl is almost always set, except if the user
2427             // presses Right-Ctrl, then AltGr (in that specific order) for
2428             // whatever reason. At any rate, make sure the bit is not set.
2429             control_key_state &= ~LEFT_CTRL_PRESSED;
2430         } else if ((control_key_state & LEFT_ALT_PRESSED) != 0) {
2431             // Remove Left-Alt.
2432             control_key_state &= ~LEFT_ALT_PRESSED;
2433             // Whichever Ctrl key is down, remove it from the state. We only
2434             // remove one key, to improve our chances of detecting the
2435             // corner-case of Left-Ctrl + Left-Alt + Right-Ctrl.
2436             if ((control_key_state & LEFT_CTRL_PRESSED) != 0) {
2437                 // Remove Left-Ctrl.
2438                 control_key_state &= ~LEFT_CTRL_PRESSED;
2439             } else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) {
2440                 // Remove Right-Ctrl.
2441                 control_key_state &= ~RIGHT_CTRL_PRESSED;
2442             }
2443         }
2444 
2445         // Note that this logic isn't 100% perfect because Windows doesn't
2446         // allow us to detect all combinations because a physical AltGr key
2447         // press shows up as two bits, plus some combinations are ambiguous
2448         // about what is actually physically pressed.
2449     }
2450 
2451     return control_key_state;
2452 }
2453 
2454 // If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in
2455 // dwControlKeyState for the following keypad keys: period, 0-9. If we detect
2456 // this scenario, set the SHIFT_PRESSED bit so we can add modifiers
2457 // appropriately.
_normalize_keypad_control_key_state(const WORD vk,const DWORD control_key_state)2458 static DWORD _normalize_keypad_control_key_state(const WORD vk,
2459     const DWORD control_key_state) {
2460     if (!_is_numlock_on(control_key_state)) {
2461         return control_key_state;
2462     }
2463     if (!_is_enhanced_key(control_key_state)) {
2464         switch (vk) {
2465             case VK_INSERT: // 0
2466             case VK_DELETE: // .
2467             case VK_END:    // 1
2468             case VK_DOWN:   // 2
2469             case VK_NEXT:   // 3
2470             case VK_LEFT:   // 4
2471             case VK_CLEAR:  // 5
2472             case VK_RIGHT:  // 6
2473             case VK_HOME:   // 7
2474             case VK_UP:     // 8
2475             case VK_PRIOR:  // 9
2476                 return control_key_state | SHIFT_PRESSED;
2477         }
2478     }
2479 
2480     return control_key_state;
2481 }
2482 
_get_keypad_sequence(const DWORD control_key_state,const char * const normal,const char * const shifted)2483 static const char* _get_keypad_sequence(const DWORD control_key_state,
2484     const char* const normal, const char* const shifted) {
2485     if (_is_shift_pressed(control_key_state)) {
2486         // Shift is pressed and NumLock is off
2487         return shifted;
2488     } else {
2489         // Shift is not pressed and NumLock is off, or,
2490         // Shift is pressed and NumLock is on, in which case we want the
2491         // NumLock and Shift to neutralize each other, thus, we want the normal
2492         // sequence.
2493         return normal;
2494     }
2495     // If Shift is not pressed and NumLock is on, a different virtual key code
2496     // is returned by Windows, which can be taken care of by a different case
2497     // statement in _console_read().
2498 }
2499 
2500 // Write sequence to buf and return the number of bytes written.
_get_modifier_sequence(char * const buf,const WORD vk,DWORD control_key_state,const char * const normal)2501 static size_t _get_modifier_sequence(char* const buf, const WORD vk,
2502     DWORD control_key_state, const char* const normal) {
2503     // Copy the base sequence into buf.
2504     const size_t len = strlen(normal);
2505     memcpy(buf, normal, len);
2506 
2507     int code = 0;
2508 
2509     control_key_state = _normalize_keypad_control_key_state(vk,
2510         control_key_state);
2511 
2512     if (_is_shift_pressed(control_key_state)) {
2513         code |= 0x1;
2514     }
2515     if (_is_alt_pressed(control_key_state)) {   // any alt key pressed
2516         code |= 0x2;
2517     }
2518     if (_is_ctrl_pressed(control_key_state)) {  // any control key pressed
2519         code |= 0x4;
2520     }
2521     // If some modifier was held down, then we need to insert the modifier code
2522     if (code != 0) {
2523         if (len == 0) {
2524             // Should be impossible because caller should pass a string of
2525             // non-zero length.
2526             return 0;
2527         }
2528         size_t index = len - 1;
2529         const char lastChar = buf[index];
2530         if (lastChar != '~') {
2531             buf[index++] = '1';
2532         }
2533         buf[index++] = ';';         // modifier separator
2534         // 2 = shift, 3 = alt, 4 = shift & alt, 5 = control,
2535         // 6 = shift & control, 7 = alt & control, 8 = shift & alt & control
2536         buf[index++] = '1' + code;
2537         buf[index++] = lastChar;    // move ~ (or other last char) to the end
2538         return index;
2539     }
2540     return len;
2541 }
2542 
2543 // Write sequence to buf and return the number of bytes written.
_get_modifier_keypad_sequence(char * const buf,const WORD vk,const DWORD control_key_state,const char * const normal,const char shifted)2544 static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk,
2545     const DWORD control_key_state, const char* const normal,
2546     const char shifted) {
2547     if (_is_shift_pressed(control_key_state)) {
2548         // Shift is pressed and NumLock is off
2549         if (shifted != '\0') {
2550             buf[0] = shifted;
2551             return sizeof(buf[0]);
2552         } else {
2553             return 0;
2554         }
2555     } else {
2556         // Shift is not pressed and NumLock is off, or,
2557         // Shift is pressed and NumLock is on, in which case we want the
2558         // NumLock and Shift to neutralize each other, thus, we want the normal
2559         // sequence.
2560         return _get_modifier_sequence(buf, vk, control_key_state, normal);
2561     }
2562     // If Shift is not pressed and NumLock is on, a different virtual key code
2563     // is returned by Windows, which can be taken care of by a different case
2564     // statement in _console_read().
2565 }
2566 
2567 // The decimal key on the keypad produces a '.' for U.S. English and a ',' for
2568 // Standard German. Figure this out at runtime so we know what to output for
2569 // Shift-VK_DELETE.
_get_decimal_char()2570 static char _get_decimal_char() {
2571     return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR);
2572 }
2573 
2574 // Prefix the len bytes in buf with the escape character, and then return the
2575 // new buffer length.
_escape_prefix(char * const buf,const size_t len)2576 size_t _escape_prefix(char* const buf, const size_t len) {
2577     // If nothing to prefix, don't do anything. We might be called with
2578     // len == 0, if alt was held down with a dead key which produced nothing.
2579     if (len == 0) {
2580         return 0;
2581     }
2582 
2583     memmove(&buf[1], buf, len);
2584     buf[0] = '\x1b';
2585     return len + 1;
2586 }
2587 
2588 // Writes to buffer buf (of length len), returning number of bytes written or
2589 // -1 on error. Never returns zero because Win32 consoles are never 'closed'
2590 // (as far as I can tell).
_console_read(const HANDLE console,void * buf,size_t len)2591 static int _console_read(const HANDLE console, void* buf, size_t len) {
2592     for (;;) {
2593         KEY_EVENT_RECORD* const key_event = _get_key_event_record(console);
2594         if (key_event == NULL) {
2595             return -1;
2596         }
2597 
2598         const WORD vk = key_event->wVirtualKeyCode;
2599         const CHAR ch = key_event->uChar.AsciiChar;
2600         const DWORD control_key_state = _normalize_altgr_control_key_state(
2601             key_event);
2602 
2603         // The following emulation code should write the output sequence to
2604         // either seqstr or to seqbuf and seqbuflen.
2605         const char* seqstr = NULL;  // NULL terminated C-string
2606         // Enough space for max sequence string below, plus modifiers and/or
2607         // escape prefix.
2608         char seqbuf[16];
2609         size_t seqbuflen = 0;       // Space used in seqbuf.
2610 
2611 #define MATCH(vk, normal) \
2612             case (vk): \
2613             { \
2614                 seqstr = (normal); \
2615             } \
2616             break;
2617 
2618         // Modifier keys should affect the output sequence.
2619 #define MATCH_MODIFIER(vk, normal) \
2620             case (vk): \
2621             { \
2622                 seqbuflen = _get_modifier_sequence(seqbuf, (vk), \
2623                     control_key_state, (normal)); \
2624             } \
2625             break;
2626 
2627         // The shift key should affect the output sequence.
2628 #define MATCH_KEYPAD(vk, normal, shifted) \
2629             case (vk): \
2630             { \
2631                 seqstr = _get_keypad_sequence(control_key_state, (normal), \
2632                     (shifted)); \
2633             } \
2634             break;
2635 
2636         // The shift key and other modifier keys should affect the output
2637         // sequence.
2638 #define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \
2639             case (vk): \
2640             { \
2641                 seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \
2642                     control_key_state, (normal), (shifted)); \
2643             } \
2644             break;
2645 
2646 #define ESC "\x1b"
2647 #define CSI ESC "["
2648 #define SS3 ESC "O"
2649 
2650         // Only support normal mode, not application mode.
2651 
2652         // Enhanced keys:
2653         // * 6-pack: insert, delete, home, end, page up, page down
2654         // * cursor keys: up, down, right, left
2655         // * keypad: divide, enter
2656         // * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT,
2657         //   VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK
2658         if (_is_enhanced_key(control_key_state)) {
2659             switch (vk) {
2660                 case VK_RETURN: // Enter key on keypad
2661                     if (_is_ctrl_pressed(control_key_state)) {
2662                         seqstr = "\n";
2663                     } else {
2664                         seqstr = "\r";
2665                     }
2666                     break;
2667 
2668                 MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up
2669                 MATCH_MODIFIER(VK_NEXT,  CSI "6~"); // Page Down
2670 
2671                 // gnome-terminal currently sends SS3 "F" and SS3 "H", but that
2672                 // will be fixed soon to match xterm which sends CSI "F" and
2673                 // CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764
2674                 MATCH(VK_END,  CSI "F");
2675                 MATCH(VK_HOME, CSI "H");
2676 
2677                 MATCH_MODIFIER(VK_LEFT,  CSI "D");
2678                 MATCH_MODIFIER(VK_UP,    CSI "A");
2679                 MATCH_MODIFIER(VK_RIGHT, CSI "C");
2680                 MATCH_MODIFIER(VK_DOWN,  CSI "B");
2681 
2682                 MATCH_MODIFIER(VK_INSERT, CSI "2~");
2683                 MATCH_MODIFIER(VK_DELETE, CSI "3~");
2684 
2685                 MATCH(VK_DIVIDE, "/");
2686             }
2687         } else {    // Non-enhanced keys:
2688             switch (vk) {
2689                 case VK_BACK:   // backspace
2690                     if (_is_alt_pressed(control_key_state)) {
2691                         seqstr = ESC "\x7f";
2692                     } else {
2693                         seqstr = "\x7f";
2694                     }
2695                     break;
2696 
2697                 case VK_TAB:
2698                     if (_is_shift_pressed(control_key_state)) {
2699                         seqstr = CSI "Z";
2700                     } else {
2701                         seqstr = "\t";
2702                     }
2703                     break;
2704 
2705                 // Number 5 key in keypad when NumLock is off, or if NumLock is
2706                 // on and Shift is down.
2707                 MATCH_KEYPAD(VK_CLEAR, CSI "E", "5");
2708 
2709                 case VK_RETURN:     // Enter key on main keyboard
2710                     if (_is_alt_pressed(control_key_state)) {
2711                         seqstr = ESC "\n";
2712                     } else if (_is_ctrl_pressed(control_key_state)) {
2713                         seqstr = "\n";
2714                     } else {
2715                         seqstr = "\r";
2716                     }
2717                     break;
2718 
2719                 // VK_ESCAPE: Don't do any special handling. The OS uses many
2720                 // of the sequences with Escape and many of the remaining
2721                 // sequences don't produce bKeyDown messages, only !bKeyDown
2722                 // for whatever reason.
2723 
2724                 case VK_SPACE:
2725                     if (_is_alt_pressed(control_key_state)) {
2726                         seqstr = ESC " ";
2727                     } else if (_is_ctrl_pressed(control_key_state)) {
2728                         seqbuf[0] = '\0';   // NULL char
2729                         seqbuflen = 1;
2730                     } else {
2731                         seqstr = " ";
2732                     }
2733                     break;
2734 
2735                 MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up
2736                 MATCH_MODIFIER_KEYPAD(VK_NEXT,  CSI "6~", '3'); // Page Down
2737 
2738                 MATCH_KEYPAD(VK_END,  CSI "4~", "1");
2739                 MATCH_KEYPAD(VK_HOME, CSI "1~", "7");
2740 
2741                 MATCH_MODIFIER_KEYPAD(VK_LEFT,  CSI "D", '4');
2742                 MATCH_MODIFIER_KEYPAD(VK_UP,    CSI "A", '8');
2743                 MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6');
2744                 MATCH_MODIFIER_KEYPAD(VK_DOWN,  CSI "B", '2');
2745 
2746                 MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0');
2747                 MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~",
2748                     _get_decimal_char());
2749 
2750                 case 0x30:          // 0
2751                 case 0x31:          // 1
2752                 case 0x39:          // 9
2753                 case VK_OEM_1:      // ;:
2754                 case VK_OEM_PLUS:   // =+
2755                 case VK_OEM_COMMA:  // ,<
2756                 case VK_OEM_PERIOD: // .>
2757                 case VK_OEM_7:      // '"
2758                 case VK_OEM_102:    // depends on keyboard, could be <> or \|
2759                 case VK_OEM_2:      // /?
2760                 case VK_OEM_3:      // `~
2761                 case VK_OEM_4:      // [{
2762                 case VK_OEM_5:      // \|
2763                 case VK_OEM_6:      // ]}
2764                 {
2765                     seqbuflen = _get_control_character(seqbuf, key_event,
2766                         control_key_state);
2767 
2768                     if (_is_alt_pressed(control_key_state)) {
2769                         seqbuflen = _escape_prefix(seqbuf, seqbuflen);
2770                     }
2771                 }
2772                 break;
2773 
2774                 case 0x32:          // 2
2775                 case 0x36:          // 6
2776                 case VK_OEM_MINUS:  // -_
2777                 {
2778                     seqbuflen = _get_control_character(seqbuf, key_event,
2779                         control_key_state);
2780 
2781                     // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
2782                     // prefix with escape.
2783                     if (_is_alt_pressed(control_key_state) &&
2784                         !(_is_ctrl_pressed(control_key_state) &&
2785                         !_is_shift_pressed(control_key_state))) {
2786                         seqbuflen = _escape_prefix(seqbuf, seqbuflen);
2787                     }
2788                 }
2789                 break;
2790 
2791                 case 0x33:  // 3
2792                 case 0x34:  // 4
2793                 case 0x35:  // 5
2794                 case 0x37:  // 7
2795                 case 0x38:  // 8
2796                 {
2797                     seqbuflen = _get_control_character(seqbuf, key_event,
2798                         control_key_state);
2799 
2800                     // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
2801                     // prefix with escape.
2802                     if (_is_alt_pressed(control_key_state) &&
2803                         !(_is_ctrl_pressed(control_key_state) &&
2804                         !_is_shift_pressed(control_key_state))) {
2805                         seqbuflen = _escape_prefix(seqbuf, seqbuflen);
2806                     }
2807                 }
2808                 break;
2809 
2810                 case 0x41:  // a
2811                 case 0x42:  // b
2812                 case 0x43:  // c
2813                 case 0x44:  // d
2814                 case 0x45:  // e
2815                 case 0x46:  // f
2816                 case 0x47:  // g
2817                 case 0x48:  // h
2818                 case 0x49:  // i
2819                 case 0x4a:  // j
2820                 case 0x4b:  // k
2821                 case 0x4c:  // l
2822                 case 0x4d:  // m
2823                 case 0x4e:  // n
2824                 case 0x4f:  // o
2825                 case 0x50:  // p
2826                 case 0x51:  // q
2827                 case 0x52:  // r
2828                 case 0x53:  // s
2829                 case 0x54:  // t
2830                 case 0x55:  // u
2831                 case 0x56:  // v
2832                 case 0x57:  // w
2833                 case 0x58:  // x
2834                 case 0x59:  // y
2835                 case 0x5a:  // z
2836                 {
2837                     seqbuflen = _get_non_alt_char(seqbuf, key_event,
2838                         control_key_state);
2839 
2840                     // If Alt is pressed, then prefix with escape.
2841                     if (_is_alt_pressed(control_key_state)) {
2842                         seqbuflen = _escape_prefix(seqbuf, seqbuflen);
2843                     }
2844                 }
2845                 break;
2846 
2847                 // These virtual key codes are generated by the keys on the
2848                 // keypad *when NumLock is on* and *Shift is up*.
2849                 MATCH(VK_NUMPAD0, "0");
2850                 MATCH(VK_NUMPAD1, "1");
2851                 MATCH(VK_NUMPAD2, "2");
2852                 MATCH(VK_NUMPAD3, "3");
2853                 MATCH(VK_NUMPAD4, "4");
2854                 MATCH(VK_NUMPAD5, "5");
2855                 MATCH(VK_NUMPAD6, "6");
2856                 MATCH(VK_NUMPAD7, "7");
2857                 MATCH(VK_NUMPAD8, "8");
2858                 MATCH(VK_NUMPAD9, "9");
2859 
2860                 MATCH(VK_MULTIPLY, "*");
2861                 MATCH(VK_ADD,      "+");
2862                 MATCH(VK_SUBTRACT, "-");
2863                 // VK_DECIMAL is generated by the . key on the keypad *when
2864                 // NumLock is on* and *Shift is up* and the sequence is not
2865                 // Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the
2866                 // Windows Security screen to come up).
2867                 case VK_DECIMAL:
2868                     // U.S. English uses '.', Germany German uses ','.
2869                     seqbuflen = _get_non_control_char(seqbuf, key_event,
2870                         control_key_state);
2871                     break;
2872 
2873                 MATCH_MODIFIER(VK_F1,  SS3 "P");
2874                 MATCH_MODIFIER(VK_F2,  SS3 "Q");
2875                 MATCH_MODIFIER(VK_F3,  SS3 "R");
2876                 MATCH_MODIFIER(VK_F4,  SS3 "S");
2877                 MATCH_MODIFIER(VK_F5,  CSI "15~");
2878                 MATCH_MODIFIER(VK_F6,  CSI "17~");
2879                 MATCH_MODIFIER(VK_F7,  CSI "18~");
2880                 MATCH_MODIFIER(VK_F8,  CSI "19~");
2881                 MATCH_MODIFIER(VK_F9,  CSI "20~");
2882                 MATCH_MODIFIER(VK_F10, CSI "21~");
2883                 MATCH_MODIFIER(VK_F11, CSI "23~");
2884                 MATCH_MODIFIER(VK_F12, CSI "24~");
2885 
2886                 MATCH_MODIFIER(VK_F13, CSI "25~");
2887                 MATCH_MODIFIER(VK_F14, CSI "26~");
2888                 MATCH_MODIFIER(VK_F15, CSI "28~");
2889                 MATCH_MODIFIER(VK_F16, CSI "29~");
2890                 MATCH_MODIFIER(VK_F17, CSI "31~");
2891                 MATCH_MODIFIER(VK_F18, CSI "32~");
2892                 MATCH_MODIFIER(VK_F19, CSI "33~");
2893                 MATCH_MODIFIER(VK_F20, CSI "34~");
2894 
2895                 // MATCH_MODIFIER(VK_F21, ???);
2896                 // MATCH_MODIFIER(VK_F22, ???);
2897                 // MATCH_MODIFIER(VK_F23, ???);
2898                 // MATCH_MODIFIER(VK_F24, ???);
2899             }
2900         }
2901 
2902 #undef MATCH
2903 #undef MATCH_MODIFIER
2904 #undef MATCH_KEYPAD
2905 #undef MATCH_MODIFIER_KEYPAD
2906 #undef ESC
2907 #undef CSI
2908 #undef SS3
2909 
2910         const char* out;
2911         size_t outlen;
2912 
2913         // Check for output in any of:
2914         // * seqstr is set (and strlen can be used to determine the length).
2915         // * seqbuf and seqbuflen are set
2916         // Fallback to ch from Windows.
2917         if (seqstr != NULL) {
2918             out = seqstr;
2919             outlen = strlen(seqstr);
2920         } else if (seqbuflen > 0) {
2921             out = seqbuf;
2922             outlen = seqbuflen;
2923         } else if (ch != '\0') {
2924             // Use whatever Windows told us it is.
2925             seqbuf[0] = ch;
2926             seqbuflen = 1;
2927             out = seqbuf;
2928             outlen = seqbuflen;
2929         } else {
2930             // No special handling for the virtual key code and Windows isn't
2931             // telling us a character code, then we don't know how to translate
2932             // the key press.
2933             //
2934             // Consume the input and 'continue' to cause us to get a new key
2935             // event.
2936             D("_console_read: unknown virtual key code: %d, enhanced: %s\n",
2937                 vk, _is_enhanced_key(control_key_state) ? "true" : "false");
2938             key_event->wRepeatCount = 0;
2939             continue;
2940         }
2941 
2942         int bytesRead = 0;
2943 
2944         // put output wRepeatCount times into buf/len
2945         while (key_event->wRepeatCount > 0) {
2946             if (len >= outlen) {
2947                 // Write to buf/len
2948                 memcpy(buf, out, outlen);
2949                 buf = (void*)((char*)buf + outlen);
2950                 len -= outlen;
2951                 bytesRead += outlen;
2952 
2953                 // consume the input
2954                 --key_event->wRepeatCount;
2955             } else {
2956                 // Not enough space, so just leave it in _win32_input_record
2957                 // for a subsequent retrieval.
2958                 if (bytesRead == 0) {
2959                     // We didn't write anything because there wasn't enough
2960                     // space to even write one sequence. This should never
2961                     // happen if the caller uses sensible buffer sizes
2962                     // (i.e. >= maximum sequence length which is probably a
2963                     // few bytes long).
2964                     D("_console_read: no buffer space to write one sequence; "
2965                         "buffer: %ld, sequence: %ld\n", (long)len,
2966                         (long)outlen);
2967                     errno = ENOMEM;
2968                     return -1;
2969                 } else {
2970                     // Stop trying to write to buf/len, just return whatever
2971                     // we wrote so far.
2972                     break;
2973                 }
2974             }
2975         }
2976 
2977         return bytesRead;
2978     }
2979 }
2980 
2981 static DWORD _old_console_mode; // previous GetConsoleMode() result
2982 static HANDLE _console_handle;  // when set, console mode should be restored
2983 
stdin_raw_init(const int fd)2984 void stdin_raw_init(const int fd) {
2985     if (STDIN_FILENO == fd) {
2986         const HANDLE in = GetStdHandle(STD_INPUT_HANDLE);
2987         if ((in == INVALID_HANDLE_VALUE) || (in == NULL)) {
2988             return;
2989         }
2990 
2991         if (GetFileType(in) != FILE_TYPE_CHAR) {
2992             // stdin might be a file or pipe.
2993             return;
2994         }
2995 
2996         if (!GetConsoleMode(in, &_old_console_mode)) {
2997             // If GetConsoleMode() fails, stdin is probably is not a console.
2998             return;
2999         }
3000 
3001         // Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of
3002         // calling the process Ctrl-C routine (configured by
3003         // SetConsoleCtrlHandler()).
3004         // Disable ENABLE_LINE_INPUT so that input is immediately sent.
3005         // Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this
3006         // flag also seems necessary to have proper line-ending processing.
3007         if (!SetConsoleMode(in, _old_console_mode & ~(ENABLE_PROCESSED_INPUT |
3008             ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT))) {
3009             // This really should not fail.
3010             D("stdin_raw_init: SetConsoleMode() failure, error %ld\n",
3011                 GetLastError());
3012         }
3013 
3014         // Once this is set, it means that stdin has been configured for
3015         // reading from and that the old console mode should be restored later.
3016         _console_handle = in;
3017 
3018         // Note that we don't need to configure C Runtime line-ending
3019         // translation because _console_read() does not call the C Runtime to
3020         // read from the console.
3021     }
3022 }
3023 
stdin_raw_restore(const int fd)3024 void stdin_raw_restore(const int fd) {
3025     if (STDIN_FILENO == fd) {
3026         if (_console_handle != NULL) {
3027             const HANDLE in = _console_handle;
3028             _console_handle = NULL;  // clear state
3029 
3030             if (!SetConsoleMode(in, _old_console_mode)) {
3031                 // This really should not fail.
3032                 D("stdin_raw_restore: SetConsoleMode() failure, error %ld\n",
3033                     GetLastError());
3034             }
3035         }
3036     }
3037 }
3038 
3039 // Called by 'adb shell' command to read from stdin.
unix_read(int fd,void * buf,size_t len)3040 int unix_read(int fd, void* buf, size_t len) {
3041     if ((fd == STDIN_FILENO) && (_console_handle != NULL)) {
3042         // If it is a request to read from stdin, and stdin_raw_init() has been
3043         // called, and it successfully configured the console, then read from
3044         // the console using Win32 console APIs and partially emulate a unix
3045         // terminal.
3046         return _console_read(_console_handle, buf, len);
3047     } else {
3048         // Just call into C Runtime which can read from pipes/files and which
3049         // can do LF/CR translation.
3050 #undef read
3051         return read(fd, buf, len);
3052     }
3053 }
3054