1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/MC/MCContext.h"
13 #include "llvm/MC/MCExpr.h"
14 #include "llvm/MC/MCInst.h"
15 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
16 #include "llvm/MC/MCStreamer.h"
17 #include "llvm/MC/MCSubtargetInfo.h"
18 #include "llvm/MC/MCTargetAsmParser.h"
19 #include "llvm/Support/TargetRegistry.h"
20
21 using namespace llvm;
22
23 // Return true if Expr is in the range [MinValue, MaxValue].
inRange(const MCExpr * Expr,int64_t MinValue,int64_t MaxValue)24 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
25 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
26 int64_t Value = CE->getValue();
27 return Value >= MinValue && Value <= MaxValue;
28 }
29 return false;
30 }
31
32 namespace {
33 enum RegisterKind {
34 GR32Reg,
35 GRH32Reg,
36 GR64Reg,
37 GR128Reg,
38 ADDR32Reg,
39 ADDR64Reg,
40 FP32Reg,
41 FP64Reg,
42 FP128Reg
43 };
44
45 enum MemoryKind {
46 BDMem,
47 BDXMem,
48 BDLMem
49 };
50
51 class SystemZOperand : public MCParsedAsmOperand {
52 public:
53 private:
54 enum OperandKind {
55 KindInvalid,
56 KindToken,
57 KindReg,
58 KindAccessReg,
59 KindImm,
60 KindImmTLS,
61 KindMem
62 };
63
64 OperandKind Kind;
65 SMLoc StartLoc, EndLoc;
66
67 // A string of length Length, starting at Data.
68 struct TokenOp {
69 const char *Data;
70 unsigned Length;
71 };
72
73 // LLVM register Num, which has kind Kind. In some ways it might be
74 // easier for this class to have a register bank (general, floating-point
75 // or access) and a raw register number (0-15). This would postpone the
76 // interpretation of the operand to the add*() methods and avoid the need
77 // for context-dependent parsing. However, we do things the current way
78 // because of the virtual getReg() method, which needs to distinguish
79 // between (say) %r0 used as a single register and %r0 used as a pair.
80 // Context-dependent parsing can also give us slightly better error
81 // messages when invalid pairs like %r1 are used.
82 struct RegOp {
83 RegisterKind Kind;
84 unsigned Num;
85 };
86
87 // Base + Disp + Index, where Base and Index are LLVM registers or 0.
88 // RegKind says what type the registers have (ADDR32Reg or ADDR64Reg).
89 // Length is the operand length for D(L,B)-style operands, otherwise
90 // it is null.
91 struct MemOp {
92 unsigned Base : 8;
93 unsigned Index : 8;
94 unsigned RegKind : 8;
95 unsigned Unused : 8;
96 const MCExpr *Disp;
97 const MCExpr *Length;
98 };
99
100 // Imm is an immediate operand, and Sym is an optional TLS symbol
101 // for use with a __tls_get_offset marker relocation.
102 struct ImmTLSOp {
103 const MCExpr *Imm;
104 const MCExpr *Sym;
105 };
106
107 union {
108 TokenOp Token;
109 RegOp Reg;
110 unsigned AccessReg;
111 const MCExpr *Imm;
112 ImmTLSOp ImmTLS;
113 MemOp Mem;
114 };
115
addExpr(MCInst & Inst,const MCExpr * Expr) const116 void addExpr(MCInst &Inst, const MCExpr *Expr) const {
117 // Add as immediates when possible. Null MCExpr = 0.
118 if (!Expr)
119 Inst.addOperand(MCOperand::CreateImm(0));
120 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
121 Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
122 else
123 Inst.addOperand(MCOperand::CreateExpr(Expr));
124 }
125
126 public:
SystemZOperand(OperandKind kind,SMLoc startLoc,SMLoc endLoc)127 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
128 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
129
130 // Create particular kinds of operand.
createInvalid(SMLoc StartLoc,SMLoc EndLoc)131 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
132 SMLoc EndLoc) {
133 return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
134 }
createToken(StringRef Str,SMLoc Loc)135 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
136 auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc);
137 Op->Token.Data = Str.data();
138 Op->Token.Length = Str.size();
139 return Op;
140 }
141 static std::unique_ptr<SystemZOperand>
createReg(RegisterKind Kind,unsigned Num,SMLoc StartLoc,SMLoc EndLoc)142 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
143 auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
144 Op->Reg.Kind = Kind;
145 Op->Reg.Num = Num;
146 return Op;
147 }
148 static std::unique_ptr<SystemZOperand>
createAccessReg(unsigned Num,SMLoc StartLoc,SMLoc EndLoc)149 createAccessReg(unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
150 auto Op = make_unique<SystemZOperand>(KindAccessReg, StartLoc, EndLoc);
151 Op->AccessReg = Num;
152 return Op;
153 }
154 static std::unique_ptr<SystemZOperand>
createImm(const MCExpr * Expr,SMLoc StartLoc,SMLoc EndLoc)155 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
156 auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
157 Op->Imm = Expr;
158 return Op;
159 }
160 static std::unique_ptr<SystemZOperand>
createMem(RegisterKind RegKind,unsigned Base,const MCExpr * Disp,unsigned Index,const MCExpr * Length,SMLoc StartLoc,SMLoc EndLoc)161 createMem(RegisterKind RegKind, unsigned Base, const MCExpr *Disp,
162 unsigned Index, const MCExpr *Length, SMLoc StartLoc,
163 SMLoc EndLoc) {
164 auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
165 Op->Mem.RegKind = RegKind;
166 Op->Mem.Base = Base;
167 Op->Mem.Index = Index;
168 Op->Mem.Disp = Disp;
169 Op->Mem.Length = Length;
170 return Op;
171 }
172 static std::unique_ptr<SystemZOperand>
createImmTLS(const MCExpr * Imm,const MCExpr * Sym,SMLoc StartLoc,SMLoc EndLoc)173 createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
174 SMLoc StartLoc, SMLoc EndLoc) {
175 auto Op = make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
176 Op->ImmTLS.Imm = Imm;
177 Op->ImmTLS.Sym = Sym;
178 return Op;
179 }
180
181 // Token operands
isToken() const182 bool isToken() const override {
183 return Kind == KindToken;
184 }
getToken() const185 StringRef getToken() const {
186 assert(Kind == KindToken && "Not a token");
187 return StringRef(Token.Data, Token.Length);
188 }
189
190 // Register operands.
isReg() const191 bool isReg() const override {
192 return Kind == KindReg;
193 }
isReg(RegisterKind RegKind) const194 bool isReg(RegisterKind RegKind) const {
195 return Kind == KindReg && Reg.Kind == RegKind;
196 }
getReg() const197 unsigned getReg() const override {
198 assert(Kind == KindReg && "Not a register");
199 return Reg.Num;
200 }
201
202 // Access register operands. Access registers aren't exposed to LLVM
203 // as registers.
isAccessReg() const204 bool isAccessReg() const {
205 return Kind == KindAccessReg;
206 }
207
208 // Immediate operands.
isImm() const209 bool isImm() const override {
210 return Kind == KindImm;
211 }
isImm(int64_t MinValue,int64_t MaxValue) const212 bool isImm(int64_t MinValue, int64_t MaxValue) const {
213 return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
214 }
getImm() const215 const MCExpr *getImm() const {
216 assert(Kind == KindImm && "Not an immediate");
217 return Imm;
218 }
219
220 // Immediate operands with optional TLS symbol.
isImmTLS() const221 bool isImmTLS() const {
222 return Kind == KindImmTLS;
223 }
224
225 // Memory operands.
isMem() const226 bool isMem() const override {
227 return Kind == KindMem;
228 }
isMem(RegisterKind RegKind,MemoryKind MemKind) const229 bool isMem(RegisterKind RegKind, MemoryKind MemKind) const {
230 return (Kind == KindMem &&
231 Mem.RegKind == RegKind &&
232 (MemKind == BDXMem || !Mem.Index) &&
233 (MemKind == BDLMem) == (Mem.Length != nullptr));
234 }
isMemDisp12(RegisterKind RegKind,MemoryKind MemKind) const235 bool isMemDisp12(RegisterKind RegKind, MemoryKind MemKind) const {
236 return isMem(RegKind, MemKind) && inRange(Mem.Disp, 0, 0xfff);
237 }
isMemDisp20(RegisterKind RegKind,MemoryKind MemKind) const238 bool isMemDisp20(RegisterKind RegKind, MemoryKind MemKind) const {
239 return isMem(RegKind, MemKind) && inRange(Mem.Disp, -524288, 524287);
240 }
isMemDisp12Len8(RegisterKind RegKind) const241 bool isMemDisp12Len8(RegisterKind RegKind) const {
242 return isMemDisp12(RegKind, BDLMem) && inRange(Mem.Length, 1, 0x100);
243 }
244
245 // Override MCParsedAsmOperand.
getStartLoc() const246 SMLoc getStartLoc() const override { return StartLoc; }
getEndLoc() const247 SMLoc getEndLoc() const override { return EndLoc; }
248 void print(raw_ostream &OS) const override;
249
250 // Used by the TableGen code to add particular types of operand
251 // to an instruction.
addRegOperands(MCInst & Inst,unsigned N) const252 void addRegOperands(MCInst &Inst, unsigned N) const {
253 assert(N == 1 && "Invalid number of operands");
254 Inst.addOperand(MCOperand::CreateReg(getReg()));
255 }
addAccessRegOperands(MCInst & Inst,unsigned N) const256 void addAccessRegOperands(MCInst &Inst, unsigned N) const {
257 assert(N == 1 && "Invalid number of operands");
258 assert(Kind == KindAccessReg && "Invalid operand type");
259 Inst.addOperand(MCOperand::CreateImm(AccessReg));
260 }
addImmOperands(MCInst & Inst,unsigned N) const261 void addImmOperands(MCInst &Inst, unsigned N) const {
262 assert(N == 1 && "Invalid number of operands");
263 addExpr(Inst, getImm());
264 }
addBDAddrOperands(MCInst & Inst,unsigned N) const265 void addBDAddrOperands(MCInst &Inst, unsigned N) const {
266 assert(N == 2 && "Invalid number of operands");
267 assert(Kind == KindMem && Mem.Index == 0 && "Invalid operand type");
268 Inst.addOperand(MCOperand::CreateReg(Mem.Base));
269 addExpr(Inst, Mem.Disp);
270 }
addBDXAddrOperands(MCInst & Inst,unsigned N) const271 void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
272 assert(N == 3 && "Invalid number of operands");
273 assert(Kind == KindMem && "Invalid operand type");
274 Inst.addOperand(MCOperand::CreateReg(Mem.Base));
275 addExpr(Inst, Mem.Disp);
276 Inst.addOperand(MCOperand::CreateReg(Mem.Index));
277 }
addBDLAddrOperands(MCInst & Inst,unsigned N) const278 void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
279 assert(N == 3 && "Invalid number of operands");
280 assert(Kind == KindMem && "Invalid operand type");
281 Inst.addOperand(MCOperand::CreateReg(Mem.Base));
282 addExpr(Inst, Mem.Disp);
283 addExpr(Inst, Mem.Length);
284 }
addImmTLSOperands(MCInst & Inst,unsigned N) const285 void addImmTLSOperands(MCInst &Inst, unsigned N) const {
286 assert(N == 2 && "Invalid number of operands");
287 assert(Kind == KindImmTLS && "Invalid operand type");
288 addExpr(Inst, ImmTLS.Imm);
289 if (ImmTLS.Sym)
290 addExpr(Inst, ImmTLS.Sym);
291 }
292
293 // Used by the TableGen code to check for particular operand types.
isGR32() const294 bool isGR32() const { return isReg(GR32Reg); }
isGRH32() const295 bool isGRH32() const { return isReg(GRH32Reg); }
isGRX32() const296 bool isGRX32() const { return false; }
isGR64() const297 bool isGR64() const { return isReg(GR64Reg); }
isGR128() const298 bool isGR128() const { return isReg(GR128Reg); }
isADDR32() const299 bool isADDR32() const { return isReg(ADDR32Reg); }
isADDR64() const300 bool isADDR64() const { return isReg(ADDR64Reg); }
isADDR128() const301 bool isADDR128() const { return false; }
isFP32() const302 bool isFP32() const { return isReg(FP32Reg); }
isFP64() const303 bool isFP64() const { return isReg(FP64Reg); }
isFP128() const304 bool isFP128() const { return isReg(FP128Reg); }
isBDAddr32Disp12() const305 bool isBDAddr32Disp12() const { return isMemDisp12(ADDR32Reg, BDMem); }
isBDAddr32Disp20() const306 bool isBDAddr32Disp20() const { return isMemDisp20(ADDR32Reg, BDMem); }
isBDAddr64Disp12() const307 bool isBDAddr64Disp12() const { return isMemDisp12(ADDR64Reg, BDMem); }
isBDAddr64Disp20() const308 bool isBDAddr64Disp20() const { return isMemDisp20(ADDR64Reg, BDMem); }
isBDXAddr64Disp12() const309 bool isBDXAddr64Disp12() const { return isMemDisp12(ADDR64Reg, BDXMem); }
isBDXAddr64Disp20() const310 bool isBDXAddr64Disp20() const { return isMemDisp20(ADDR64Reg, BDXMem); }
isBDLAddr64Disp12Len8() const311 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); }
isU4Imm() const312 bool isU4Imm() const { return isImm(0, 15); }
isU6Imm() const313 bool isU6Imm() const { return isImm(0, 63); }
isU8Imm() const314 bool isU8Imm() const { return isImm(0, 255); }
isS8Imm() const315 bool isS8Imm() const { return isImm(-128, 127); }
isU16Imm() const316 bool isU16Imm() const { return isImm(0, 65535); }
isS16Imm() const317 bool isS16Imm() const { return isImm(-32768, 32767); }
isU32Imm() const318 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
isS32Imm() const319 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
320 };
321
322 class SystemZAsmParser : public MCTargetAsmParser {
323 #define GET_ASSEMBLER_HEADER
324 #include "SystemZGenAsmMatcher.inc"
325
326 private:
327 MCSubtargetInfo &STI;
328 MCAsmParser &Parser;
329 enum RegisterGroup {
330 RegGR,
331 RegFP,
332 RegAccess
333 };
334 struct Register {
335 RegisterGroup Group;
336 unsigned Num;
337 SMLoc StartLoc, EndLoc;
338 };
339
340 bool parseRegister(Register &Reg);
341
342 bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs,
343 bool IsAddress = false);
344
345 OperandMatchResultTy parseRegister(OperandVector &Operands,
346 RegisterGroup Group, const unsigned *Regs,
347 RegisterKind Kind);
348
349 bool parseAddress(unsigned &Base, const MCExpr *&Disp,
350 unsigned &Index, const MCExpr *&Length,
351 const unsigned *Regs, RegisterKind RegKind);
352
353 OperandMatchResultTy parseAddress(OperandVector &Operands,
354 const unsigned *Regs, RegisterKind RegKind,
355 MemoryKind MemKind);
356
357 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
358 int64_t MaxVal, bool AllowTLS);
359
360 bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
361
362 public:
SystemZAsmParser(MCSubtargetInfo & sti,MCAsmParser & parser,const MCInstrInfo & MII,const MCTargetOptions & Options)363 SystemZAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
364 const MCInstrInfo &MII,
365 const MCTargetOptions &Options)
366 : MCTargetAsmParser(), STI(sti), Parser(parser) {
367 MCAsmParserExtension::Initialize(Parser);
368
369 // Initialize the set of available features.
370 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
371 }
372
373 // Override MCTargetAsmParser.
374 bool ParseDirective(AsmToken DirectiveID) override;
375 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
376 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
377 SMLoc NameLoc, OperandVector &Operands) override;
378 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
379 OperandVector &Operands, MCStreamer &Out,
380 uint64_t &ErrorInfo,
381 bool MatchingInlineAsm) override;
382
383 // Used by the TableGen code to parse particular operand types.
parseGR32(OperandVector & Operands)384 OperandMatchResultTy parseGR32(OperandVector &Operands) {
385 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg);
386 }
parseGRH32(OperandVector & Operands)387 OperandMatchResultTy parseGRH32(OperandVector &Operands) {
388 return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg);
389 }
parseGRX32(OperandVector & Operands)390 OperandMatchResultTy parseGRX32(OperandVector &Operands) {
391 llvm_unreachable("GRX32 should only be used for pseudo instructions");
392 }
parseGR64(OperandVector & Operands)393 OperandMatchResultTy parseGR64(OperandVector &Operands) {
394 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg);
395 }
parseGR128(OperandVector & Operands)396 OperandMatchResultTy parseGR128(OperandVector &Operands) {
397 return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg);
398 }
parseADDR32(OperandVector & Operands)399 OperandMatchResultTy parseADDR32(OperandVector &Operands) {
400 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg);
401 }
parseADDR64(OperandVector & Operands)402 OperandMatchResultTy parseADDR64(OperandVector &Operands) {
403 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg);
404 }
parseADDR128(OperandVector & Operands)405 OperandMatchResultTy parseADDR128(OperandVector &Operands) {
406 llvm_unreachable("Shouldn't be used as an operand");
407 }
parseFP32(OperandVector & Operands)408 OperandMatchResultTy parseFP32(OperandVector &Operands) {
409 return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg);
410 }
parseFP64(OperandVector & Operands)411 OperandMatchResultTy parseFP64(OperandVector &Operands) {
412 return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg);
413 }
parseFP128(OperandVector & Operands)414 OperandMatchResultTy parseFP128(OperandVector &Operands) {
415 return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg);
416 }
parseBDAddr32(OperandVector & Operands)417 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
418 return parseAddress(Operands, SystemZMC::GR32Regs, ADDR32Reg, BDMem);
419 }
parseBDAddr64(OperandVector & Operands)420 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
421 return parseAddress(Operands, SystemZMC::GR64Regs, ADDR64Reg, BDMem);
422 }
parseBDXAddr64(OperandVector & Operands)423 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
424 return parseAddress(Operands, SystemZMC::GR64Regs, ADDR64Reg, BDXMem);
425 }
parseBDLAddr64(OperandVector & Operands)426 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
427 return parseAddress(Operands, SystemZMC::GR64Regs, ADDR64Reg, BDLMem);
428 }
429 OperandMatchResultTy parseAccessReg(OperandVector &Operands);
parsePCRel16(OperandVector & Operands)430 OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
431 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
432 }
parsePCRel32(OperandVector & Operands)433 OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
434 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
435 }
parsePCRelTLS16(OperandVector & Operands)436 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
437 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
438 }
parsePCRelTLS32(OperandVector & Operands)439 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
440 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
441 }
442 };
443 } // end anonymous namespace
444
445 #define GET_REGISTER_MATCHER
446 #define GET_SUBTARGET_FEATURE_NAME
447 #define GET_MATCHER_IMPLEMENTATION
448 #include "SystemZGenAsmMatcher.inc"
449
print(raw_ostream & OS) const450 void SystemZOperand::print(raw_ostream &OS) const {
451 llvm_unreachable("Not implemented");
452 }
453
454 // Parse one register of the form %<prefix><number>.
parseRegister(Register & Reg)455 bool SystemZAsmParser::parseRegister(Register &Reg) {
456 Reg.StartLoc = Parser.getTok().getLoc();
457
458 // Eat the % prefix.
459 if (Parser.getTok().isNot(AsmToken::Percent))
460 return Error(Parser.getTok().getLoc(), "register expected");
461 Parser.Lex();
462
463 // Expect a register name.
464 if (Parser.getTok().isNot(AsmToken::Identifier))
465 return Error(Reg.StartLoc, "invalid register");
466
467 // Check that there's a prefix.
468 StringRef Name = Parser.getTok().getString();
469 if (Name.size() < 2)
470 return Error(Reg.StartLoc, "invalid register");
471 char Prefix = Name[0];
472
473 // Treat the rest of the register name as a register number.
474 if (Name.substr(1).getAsInteger(10, Reg.Num))
475 return Error(Reg.StartLoc, "invalid register");
476
477 // Look for valid combinations of prefix and number.
478 if (Prefix == 'r' && Reg.Num < 16)
479 Reg.Group = RegGR;
480 else if (Prefix == 'f' && Reg.Num < 16)
481 Reg.Group = RegFP;
482 else if (Prefix == 'a' && Reg.Num < 16)
483 Reg.Group = RegAccess;
484 else
485 return Error(Reg.StartLoc, "invalid register");
486
487 Reg.EndLoc = Parser.getTok().getLoc();
488 Parser.Lex();
489 return false;
490 }
491
492 // Parse a register of group Group. If Regs is nonnull, use it to map
493 // the raw register number to LLVM numbering, with zero entries indicating
494 // an invalid register. IsAddress says whether the register appears in an
495 // address context.
parseRegister(Register & Reg,RegisterGroup Group,const unsigned * Regs,bool IsAddress)496 bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group,
497 const unsigned *Regs, bool IsAddress) {
498 if (parseRegister(Reg))
499 return true;
500 if (Reg.Group != Group)
501 return Error(Reg.StartLoc, "invalid operand for instruction");
502 if (Regs && Regs[Reg.Num] == 0)
503 return Error(Reg.StartLoc, "invalid register pair");
504 if (Reg.Num == 0 && IsAddress)
505 return Error(Reg.StartLoc, "%r0 used in an address");
506 if (Regs)
507 Reg.Num = Regs[Reg.Num];
508 return false;
509 }
510
511 // Parse a register and add it to Operands. The other arguments are as above.
512 SystemZAsmParser::OperandMatchResultTy
parseRegister(OperandVector & Operands,RegisterGroup Group,const unsigned * Regs,RegisterKind Kind)513 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group,
514 const unsigned *Regs, RegisterKind Kind) {
515 if (Parser.getTok().isNot(AsmToken::Percent))
516 return MatchOperand_NoMatch;
517
518 Register Reg;
519 bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg);
520 if (parseRegister(Reg, Group, Regs, IsAddress))
521 return MatchOperand_ParseFail;
522
523 Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num,
524 Reg.StartLoc, Reg.EndLoc));
525 return MatchOperand_Success;
526 }
527
528 // Parse a memory operand into Base, Disp, Index and Length.
529 // Regs maps asm register numbers to LLVM register numbers and RegKind
530 // says what kind of address register we're using (ADDR32Reg or ADDR64Reg).
parseAddress(unsigned & Base,const MCExpr * & Disp,unsigned & Index,const MCExpr * & Length,const unsigned * Regs,RegisterKind RegKind)531 bool SystemZAsmParser::parseAddress(unsigned &Base, const MCExpr *&Disp,
532 unsigned &Index, const MCExpr *&Length,
533 const unsigned *Regs,
534 RegisterKind RegKind) {
535 // Parse the displacement, which must always be present.
536 if (getParser().parseExpression(Disp))
537 return true;
538
539 // Parse the optional base and index.
540 Index = 0;
541 Base = 0;
542 Length = nullptr;
543 if (getLexer().is(AsmToken::LParen)) {
544 Parser.Lex();
545
546 if (getLexer().is(AsmToken::Percent)) {
547 // Parse the first register and decide whether it's a base or an index.
548 Register Reg;
549 if (parseRegister(Reg, RegGR, Regs, RegKind))
550 return true;
551 if (getLexer().is(AsmToken::Comma))
552 Index = Reg.Num;
553 else
554 Base = Reg.Num;
555 } else {
556 // Parse the length.
557 if (getParser().parseExpression(Length))
558 return true;
559 }
560
561 // Check whether there's a second register. It's the base if so.
562 if (getLexer().is(AsmToken::Comma)) {
563 Parser.Lex();
564 Register Reg;
565 if (parseRegister(Reg, RegGR, Regs, RegKind))
566 return true;
567 Base = Reg.Num;
568 }
569
570 // Consume the closing bracket.
571 if (getLexer().isNot(AsmToken::RParen))
572 return Error(Parser.getTok().getLoc(), "unexpected token in address");
573 Parser.Lex();
574 }
575 return false;
576 }
577
578 // Parse a memory operand and add it to Operands. The other arguments
579 // are as above.
580 SystemZAsmParser::OperandMatchResultTy
parseAddress(OperandVector & Operands,const unsigned * Regs,RegisterKind RegKind,MemoryKind MemKind)581 SystemZAsmParser::parseAddress(OperandVector &Operands, const unsigned *Regs,
582 RegisterKind RegKind, MemoryKind MemKind) {
583 SMLoc StartLoc = Parser.getTok().getLoc();
584 unsigned Base, Index;
585 const MCExpr *Disp;
586 const MCExpr *Length;
587 if (parseAddress(Base, Disp, Index, Length, Regs, RegKind))
588 return MatchOperand_ParseFail;
589
590 if (Index && MemKind != BDXMem)
591 {
592 Error(StartLoc, "invalid use of indexed addressing");
593 return MatchOperand_ParseFail;
594 }
595
596 if (Length && MemKind != BDLMem)
597 {
598 Error(StartLoc, "invalid use of length addressing");
599 return MatchOperand_ParseFail;
600 }
601
602 if (!Length && MemKind == BDLMem)
603 {
604 Error(StartLoc, "missing length in address");
605 return MatchOperand_ParseFail;
606 }
607
608 SMLoc EndLoc =
609 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
610 Operands.push_back(SystemZOperand::createMem(RegKind, Base, Disp, Index,
611 Length, StartLoc, EndLoc));
612 return MatchOperand_Success;
613 }
614
ParseDirective(AsmToken DirectiveID)615 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
616 return true;
617 }
618
ParseRegister(unsigned & RegNo,SMLoc & StartLoc,SMLoc & EndLoc)619 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
620 SMLoc &EndLoc) {
621 Register Reg;
622 if (parseRegister(Reg))
623 return true;
624 if (Reg.Group == RegGR)
625 RegNo = SystemZMC::GR64Regs[Reg.Num];
626 else if (Reg.Group == RegFP)
627 RegNo = SystemZMC::FP64Regs[Reg.Num];
628 else
629 // FIXME: Access registers aren't modelled as LLVM registers yet.
630 return Error(Reg.StartLoc, "invalid operand for instruction");
631 StartLoc = Reg.StartLoc;
632 EndLoc = Reg.EndLoc;
633 return false;
634 }
635
ParseInstruction(ParseInstructionInfo & Info,StringRef Name,SMLoc NameLoc,OperandVector & Operands)636 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
637 StringRef Name, SMLoc NameLoc,
638 OperandVector &Operands) {
639 Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
640
641 // Read the remaining operands.
642 if (getLexer().isNot(AsmToken::EndOfStatement)) {
643 // Read the first operand.
644 if (parseOperand(Operands, Name)) {
645 Parser.eatToEndOfStatement();
646 return true;
647 }
648
649 // Read any subsequent operands.
650 while (getLexer().is(AsmToken::Comma)) {
651 Parser.Lex();
652 if (parseOperand(Operands, Name)) {
653 Parser.eatToEndOfStatement();
654 return true;
655 }
656 }
657 if (getLexer().isNot(AsmToken::EndOfStatement)) {
658 SMLoc Loc = getLexer().getLoc();
659 Parser.eatToEndOfStatement();
660 return Error(Loc, "unexpected token in argument list");
661 }
662 }
663
664 // Consume the EndOfStatement.
665 Parser.Lex();
666 return false;
667 }
668
parseOperand(OperandVector & Operands,StringRef Mnemonic)669 bool SystemZAsmParser::parseOperand(OperandVector &Operands,
670 StringRef Mnemonic) {
671 // Check if the current operand has a custom associated parser, if so, try to
672 // custom parse the operand, or fallback to the general approach.
673 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
674 if (ResTy == MatchOperand_Success)
675 return false;
676
677 // If there wasn't a custom match, try the generic matcher below. Otherwise,
678 // there was a match, but an error occurred, in which case, just return that
679 // the operand parsing failed.
680 if (ResTy == MatchOperand_ParseFail)
681 return true;
682
683 // Check for a register. All real register operands should have used
684 // a context-dependent parse routine, which gives the required register
685 // class. The code is here to mop up other cases, like those where
686 // the instruction isn't recognized.
687 if (Parser.getTok().is(AsmToken::Percent)) {
688 Register Reg;
689 if (parseRegister(Reg))
690 return true;
691 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
692 return false;
693 }
694
695 // The only other type of operand is an immediate or address. As above,
696 // real address operands should have used a context-dependent parse routine,
697 // so we treat any plain expression as an immediate.
698 SMLoc StartLoc = Parser.getTok().getLoc();
699 unsigned Base, Index;
700 const MCExpr *Expr, *Length;
701 if (parseAddress(Base, Expr, Index, Length, SystemZMC::GR64Regs, ADDR64Reg))
702 return true;
703
704 SMLoc EndLoc =
705 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
706 if (Base || Index || Length)
707 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
708 else
709 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
710 return false;
711 }
712
MatchAndEmitInstruction(SMLoc IDLoc,unsigned & Opcode,OperandVector & Operands,MCStreamer & Out,uint64_t & ErrorInfo,bool MatchingInlineAsm)713 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
714 OperandVector &Operands,
715 MCStreamer &Out,
716 uint64_t &ErrorInfo,
717 bool MatchingInlineAsm) {
718 MCInst Inst;
719 unsigned MatchResult;
720
721 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
722 MatchingInlineAsm);
723 switch (MatchResult) {
724 case Match_Success:
725 Inst.setLoc(IDLoc);
726 Out.EmitInstruction(Inst, STI);
727 return false;
728
729 case Match_MissingFeature: {
730 assert(ErrorInfo && "Unknown missing feature!");
731 // Special case the error message for the very common case where only
732 // a single subtarget feature is missing
733 std::string Msg = "instruction requires:";
734 uint64_t Mask = 1;
735 for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) {
736 if (ErrorInfo & Mask) {
737 Msg += " ";
738 Msg += getSubtargetFeatureName(ErrorInfo & Mask);
739 }
740 Mask <<= 1;
741 }
742 return Error(IDLoc, Msg);
743 }
744
745 case Match_InvalidOperand: {
746 SMLoc ErrorLoc = IDLoc;
747 if (ErrorInfo != ~0ULL) {
748 if (ErrorInfo >= Operands.size())
749 return Error(IDLoc, "too few operands for instruction");
750
751 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
752 if (ErrorLoc == SMLoc())
753 ErrorLoc = IDLoc;
754 }
755 return Error(ErrorLoc, "invalid operand for instruction");
756 }
757
758 case Match_MnemonicFail:
759 return Error(IDLoc, "invalid instruction");
760 }
761
762 llvm_unreachable("Unexpected match type");
763 }
764
765 SystemZAsmParser::OperandMatchResultTy
parseAccessReg(OperandVector & Operands)766 SystemZAsmParser::parseAccessReg(OperandVector &Operands) {
767 if (Parser.getTok().isNot(AsmToken::Percent))
768 return MatchOperand_NoMatch;
769
770 Register Reg;
771 if (parseRegister(Reg, RegAccess, nullptr))
772 return MatchOperand_ParseFail;
773
774 Operands.push_back(SystemZOperand::createAccessReg(Reg.Num,
775 Reg.StartLoc,
776 Reg.EndLoc));
777 return MatchOperand_Success;
778 }
779
780 SystemZAsmParser::OperandMatchResultTy
parsePCRel(OperandVector & Operands,int64_t MinVal,int64_t MaxVal,bool AllowTLS)781 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
782 int64_t MaxVal, bool AllowTLS) {
783 MCContext &Ctx = getContext();
784 MCStreamer &Out = getStreamer();
785 const MCExpr *Expr;
786 SMLoc StartLoc = Parser.getTok().getLoc();
787 if (getParser().parseExpression(Expr))
788 return MatchOperand_NoMatch;
789
790 // For consistency with the GNU assembler, treat immediates as offsets
791 // from ".".
792 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
793 int64_t Value = CE->getValue();
794 if ((Value & 1) || Value < MinVal || Value > MaxVal) {
795 Error(StartLoc, "offset out of range");
796 return MatchOperand_ParseFail;
797 }
798 MCSymbol *Sym = Ctx.CreateTempSymbol();
799 Out.EmitLabel(Sym);
800 const MCExpr *Base = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_None,
801 Ctx);
802 Expr = Value == 0 ? Base : MCBinaryExpr::CreateAdd(Base, Expr, Ctx);
803 }
804
805 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
806 const MCExpr *Sym = nullptr;
807 if (AllowTLS && getLexer().is(AsmToken::Colon)) {
808 Parser.Lex();
809
810 if (Parser.getTok().isNot(AsmToken::Identifier)) {
811 Error(Parser.getTok().getLoc(), "unexpected token");
812 return MatchOperand_ParseFail;
813 }
814
815 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
816 StringRef Name = Parser.getTok().getString();
817 if (Name == "tls_gdcall")
818 Kind = MCSymbolRefExpr::VK_TLSGD;
819 else if (Name == "tls_ldcall")
820 Kind = MCSymbolRefExpr::VK_TLSLDM;
821 else {
822 Error(Parser.getTok().getLoc(), "unknown TLS tag");
823 return MatchOperand_ParseFail;
824 }
825 Parser.Lex();
826
827 if (Parser.getTok().isNot(AsmToken::Colon)) {
828 Error(Parser.getTok().getLoc(), "unexpected token");
829 return MatchOperand_ParseFail;
830 }
831 Parser.Lex();
832
833 if (Parser.getTok().isNot(AsmToken::Identifier)) {
834 Error(Parser.getTok().getLoc(), "unexpected token");
835 return MatchOperand_ParseFail;
836 }
837
838 StringRef Identifier = Parser.getTok().getString();
839 Sym = MCSymbolRefExpr::Create(Ctx.GetOrCreateSymbol(Identifier),
840 Kind, Ctx);
841 Parser.Lex();
842 }
843
844 SMLoc EndLoc =
845 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
846
847 if (AllowTLS)
848 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
849 StartLoc, EndLoc));
850 else
851 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
852
853 return MatchOperand_Success;
854 }
855
856 // Force static initialization.
LLVMInitializeSystemZAsmParser()857 extern "C" void LLVMInitializeSystemZAsmParser() {
858 RegisterMCAsmParser<SystemZAsmParser> X(TheSystemZTarget);
859 }
860