• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file describes how to lower LLVM code to machine code.  This has two
12 /// main components:
13 ///
14 ///  1. Which ValueTypes are natively supported by the target.
15 ///  2. Which operations are supported for supported ValueTypes.
16 ///  3. Cost thresholds for alternative implementations of certain operations.
17 ///
18 /// In addition it has a few other components, like information about FP
19 /// immediates.
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #ifndef LLVM_TARGET_TARGETLOWERING_H
24 #define LLVM_TARGET_TARGETLOWERING_H
25 
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/CodeGen/DAGCombine.h"
28 #include "llvm/CodeGen/RuntimeLibcalls.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/Target/TargetCallingConv.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <climits>
40 #include <map>
41 #include <vector>
42 
43 namespace llvm {
44   class CallInst;
45   class CCState;
46   class FastISel;
47   class FunctionLoweringInfo;
48   class ImmutableCallSite;
49   class IntrinsicInst;
50   class MachineBasicBlock;
51   class MachineFunction;
52   class MachineInstr;
53   class MachineJumpTableInfo;
54   class MachineLoop;
55   class Mangler;
56   class MCContext;
57   class MCExpr;
58   class MCSymbol;
59   template<typename T> class SmallVectorImpl;
60   class DataLayout;
61   class TargetRegisterClass;
62   class TargetLibraryInfo;
63   class TargetLoweringObjectFile;
64   class Value;
65 
66   namespace Sched {
67     enum Preference {
68       None,             // No preference
69       Source,           // Follow source order.
70       RegPressure,      // Scheduling for lowest register pressure.
71       Hybrid,           // Scheduling for both latency and register pressure.
72       ILP,              // Scheduling for ILP in low register pressure mode.
73       VLIW              // Scheduling for VLIW targets.
74     };
75   }
76 
77 /// This base class for TargetLowering contains the SelectionDAG-independent
78 /// parts that can be used from the rest of CodeGen.
79 class TargetLoweringBase {
80   TargetLoweringBase(const TargetLoweringBase&) = delete;
81   void operator=(const TargetLoweringBase&) = delete;
82 
83 public:
84   /// This enum indicates whether operations are valid for a target, and if not,
85   /// what action should be used to make them valid.
86   enum LegalizeAction {
87     Legal,      // The target natively supports this operation.
88     Promote,    // This operation should be executed in a larger type.
89     Expand,     // Try to expand this to other ops, otherwise use a libcall.
90     Custom      // Use the LowerOperation hook to implement custom lowering.
91   };
92 
93   /// This enum indicates whether a types are legal for a target, and if not,
94   /// what action should be used to make them valid.
95   enum LegalizeTypeAction {
96     TypeLegal,           // The target natively supports this type.
97     TypePromoteInteger,  // Replace this integer with a larger one.
98     TypeExpandInteger,   // Split this integer into two of half the size.
99     TypeSoftenFloat,     // Convert this float to a same size integer type.
100     TypeExpandFloat,     // Split this float into two of half the size.
101     TypeScalarizeVector, // Replace this one-element vector with its element.
102     TypeSplitVector,     // Split this vector into two of half the size.
103     TypeWidenVector,     // This vector should be widened into a larger vector.
104     TypePromoteFloat     // Replace this float with a larger one.
105   };
106 
107   /// LegalizeKind holds the legalization kind that needs to happen to EVT
108   /// in order to type-legalize it.
109   typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
110 
111   /// Enum that describes how the target represents true/false values.
112   enum BooleanContent {
113     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
114     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
115     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
116   };
117 
118   /// Enum that describes what type of support for selects the target has.
119   enum SelectSupportKind {
120     ScalarValSelect,      // The target supports scalar selects (ex: cmov).
121     ScalarCondVectorVal,  // The target supports selects with a scalar condition
122                           // and vector values (ex: cmov).
123     VectorMaskSelect      // The target supports vector selects with a vector
124                           // mask (ex: x86 blends).
125   };
126 
127   /// Enum that specifies what a AtomicRMWInst is expanded to, if at all. Exists
128   /// because different targets have different levels of support for these
129   /// atomic RMW instructions, and also have different options w.r.t. what they should
130   /// expand to.
131   enum class AtomicRMWExpansionKind {
132     None,      // Don't expand the instruction.
133     LLSC,      // Expand the instruction into loadlinked/storeconditional; used
134                // by ARM/AArch64. Implies `hasLoadLinkedStoreConditional`
135                // returns true.
136     CmpXChg,   // Expand the instruction into cmpxchg; used by at least X86.
137   };
138 
getExtendForContent(BooleanContent Content)139   static ISD::NodeType getExtendForContent(BooleanContent Content) {
140     switch (Content) {
141     case UndefinedBooleanContent:
142       // Extend by adding rubbish bits.
143       return ISD::ANY_EXTEND;
144     case ZeroOrOneBooleanContent:
145       // Extend by adding zero bits.
146       return ISD::ZERO_EXTEND;
147     case ZeroOrNegativeOneBooleanContent:
148       // Extend by copying the sign bit.
149       return ISD::SIGN_EXTEND;
150     }
151     llvm_unreachable("Invalid content kind");
152   }
153 
154   /// NOTE: The TargetMachine owns TLOF.
155   explicit TargetLoweringBase(const TargetMachine &TM);
~TargetLoweringBase()156   virtual ~TargetLoweringBase() {}
157 
158 protected:
159   /// \brief Initialize all of the actions to default values.
160   void initActions();
161 
162 public:
getTargetMachine()163   const TargetMachine &getTargetMachine() const { return TM; }
getDataLayout()164   const DataLayout *getDataLayout() const { return TM.getDataLayout(); }
165 
isBigEndian()166   bool isBigEndian() const { return !IsLittleEndian; }
isLittleEndian()167   bool isLittleEndian() const { return IsLittleEndian; }
168 
169   /// Return the pointer type for the given address space, defaults to
170   /// the pointer type from the data layout.
171   /// FIXME: The default needs to be removed once all the code is updated.
172   virtual MVT getPointerTy(uint32_t /*AS*/ = 0) const;
173   unsigned getPointerSizeInBits(uint32_t AS = 0) const;
174   unsigned getPointerTypeSizeInBits(Type *Ty) const;
175   virtual MVT getScalarShiftAmountTy(EVT LHSTy) const;
176 
177   EVT getShiftAmountTy(EVT LHSTy) const;
178 
179   /// Returns the type to be used for the index operand of:
180   /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
181   /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
getVectorIdxTy()182   virtual MVT getVectorIdxTy() const {
183     return getPointerTy();
184   }
185 
186   /// Return true if the select operation is expensive for this target.
isSelectExpensive()187   bool isSelectExpensive() const { return SelectIsExpensive; }
188 
isSelectSupported(SelectSupportKind)189   virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
190     return true;
191   }
192 
193   /// Return true if multiple condition registers are available.
hasMultipleConditionRegisters()194   bool hasMultipleConditionRegisters() const {
195     return HasMultipleConditionRegisters;
196   }
197 
198   /// Return true if the target has BitExtract instructions.
hasExtractBitsInsn()199   bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
200 
201   /// Return the preferred vector type legalization action.
202   virtual TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT)203   getPreferredVectorAction(EVT VT) const {
204     // The default action for one element vectors is to scalarize
205     if (VT.getVectorNumElements() == 1)
206       return TypeScalarizeVector;
207     // The default action for other vectors is to promote
208     return TypePromoteInteger;
209   }
210 
211   // There are two general methods for expanding a BUILD_VECTOR node:
212   //  1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
213   //     them together.
214   //  2. Build the vector on the stack and then load it.
215   // If this function returns true, then method (1) will be used, subject to
216   // the constraint that all of the necessary shuffles are legal (as determined
217   // by isShuffleMaskLegal). If this function returns false, then method (2) is
218   // always used. The vector type, and the number of defined values, are
219   // provided.
220   virtual bool
shouldExpandBuildVectorWithShuffles(EVT,unsigned DefinedValues)221   shouldExpandBuildVectorWithShuffles(EVT /* VT */,
222                                       unsigned DefinedValues) const {
223     return DefinedValues < 3;
224   }
225 
226   /// Return true if integer divide is usually cheaper than a sequence of
227   /// several shifts, adds, and multiplies for this target.
isIntDivCheap()228   bool isIntDivCheap() const { return IntDivIsCheap; }
229 
230   /// Return true if sqrt(x) is as cheap or cheaper than 1 / rsqrt(x)
isFsqrtCheap()231   bool isFsqrtCheap() const {
232     return FsqrtIsCheap;
233   }
234 
235   /// Returns true if target has indicated at least one type should be bypassed.
isSlowDivBypassed()236   bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
237 
238   /// Returns map of slow types for division or remainder with corresponding
239   /// fast types
getBypassSlowDivWidths()240   const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
241     return BypassSlowDivWidths;
242   }
243 
244   /// Return true if pow2 sdiv is cheaper than a chain of sra/srl/add/sra.
isPow2SDivCheap()245   bool isPow2SDivCheap() const { return Pow2SDivIsCheap; }
246 
247   /// Return true if Flow Control is an expensive operation that should be
248   /// avoided.
isJumpExpensive()249   bool isJumpExpensive() const { return JumpIsExpensive; }
250 
251   /// Return true if selects are only cheaper than branches if the branch is
252   /// unlikely to be predicted right.
isPredictableSelectExpensive()253   bool isPredictableSelectExpensive() const {
254     return PredictableSelectIsExpensive;
255   }
256 
257   /// isLoadBitCastBeneficial() - Return true if the following transform
258   /// is beneficial.
259   /// fold (conv (load x)) -> (load (conv*)x)
260   /// On architectures that don't natively support some vector loads efficiently,
261   /// casting the load to a smaller vector of larger types and loading
262   /// is more efficient, however, this can be undone by optimizations in
263   /// dag combiner.
isLoadBitCastBeneficial(EVT,EVT)264   virtual bool isLoadBitCastBeneficial(EVT /* Load */, EVT /* Bitcast */) const {
265     return true;
266   }
267 
268   /// \brief Return true if it is cheap to speculate a call to intrinsic cttz.
isCheapToSpeculateCttz()269   virtual bool isCheapToSpeculateCttz() const {
270     return false;
271   }
272 
273   /// \brief Return true if it is cheap to speculate a call to intrinsic ctlz.
isCheapToSpeculateCtlz()274   virtual bool isCheapToSpeculateCtlz() const {
275     return false;
276   }
277 
278   /// \brief Return if the target supports combining a
279   /// chain like:
280   /// \code
281   ///   %andResult = and %val1, #imm-with-one-bit-set;
282   ///   %icmpResult = icmp %andResult, 0
283   ///   br i1 %icmpResult, label %dest1, label %dest2
284   /// \endcode
285   /// into a single machine instruction of a form like:
286   /// \code
287   ///   brOnBitSet %register, #bitNumber, dest
288   /// \endcode
isMaskAndBranchFoldingLegal()289   bool isMaskAndBranchFoldingLegal() const {
290     return MaskAndBranchFoldingIsLegal;
291   }
292 
293   /// \brief Return true if the target wants to use the optimization that
294   /// turns ext(promotableInst1(...(promotableInstN(load)))) into
295   /// promotedInst1(...(promotedInstN(ext(load)))).
enableExtLdPromotion()296   bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
297 
298   /// Return true if the target can combine store(extractelement VectorTy,
299   /// Idx).
300   /// \p Cost[out] gives the cost of that transformation when this is true.
canCombineStoreAndExtract(Type * VectorTy,Value * Idx,unsigned & Cost)301   virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
302                                          unsigned &Cost) const {
303     return false;
304   }
305 
306   /// Return true if target supports floating point exceptions.
hasFloatingPointExceptions()307   bool hasFloatingPointExceptions() const {
308     return HasFloatingPointExceptions;
309   }
310 
311   /// Return true if target always beneficiates from combining into FMA for a
312   /// given value type. This must typically return false on targets where FMA
313   /// takes more cycles to execute than FADD.
enableAggressiveFMAFusion(EVT VT)314   virtual bool enableAggressiveFMAFusion(EVT VT) const {
315     return false;
316   }
317 
318   /// Return the ValueType of the result of SETCC operations.
319   virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;
320 
321   /// Return the ValueType for comparison libcalls. Comparions libcalls include
322   /// floating point comparion calls, and Ordered/Unordered check calls on
323   /// floating point numbers.
324   virtual
325   MVT::SimpleValueType getCmpLibcallReturnType() const;
326 
327   /// For targets without i1 registers, this gives the nature of the high-bits
328   /// of boolean values held in types wider than i1.
329   ///
330   /// "Boolean values" are special true/false values produced by nodes like
331   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
332   /// Not to be confused with general values promoted from i1.  Some cpus
333   /// distinguish between vectors of boolean and scalars; the isVec parameter
334   /// selects between the two kinds.  For example on X86 a scalar boolean should
335   /// be zero extended from i1, while the elements of a vector of booleans
336   /// should be sign extended from i1.
337   ///
338   /// Some cpus also treat floating point types the same way as they treat
339   /// vectors instead of the way they treat scalars.
getBooleanContents(bool isVec,bool isFloat)340   BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
341     if (isVec)
342       return BooleanVectorContents;
343     return isFloat ? BooleanFloatContents : BooleanContents;
344   }
345 
getBooleanContents(EVT Type)346   BooleanContent getBooleanContents(EVT Type) const {
347     return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
348   }
349 
350   /// Return target scheduling preference.
getSchedulingPreference()351   Sched::Preference getSchedulingPreference() const {
352     return SchedPreferenceInfo;
353   }
354 
355   /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
356   /// for different nodes. This function returns the preference (or none) for
357   /// the given node.
getSchedulingPreference(SDNode *)358   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
359     return Sched::None;
360   }
361 
362   /// Return the register class that should be used for the specified value
363   /// type.
getRegClassFor(MVT VT)364   virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
365     const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
366     assert(RC && "This value type is not natively supported!");
367     return RC;
368   }
369 
370   /// Return the 'representative' register class for the specified value
371   /// type.
372   ///
373   /// The 'representative' register class is the largest legal super-reg
374   /// register class for the register class of the value type.  For example, on
375   /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
376   /// register class is GR64 on x86_64.
getRepRegClassFor(MVT VT)377   virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
378     const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
379     return RC;
380   }
381 
382   /// Return the cost of the 'representative' register class for the specified
383   /// value type.
getRepRegClassCostFor(MVT VT)384   virtual uint8_t getRepRegClassCostFor(MVT VT) const {
385     return RepRegClassCostForVT[VT.SimpleTy];
386   }
387 
388   /// Return true if the target has native support for the specified value type.
389   /// This means that it has a register that directly holds it without
390   /// promotions or expansions.
isTypeLegal(EVT VT)391   bool isTypeLegal(EVT VT) const {
392     assert(!VT.isSimple() ||
393            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
394     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
395   }
396 
397   class ValueTypeActionImpl {
398     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
399     /// that indicates how instruction selection should deal with the type.
400     uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
401 
402   public:
ValueTypeActionImpl()403     ValueTypeActionImpl() {
404       std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions), 0);
405     }
406 
getTypeAction(MVT VT)407     LegalizeTypeAction getTypeAction(MVT VT) const {
408       return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
409     }
410 
setTypeAction(MVT VT,LegalizeTypeAction Action)411     void setTypeAction(MVT VT, LegalizeTypeAction Action) {
412       unsigned I = VT.SimpleTy;
413       ValueTypeActions[I] = Action;
414     }
415   };
416 
getValueTypeActions()417   const ValueTypeActionImpl &getValueTypeActions() const {
418     return ValueTypeActions;
419   }
420 
421   /// Return how we should legalize values of this type, either it is already
422   /// legal (return 'Legal') or we need to promote it to a larger type (return
423   /// 'Promote'), or we need to expand it into multiple registers of smaller
424   /// integer type (return 'Expand').  'Custom' is not an option.
getTypeAction(LLVMContext & Context,EVT VT)425   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
426     return getTypeConversion(Context, VT).first;
427   }
getTypeAction(MVT VT)428   LegalizeTypeAction getTypeAction(MVT VT) const {
429     return ValueTypeActions.getTypeAction(VT);
430   }
431 
432   /// For types supported by the target, this is an identity function.  For
433   /// types that must be promoted to larger types, this returns the larger type
434   /// to promote to.  For integer types that are larger than the largest integer
435   /// register, this contains one step in the expansion to get to the smaller
436   /// register. For illegal floating point types, this returns the integer type
437   /// to transform to.
getTypeToTransformTo(LLVMContext & Context,EVT VT)438   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
439     return getTypeConversion(Context, VT).second;
440   }
441 
442   /// For types supported by the target, this is an identity function.  For
443   /// types that must be expanded (i.e. integer types that are larger than the
444   /// largest integer register or illegal floating point types), this returns
445   /// the largest legal type it will be expanded to.
getTypeToExpandTo(LLVMContext & Context,EVT VT)446   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
447     assert(!VT.isVector());
448     while (true) {
449       switch (getTypeAction(Context, VT)) {
450       case TypeLegal:
451         return VT;
452       case TypeExpandInteger:
453         VT = getTypeToTransformTo(Context, VT);
454         break;
455       default:
456         llvm_unreachable("Type is not legal nor is it to be expanded!");
457       }
458     }
459   }
460 
461   /// Vector types are broken down into some number of legal first class types.
462   /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
463   /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
464   /// turns into 4 EVT::i32 values with both PPC and X86.
465   ///
466   /// This method returns the number of registers needed, and the VT for each
467   /// register.  It also returns the VT and quantity of the intermediate values
468   /// before they are promoted/expanded.
469   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
470                                   EVT &IntermediateVT,
471                                   unsigned &NumIntermediates,
472                                   MVT &RegisterVT) const;
473 
474   struct IntrinsicInfo {
475     unsigned     opc;         // target opcode
476     EVT          memVT;       // memory VT
477     const Value* ptrVal;      // value representing memory location
478     int          offset;      // offset off of ptrVal
479     unsigned     size;        // the size of the memory location
480                               // (taken from memVT if zero)
481     unsigned     align;       // alignment
482     bool         vol;         // is volatile?
483     bool         readMem;     // reads memory?
484     bool         writeMem;    // writes memory?
485 
IntrinsicInfoIntrinsicInfo486     IntrinsicInfo() : opc(0), ptrVal(nullptr), offset(0), size(0), align(1),
487                       vol(false), readMem(false), writeMem(false) {}
488   };
489 
490   /// Given an intrinsic, checks if on the target the intrinsic will need to map
491   /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
492   /// true and store the intrinsic information into the IntrinsicInfo that was
493   /// passed to the function.
getTgtMemIntrinsic(IntrinsicInfo &,const CallInst &,unsigned)494   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
495                                   unsigned /*Intrinsic*/) const {
496     return false;
497   }
498 
499   /// Returns true if the target can instruction select the specified FP
500   /// immediate natively. If false, the legalizer will materialize the FP
501   /// immediate as a load from a constant pool.
isFPImmLegal(const APFloat &,EVT)502   virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
503     return false;
504   }
505 
506   /// Targets can use this to indicate that they only support *some*
507   /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
508   /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
509   /// legal.
isShuffleMaskLegal(const SmallVectorImpl<int> &,EVT)510   virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
511                                   EVT /*VT*/) const {
512     return true;
513   }
514 
515   /// Returns true if the operation can trap for the value type.
516   ///
517   /// VT must be a legal type. By default, we optimistically assume most
518   /// operations don't trap except for divide and remainder.
519   virtual bool canOpTrap(unsigned Op, EVT VT) const;
520 
521   /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
522   /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace
523   /// a VAND with a constant pool entry.
isVectorClearMaskLegal(const SmallVectorImpl<int> &,EVT)524   virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
525                                       EVT /*VT*/) const {
526     return false;
527   }
528 
529   /// Return how this operation should be treated: either it is legal, needs to
530   /// be promoted to a larger size, needs to be expanded to some other code
531   /// sequence, or the target has a custom expander for it.
getOperationAction(unsigned Op,EVT VT)532   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
533     if (VT.isExtended()) return Expand;
534     // If a target-specific SDNode requires legalization, require the target
535     // to provide custom legalization for it.
536     if (Op > array_lengthof(OpActions[0])) return Custom;
537     unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
538     return (LegalizeAction)OpActions[I][Op];
539   }
540 
541   /// Return true if the specified operation is legal on this target or can be
542   /// made legal with custom lowering. This is used to help guide high-level
543   /// lowering decisions.
isOperationLegalOrCustom(unsigned Op,EVT VT)544   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
545     return (VT == MVT::Other || isTypeLegal(VT)) &&
546       (getOperationAction(Op, VT) == Legal ||
547        getOperationAction(Op, VT) == Custom);
548   }
549 
550   /// Return true if the specified operation is legal on this target or can be
551   /// made legal using promotion. This is used to help guide high-level lowering
552   /// decisions.
isOperationLegalOrPromote(unsigned Op,EVT VT)553   bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
554     return (VT == MVT::Other || isTypeLegal(VT)) &&
555       (getOperationAction(Op, VT) == Legal ||
556        getOperationAction(Op, VT) == Promote);
557   }
558 
559   /// Return true if the specified operation is illegal on this target or
560   /// unlikely to be made legal with custom lowering. This is used to help guide
561   /// high-level lowering decisions.
isOperationExpand(unsigned Op,EVT VT)562   bool isOperationExpand(unsigned Op, EVT VT) const {
563     return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
564   }
565 
566   /// Return true if the specified operation is legal on this target.
isOperationLegal(unsigned Op,EVT VT)567   bool isOperationLegal(unsigned Op, EVT VT) const {
568     return (VT == MVT::Other || isTypeLegal(VT)) &&
569            getOperationAction(Op, VT) == Legal;
570   }
571 
572   /// Return how this load with extension should be treated: either it is legal,
573   /// needs to be promoted to a larger size, needs to be expanded to some other
574   /// code sequence, or the target has a custom expander for it.
getLoadExtAction(unsigned ExtType,EVT ValVT,EVT MemVT)575   LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const {
576     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
577     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
578     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
579     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
580            MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
581     return (LegalizeAction)LoadExtActions[ValI][MemI][ExtType];
582   }
583 
584   /// Return true if the specified load with extension is legal on this target.
isLoadExtLegal(unsigned ExtType,EVT ValVT,EVT MemVT)585   bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
586     return ValVT.isSimple() && MemVT.isSimple() &&
587       getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
588   }
589 
590   /// Return true if the specified load with extension is legal or custom
591   /// on this target.
isLoadExtLegalOrCustom(unsigned ExtType,EVT ValVT,EVT MemVT)592   bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
593     return ValVT.isSimple() && MemVT.isSimple() &&
594       (getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
595        getLoadExtAction(ExtType, ValVT, MemVT) == Custom);
596   }
597 
598   /// Return how this store with truncation should be treated: either it is
599   /// legal, needs to be promoted to a larger size, needs to be expanded to some
600   /// other code sequence, or the target has a custom expander for it.
getTruncStoreAction(EVT ValVT,EVT MemVT)601   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
602     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
603     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
604     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
605     assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
606            "Table isn't big enough!");
607     return (LegalizeAction)TruncStoreActions[ValI][MemI];
608   }
609 
610   /// Return true if the specified store with truncation is legal on this
611   /// target.
isTruncStoreLegal(EVT ValVT,EVT MemVT)612   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
613     return isTypeLegal(ValVT) && MemVT.isSimple() &&
614       getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
615   }
616 
617   /// Return how the indexed load should be treated: either it is legal, needs
618   /// to be promoted to a larger size, needs to be expanded to some other code
619   /// sequence, or the target has a custom expander for it.
620   LegalizeAction
getIndexedLoadAction(unsigned IdxMode,MVT VT)621   getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
622     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
623            "Table isn't big enough!");
624     unsigned Ty = (unsigned)VT.SimpleTy;
625     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
626   }
627 
628   /// Return true if the specified indexed load is legal on this target.
isIndexedLoadLegal(unsigned IdxMode,EVT VT)629   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
630     return VT.isSimple() &&
631       (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
632        getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
633   }
634 
635   /// Return how the indexed store should be treated: either it is legal, needs
636   /// to be promoted to a larger size, needs to be expanded to some other code
637   /// sequence, or the target has a custom expander for it.
638   LegalizeAction
getIndexedStoreAction(unsigned IdxMode,MVT VT)639   getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
640     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
641            "Table isn't big enough!");
642     unsigned Ty = (unsigned)VT.SimpleTy;
643     return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
644   }
645 
646   /// Return true if the specified indexed load is legal on this target.
isIndexedStoreLegal(unsigned IdxMode,EVT VT)647   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
648     return VT.isSimple() &&
649       (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
650        getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
651   }
652 
653   /// Return how the condition code should be treated: either it is legal, needs
654   /// to be expanded to some other code sequence, or the target has a custom
655   /// expander for it.
656   LegalizeAction
getCondCodeAction(ISD::CondCode CC,MVT VT)657   getCondCodeAction(ISD::CondCode CC, MVT VT) const {
658     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
659            ((unsigned)VT.SimpleTy >> 4) < array_lengthof(CondCodeActions[0]) &&
660            "Table isn't big enough!");
661     // See setCondCodeAction for how this is encoded.
662     uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
663     uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 4];
664     LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0x3);
665     assert(Action != Promote && "Can't promote condition code!");
666     return Action;
667   }
668 
669   /// Return true if the specified condition code is legal on this target.
isCondCodeLegal(ISD::CondCode CC,MVT VT)670   bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
671     return
672       getCondCodeAction(CC, VT) == Legal ||
673       getCondCodeAction(CC, VT) == Custom;
674   }
675 
676 
677   /// If the action for this operation is to promote, this method returns the
678   /// ValueType to promote to.
getTypeToPromoteTo(unsigned Op,MVT VT)679   MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
680     assert(getOperationAction(Op, VT) == Promote &&
681            "This operation isn't promoted!");
682 
683     // See if this has an explicit type specified.
684     std::map<std::pair<unsigned, MVT::SimpleValueType>,
685              MVT::SimpleValueType>::const_iterator PTTI =
686       PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
687     if (PTTI != PromoteToType.end()) return PTTI->second;
688 
689     assert((VT.isInteger() || VT.isFloatingPoint()) &&
690            "Cannot autopromote this type, add it with AddPromotedToType.");
691 
692     MVT NVT = VT;
693     do {
694       NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
695       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
696              "Didn't find type to promote to!");
697     } while (!isTypeLegal(NVT) ||
698               getOperationAction(Op, NVT) == Promote);
699     return NVT;
700   }
701 
702   /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
703   /// operations except for the pointer size.  If AllowUnknown is true, this
704   /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
705   /// otherwise it will assert.
706   EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
707     // Lower scalar pointers to native pointer types.
708     if (PointerType *PTy = dyn_cast<PointerType>(Ty))
709       return getPointerTy(PTy->getAddressSpace());
710 
711     if (Ty->isVectorTy()) {
712       VectorType *VTy = cast<VectorType>(Ty);
713       Type *Elm = VTy->getElementType();
714       // Lower vectors of pointers to native pointer types.
715       if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
716         EVT PointerTy(getPointerTy(PT->getAddressSpace()));
717         Elm = PointerTy.getTypeForEVT(Ty->getContext());
718       }
719 
720       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
721                        VTy->getNumElements());
722     }
723     return EVT::getEVT(Ty, AllowUnknown);
724   }
725 
726   /// Return the MVT corresponding to this LLVM type. See getValueType.
727   MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
728     return getValueType(Ty, AllowUnknown).getSimpleVT();
729   }
730 
731   /// Return the desired alignment for ByVal or InAlloca aggregate function
732   /// arguments in the caller parameter area.  This is the actual alignment, not
733   /// its logarithm.
734   virtual unsigned getByValTypeAlignment(Type *Ty) const;
735 
736   /// Return the type of registers that this ValueType will eventually require.
getRegisterType(MVT VT)737   MVT getRegisterType(MVT VT) const {
738     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
739     return RegisterTypeForVT[VT.SimpleTy];
740   }
741 
742   /// Return the type of registers that this ValueType will eventually require.
getRegisterType(LLVMContext & Context,EVT VT)743   MVT getRegisterType(LLVMContext &Context, EVT VT) const {
744     if (VT.isSimple()) {
745       assert((unsigned)VT.getSimpleVT().SimpleTy <
746                 array_lengthof(RegisterTypeForVT));
747       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
748     }
749     if (VT.isVector()) {
750       EVT VT1;
751       MVT RegisterVT;
752       unsigned NumIntermediates;
753       (void)getVectorTypeBreakdown(Context, VT, VT1,
754                                    NumIntermediates, RegisterVT);
755       return RegisterVT;
756     }
757     if (VT.isInteger()) {
758       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
759     }
760     llvm_unreachable("Unsupported extended type!");
761   }
762 
763   /// Return the number of registers that this ValueType will eventually
764   /// require.
765   ///
766   /// This is one for any types promoted to live in larger registers, but may be
767   /// more than one for types (like i64) that are split into pieces.  For types
768   /// like i140, which are first promoted then expanded, it is the number of
769   /// registers needed to hold all the bits of the original type.  For an i140
770   /// on a 32 bit machine this means 5 registers.
getNumRegisters(LLVMContext & Context,EVT VT)771   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
772     if (VT.isSimple()) {
773       assert((unsigned)VT.getSimpleVT().SimpleTy <
774                 array_lengthof(NumRegistersForVT));
775       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
776     }
777     if (VT.isVector()) {
778       EVT VT1;
779       MVT VT2;
780       unsigned NumIntermediates;
781       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
782     }
783     if (VT.isInteger()) {
784       unsigned BitWidth = VT.getSizeInBits();
785       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
786       return (BitWidth + RegWidth - 1) / RegWidth;
787     }
788     llvm_unreachable("Unsupported extended type!");
789   }
790 
791   /// If true, then instruction selection should seek to shrink the FP constant
792   /// of the specified type to a smaller type in order to save space and / or
793   /// reduce runtime.
ShouldShrinkFPConstant(EVT)794   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
795 
796   // Return true if it is profitable to reduce the given load node to a smaller
797   // type.
798   //
799   // e.g. (i16 (trunc (i32 (load x))) -> i16 load x should be performed
shouldReduceLoadWidth(SDNode * Load,ISD::LoadExtType ExtTy,EVT NewVT)800   virtual bool shouldReduceLoadWidth(SDNode *Load,
801                                      ISD::LoadExtType ExtTy,
802                                      EVT NewVT) const {
803     return true;
804   }
805 
806   /// When splitting a value of the specified type into parts, does the Lo
807   /// or Hi part come first?  This usually follows the endianness, except
808   /// for ppcf128, where the Hi part always comes first.
hasBigEndianPartOrdering(EVT VT)809   bool hasBigEndianPartOrdering(EVT VT) const {
810     return isBigEndian() || VT == MVT::ppcf128;
811   }
812 
813   /// If true, the target has custom DAG combine transformations that it can
814   /// perform for the specified node.
hasTargetDAGCombine(ISD::NodeType NT)815   bool hasTargetDAGCombine(ISD::NodeType NT) const {
816     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
817     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
818   }
819 
820   /// \brief Get maximum # of store operations permitted for llvm.memset
821   ///
822   /// This function returns the maximum number of store operations permitted
823   /// to replace a call to llvm.memset. The value is set by the target at the
824   /// performance threshold for such a replacement. If OptSize is true,
825   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemset(bool OptSize)826   unsigned getMaxStoresPerMemset(bool OptSize) const {
827     return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
828   }
829 
830   /// \brief Get maximum # of store operations permitted for llvm.memcpy
831   ///
832   /// This function returns the maximum number of store operations permitted
833   /// to replace a call to llvm.memcpy. The value is set by the target at the
834   /// performance threshold for such a replacement. If OptSize is true,
835   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemcpy(bool OptSize)836   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
837     return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
838   }
839 
840   /// \brief Get maximum # of store operations permitted for llvm.memmove
841   ///
842   /// This function returns the maximum number of store operations permitted
843   /// to replace a call to llvm.memmove. The value is set by the target at the
844   /// performance threshold for such a replacement. If OptSize is true,
845   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemmove(bool OptSize)846   unsigned getMaxStoresPerMemmove(bool OptSize) const {
847     return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
848   }
849 
850   /// \brief Determine if the target supports unaligned memory accesses.
851   ///
852   /// This function returns true if the target allows unaligned memory accesses
853   /// of the specified type in the given address space. If true, it also returns
854   /// whether the unaligned memory access is "fast" in the last argument by
855   /// reference. This is used, for example, in situations where an array
856   /// copy/move/set is converted to a sequence of store operations. Its use
857   /// helps to ensure that such replacements don't generate code that causes an
858   /// alignment error (trap) on the target machine.
859   virtual bool allowsMisalignedMemoryAccesses(EVT,
860                                               unsigned AddrSpace = 0,
861                                               unsigned Align = 1,
862                                               bool * /*Fast*/ = nullptr) const {
863     return false;
864   }
865 
866   /// Returns the target specific optimal type for load and store operations as
867   /// a result of memset, memcpy, and memmove lowering.
868   ///
869   /// If DstAlign is zero that means it's safe to destination alignment can
870   /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
871   /// a need to check it against alignment requirement, probably because the
872   /// source does not need to be loaded. If 'IsMemset' is true, that means it's
873   /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
874   /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
875   /// does not need to be loaded.  It returns EVT::Other if the type should be
876   /// determined using generic target-independent logic.
getOptimalMemOpType(uint64_t,unsigned,unsigned,bool,bool,bool,MachineFunction &)877   virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
878                                   unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
879                                   bool /*IsMemset*/,
880                                   bool /*ZeroMemset*/,
881                                   bool /*MemcpyStrSrc*/,
882                                   MachineFunction &/*MF*/) const {
883     return MVT::Other;
884   }
885 
886   /// Returns true if it's safe to use load / store of the specified type to
887   /// expand memcpy / memset inline.
888   ///
889   /// This is mostly true for all types except for some special cases. For
890   /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
891   /// fstpl which also does type conversion. Note the specified type doesn't
892   /// have to be legal as the hook is used before type legalization.
isSafeMemOpType(MVT)893   virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
894 
895   /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
usesUnderscoreSetJmp()896   bool usesUnderscoreSetJmp() const {
897     return UseUnderscoreSetJmp;
898   }
899 
900   /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
usesUnderscoreLongJmp()901   bool usesUnderscoreLongJmp() const {
902     return UseUnderscoreLongJmp;
903   }
904 
905   /// Return integer threshold on number of blocks to use jump tables rather
906   /// than if sequence.
getMinimumJumpTableEntries()907   int getMinimumJumpTableEntries() const {
908     return MinimumJumpTableEntries;
909   }
910 
911   /// If a physical register, this specifies the register that
912   /// llvm.savestack/llvm.restorestack should save and restore.
getStackPointerRegisterToSaveRestore()913   unsigned getStackPointerRegisterToSaveRestore() const {
914     return StackPointerRegisterToSaveRestore;
915   }
916 
917   /// If a physical register, this returns the register that receives the
918   /// exception address on entry to a landing pad.
getExceptionPointerRegister()919   unsigned getExceptionPointerRegister() const {
920     return ExceptionPointerRegister;
921   }
922 
923   /// If a physical register, this returns the register that receives the
924   /// exception typeid on entry to a landing pad.
getExceptionSelectorRegister()925   unsigned getExceptionSelectorRegister() const {
926     return ExceptionSelectorRegister;
927   }
928 
929   /// Returns the target's jmp_buf size in bytes (if never set, the default is
930   /// 200)
getJumpBufSize()931   unsigned getJumpBufSize() const {
932     return JumpBufSize;
933   }
934 
935   /// Returns the target's jmp_buf alignment in bytes (if never set, the default
936   /// is 0)
getJumpBufAlignment()937   unsigned getJumpBufAlignment() const {
938     return JumpBufAlignment;
939   }
940 
941   /// Return the minimum stack alignment of an argument.
getMinStackArgumentAlignment()942   unsigned getMinStackArgumentAlignment() const {
943     return MinStackArgumentAlignment;
944   }
945 
946   /// Return the minimum function alignment.
getMinFunctionAlignment()947   unsigned getMinFunctionAlignment() const {
948     return MinFunctionAlignment;
949   }
950 
951   /// Return the preferred function alignment.
getPrefFunctionAlignment()952   unsigned getPrefFunctionAlignment() const {
953     return PrefFunctionAlignment;
954   }
955 
956   /// Return the preferred loop alignment.
957   virtual unsigned getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
958     return PrefLoopAlignment;
959   }
960 
961   /// Return whether the DAG builder should automatically insert fences and
962   /// reduce ordering for atomics.
getInsertFencesForAtomic()963   bool getInsertFencesForAtomic() const {
964     return InsertFencesForAtomic;
965   }
966 
967   /// Return true if the target stores stack protector cookies at a fixed offset
968   /// in some non-standard address space, and populates the address space and
969   /// offset as appropriate.
getStackCookieLocation(unsigned &,unsigned &)970   virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
971                                       unsigned &/*Offset*/) const {
972     return false;
973   }
974 
975   /// Returns true if a cast between SrcAS and DestAS is a noop.
isNoopAddrSpaceCast(unsigned SrcAS,unsigned DestAS)976   virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
977     return false;
978   }
979 
980   /// Return true if the pointer arguments to CI should be aligned by aligning
981   /// the object whose address is being passed. If so then MinSize is set to the
982   /// minimum size the object must be to be aligned and PrefAlign is set to the
983   /// preferred alignment.
shouldAlignPointerArgs(CallInst *,unsigned &,unsigned &)984   virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
985                                       unsigned & /*PrefAlign*/) const {
986     return false;
987   }
988 
989   //===--------------------------------------------------------------------===//
990   /// \name Helpers for TargetTransformInfo implementations
991   /// @{
992 
993   /// Get the ISD node that corresponds to the Instruction class opcode.
994   int InstructionOpcodeToISD(unsigned Opcode) const;
995 
996   /// Estimate the cost of type-legalization and the legalized type.
997   std::pair<unsigned, MVT> getTypeLegalizationCost(Type *Ty) const;
998 
999   /// @}
1000 
1001   //===--------------------------------------------------------------------===//
1002   /// \name Helpers for atomic expansion.
1003   /// @{
1004 
1005   /// True if AtomicExpandPass should use emitLoadLinked/emitStoreConditional
1006   /// and expand AtomicCmpXchgInst.
hasLoadLinkedStoreConditional()1007   virtual bool hasLoadLinkedStoreConditional() const { return false; }
1008 
1009   /// Perform a load-linked operation on Addr, returning a "Value *" with the
1010   /// corresponding pointee type. This may entail some non-trivial operations to
1011   /// truncate or reconstruct types that will be illegal in the backend. See
1012   /// ARMISelLowering for an example implementation.
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord)1013   virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
1014                                 AtomicOrdering Ord) const {
1015     llvm_unreachable("Load linked unimplemented on this target");
1016   }
1017 
1018   /// Perform a store-conditional operation to Addr. Return the status of the
1019   /// store. This should be 0 if the store succeeded, non-zero otherwise.
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord)1020   virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
1021                                       Value *Addr, AtomicOrdering Ord) const {
1022     llvm_unreachable("Store conditional unimplemented on this target");
1023   }
1024 
1025   /// Inserts in the IR a target-specific intrinsic specifying a fence.
1026   /// It is called by AtomicExpandPass before expanding an
1027   ///   AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad.
1028   /// RMW and CmpXchg set both IsStore and IsLoad to true.
1029   /// This function should either return a nullptr, or a pointer to an IR-level
1030   ///   Instruction*. Even complex fence sequences can be represented by a
1031   ///   single Instruction* through an intrinsic to be lowered later.
1032   /// Backends with !getInsertFencesForAtomic() should keep a no-op here.
1033   /// Backends should override this method to produce target-specific intrinsic
1034   ///   for their fences.
1035   /// FIXME: Please note that the default implementation here in terms of
1036   ///   IR-level fences exists for historical/compatibility reasons and is
1037   ///   *unsound* ! Fences cannot, in general, be used to restore sequential
1038   ///   consistency. For example, consider the following example:
1039   /// atomic<int> x = y = 0;
1040   /// int r1, r2, r3, r4;
1041   /// Thread 0:
1042   ///   x.store(1);
1043   /// Thread 1:
1044   ///   y.store(1);
1045   /// Thread 2:
1046   ///   r1 = x.load();
1047   ///   r2 = y.load();
1048   /// Thread 3:
1049   ///   r3 = y.load();
1050   ///   r4 = x.load();
1051   ///  r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
1052   ///  seq_cst. But if they are lowered to monotonic accesses, no amount of
1053   ///  IR-level fences can prevent it.
1054   /// @{
emitLeadingFence(IRBuilder<> & Builder,AtomicOrdering Ord,bool IsStore,bool IsLoad)1055   virtual Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
1056           bool IsStore, bool IsLoad) const {
1057     if (!getInsertFencesForAtomic())
1058       return nullptr;
1059 
1060     if (isAtLeastRelease(Ord) && IsStore)
1061       return Builder.CreateFence(Ord);
1062     else
1063       return nullptr;
1064   }
1065 
emitTrailingFence(IRBuilder<> & Builder,AtomicOrdering Ord,bool IsStore,bool IsLoad)1066   virtual Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
1067           bool IsStore, bool IsLoad) const {
1068     if (!getInsertFencesForAtomic())
1069       return nullptr;
1070 
1071     if (isAtLeastAcquire(Ord))
1072       return Builder.CreateFence(Ord);
1073     else
1074       return nullptr;
1075   }
1076   /// @}
1077 
1078   /// Returns true if the given (atomic) store should be expanded by the
1079   /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
shouldExpandAtomicStoreInIR(StoreInst * SI)1080   virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
1081     return false;
1082   }
1083 
1084   /// Returns true if arguments should be sign-extended in lib calls.
shouldSignExtendTypeInLibCall(EVT Type,bool IsSigned)1085   virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
1086     return IsSigned;
1087  }
1088 
1089   /// Returns true if the given (atomic) load should be expanded by the
1090   /// IR-level AtomicExpand pass into a load-linked instruction
1091   /// (through emitLoadLinked()).
shouldExpandAtomicLoadInIR(LoadInst * LI)1092   virtual bool shouldExpandAtomicLoadInIR(LoadInst *LI) const { return false; }
1093 
1094   /// Returns how the IR-level AtomicExpand pass should expand the given
1095   /// AtomicRMW, if at all. Default is to never expand.
1096   virtual AtomicRMWExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst *)1097   shouldExpandAtomicRMWInIR(AtomicRMWInst *) const {
1098     return AtomicRMWExpansionKind::None;
1099   }
1100 
1101   /// On some platforms, an AtomicRMW that never actually modifies the value
1102   /// (such as fetch_add of 0) can be turned into a fence followed by an
1103   /// atomic load. This may sound useless, but it makes it possible for the
1104   /// processor to keep the cacheline shared, dramatically improving
1105   /// performance. And such idempotent RMWs are useful for implementing some
1106   /// kinds of locks, see for example (justification + benchmarks):
1107   /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
1108   /// This method tries doing that transformation, returning the atomic load if
1109   /// it succeeds, and nullptr otherwise.
1110   /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
1111   /// another round of expansion.
lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst * RMWI)1112   virtual LoadInst *lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
1113     return nullptr;
1114   }
1115 
1116   /// Returns true if we should normalize
1117   /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
1118   /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
1119   /// that it saves us from materializing N0 and N1 in an integer register.
1120   /// Targets that are able to perform and/or on flags should return false here.
shouldNormalizeToSelectSequence(LLVMContext & Context,EVT VT)1121   virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
1122                                                EVT VT) const {
1123     // If a target has multiple condition registers, then it likely has logical
1124     // operations on those registers.
1125     if (hasMultipleConditionRegisters())
1126       return false;
1127     // Only do the transform if the value won't be split into multiple
1128     // registers.
1129     LegalizeTypeAction Action = getTypeAction(Context, VT);
1130     return Action != TypeExpandInteger && Action != TypeExpandFloat &&
1131       Action != TypeSplitVector;
1132   }
1133 
1134   //===--------------------------------------------------------------------===//
1135   // TargetLowering Configuration Methods - These methods should be invoked by
1136   // the derived class constructor to configure this object for the target.
1137   //
1138 protected:
1139   /// Specify how the target extends the result of integer and floating point
1140   /// boolean values from i1 to a wider type.  See getBooleanContents.
setBooleanContents(BooleanContent Ty)1141   void setBooleanContents(BooleanContent Ty) {
1142     BooleanContents = Ty;
1143     BooleanFloatContents = Ty;
1144   }
1145 
1146   /// Specify how the target extends the result of integer and floating point
1147   /// boolean values from i1 to a wider type.  See getBooleanContents.
setBooleanContents(BooleanContent IntTy,BooleanContent FloatTy)1148   void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
1149     BooleanContents = IntTy;
1150     BooleanFloatContents = FloatTy;
1151   }
1152 
1153   /// Specify how the target extends the result of a vector boolean value from a
1154   /// vector of i1 to a wider type.  See getBooleanContents.
setBooleanVectorContents(BooleanContent Ty)1155   void setBooleanVectorContents(BooleanContent Ty) {
1156     BooleanVectorContents = Ty;
1157   }
1158 
1159   /// Specify the target scheduling preference.
setSchedulingPreference(Sched::Preference Pref)1160   void setSchedulingPreference(Sched::Preference Pref) {
1161     SchedPreferenceInfo = Pref;
1162   }
1163 
1164   /// Indicate whether this target prefers to use _setjmp to implement
1165   /// llvm.setjmp or the version without _.  Defaults to false.
setUseUnderscoreSetJmp(bool Val)1166   void setUseUnderscoreSetJmp(bool Val) {
1167     UseUnderscoreSetJmp = Val;
1168   }
1169 
1170   /// Indicate whether this target prefers to use _longjmp to implement
1171   /// llvm.longjmp or the version without _.  Defaults to false.
setUseUnderscoreLongJmp(bool Val)1172   void setUseUnderscoreLongJmp(bool Val) {
1173     UseUnderscoreLongJmp = Val;
1174   }
1175 
1176   /// Indicate the number of blocks to generate jump tables rather than if
1177   /// sequence.
setMinimumJumpTableEntries(int Val)1178   void setMinimumJumpTableEntries(int Val) {
1179     MinimumJumpTableEntries = Val;
1180   }
1181 
1182   /// If set to a physical register, this specifies the register that
1183   /// llvm.savestack/llvm.restorestack should save and restore.
setStackPointerRegisterToSaveRestore(unsigned R)1184   void setStackPointerRegisterToSaveRestore(unsigned R) {
1185     StackPointerRegisterToSaveRestore = R;
1186   }
1187 
1188   /// If set to a physical register, this sets the register that receives the
1189   /// exception address on entry to a landing pad.
setExceptionPointerRegister(unsigned R)1190   void setExceptionPointerRegister(unsigned R) {
1191     ExceptionPointerRegister = R;
1192   }
1193 
1194   /// If set to a physical register, this sets the register that receives the
1195   /// exception typeid on entry to a landing pad.
setExceptionSelectorRegister(unsigned R)1196   void setExceptionSelectorRegister(unsigned R) {
1197     ExceptionSelectorRegister = R;
1198   }
1199 
1200   /// Tells the code generator not to expand operations into sequences that use
1201   /// the select operations if possible.
1202   void setSelectIsExpensive(bool isExpensive = true) {
1203     SelectIsExpensive = isExpensive;
1204   }
1205 
1206   /// Tells the code generator that the target has multiple (allocatable)
1207   /// condition registers that can be used to store the results of comparisons
1208   /// for use by selects and conditional branches. With multiple condition
1209   /// registers, the code generator will not aggressively sink comparisons into
1210   /// the blocks of their users.
1211   void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
1212     HasMultipleConditionRegisters = hasManyRegs;
1213   }
1214 
1215   /// Tells the code generator that the target has BitExtract instructions.
1216   /// The code generator will aggressively sink "shift"s into the blocks of
1217   /// their users if the users will generate "and" instructions which can be
1218   /// combined with "shift" to BitExtract instructions.
1219   void setHasExtractBitsInsn(bool hasExtractInsn = true) {
1220     HasExtractBitsInsn = hasExtractInsn;
1221   }
1222 
1223   /// Tells the code generator not to expand sequence of operations into a
1224   /// separate sequences that increases the amount of flow control.
1225   void setJumpIsExpensive(bool isExpensive = true) {
1226     JumpIsExpensive = isExpensive;
1227   }
1228 
1229   /// Tells the code generator that integer divide is expensive, and if
1230   /// possible, should be replaced by an alternate sequence of instructions not
1231   /// containing an integer divide.
1232   void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1233 
1234   /// Tells the code generator that fsqrt is cheap, and should not be replaced
1235   /// with an alternative sequence of instructions.
1236   void setFsqrtIsCheap(bool isCheap = true) { FsqrtIsCheap = isCheap; }
1237 
1238   /// Tells the code generator that this target supports floating point
1239   /// exceptions and cares about preserving floating point exception behavior.
1240   void setHasFloatingPointExceptions(bool FPExceptions = true) {
1241     HasFloatingPointExceptions = FPExceptions;
1242   }
1243 
1244   /// Tells the code generator which bitwidths to bypass.
addBypassSlowDiv(unsigned int SlowBitWidth,unsigned int FastBitWidth)1245   void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
1246     BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
1247   }
1248 
1249   /// Tells the code generator that it shouldn't generate sra/srl/add/sra for a
1250   /// signed divide by power of two; let the target handle it.
1251   void setPow2SDivIsCheap(bool isCheap = true) { Pow2SDivIsCheap = isCheap; }
1252 
1253   /// Add the specified register class as an available regclass for the
1254   /// specified value type. This indicates the selector can handle values of
1255   /// that class natively.
addRegisterClass(MVT VT,const TargetRegisterClass * RC)1256   void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
1257     assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
1258     AvailableRegClasses.push_back(std::make_pair(VT, RC));
1259     RegClassForVT[VT.SimpleTy] = RC;
1260   }
1261 
1262   /// Remove all register classes.
clearRegisterClasses()1263   void clearRegisterClasses() {
1264     memset(RegClassForVT, 0,MVT::LAST_VALUETYPE * sizeof(TargetRegisterClass*));
1265 
1266     AvailableRegClasses.clear();
1267   }
1268 
1269   /// \brief Remove all operation actions.
clearOperationActions()1270   void clearOperationActions() {
1271   }
1272 
1273   /// Return the largest legal super-reg register class of the register class
1274   /// for the specified type and its associated "cost".
1275   virtual std::pair<const TargetRegisterClass *, uint8_t>
1276   findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
1277 
1278   /// Once all of the register classes are added, this allows us to compute
1279   /// derived properties we expose.
1280   void computeRegisterProperties(const TargetRegisterInfo *TRI);
1281 
1282   /// Indicate that the specified operation does not work with the specified
1283   /// type and indicate what to do about it.
setOperationAction(unsigned Op,MVT VT,LegalizeAction Action)1284   void setOperationAction(unsigned Op, MVT VT,
1285                           LegalizeAction Action) {
1286     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1287     OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1288   }
1289 
1290   /// Indicate that the specified load with extension does not work with the
1291   /// specified type and indicate what to do about it.
setLoadExtAction(unsigned ExtType,MVT ValVT,MVT MemVT,LegalizeAction Action)1292   void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
1293                         LegalizeAction Action) {
1294     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
1295            MemVT.isValid() && "Table isn't big enough!");
1296     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy][ExtType] = (uint8_t)Action;
1297   }
1298 
1299   /// Indicate that the specified truncating store does not work with the
1300   /// specified type and indicate what to do about it.
setTruncStoreAction(MVT ValVT,MVT MemVT,LegalizeAction Action)1301   void setTruncStoreAction(MVT ValVT, MVT MemVT,
1302                            LegalizeAction Action) {
1303     assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
1304     TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1305   }
1306 
1307   /// Indicate that the specified indexed load does or does not work with the
1308   /// specified type and indicate what to do abort it.
1309   ///
1310   /// NOTE: All indexed mode loads are initialized to Expand in
1311   /// TargetLowering.cpp
setIndexedLoadAction(unsigned IdxMode,MVT VT,LegalizeAction Action)1312   void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1313                             LegalizeAction Action) {
1314     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
1315            (unsigned)Action < 0xf && "Table isn't big enough!");
1316     // Load action are kept in the upper half.
1317     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1318     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1319   }
1320 
1321   /// Indicate that the specified indexed store does or does not work with the
1322   /// specified type and indicate what to do about it.
1323   ///
1324   /// NOTE: All indexed mode stores are initialized to Expand in
1325   /// TargetLowering.cpp
setIndexedStoreAction(unsigned IdxMode,MVT VT,LegalizeAction Action)1326   void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1327                              LegalizeAction Action) {
1328     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
1329            (unsigned)Action < 0xf && "Table isn't big enough!");
1330     // Store action are kept in the lower half.
1331     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1332     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1333   }
1334 
1335   /// Indicate that the specified condition code is or isn't supported on the
1336   /// target and indicate what to do about it.
setCondCodeAction(ISD::CondCode CC,MVT VT,LegalizeAction Action)1337   void setCondCodeAction(ISD::CondCode CC, MVT VT,
1338                          LegalizeAction Action) {
1339     assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
1340            "Table isn't big enough!");
1341     /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 32-bit
1342     /// value and the upper 27 bits index into the second dimension of the array
1343     /// to select what 32-bit value to use.
1344     uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
1345     CondCodeActions[CC][VT.SimpleTy >> 4] &= ~((uint32_t)0x3 << Shift);
1346     CondCodeActions[CC][VT.SimpleTy >> 4] |= (uint32_t)Action << Shift;
1347   }
1348 
1349   /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
1350   /// to trying a larger integer/fp until it can find one that works. If that
1351   /// default is insufficient, this method can be used by the target to override
1352   /// the default.
AddPromotedToType(unsigned Opc,MVT OrigVT,MVT DestVT)1353   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1354     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1355   }
1356 
1357   /// Targets should invoke this method for each target independent node that
1358   /// they want to provide a custom DAG combiner for by implementing the
1359   /// PerformDAGCombine virtual method.
setTargetDAGCombine(ISD::NodeType NT)1360   void setTargetDAGCombine(ISD::NodeType NT) {
1361     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1362     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1363   }
1364 
1365   /// Set the target's required jmp_buf buffer size (in bytes); default is 200
setJumpBufSize(unsigned Size)1366   void setJumpBufSize(unsigned Size) {
1367     JumpBufSize = Size;
1368   }
1369 
1370   /// Set the target's required jmp_buf buffer alignment (in bytes); default is
1371   /// 0
setJumpBufAlignment(unsigned Align)1372   void setJumpBufAlignment(unsigned Align) {
1373     JumpBufAlignment = Align;
1374   }
1375 
1376   /// Set the target's minimum function alignment (in log2(bytes))
setMinFunctionAlignment(unsigned Align)1377   void setMinFunctionAlignment(unsigned Align) {
1378     MinFunctionAlignment = Align;
1379   }
1380 
1381   /// Set the target's preferred function alignment.  This should be set if
1382   /// there is a performance benefit to higher-than-minimum alignment (in
1383   /// log2(bytes))
setPrefFunctionAlignment(unsigned Align)1384   void setPrefFunctionAlignment(unsigned Align) {
1385     PrefFunctionAlignment = Align;
1386   }
1387 
1388   /// Set the target's preferred loop alignment. Default alignment is zero, it
1389   /// means the target does not care about loop alignment.  The alignment is
1390   /// specified in log2(bytes). The target may also override
1391   /// getPrefLoopAlignment to provide per-loop values.
setPrefLoopAlignment(unsigned Align)1392   void setPrefLoopAlignment(unsigned Align) {
1393     PrefLoopAlignment = Align;
1394   }
1395 
1396   /// Set the minimum stack alignment of an argument (in log2(bytes)).
setMinStackArgumentAlignment(unsigned Align)1397   void setMinStackArgumentAlignment(unsigned Align) {
1398     MinStackArgumentAlignment = Align;
1399   }
1400 
1401   /// Set if the DAG builder should automatically insert fences and reduce the
1402   /// order of atomic memory operations to Monotonic.
setInsertFencesForAtomic(bool fence)1403   void setInsertFencesForAtomic(bool fence) {
1404     InsertFencesForAtomic = fence;
1405   }
1406 
1407 public:
1408   //===--------------------------------------------------------------------===//
1409   // Addressing mode description hooks (used by LSR etc).
1410   //
1411 
1412   /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
1413   /// instructions reading the address. This allows as much computation as
1414   /// possible to be done in the address mode for that operand. This hook lets
1415   /// targets also pass back when this should be done on intrinsics which
1416   /// load/store.
GetAddrModeArguments(IntrinsicInst *,SmallVectorImpl<Value * > &,Type * &)1417   virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/,
1418                                     SmallVectorImpl<Value*> &/*Ops*/,
1419                                     Type *&/*AccessTy*/) const {
1420     return false;
1421   }
1422 
1423   /// This represents an addressing mode of:
1424   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1425   /// If BaseGV is null,  there is no BaseGV.
1426   /// If BaseOffs is zero, there is no base offset.
1427   /// If HasBaseReg is false, there is no base register.
1428   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1429   /// no scale.
1430   struct AddrMode {
1431     GlobalValue *BaseGV;
1432     int64_t      BaseOffs;
1433     bool         HasBaseReg;
1434     int64_t      Scale;
AddrModeAddrMode1435     AddrMode() : BaseGV(nullptr), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1436   };
1437 
1438   /// Return true if the addressing mode represented by AM is legal for this
1439   /// target, for a load/store of the specified type.
1440   ///
1441   /// The type may be VoidTy, in which case only return true if the addressing
1442   /// mode is legal for a load/store of any legal type.  TODO: Handle
1443   /// pre/postinc as well.
1444   virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1445 
1446   /// \brief Return the cost of the scaling factor used in the addressing mode
1447   /// represented by AM for this target, for a load/store of the specified type.
1448   ///
1449   /// If the AM is supported, the return value must be >= 0.
1450   /// If the AM is not supported, it returns a negative value.
1451   /// TODO: Handle pre/postinc as well.
getScalingFactorCost(const AddrMode & AM,Type * Ty)1452   virtual int getScalingFactorCost(const AddrMode &AM, Type *Ty) const {
1453     // Default: assume that any scaling factor used in a legal AM is free.
1454     if (isLegalAddressingMode(AM, Ty)) return 0;
1455     return -1;
1456   }
1457 
1458   /// Return true if the specified immediate is legal icmp immediate, that is
1459   /// the target has icmp instructions which can compare a register against the
1460   /// immediate without having to materialize the immediate into a register.
isLegalICmpImmediate(int64_t)1461   virtual bool isLegalICmpImmediate(int64_t) const {
1462     return true;
1463   }
1464 
1465   /// Return true if the specified immediate is legal add immediate, that is the
1466   /// target has add instructions which can add a register with the immediate
1467   /// without having to materialize the immediate into a register.
isLegalAddImmediate(int64_t)1468   virtual bool isLegalAddImmediate(int64_t) const {
1469     return true;
1470   }
1471 
1472   /// Return true if it's significantly cheaper to shift a vector by a uniform
1473   /// scalar than by an amount which will vary across each lane. On x86, for
1474   /// example, there is a "psllw" instruction for the former case, but no simple
1475   /// instruction for a general "a << b" operation on vectors.
isVectorShiftByScalarCheap(Type * Ty)1476   virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
1477     return false;
1478   }
1479 
1480   /// Return true if it's free to truncate a value of type Ty1 to type
1481   /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
1482   /// by referencing its sub-register AX.
isTruncateFree(Type *,Type *)1483   virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1484     return false;
1485   }
1486 
1487   /// Return true if a truncation from Ty1 to Ty2 is permitted when deciding
1488   /// whether a call is in tail position. Typically this means that both results
1489   /// would be assigned to the same register or stack slot, but it could mean
1490   /// the target performs adequate checks of its own before proceeding with the
1491   /// tail call.
allowTruncateForTailCall(Type *,Type *)1492   virtual bool allowTruncateForTailCall(Type * /*Ty1*/, Type * /*Ty2*/) const {
1493     return false;
1494   }
1495 
isTruncateFree(EVT,EVT)1496   virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1497     return false;
1498   }
1499 
isProfitableToHoist(Instruction * I)1500   virtual bool isProfitableToHoist(Instruction *I) const { return true; }
1501 
1502   /// Return true if the extension represented by \p I is free.
1503   /// Unlikely the is[Z|FP]ExtFree family which is based on types,
1504   /// this method can use the context provided by \p I to decide
1505   /// whether or not \p I is free.
1506   /// This method extends the behavior of the is[Z|FP]ExtFree family.
1507   /// In other words, if is[Z|FP]Free returns true, then this method
1508   /// returns true as well. The converse is not true.
1509   /// The target can perform the adequate checks by overriding isExtFreeImpl.
1510   /// \pre \p I must be a sign, zero, or fp extension.
isExtFree(const Instruction * I)1511   bool isExtFree(const Instruction *I) const {
1512     switch (I->getOpcode()) {
1513     case Instruction::FPExt:
1514       if (isFPExtFree(EVT::getEVT(I->getType())))
1515         return true;
1516       break;
1517     case Instruction::ZExt:
1518       if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
1519         return true;
1520       break;
1521     case Instruction::SExt:
1522       break;
1523     default:
1524       llvm_unreachable("Instruction is not an extension");
1525     }
1526     return isExtFreeImpl(I);
1527   }
1528 
1529   /// Return true if any actual instruction that defines a value of type Ty1
1530   /// implicitly zero-extends the value to Ty2 in the result register.
1531   ///
1532   /// This does not necessarily include registers defined in unknown ways, such
1533   /// as incoming arguments, or copies from unknown virtual registers. Also, if
1534   /// isTruncateFree(Ty2, Ty1) is true, this does not necessarily apply to
1535   /// truncate instructions. e.g. on x86-64, all instructions that define 32-bit
1536   /// values implicit zero-extend the result out to 64 bits.
isZExtFree(Type *,Type *)1537   virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1538     return false;
1539   }
1540 
isZExtFree(EVT,EVT)1541   virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1542     return false;
1543   }
1544 
1545   /// Return true if the target supplies and combines to a paired load
1546   /// two loaded values of type LoadedType next to each other in memory.
1547   /// RequiredAlignment gives the minimal alignment constraints that must be met
1548   /// to be able to select this paired load.
1549   ///
1550   /// This information is *not* used to generate actual paired loads, but it is
1551   /// used to generate a sequence of loads that is easier to combine into a
1552   /// paired load.
1553   /// For instance, something like this:
1554   /// a = load i64* addr
1555   /// b = trunc i64 a to i32
1556   /// c = lshr i64 a, 32
1557   /// d = trunc i64 c to i32
1558   /// will be optimized into:
1559   /// b = load i32* addr1
1560   /// d = load i32* addr2
1561   /// Where addr1 = addr2 +/- sizeof(i32).
1562   ///
1563   /// In other words, unless the target performs a post-isel load combining,
1564   /// this information should not be provided because it will generate more
1565   /// loads.
hasPairedLoad(Type *,unsigned &)1566   virtual bool hasPairedLoad(Type * /*LoadedType*/,
1567                              unsigned & /*RequiredAligment*/) const {
1568     return false;
1569   }
1570 
hasPairedLoad(EVT,unsigned &)1571   virtual bool hasPairedLoad(EVT /*LoadedType*/,
1572                              unsigned & /*RequiredAligment*/) const {
1573     return false;
1574   }
1575 
1576   /// Return true if zero-extending the specific node Val to type VT2 is free
1577   /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
1578   /// because it's folded such as X86 zero-extending loads).
isZExtFree(SDValue Val,EVT VT2)1579   virtual bool isZExtFree(SDValue Val, EVT VT2) const {
1580     return isZExtFree(Val.getValueType(), VT2);
1581   }
1582 
1583   /// Return true if an fpext operation is free (for instance, because
1584   /// single-precision floating-point numbers are implicitly extended to
1585   /// double-precision).
isFPExtFree(EVT VT)1586   virtual bool isFPExtFree(EVT VT) const {
1587     assert(VT.isFloatingPoint());
1588     return false;
1589   }
1590 
1591   /// Return true if folding a vector load into ExtVal (a sign, zero, or any
1592   /// extend node) is profitable.
isVectorLoadExtDesirable(SDValue ExtVal)1593   virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
1594 
1595   /// Return true if an fneg operation is free to the point where it is never
1596   /// worthwhile to replace it with a bitwise operation.
isFNegFree(EVT VT)1597   virtual bool isFNegFree(EVT VT) const {
1598     assert(VT.isFloatingPoint());
1599     return false;
1600   }
1601 
1602   /// Return true if an fabs operation is free to the point where it is never
1603   /// worthwhile to replace it with a bitwise operation.
isFAbsFree(EVT VT)1604   virtual bool isFAbsFree(EVT VT) const {
1605     assert(VT.isFloatingPoint());
1606     return false;
1607   }
1608 
1609   /// Return true if an FMA operation is faster than a pair of fmul and fadd
1610   /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
1611   /// returns true, otherwise fmuladd is expanded to fmul + fadd.
1612   ///
1613   /// NOTE: This may be called before legalization on types for which FMAs are
1614   /// not legal, but should return true if those types will eventually legalize
1615   /// to types that support FMAs. After legalization, it will only be called on
1616   /// types that support FMAs (via Legal or Custom actions)
isFMAFasterThanFMulAndFAdd(EVT)1617   virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
1618     return false;
1619   }
1620 
1621   /// Return true if it's profitable to narrow operations of type VT1 to
1622   /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
1623   /// i32 to i16.
isNarrowingProfitable(EVT,EVT)1624   virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1625     return false;
1626   }
1627 
1628   /// \brief Return true if it is beneficial to convert a load of a constant to
1629   /// just the constant itself.
1630   /// On some targets it might be more efficient to use a combination of
1631   /// arithmetic instructions to materialize the constant instead of loading it
1632   /// from a constant pool.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty)1633   virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
1634                                                  Type *Ty) const {
1635     return false;
1636   }
1637 
1638   /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
1639   /// with this index. This is needed because EXTRACT_SUBVECTOR usually
1640   /// has custom lowering that depends on the index of the first element,
1641   /// and only the target knows which lowering is cheap.
isExtractSubvectorCheap(EVT ResVT,unsigned Index)1642   virtual bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const {
1643     return false;
1644   }
1645 
1646   //===--------------------------------------------------------------------===//
1647   // Runtime Library hooks
1648   //
1649 
1650   /// Rename the default libcall routine name for the specified libcall.
setLibcallName(RTLIB::Libcall Call,const char * Name)1651   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1652     LibcallRoutineNames[Call] = Name;
1653   }
1654 
1655   /// Get the libcall routine name for the specified libcall.
getLibcallName(RTLIB::Libcall Call)1656   const char *getLibcallName(RTLIB::Libcall Call) const {
1657     return LibcallRoutineNames[Call];
1658   }
1659 
1660   /// Override the default CondCode to be used to test the result of the
1661   /// comparison libcall against zero.
setCmpLibcallCC(RTLIB::Libcall Call,ISD::CondCode CC)1662   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1663     CmpLibcallCCs[Call] = CC;
1664   }
1665 
1666   /// Get the CondCode that's to be used to test the result of the comparison
1667   /// libcall against zero.
getCmpLibcallCC(RTLIB::Libcall Call)1668   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1669     return CmpLibcallCCs[Call];
1670   }
1671 
1672   /// Set the CallingConv that should be used for the specified libcall.
setLibcallCallingConv(RTLIB::Libcall Call,CallingConv::ID CC)1673   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1674     LibcallCallingConvs[Call] = CC;
1675   }
1676 
1677   /// Get the CallingConv that should be used for the specified libcall.
getLibcallCallingConv(RTLIB::Libcall Call)1678   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1679     return LibcallCallingConvs[Call];
1680   }
1681 
1682 private:
1683   const TargetMachine &TM;
1684 
1685   /// True if this is a little endian target.
1686   bool IsLittleEndian;
1687 
1688   /// Tells the code generator not to expand operations into sequences that use
1689   /// the select operations if possible.
1690   bool SelectIsExpensive;
1691 
1692   /// Tells the code generator that the target has multiple (allocatable)
1693   /// condition registers that can be used to store the results of comparisons
1694   /// for use by selects and conditional branches. With multiple condition
1695   /// registers, the code generator will not aggressively sink comparisons into
1696   /// the blocks of their users.
1697   bool HasMultipleConditionRegisters;
1698 
1699   /// Tells the code generator that the target has BitExtract instructions.
1700   /// The code generator will aggressively sink "shift"s into the blocks of
1701   /// their users if the users will generate "and" instructions which can be
1702   /// combined with "shift" to BitExtract instructions.
1703   bool HasExtractBitsInsn;
1704 
1705   /// Tells the code generator not to expand integer divides by constants into a
1706   /// sequence of muls, adds, and shifts.  This is a hack until a real cost
1707   /// model is in place.  If we ever optimize for size, this will be set to true
1708   /// unconditionally.
1709   bool IntDivIsCheap;
1710 
1711   // Don't expand fsqrt with an approximation based on the inverse sqrt.
1712   bool FsqrtIsCheap;
1713 
1714   /// Tells the code generator to bypass slow divide or remainder
1715   /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
1716   /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
1717   /// div/rem when the operands are positive and less than 256.
1718   DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
1719 
1720   /// Tells the code generator that it shouldn't generate sra/srl/add/sra for a
1721   /// signed divide by power of two; let the target handle it.
1722   bool Pow2SDivIsCheap;
1723 
1724   /// Tells the code generator that it shouldn't generate extra flow control
1725   /// instructions and should attempt to combine flow control instructions via
1726   /// predication.
1727   bool JumpIsExpensive;
1728 
1729   /// Whether the target supports or cares about preserving floating point
1730   /// exception behavior.
1731   bool HasFloatingPointExceptions;
1732 
1733   /// This target prefers to use _setjmp to implement llvm.setjmp.
1734   ///
1735   /// Defaults to false.
1736   bool UseUnderscoreSetJmp;
1737 
1738   /// This target prefers to use _longjmp to implement llvm.longjmp.
1739   ///
1740   /// Defaults to false.
1741   bool UseUnderscoreLongJmp;
1742 
1743   /// Number of blocks threshold to use jump tables.
1744   int MinimumJumpTableEntries;
1745 
1746   /// Information about the contents of the high-bits in boolean values held in
1747   /// a type wider than i1. See getBooleanContents.
1748   BooleanContent BooleanContents;
1749 
1750   /// Information about the contents of the high-bits in boolean values held in
1751   /// a type wider than i1. See getBooleanContents.
1752   BooleanContent BooleanFloatContents;
1753 
1754   /// Information about the contents of the high-bits in boolean vector values
1755   /// when the element type is wider than i1. See getBooleanContents.
1756   BooleanContent BooleanVectorContents;
1757 
1758   /// The target scheduling preference: shortest possible total cycles or lowest
1759   /// register usage.
1760   Sched::Preference SchedPreferenceInfo;
1761 
1762   /// The size, in bytes, of the target's jmp_buf buffers
1763   unsigned JumpBufSize;
1764 
1765   /// The alignment, in bytes, of the target's jmp_buf buffers
1766   unsigned JumpBufAlignment;
1767 
1768   /// The minimum alignment that any argument on the stack needs to have.
1769   unsigned MinStackArgumentAlignment;
1770 
1771   /// The minimum function alignment (used when optimizing for size, and to
1772   /// prevent explicitly provided alignment from leading to incorrect code).
1773   unsigned MinFunctionAlignment;
1774 
1775   /// The preferred function alignment (used when alignment unspecified and
1776   /// optimizing for speed).
1777   unsigned PrefFunctionAlignment;
1778 
1779   /// The preferred loop alignment.
1780   unsigned PrefLoopAlignment;
1781 
1782   /// Whether the DAG builder should automatically insert fences and reduce
1783   /// ordering for atomics.  (This will be set for for most architectures with
1784   /// weak memory ordering.)
1785   bool InsertFencesForAtomic;
1786 
1787   /// If set to a physical register, this specifies the register that
1788   /// llvm.savestack/llvm.restorestack should save and restore.
1789   unsigned StackPointerRegisterToSaveRestore;
1790 
1791   /// If set to a physical register, this specifies the register that receives
1792   /// the exception address on entry to a landing pad.
1793   unsigned ExceptionPointerRegister;
1794 
1795   /// If set to a physical register, this specifies the register that receives
1796   /// the exception typeid on entry to a landing pad.
1797   unsigned ExceptionSelectorRegister;
1798 
1799   /// This indicates the default register class to use for each ValueType the
1800   /// target supports natively.
1801   const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1802   unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1803   MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1804 
1805   /// This indicates the "representative" register class to use for each
1806   /// ValueType the target supports natively. This information is used by the
1807   /// scheduler to track register pressure. By default, the representative
1808   /// register class is the largest legal super-reg register class of the
1809   /// register class of the specified type. e.g. On x86, i8, i16, and i32's
1810   /// representative class would be GR32.
1811   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1812 
1813   /// This indicates the "cost" of the "representative" register class for each
1814   /// ValueType. The cost is used by the scheduler to approximate register
1815   /// pressure.
1816   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1817 
1818   /// For any value types we are promoting or expanding, this contains the value
1819   /// type that we are changing to.  For Expanded types, this contains one step
1820   /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
1821   /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
1822   /// the same type (e.g. i32 -> i32).
1823   MVT TransformToType[MVT::LAST_VALUETYPE];
1824 
1825   /// For each operation and each value type, keep a LegalizeAction that
1826   /// indicates how instruction selection should deal with the operation.  Most
1827   /// operations are Legal (aka, supported natively by the target), but
1828   /// operations that are not should be described.  Note that operations on
1829   /// non-legal value types are not described here.
1830   uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1831 
1832   /// For each load extension type and each value type, keep a LegalizeAction
1833   /// that indicates how instruction selection should deal with a load of a
1834   /// specific value type and extension type.
1835   uint8_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]
1836                         [ISD::LAST_LOADEXT_TYPE];
1837 
1838   /// For each value type pair keep a LegalizeAction that indicates whether a
1839   /// truncating store of a specific value type and truncating type is legal.
1840   uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1841 
1842   /// For each indexed mode and each value type, keep a pair of LegalizeAction
1843   /// that indicates how instruction selection should deal with the load /
1844   /// store.
1845   ///
1846   /// The first dimension is the value_type for the reference. The second
1847   /// dimension represents the various modes for load store.
1848   uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1849 
1850   /// For each condition code (ISD::CondCode) keep a LegalizeAction that
1851   /// indicates how instruction selection should deal with the condition code.
1852   ///
1853   /// Because each CC action takes up 2 bits, we need to have the array size be
1854   /// large enough to fit all of the value types. This can be done by rounding
1855   /// up the MVT::LAST_VALUETYPE value to the next multiple of 16.
1856   uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 15) / 16];
1857 
1858   ValueTypeActionImpl ValueTypeActions;
1859 
1860 private:
1861   LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
1862 
1863 private:
1864   std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
1865 
1866   /// Targets can specify ISD nodes that they would like PerformDAGCombine
1867   /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
1868   /// array.
1869   unsigned char
1870   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1871 
1872   /// For operations that must be promoted to a specific type, this holds the
1873   /// destination type.  This map should be sparse, so don't hold it as an
1874   /// array.
1875   ///
1876   /// Targets add entries to this map with AddPromotedToType(..), clients access
1877   /// this with getTypeToPromoteTo(..).
1878   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1879     PromoteToType;
1880 
1881   /// Stores the name each libcall.
1882   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1883 
1884   /// The ISD::CondCode that should be used to test the result of each of the
1885   /// comparison libcall against zero.
1886   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1887 
1888   /// Stores the CallingConv that should be used for each libcall.
1889   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1890 
1891 protected:
1892   /// Return true if the extension represented by \p I is free.
1893   /// \pre \p I is a sign, zero, or fp extension and
1894   ///      is[Z|FP]ExtFree of the related types is not true.
isExtFreeImpl(const Instruction * I)1895   virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
1896 
1897   /// \brief Specify maximum number of store instructions per memset call.
1898   ///
1899   /// When lowering \@llvm.memset this field specifies the maximum number of
1900   /// store operations that may be substituted for the call to memset. Targets
1901   /// must set this value based on the cost threshold for that target. Targets
1902   /// should assume that the memset will be done using as many of the largest
1903   /// store operations first, followed by smaller ones, if necessary, per
1904   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1905   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1906   /// store.  This only applies to setting a constant array of a constant size.
1907   unsigned MaxStoresPerMemset;
1908 
1909   /// Maximum number of stores operations that may be substituted for the call
1910   /// to memset, used for functions with OptSize attribute.
1911   unsigned MaxStoresPerMemsetOptSize;
1912 
1913   /// \brief Specify maximum bytes of store instructions per memcpy call.
1914   ///
1915   /// When lowering \@llvm.memcpy this field specifies the maximum number of
1916   /// store operations that may be substituted for a call to memcpy. Targets
1917   /// must set this value based on the cost threshold for that target. Targets
1918   /// should assume that the memcpy will be done using as many of the largest
1919   /// store operations first, followed by smaller ones, if necessary, per
1920   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1921   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1922   /// and one 1-byte store. This only applies to copying a constant array of
1923   /// constant size.
1924   unsigned MaxStoresPerMemcpy;
1925 
1926   /// Maximum number of store operations that may be substituted for a call to
1927   /// memcpy, used for functions with OptSize attribute.
1928   unsigned MaxStoresPerMemcpyOptSize;
1929 
1930   /// \brief Specify maximum bytes of store instructions per memmove call.
1931   ///
1932   /// When lowering \@llvm.memmove this field specifies the maximum number of
1933   /// store instructions that may be substituted for a call to memmove. Targets
1934   /// must set this value based on the cost threshold for that target. Targets
1935   /// should assume that the memmove will be done using as many of the largest
1936   /// store operations first, followed by smaller ones, if necessary, per
1937   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1938   /// with 8-bit alignment would result in nine 1-byte stores.  This only
1939   /// applies to copying a constant array of constant size.
1940   unsigned MaxStoresPerMemmove;
1941 
1942   /// Maximum number of store instructions that may be substituted for a call to
1943   /// memmove, used for functions with OpSize attribute.
1944   unsigned MaxStoresPerMemmoveOptSize;
1945 
1946   /// Tells the code generator that select is more expensive than a branch if
1947   /// the branch is usually predicted right.
1948   bool PredictableSelectIsExpensive;
1949 
1950   /// MaskAndBranchFoldingIsLegal - Indicates if the target supports folding
1951   /// a mask of a single bit, a compare, and a branch into a single instruction.
1952   bool MaskAndBranchFoldingIsLegal;
1953 
1954   /// \see enableExtLdPromotion.
1955   bool EnableExtLdPromotion;
1956 
1957 protected:
1958   /// Return true if the value types that can be represented by the specified
1959   /// register class are all legal.
1960   bool isLegalRC(const TargetRegisterClass *RC) const;
1961 
1962   /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1963   /// sequence of memory operands that is recognized by PrologEpilogInserter.
1964   MachineBasicBlock *emitPatchPoint(MachineInstr *MI, MachineBasicBlock *MBB) const;
1965 };
1966 
1967 /// This class defines information used to lower LLVM code to legal SelectionDAG
1968 /// operators that the target instruction selector can accept natively.
1969 ///
1970 /// This class also defines callbacks that targets must implement to lower
1971 /// target-specific constructs to SelectionDAG operators.
1972 class TargetLowering : public TargetLoweringBase {
1973   TargetLowering(const TargetLowering&) = delete;
1974   void operator=(const TargetLowering&) = delete;
1975 
1976 public:
1977   /// NOTE: The TargetMachine owns TLOF.
1978   explicit TargetLowering(const TargetMachine &TM);
1979 
1980   /// Returns true by value, base pointer and offset pointer and addressing mode
1981   /// by reference if the node's address can be legally represented as
1982   /// pre-indexed load / store address.
getPreIndexedAddressParts(SDNode *,SDValue &,SDValue &,ISD::MemIndexedMode &,SelectionDAG &)1983   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
1984                                          SDValue &/*Offset*/,
1985                                          ISD::MemIndexedMode &/*AM*/,
1986                                          SelectionDAG &/*DAG*/) const {
1987     return false;
1988   }
1989 
1990   /// Returns true by value, base pointer and offset pointer and addressing mode
1991   /// by reference if this node can be combined with a load / store to form a
1992   /// post-indexed load / store.
getPostIndexedAddressParts(SDNode *,SDNode *,SDValue &,SDValue &,ISD::MemIndexedMode &,SelectionDAG &)1993   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
1994                                           SDValue &/*Base*/,
1995                                           SDValue &/*Offset*/,
1996                                           ISD::MemIndexedMode &/*AM*/,
1997                                           SelectionDAG &/*DAG*/) const {
1998     return false;
1999   }
2000 
2001   /// Return the entry encoding for a jump table in the current function.  The
2002   /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
2003   virtual unsigned getJumpTableEncoding() const;
2004 
2005   virtual const MCExpr *
LowerCustomJumpTableEntry(const MachineJumpTableInfo *,const MachineBasicBlock *,unsigned,MCContext &)2006   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
2007                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
2008                             MCContext &/*Ctx*/) const {
2009     llvm_unreachable("Need to implement this hook if target has custom JTIs");
2010   }
2011 
2012   /// Returns relocation base for the given PIC jumptable.
2013   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
2014                                            SelectionDAG &DAG) const;
2015 
2016   /// This returns the relocation base for the given PIC jumptable, the same as
2017   /// getPICJumpTableRelocBase, but as an MCExpr.
2018   virtual const MCExpr *
2019   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2020                                unsigned JTI, MCContext &Ctx) const;
2021 
2022   /// Return true if folding a constant offset with the given GlobalAddress is
2023   /// legal.  It is frequently not legal in PIC relocation models.
2024   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
2025 
2026   bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
2027                             SDValue &Chain) const;
2028 
2029   void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
2030                            SDValue &NewLHS, SDValue &NewRHS,
2031                            ISD::CondCode &CCCode, SDLoc DL) const;
2032 
2033   /// Returns a pair of (return value, chain).
2034   /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
2035   std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
2036                                           EVT RetVT, const SDValue *Ops,
2037                                           unsigned NumOps, bool isSigned,
2038                                           SDLoc dl, bool doesNotReturn = false,
2039                                           bool isReturnValueUsed = true) const;
2040 
2041   //===--------------------------------------------------------------------===//
2042   // TargetLowering Optimization Methods
2043   //
2044 
2045   /// A convenience struct that encapsulates a DAG, and two SDValues for
2046   /// returning information from TargetLowering to its clients that want to
2047   /// combine.
2048   struct TargetLoweringOpt {
2049     SelectionDAG &DAG;
2050     bool LegalTys;
2051     bool LegalOps;
2052     SDValue Old;
2053     SDValue New;
2054 
TargetLoweringOptTargetLoweringOpt2055     explicit TargetLoweringOpt(SelectionDAG &InDAG,
2056                                bool LT, bool LO) :
2057       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
2058 
LegalTypesTargetLoweringOpt2059     bool LegalTypes() const { return LegalTys; }
LegalOperationsTargetLoweringOpt2060     bool LegalOperations() const { return LegalOps; }
2061 
CombineToTargetLoweringOpt2062     bool CombineTo(SDValue O, SDValue N) {
2063       Old = O;
2064       New = N;
2065       return true;
2066     }
2067 
2068     /// Check to see if the specified operand of the specified instruction is a
2069     /// constant integer.  If so, check to see if there are any bits set in the
2070     /// constant that are not demanded.  If so, shrink the constant and return
2071     /// true.
2072     bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
2073 
2074     /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
2075     /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
2076     /// generalized for targets with other types of implicit widening casts.
2077     bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
2078                           SDLoc dl);
2079   };
2080 
2081   /// Look at Op.  At this point, we know that only the DemandedMask bits of the
2082   /// result of Op are ever used downstream.  If we can use this information to
2083   /// simplify Op, create a new simplified DAG node and return true, returning
2084   /// the original and new nodes in Old and New.  Otherwise, analyze the
2085   /// expression and return a mask of KnownOne and KnownZero bits for the
2086   /// expression (used to simplify the caller).  The KnownZero/One bits may only
2087   /// be accurate for those bits in the DemandedMask.
2088   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
2089                             APInt &KnownZero, APInt &KnownOne,
2090                             TargetLoweringOpt &TLO, unsigned Depth = 0) const;
2091 
2092   /// Determine which of the bits specified in Mask are known to be either zero
2093   /// or one and return them in the KnownZero/KnownOne bitsets.
2094   virtual void computeKnownBitsForTargetNode(const SDValue Op,
2095                                              APInt &KnownZero,
2096                                              APInt &KnownOne,
2097                                              const SelectionDAG &DAG,
2098                                              unsigned Depth = 0) const;
2099 
2100   /// This method can be implemented by targets that want to expose additional
2101   /// information about sign bits to the DAG Combiner.
2102   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
2103                                                    const SelectionDAG &DAG,
2104                                                    unsigned Depth = 0) const;
2105 
2106   struct DAGCombinerInfo {
2107     void *DC;  // The DAG Combiner object.
2108     CombineLevel Level;
2109     bool CalledByLegalizer;
2110   public:
2111     SelectionDAG &DAG;
2112 
DAGCombinerInfoDAGCombinerInfo2113     DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
2114       : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
2115 
isBeforeLegalizeDAGCombinerInfo2116     bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
isBeforeLegalizeOpsDAGCombinerInfo2117     bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
isAfterLegalizeVectorOpsDAGCombinerInfo2118     bool isAfterLegalizeVectorOps() const {
2119       return Level == AfterLegalizeDAG;
2120     }
getDAGCombineLevelDAGCombinerInfo2121     CombineLevel getDAGCombineLevel() { return Level; }
isCalledByLegalizerDAGCombinerInfo2122     bool isCalledByLegalizer() const { return CalledByLegalizer; }
2123 
2124     void AddToWorklist(SDNode *N);
2125     void RemoveFromWorklist(SDNode *N);
2126     SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
2127     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
2128     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
2129 
2130     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
2131   };
2132 
2133   /// Return if the N is a constant or constant vector equal to the true value
2134   /// from getBooleanContents().
2135   bool isConstTrueVal(const SDNode *N) const;
2136 
2137   /// Return if the N is a constant or constant vector equal to the false value
2138   /// from getBooleanContents().
2139   bool isConstFalseVal(const SDNode *N) const;
2140 
2141   /// Try to simplify a setcc built with the specified operands and cc. If it is
2142   /// unable to simplify it, return a null SDValue.
2143   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2144                           ISD::CondCode Cond, bool foldBooleans,
2145                           DAGCombinerInfo &DCI, SDLoc dl) const;
2146 
2147   /// Returns true (and the GlobalValue and the offset) if the node is a
2148   /// GlobalAddress + offset.
2149   virtual bool
2150   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
2151 
2152   /// This method will be invoked for all target nodes and for any
2153   /// target-independent nodes that the target has registered with invoke it
2154   /// for.
2155   ///
2156   /// The semantics are as follows:
2157   /// Return Value:
2158   ///   SDValue.Val == 0   - No change was made
2159   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
2160   ///   otherwise          - N should be replaced by the returned Operand.
2161   ///
2162   /// In addition, methods provided by DAGCombinerInfo may be used to perform
2163   /// more complex transformations.
2164   ///
2165   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
2166 
2167   /// Return true if it is profitable to move a following shift through this
2168   //  node, adjusting any immediate operands as necessary to preserve semantics.
2169   //  This transformation may not be desirable if it disrupts a particularly
2170   //  auspicious target-specific tree (e.g. bitfield extraction in AArch64).
2171   //  By default, it returns true.
isDesirableToCommuteWithShift(const SDNode * N)2172   virtual bool isDesirableToCommuteWithShift(const SDNode *N /*Op*/) const {
2173     return true;
2174   }
2175 
2176   /// Return true if the target has native support for the specified value type
2177   /// and it is 'desirable' to use the type for the given node type. e.g. On x86
2178   /// i16 is legal, but undesirable since i16 instruction encodings are longer
2179   /// and some i16 instructions are slow.
isTypeDesirableForOp(unsigned,EVT VT)2180   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
2181     // By default, assume all legal types are desirable.
2182     return isTypeLegal(VT);
2183   }
2184 
2185   /// Return true if it is profitable for dag combiner to transform a floating
2186   /// point op of specified opcode to a equivalent op of an integer
2187   /// type. e.g. f32 load -> i32 load can be profitable on ARM.
isDesirableToTransformToIntegerOp(unsigned,EVT)2188   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
2189                                                  EVT /*VT*/) const {
2190     return false;
2191   }
2192 
2193   /// This method query the target whether it is beneficial for dag combiner to
2194   /// promote the specified node. If true, it should return the desired
2195   /// promotion type by reference.
IsDesirableToPromoteOp(SDValue,EVT &)2196   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
2197     return false;
2198   }
2199 
2200   //===--------------------------------------------------------------------===//
2201   // Lowering methods - These methods must be implemented by targets so that
2202   // the SelectionDAGBuilder code knows how to lower these.
2203   //
2204 
2205   /// This hook must be implemented to lower the incoming (formal) arguments,
2206   /// described by the Ins array, into the specified DAG. The implementation
2207   /// should fill in the InVals array with legal-type argument values, and
2208   /// return the resulting token chain value.
2209   ///
2210   virtual SDValue
LowerFormalArguments(SDValue,CallingConv::ID,bool,const SmallVectorImpl<ISD::InputArg> &,SDLoc,SelectionDAG &,SmallVectorImpl<SDValue> &)2211     LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
2212                          bool /*isVarArg*/,
2213                          const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
2214                          SDLoc /*dl*/, SelectionDAG &/*DAG*/,
2215                          SmallVectorImpl<SDValue> &/*InVals*/) const {
2216     llvm_unreachable("Not Implemented");
2217   }
2218 
2219   struct ArgListEntry {
2220     SDValue Node;
2221     Type* Ty;
2222     bool isSExt     : 1;
2223     bool isZExt     : 1;
2224     bool isInReg    : 1;
2225     bool isSRet     : 1;
2226     bool isNest     : 1;
2227     bool isByVal    : 1;
2228     bool isInAlloca : 1;
2229     bool isReturned : 1;
2230     uint16_t Alignment;
2231 
ArgListEntryArgListEntry2232     ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
2233       isSRet(false), isNest(false), isByVal(false), isInAlloca(false),
2234       isReturned(false), Alignment(0) { }
2235 
2236     void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
2237   };
2238   typedef std::vector<ArgListEntry> ArgListTy;
2239 
2240   /// This structure contains all information that is necessary for lowering
2241   /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
2242   /// needs to lower a call, and targets will see this struct in their LowerCall
2243   /// implementation.
2244   struct CallLoweringInfo {
2245     SDValue Chain;
2246     Type *RetTy;
2247     bool RetSExt           : 1;
2248     bool RetZExt           : 1;
2249     bool IsVarArg          : 1;
2250     bool IsInReg           : 1;
2251     bool DoesNotReturn     : 1;
2252     bool IsReturnValueUsed : 1;
2253 
2254     // IsTailCall should be modified by implementations of
2255     // TargetLowering::LowerCall that perform tail call conversions.
2256     bool IsTailCall;
2257 
2258     unsigned NumFixedArgs;
2259     CallingConv::ID CallConv;
2260     SDValue Callee;
2261     ArgListTy Args;
2262     SelectionDAG &DAG;
2263     SDLoc DL;
2264     ImmutableCallSite *CS;
2265     bool IsPatchPoint;
2266     SmallVector<ISD::OutputArg, 32> Outs;
2267     SmallVector<SDValue, 32> OutVals;
2268     SmallVector<ISD::InputArg, 32> Ins;
2269 
CallLoweringInfoCallLoweringInfo2270     CallLoweringInfo(SelectionDAG &DAG)
2271       : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
2272         IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
2273         IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
2274         DAG(DAG), CS(nullptr), IsPatchPoint(false) {}
2275 
setDebugLocCallLoweringInfo2276     CallLoweringInfo &setDebugLoc(SDLoc dl) {
2277       DL = dl;
2278       return *this;
2279     }
2280 
setChainCallLoweringInfo2281     CallLoweringInfo &setChain(SDValue InChain) {
2282       Chain = InChain;
2283       return *this;
2284     }
2285 
2286     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
2287                                 SDValue Target, ArgListTy &&ArgsList,
2288                                 unsigned FixedArgs = -1) {
2289       RetTy = ResultType;
2290       Callee = Target;
2291       CallConv = CC;
2292       NumFixedArgs =
2293         (FixedArgs == static_cast<unsigned>(-1) ? Args.size() : FixedArgs);
2294       Args = std::move(ArgsList);
2295       return *this;
2296     }
2297 
setCalleeCallLoweringInfo2298     CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
2299                                 SDValue Target, ArgListTy &&ArgsList,
2300                                 ImmutableCallSite &Call) {
2301       RetTy = ResultType;
2302 
2303       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
2304       DoesNotReturn = Call.doesNotReturn();
2305       IsVarArg = FTy->isVarArg();
2306       IsReturnValueUsed = !Call.getInstruction()->use_empty();
2307       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
2308       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
2309 
2310       Callee = Target;
2311 
2312       CallConv = Call.getCallingConv();
2313       NumFixedArgs = FTy->getNumParams();
2314       Args = std::move(ArgsList);
2315 
2316       CS = &Call;
2317 
2318       return *this;
2319     }
2320 
2321     CallLoweringInfo &setInRegister(bool Value = true) {
2322       IsInReg = Value;
2323       return *this;
2324     }
2325 
2326     CallLoweringInfo &setNoReturn(bool Value = true) {
2327       DoesNotReturn = Value;
2328       return *this;
2329     }
2330 
2331     CallLoweringInfo &setVarArg(bool Value = true) {
2332       IsVarArg = Value;
2333       return *this;
2334     }
2335 
2336     CallLoweringInfo &setTailCall(bool Value = true) {
2337       IsTailCall = Value;
2338       return *this;
2339     }
2340 
2341     CallLoweringInfo &setDiscardResult(bool Value = true) {
2342       IsReturnValueUsed = !Value;
2343       return *this;
2344     }
2345 
2346     CallLoweringInfo &setSExtResult(bool Value = true) {
2347       RetSExt = Value;
2348       return *this;
2349     }
2350 
2351     CallLoweringInfo &setZExtResult(bool Value = true) {
2352       RetZExt = Value;
2353       return *this;
2354     }
2355 
2356     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
2357       IsPatchPoint = Value;
2358       return *this;
2359     }
2360 
getArgsCallLoweringInfo2361     ArgListTy &getArgs() {
2362       return Args;
2363     }
2364   };
2365 
2366   /// This function lowers an abstract call to a function into an actual call.
2367   /// This returns a pair of operands.  The first element is the return value
2368   /// for the function (if RetTy is not VoidTy).  The second element is the
2369   /// outgoing token chain. It calls LowerCall to do the actual lowering.
2370   std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
2371 
2372   /// This hook must be implemented to lower calls into the the specified
2373   /// DAG. The outgoing arguments to the call are described by the Outs array,
2374   /// and the values to be returned by the call are described by the Ins
2375   /// array. The implementation should fill in the InVals array with legal-type
2376   /// return values from the call, and return the resulting token chain value.
2377   virtual SDValue
LowerCall(CallLoweringInfo &,SmallVectorImpl<SDValue> &)2378     LowerCall(CallLoweringInfo &/*CLI*/,
2379               SmallVectorImpl<SDValue> &/*InVals*/) const {
2380     llvm_unreachable("Not Implemented");
2381   }
2382 
2383   /// Target-specific cleanup for formal ByVal parameters.
HandleByVal(CCState *,unsigned &,unsigned)2384   virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
2385 
2386   /// This hook should be implemented to check whether the return values
2387   /// described by the Outs array can fit into the return registers.  If false
2388   /// is returned, an sret-demotion is performed.
CanLowerReturn(CallingConv::ID,MachineFunction &,bool,const SmallVectorImpl<ISD::OutputArg> &,LLVMContext &)2389   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
2390                               MachineFunction &/*MF*/, bool /*isVarArg*/,
2391                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2392                LLVMContext &/*Context*/) const
2393   {
2394     // Return true by default to get preexisting behavior.
2395     return true;
2396   }
2397 
2398   /// This hook must be implemented to lower outgoing return values, described
2399   /// by the Outs array, into the specified DAG. The implementation should
2400   /// return the resulting token chain value.
2401   virtual SDValue
LowerReturn(SDValue,CallingConv::ID,bool,const SmallVectorImpl<ISD::OutputArg> &,const SmallVectorImpl<SDValue> &,SDLoc,SelectionDAG &)2402     LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
2403                 bool /*isVarArg*/,
2404                 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2405                 const SmallVectorImpl<SDValue> &/*OutVals*/,
2406                 SDLoc /*dl*/, SelectionDAG &/*DAG*/) const {
2407     llvm_unreachable("Not Implemented");
2408   }
2409 
2410   /// Return true if result of the specified node is used by a return node
2411   /// only. It also compute and return the input chain for the tail call.
2412   ///
2413   /// This is used to determine whether it is possible to codegen a libcall as
2414   /// tail call at legalization time.
isUsedByReturnOnly(SDNode *,SDValue &)2415   virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
2416     return false;
2417   }
2418 
2419   /// Return true if the target may be able emit the call instruction as a tail
2420   /// call. This is used by optimization passes to determine if it's profitable
2421   /// to duplicate return instructions to enable tailcall optimization.
mayBeEmittedAsTailCall(CallInst *)2422   virtual bool mayBeEmittedAsTailCall(CallInst *) const {
2423     return false;
2424   }
2425 
2426   /// Return the builtin name for the __builtin___clear_cache intrinsic
2427   /// Default is to invoke the clear cache library call
getClearCacheBuiltinName()2428   virtual const char * getClearCacheBuiltinName() const {
2429     return "__clear_cache";
2430   }
2431 
2432   /// Return the register ID of the name passed in. Used by named register
2433   /// global variables extension. There is no target-independent behaviour
2434   /// so the default action is to bail.
getRegisterByName(const char * RegName,EVT VT)2435   virtual unsigned getRegisterByName(const char* RegName, EVT VT) const {
2436     report_fatal_error("Named registers not implemented for this target");
2437   }
2438 
2439   /// Return the type that should be used to zero or sign extend a
2440   /// zeroext/signext integer argument or return value.  FIXME: Most C calling
2441   /// convention requires the return type to be promoted, but this is not true
2442   /// all the time, e.g. i1 on x86-64. It is also not necessary for non-C
2443   /// calling conventions. The frontend should handle this and include all of
2444   /// the necessary information.
getTypeForExtArgOrReturn(LLVMContext & Context,EVT VT,ISD::NodeType)2445   virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
2446                                        ISD::NodeType /*ExtendKind*/) const {
2447     EVT MinVT = getRegisterType(Context, MVT::i32);
2448     return VT.bitsLT(MinVT) ? MinVT : VT;
2449   }
2450 
2451   /// For some targets, an LLVM struct type must be broken down into multiple
2452   /// simple types, but the calling convention specifies that the entire struct
2453   /// must be passed in a block of consecutive registers.
2454   virtual bool
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg)2455   functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
2456                                             bool isVarArg) const {
2457     return false;
2458   }
2459 
2460   /// Returns a 0 terminated array of registers that can be safely used as
2461   /// scratch registers.
getScratchRegisters(CallingConv::ID CC)2462   virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
2463     return nullptr;
2464   }
2465 
2466   /// This callback is used to prepare for a volatile or atomic load.
2467   /// It takes a chain node as input and returns the chain for the load itself.
2468   ///
2469   /// Having a callback like this is necessary for targets like SystemZ,
2470   /// which allows a CPU to reuse the result of a previous load indefinitely,
2471   /// even if a cache-coherent store is performed by another CPU.  The default
2472   /// implementation does nothing.
prepareVolatileOrAtomicLoad(SDValue Chain,SDLoc DL,SelectionDAG & DAG)2473   virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL,
2474                                               SelectionDAG &DAG) const {
2475     return Chain;
2476   }
2477 
2478   /// This callback is invoked by the type legalizer to legalize nodes with an
2479   /// illegal operand type but legal result types.  It replaces the
2480   /// LowerOperation callback in the type Legalizer.  The reason we can not do
2481   /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
2482   /// use this callback.
2483   ///
2484   /// TODO: Consider merging with ReplaceNodeResults.
2485   ///
2486   /// The target places new result values for the node in Results (their number
2487   /// and types must exactly match those of the original return values of
2488   /// the node), or leaves Results empty, which indicates that the node is not
2489   /// to be custom lowered after all.
2490   /// The default implementation calls LowerOperation.
2491   virtual void LowerOperationWrapper(SDNode *N,
2492                                      SmallVectorImpl<SDValue> &Results,
2493                                      SelectionDAG &DAG) const;
2494 
2495   /// This callback is invoked for operations that are unsupported by the
2496   /// target, which are registered to use 'custom' lowering, and whose defined
2497   /// values are all legal.  If the target has no operations that require custom
2498   /// lowering, it need not implement this.  The default implementation of this
2499   /// aborts.
2500   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
2501 
2502   /// This callback is invoked when a node result type is illegal for the
2503   /// target, and the operation was registered to use 'custom' lowering for that
2504   /// result type.  The target places new result values for the node in Results
2505   /// (their number and types must exactly match those of the original return
2506   /// values of the node), or leaves Results empty, which indicates that the
2507   /// node is not to be custom lowered after all.
2508   ///
2509   /// If the target has no operations that require custom lowering, it need not
2510   /// implement this.  The default implementation aborts.
ReplaceNodeResults(SDNode *,SmallVectorImpl<SDValue> &,SelectionDAG &)2511   virtual void ReplaceNodeResults(SDNode * /*N*/,
2512                                   SmallVectorImpl<SDValue> &/*Results*/,
2513                                   SelectionDAG &/*DAG*/) const {
2514     llvm_unreachable("ReplaceNodeResults not implemented for this target!");
2515   }
2516 
2517   /// This method returns the name of a target specific DAG node.
2518   virtual const char *getTargetNodeName(unsigned Opcode) const;
2519 
2520   /// This method returns a target specific FastISel object, or null if the
2521   /// target does not support "fast" ISel.
createFastISel(FunctionLoweringInfo &,const TargetLibraryInfo *)2522   virtual FastISel *createFastISel(FunctionLoweringInfo &,
2523                                    const TargetLibraryInfo *) const {
2524     return nullptr;
2525   }
2526 
2527 
2528   bool verifyReturnAddressArgumentIsConstant(SDValue Op,
2529                                              SelectionDAG &DAG) const;
2530 
2531   //===--------------------------------------------------------------------===//
2532   // Inline Asm Support hooks
2533   //
2534 
2535   /// This hook allows the target to expand an inline asm call to be explicit
2536   /// llvm code if it wants to.  This is useful for turning simple inline asms
2537   /// into LLVM intrinsics, which gives the compiler more information about the
2538   /// behavior of the code.
ExpandInlineAsm(CallInst *)2539   virtual bool ExpandInlineAsm(CallInst *) const {
2540     return false;
2541   }
2542 
2543   enum ConstraintType {
2544     C_Register,            // Constraint represents specific register(s).
2545     C_RegisterClass,       // Constraint represents any of register(s) in class.
2546     C_Memory,              // Memory constraint.
2547     C_Other,               // Something else.
2548     C_Unknown              // Unsupported constraint.
2549   };
2550 
2551   enum ConstraintWeight {
2552     // Generic weights.
2553     CW_Invalid  = -1,     // No match.
2554     CW_Okay     = 0,      // Acceptable.
2555     CW_Good     = 1,      // Good weight.
2556     CW_Better   = 2,      // Better weight.
2557     CW_Best     = 3,      // Best weight.
2558 
2559     // Well-known weights.
2560     CW_SpecificReg  = CW_Okay,    // Specific register operands.
2561     CW_Register     = CW_Good,    // Register operands.
2562     CW_Memory       = CW_Better,  // Memory operands.
2563     CW_Constant     = CW_Best,    // Constant operand.
2564     CW_Default      = CW_Okay     // Default or don't know type.
2565   };
2566 
2567   /// This contains information for each constraint that we are lowering.
2568   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
2569     /// This contains the actual string for the code, like "m".  TargetLowering
2570     /// picks the 'best' code from ConstraintInfo::Codes that most closely
2571     /// matches the operand.
2572     std::string ConstraintCode;
2573 
2574     /// Information about the constraint code, e.g. Register, RegisterClass,
2575     /// Memory, Other, Unknown.
2576     TargetLowering::ConstraintType ConstraintType;
2577 
2578     /// If this is the result output operand or a clobber, this is null,
2579     /// otherwise it is the incoming operand to the CallInst.  This gets
2580     /// modified as the asm is processed.
2581     Value *CallOperandVal;
2582 
2583     /// The ValueType for the operand value.
2584     MVT ConstraintVT;
2585 
2586     /// Return true of this is an input operand that is a matching constraint
2587     /// like "4".
2588     bool isMatchingInputConstraint() const;
2589 
2590     /// If this is an input matching constraint, this method returns the output
2591     /// operand it matches.
2592     unsigned getMatchedOperand() const;
2593 
2594     /// Copy constructor for copying from a ConstraintInfo.
AsmOperandInfoAsmOperandInfo2595     AsmOperandInfo(InlineAsm::ConstraintInfo Info)
2596         : InlineAsm::ConstraintInfo(std::move(Info)),
2597           ConstraintType(TargetLowering::C_Unknown), CallOperandVal(nullptr),
2598           ConstraintVT(MVT::Other) {}
2599   };
2600 
2601   typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
2602 
2603   /// Split up the constraint string from the inline assembly value into the
2604   /// specific constraints and their prefixes, and also tie in the associated
2605   /// operand values.  If this returns an empty vector, and if the constraint
2606   /// string itself isn't empty, there was an error parsing.
2607   virtual AsmOperandInfoVector ParseConstraints(const TargetRegisterInfo *TRI,
2608                                                 ImmutableCallSite CS) const;
2609 
2610   /// Examine constraint type and operand type and determine a weight value.
2611   /// The operand object must already have been set up with the operand type.
2612   virtual ConstraintWeight getMultipleConstraintMatchWeight(
2613       AsmOperandInfo &info, int maIndex) const;
2614 
2615   /// Examine constraint string and operand type and determine a weight value.
2616   /// The operand object must already have been set up with the operand type.
2617   virtual ConstraintWeight getSingleConstraintMatchWeight(
2618       AsmOperandInfo &info, const char *constraint) const;
2619 
2620   /// Determines the constraint code and constraint type to use for the specific
2621   /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2622   /// If the actual operand being passed in is available, it can be passed in as
2623   /// Op, otherwise an empty SDValue can be passed.
2624   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2625                                       SDValue Op,
2626                                       SelectionDAG *DAG = nullptr) const;
2627 
2628   /// Given a constraint, return the type of constraint it is for this target.
2629   virtual ConstraintType getConstraintType(const std::string &Constraint) const;
2630 
2631   /// Given a physical register constraint (e.g.  {edx}), return the register
2632   /// number and the register class for the register.
2633   ///
2634   /// Given a register class constraint, like 'r', if this corresponds directly
2635   /// to an LLVM register class, return a register of 0 and the register class
2636   /// pointer.
2637   ///
2638   /// This should only be used for C_Register constraints.  On error, this
2639   /// returns a register number of 0 and a null register class pointer.
2640   virtual std::pair<unsigned, const TargetRegisterClass *>
2641   getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2642                                const std::string &Constraint, MVT VT) const;
2643 
2644   virtual unsigned
getInlineAsmMemConstraint(const std::string & ConstraintCode)2645   getInlineAsmMemConstraint(const std::string &ConstraintCode) const {
2646     if (ConstraintCode == "i")
2647       return InlineAsm::Constraint_i;
2648     else if (ConstraintCode == "m")
2649       return InlineAsm::Constraint_m;
2650     return InlineAsm::Constraint_Unknown;
2651   }
2652 
2653   /// Try to replace an X constraint, which matches anything, with another that
2654   /// has more specific requirements based on the type of the corresponding
2655   /// operand.  This returns null if there is no replacement to make.
2656   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
2657 
2658   /// Lower the specified operand into the Ops vector.  If it is invalid, don't
2659   /// add anything to Ops.
2660   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
2661                                             std::vector<SDValue> &Ops,
2662                                             SelectionDAG &DAG) const;
2663 
2664   //===--------------------------------------------------------------------===//
2665   // Div utility functions
2666   //
2667   SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
2668                          SelectionDAG &DAG) const;
2669   SDValue BuildSDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
2670                     bool IsAfterLegalization,
2671                     std::vector<SDNode *> *Created) const;
2672   SDValue BuildUDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
2673                     bool IsAfterLegalization,
2674                     std::vector<SDNode *> *Created) const;
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,std::vector<SDNode * > * Created)2675   virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2676                                 SelectionDAG &DAG,
2677                                 std::vector<SDNode *> *Created) const {
2678     return SDValue();
2679   }
2680 
2681   /// Indicate whether this target prefers to combine the given number of FDIVs
2682   /// with the same divisor.
combineRepeatedFPDivisors(unsigned NumUsers)2683   virtual bool combineRepeatedFPDivisors(unsigned NumUsers) const {
2684     return false;
2685   }
2686 
2687   /// Hooks for building estimates in place of slower divisions and square
2688   /// roots.
2689 
2690   /// Return a reciprocal square root estimate value for the input operand.
2691   /// The RefinementSteps output is the number of Newton-Raphson refinement
2692   /// iterations required to generate a sufficient (though not necessarily
2693   /// IEEE-754 compliant) estimate for the value type.
2694   /// The boolean UseOneConstNR output is used to select a Newton-Raphson
2695   /// algorithm implementation that uses one constant or two constants.
2696   /// A target may choose to implement its own refinement within this function.
2697   /// If that's true, then return '0' as the number of RefinementSteps to avoid
2698   /// any further refinement of the estimate.
2699   /// An empty SDValue return means no estimate sequence can be created.
getRsqrtEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & RefinementSteps,bool & UseOneConstNR)2700   virtual SDValue getRsqrtEstimate(SDValue Operand,
2701                               DAGCombinerInfo &DCI,
2702                               unsigned &RefinementSteps,
2703                               bool &UseOneConstNR) const {
2704     return SDValue();
2705   }
2706 
2707   /// Return a reciprocal estimate value for the input operand.
2708   /// The RefinementSteps output is the number of Newton-Raphson refinement
2709   /// iterations required to generate a sufficient (though not necessarily
2710   /// IEEE-754 compliant) estimate for the value type.
2711   /// A target may choose to implement its own refinement within this function.
2712   /// If that's true, then return '0' as the number of RefinementSteps to avoid
2713   /// any further refinement of the estimate.
2714   /// An empty SDValue return means no estimate sequence can be created.
getRecipEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & RefinementSteps)2715   virtual SDValue getRecipEstimate(SDValue Operand,
2716                                    DAGCombinerInfo &DCI,
2717                                    unsigned &RefinementSteps) const {
2718     return SDValue();
2719   }
2720 
2721   //===--------------------------------------------------------------------===//
2722   // Legalization utility functions
2723   //
2724 
2725   /// Expand a MUL into two nodes.  One that computes the high bits of
2726   /// the result and one that computes the low bits.
2727   /// \param HiLoVT The value type to use for the Lo and Hi nodes.
2728   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
2729   ///        if you want to control how low bits are extracted from the LHS.
2730   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
2731   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
2732   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
2733   /// \returns true if the node has been expanded. false if it has not
2734   bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
2735                  SelectionDAG &DAG, SDValue LL = SDValue(),
2736                  SDValue LH = SDValue(), SDValue RL = SDValue(),
2737                  SDValue RH = SDValue()) const;
2738 
2739   /// Expand float(f32) to SINT(i64) conversion
2740   /// \param N Node to expand
2741   /// \param Result output after conversion
2742   /// \returns True, if the expansion was successful, false otherwise
2743   bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
2744 
2745   //===--------------------------------------------------------------------===//
2746   // Instruction Emitting Hooks
2747   //
2748 
2749   /// This method should be implemented by targets that mark instructions with
2750   /// the 'usesCustomInserter' flag.  These instructions are special in various
2751   /// ways, which require special support to insert.  The specified MachineInstr
2752   /// is created but not inserted into any basic blocks, and this method is
2753   /// called to expand it into a sequence of instructions, potentially also
2754   /// creating new basic blocks and control flow.
2755   /// As long as the returned basic block is different (i.e., we created a new
2756   /// one), the custom inserter is free to modify the rest of \p MBB.
2757   virtual MachineBasicBlock *
2758     EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
2759 
2760   /// This method should be implemented by targets that mark instructions with
2761   /// the 'hasPostISelHook' flag. These instructions must be adjusted after
2762   /// instruction selection by target hooks.  e.g. To fill in optional defs for
2763   /// ARM 's' setting instructions.
2764   virtual void
2765   AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
2766 
2767   /// If this function returns true, SelectionDAGBuilder emits a
2768   /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
useLoadStackGuardNode()2769   virtual bool useLoadStackGuardNode() const {
2770     return false;
2771   }
2772 };
2773 
2774 /// Given an LLVM IR type and return type attributes, compute the return value
2775 /// EVTs and flags, and optionally also the offsets, if the return value is
2776 /// being lowered to memory.
2777 void GetReturnInfo(Type* ReturnType, AttributeSet attr,
2778                    SmallVectorImpl<ISD::OutputArg> &Outs,
2779                    const TargetLowering &TLI);
2780 
2781 } // end llvm namespace
2782 
2783 #endif
2784