1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #define EIGEN_NO_STATIC_ASSERT
11
12 #include "main.h"
13
basicStuff(const MatrixType & m)14 template<typename MatrixType> void basicStuff(const MatrixType& m)
15 {
16 typedef typename MatrixType::Index Index;
17 typedef typename MatrixType::Scalar Scalar;
18 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
19 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
20
21 Index rows = m.rows();
22 Index cols = m.cols();
23
24 // this test relies a lot on Random.h, and there's not much more that we can do
25 // to test it, hence I consider that we will have tested Random.h
26 MatrixType m1 = MatrixType::Random(rows, cols),
27 m2 = MatrixType::Random(rows, cols),
28 m3(rows, cols),
29 mzero = MatrixType::Zero(rows, cols),
30 square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
31 VectorType v1 = VectorType::Random(rows),
32 vzero = VectorType::Zero(rows);
33 SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows);
34
35 Scalar x = 0;
36 while(x == Scalar(0)) x = internal::random<Scalar>();
37
38 Index r = internal::random<Index>(0, rows-1),
39 c = internal::random<Index>(0, cols-1);
40
41 m1.coeffRef(r,c) = x;
42 VERIFY_IS_APPROX(x, m1.coeff(r,c));
43 m1(r,c) = x;
44 VERIFY_IS_APPROX(x, m1(r,c));
45 v1.coeffRef(r) = x;
46 VERIFY_IS_APPROX(x, v1.coeff(r));
47 v1(r) = x;
48 VERIFY_IS_APPROX(x, v1(r));
49 v1[r] = x;
50 VERIFY_IS_APPROX(x, v1[r]);
51
52 VERIFY_IS_APPROX( v1, v1);
53 VERIFY_IS_NOT_APPROX( v1, 2*v1);
54 VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1);
55 VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.squaredNorm());
56 VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1);
57 VERIFY_IS_APPROX( vzero, v1-v1);
58 VERIFY_IS_APPROX( m1, m1);
59 VERIFY_IS_NOT_APPROX( m1, 2*m1);
60 VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1);
61 VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1);
62 VERIFY_IS_APPROX( mzero, m1-m1);
63
64 // always test operator() on each read-only expression class,
65 // in order to check const-qualifiers.
66 // indeed, if an expression class (here Zero) is meant to be read-only,
67 // hence has no _write() method, the corresponding MatrixBase method (here zero())
68 // should return a const-qualified object so that it is the const-qualified
69 // operator() that gets called, which in turn calls _read().
70 VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
71
72 // now test copying a row-vector into a (column-)vector and conversely.
73 square.col(r) = square.row(r).eval();
74 Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
75 Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
76 rv = square.row(r);
77 cv = square.col(r);
78
79 VERIFY_IS_APPROX(rv, cv.transpose());
80
81 if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
82 {
83 VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
84 }
85
86 if(cols!=1 && rows!=1)
87 {
88 VERIFY_RAISES_ASSERT(m1[0]);
89 VERIFY_RAISES_ASSERT((m1+m1)[0]);
90 }
91
92 VERIFY_IS_APPROX(m3 = m1,m1);
93 MatrixType m4;
94 VERIFY_IS_APPROX(m4 = m1,m1);
95
96 m3.real() = m1.real();
97 VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
98 VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());
99
100 // check == / != operators
101 VERIFY(m1==m1);
102 VERIFY(m1!=m2);
103 VERIFY(!(m1==m2));
104 VERIFY(!(m1!=m1));
105 m1 = m2;
106 VERIFY(m1==m2);
107 VERIFY(!(m1!=m2));
108
109 // check automatic transposition
110 sm2.setZero();
111 for(typename MatrixType::Index i=0;i<rows;++i)
112 sm2.col(i) = sm1.row(i);
113 VERIFY_IS_APPROX(sm2,sm1.transpose());
114
115 sm2.setZero();
116 for(typename MatrixType::Index i=0;i<rows;++i)
117 sm2.col(i).noalias() = sm1.row(i);
118 VERIFY_IS_APPROX(sm2,sm1.transpose());
119
120 sm2.setZero();
121 for(typename MatrixType::Index i=0;i<rows;++i)
122 sm2.col(i).noalias() += sm1.row(i);
123 VERIFY_IS_APPROX(sm2,sm1.transpose());
124
125 sm2.setZero();
126 for(typename MatrixType::Index i=0;i<rows;++i)
127 sm2.col(i).noalias() -= sm1.row(i);
128 VERIFY_IS_APPROX(sm2,-sm1.transpose());
129 }
130
basicStuffComplex(const MatrixType & m)131 template<typename MatrixType> void basicStuffComplex(const MatrixType& m)
132 {
133 typedef typename MatrixType::Index Index;
134 typedef typename MatrixType::Scalar Scalar;
135 typedef typename NumTraits<Scalar>::Real RealScalar;
136 typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
137
138 Index rows = m.rows();
139 Index cols = m.cols();
140
141 Scalar s1 = internal::random<Scalar>(),
142 s2 = internal::random<Scalar>();
143
144 VERIFY(numext::real(s1)==numext::real_ref(s1));
145 VERIFY(numext::imag(s1)==numext::imag_ref(s1));
146 numext::real_ref(s1) = numext::real(s2);
147 numext::imag_ref(s1) = numext::imag(s2);
148 VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon()));
149 // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed.
150
151 RealMatrixType rm1 = RealMatrixType::Random(rows,cols),
152 rm2 = RealMatrixType::Random(rows,cols);
153 MatrixType cm(rows,cols);
154 cm.real() = rm1;
155 cm.imag() = rm2;
156 VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
157 VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
158 rm1.setZero();
159 rm2.setZero();
160 rm1 = cm.real();
161 rm2 = cm.imag();
162 VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
163 VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
164 cm.real().setZero();
165 VERIFY(static_cast<const MatrixType&>(cm).real().isZero());
166 VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero());
167 }
168
169 #ifdef EIGEN_TEST_PART_2
casting()170 void casting()
171 {
172 Matrix4f m = Matrix4f::Random(), m2;
173 Matrix4d n = m.cast<double>();
174 VERIFY(m.isApprox(n.cast<float>()));
175 m2 = m.cast<float>(); // check the specialization when NewType == Type
176 VERIFY(m.isApprox(m2));
177 }
178 #endif
179
180 template <typename Scalar>
fixedSizeMatrixConstruction()181 void fixedSizeMatrixConstruction()
182 {
183 const Scalar raw[3] = {1,2,3};
184 Matrix<Scalar,3,1> m(raw);
185 Array<Scalar,3,1> a(raw);
186 VERIFY(m(0) == 1);
187 VERIFY(m(1) == 2);
188 VERIFY(m(2) == 3);
189 VERIFY(a(0) == 1);
190 VERIFY(a(1) == 2);
191 VERIFY(a(2) == 3);
192 }
193
test_basicstuff()194 void test_basicstuff()
195 {
196 for(int i = 0; i < g_repeat; i++) {
197 CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
198 CALL_SUBTEST_2( basicStuff(Matrix4d()) );
199 CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
200 CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
201 CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
202 CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
203 CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
204
205 CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
206 CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
207 }
208
209 CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>());
210 CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
211 CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
212
213 CALL_SUBTEST_2(casting());
214 }
215