# Copyright 2014 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import its.device import its.caps import its.objects import its.image import os.path import pylab import matplotlib import matplotlib.pyplot def main(): """Capture a set of raw images with increasing gains and measure the noise. """ NAME = os.path.basename(__file__).split(".")[0] # Each shot must be 1% noisier (by the variance metric) than the previous # one. VAR_THRESH = 1.01 NUM_STEPS = 5 with its.device.ItsSession() as cam: props = cam.get_camera_properties() its.caps.skip_unless(its.caps.raw16(props) and its.caps.manual_sensor(props) and its.caps.read_3a(props) and its.caps.per_frame_control(props)) # Expose for the scene with min sensitivity sens_min, sens_max = props['android.sensor.info.sensitivityRange'] # Digital gains might not be visible on RAW data sens_max = props['android.sensor.maxAnalogSensitivity'] sens_step = (sens_max - sens_min) / NUM_STEPS s_ae,e_ae,_,_,_ = cam.do_3a(get_results=True) s_e_prod = s_ae * e_ae variances = [] for s in range(sens_min, sens_max, sens_step): e = int(s_e_prod / float(s)) req = its.objects.manual_capture_request(s, e) # Capture raw+yuv, but only look at the raw. cap,_ = cam.do_capture(req, cam.CAP_RAW_YUV) # Measure the variance. Each shot should be noisier than the # previous shot (as the gain is increasing). plane = its.image.convert_capture_to_planes(cap, props)[1] tile = its.image.get_image_patch(plane, 0.45,0.45,0.1,0.1) var = its.image.compute_image_variances(tile)[0] variances.append(var) img = its.image.convert_capture_to_rgb_image(cap, props=props) its.image.write_image(img, "%s_s=%05d_var=%f.jpg" % (NAME,s,var)) print "s=%d, e=%d, var=%e"%(s,e,var) pylab.plot(range(len(variances)), variances) matplotlib.pyplot.savefig("%s_variances.png" % (NAME)) # Test that each shot is noisier than the previous one. for i in range(len(variances) - 1): assert(variances[i] < variances[i+1] / VAR_THRESH) if __name__ == '__main__': main()